1
|
Tojima R, Nagata K, Ito N, Ishii K, Arai T, Ito T, Kasakura K, Nishiyama C. Transcriptional regulation of basophil-specific protease genes by C/EBPα, GATA2, TGF-β signaling, and epigenetic mechanisms. FEBS Lett 2024. [PMID: 39660487 DOI: 10.1002/1873-3468.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024]
Abstract
Basophils and mast cells (MCs) play an important role in immune responses against allergens and parasitic infection. To elucidate the mechanisms that determine the commitment between basophils and mast cell (MCs), transcription factors and epigenetic modifications regulating the gene expression of basophil-specific enzymes, Mcpt8 and Mcpt11, were analyzed using bone marrow-derived (BM) cells containing basophils and MCs. Knockdown (KD) and overexpression experiments revealed that the transcription factor C/EBPα positively regulated the gene expression of Mcpt8 and Prss34 (encoding Mcpt11). Cebpa, Mcpt8, and Prss34 mRNAs levels were upregulated by histone deacetylases and downregulated by DNA methyltransferases. Gata2 KD significantly reduced the mRNA levels of Mcpt8 and Prss34, while TGF-β treatment increased those of Mcpt8 and Prss34. These results show that basophil-specific protease genes were transactivated by C/EBPα, GATA2, and TGF-β signaling and modified with epigenetic regulation.
Collapse
Affiliation(s)
- Ryotaro Tojima
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kazuki Nagata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Naoto Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kenta Ishii
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Takahiro Arai
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Tomoka Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
2
|
Nagata K, Ando D, Ashikari T, Ito K, Miura R, Fujigaki I, Goto Y, Ando M, Ito N, Kawazoe H, Iizuka Y, Inoue M, Yashiro T, Hachisu M, Kasakura K, Nishiyama C. Butyrate, Valerate, and Niacin Ameliorate Anaphylaxis by Suppressing IgE-Dependent Mast Cell Activation: Roles of GPR109A, PGE2, and Epigenetic Regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:771-784. [PMID: 38197634 DOI: 10.4049/jimmunol.2300188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Short-chain fatty acids (SCFAs) are produced by the intestinal microbiota during the fermentation of dietary fibers as secondary metabolites. Several recent studies reported that SCFAs modulate the development and function of immune-related cells. However, the molecular mechanisms by which SCFAs regulate mast cells (MCs) remain unclear. In the current study, we analyzed the function and gene expression of mouse MCs in the presence of SCFAs in vitro and in vivo. We found that the oral administration of valerate or butyrate ameliorated passive systemic anaphylaxis and passive cutaneous anaphylaxis in mice. The majority of SCFAs, particularly propionate, butyrate, valerate, and isovalerate, suppressed the IgE-mediated degranulation of bone marrow-derived MCs, which were eliminated by the Gi protein inhibitor pertussis toxin and by the knockdown of Gpr109a. A treatment with the HDAC inhibitor trichostatin A also suppressed IgE-mediated MC activation and reduced the surface expression level of FcεRI on MCs. Acetylsalicylic acid and indomethacin attenuated the suppressive effects of SCFAs on degranulation. The degranulation degree was significantly reduced by PGE2 but not by PGD2. Furthermore, SCFAs enhanced PGE2 release from stimulated MCs. The SCFA-mediated amelioration of anaphylaxis was exacerbated by COX inhibitors and an EP3 antagonist, but not by an EP4 antagonist. The administration of niacin, a ligand of GPR109A, alleviated the symptoms of passive cutaneous anaphylaxis, which was inhibited by cyclooxygenase inhibitors and the EP3 antagonist. We conclude that SCFAs suppress IgE-mediated activation of MCs in vivo and in vitro involving GPR109A, PGE2, and epigenetic regulation.
Collapse
Affiliation(s)
- Kazuki Nagata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Daisuke Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Tsubasa Ashikari
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Kandai Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Ryosuke Miura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Izumi Fujigaki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Yuki Goto
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Miki Ando
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Naoto Ito
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Hibiki Kawazoe
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Yuki Iizuka
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Mariko Inoue
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Masakazu Hachisu
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo, Japan
| |
Collapse
|
3
|
Yashiro T, Yamamoto M, Araumi S, Hara M, Yogo K, Uchida K, Kasakura K, Nishiyama C. PU.1 and IRF8 Modulate Activation of NLRP3 Inflammasome via Regulating Its Expression in Human Macrophages. Front Immunol 2021; 12:649572. [PMID: 33897697 PMCID: PMC8058198 DOI: 10.3389/fimmu.2021.649572] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
NLRP3 inflammasomes play crucial roles in the initiation of host defense by converting pro-Caspase-1 to mature Caspase-1, which in turn processes immature IL-1β and IL-18 into their biologically active forms. Although NLRP3 expression is restricted to monocytic lineages such as monocytes, macrophages, and dendritic cells, the mechanisms determining the lineage-specific expression of NLRP3 remain largely unknown. In this study, we investigated the transcription factors involved in cell-type-specific transcription of NLRP3. We found that a distal, rather than a proximal, promoter of human NLRP3 was predominantly used in the human monocytic cell lines and macrophages. Reporter analysis showed that an Ets/IRF composite element (EICE) at -309/-300 and an Ets motif at +5/+8 were critical for transcriptional activity of the distal promoter. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays demonstrated that two transcription factors, PU.1 and IRF8, both of which play essential roles in development and gene expression of the monocytic lineage, were bound to the EICE site, whereas PU.1 alone was bound to the Ets site. Knockdown of PU.1 and/or IRF8 mediated by small interfering RNA downregulated expression of NLRP3 and related molecules and markedly diminished the LPS-induced release of IL-1β in THP-1, suggesting that activity of the NLRP3 inflammasome was suppressed by knockdown of PU.1 and IRF8. Taken together, these results indicate that PU.1 and IRF8 are involved in the monocytic lineage-specific expression of NLRP3 by binding to regulatory elements within its promoter and that PU.1 and IRF8 are potential targets for regulating the activity of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-Ku, Japan
| | - Machiko Yamamoto
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-Ku, Japan
| | - Sanae Araumi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-Ku, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Kyoko Yogo
- Juntendo University Advanced Research Institute for Health Science, Bunkyo-ku, Japan
| | - Koichiro Uchida
- Juntendo University Advanced Research Institute for Health Science, Bunkyo-ku, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-Ku, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-Ku, Japan
| |
Collapse
|
4
|
Herrmann N, Nümm TJ, Iwamoto K, Leib N, Koch S, Majlesain Y, Maintz L, Kirins H, Schnautz S, Bieber T. Vitamin D 3-Induced Promotor Dissociation of PU.1 and YY1 Results in FcεRI Reduction on Dendritic Cells in Atopic Dermatitis. THE JOURNAL OF IMMUNOLOGY 2021; 206:531-539. [PMID: 33443066 DOI: 10.4049/jimmunol.2000667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Atopic dermatitis (AD) is a severe inflammatory skin disease. Langerhans cells and inflammatory dendritic epidermal cells (IDEC) are located in the epidermis of AD patients and contribute to the inflammatory processes. Both express robustly the high-affinity receptor for IgE, FcεRI, and thereby sense allergens. A beneficial role of vitamin D3 in AD is discussed to be important especially in patients with allergic sensitization. We hypothesized that vitamin D3 impacts FcεRI expression and addressed this in human ex vivo skin, in vitro Langerhans cells, and IDEC models generated from primary human precursor cells. We show in this article that biologically active vitamin D3 [1,25(OH)2-D3] significantly downregulated FcεRI at the protein and mRNA levels of the receptor's α-chain, analyzed by flow cytometry and quantitative RT-PCR. We also describe the expression of a functional vitamin D receptor in IDEC. 1,25(OH)2-D3-mediated FcεRI reduction was direct and resulted in impaired activation of IDEC upon FcεRI engagement as monitored by CD83 expression. FcεRI regulation by 1,25(OH)2-D3 was independent of maturation and expression levels of microRNA-155 and PU.1 (as upstream regulatory axis of FcεRI) and transcription factors Elf-1 and YY1. However, 1,25(OH)2-D3 induced dissociation of PU.1 and YY1 from the FCER1A promotor, evaluated by chromatin immunoprecipitation. We show that vitamin D3 directly reduces FcεRI expression on dendritic cells by inhibiting transcription factor binding to its promotor and subsequently impairs IgE-mediated signaling. Thus, vitamin D3 as an individualized therapeutic supplement for those AD patients with allergic sensitization interferes with IgE-mediated inflammatory processes in AD patients.
Collapse
Affiliation(s)
- Nadine Herrmann
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and .,Christine Kühne-Center for Allergy Research and Education, CH-7265 Davos, Switzerland
| | - Tim J Nümm
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and.,Christine Kühne-Center for Allergy Research and Education, CH-7265 Davos, Switzerland
| | - Kazumasa Iwamoto
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and
| | - Nicole Leib
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and.,Christine Kühne-Center for Allergy Research and Education, CH-7265 Davos, Switzerland
| | - Susanne Koch
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and
| | - Yasmin Majlesain
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and
| | - Laura Maintz
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and.,Christine Kühne-Center for Allergy Research and Education, CH-7265 Davos, Switzerland
| | - Helene Kirins
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and
| | - Sylvia Schnautz
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and.,Christine Kühne-Center for Allergy Research and Education, CH-7265 Davos, Switzerland
| |
Collapse
|
5
|
Kasakura K, Nagata K, Miura R, Iida M, Nakaya H, Okada H, Arai T, Arai T, Kawakami Y, Kawakami T, Yashiro T, Nishiyama C. Cooperative Regulation of the Mucosal Mast Cell-Specific Protease Genes Mcpt1 and Mcpt2 by GATA and Smad Transcription Factors. THE JOURNAL OF IMMUNOLOGY 2020; 204:1641-1649. [PMID: 32005755 DOI: 10.4049/jimmunol.1900094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Mouse mast cell proteases (mMCP)-1 and -2 are specifically expressed in mucosal mast cells (MCs). However, the transcriptional regulation mechanism of the Mcpt1 and Mcpt2 genes induced in mucosal MCs is largely unknown. In the current study, we found that TGF-β stimulation drastically induced upregulation of Mcpt1 and Mcpt2 mRNA in mouse bone marrow-derived MCs (BMMCs). TGF-β-induced expression of Mcpt1 and Mcpt2 was markedly suppressed by transfection with small interfering RNA targeting Smad2 or Smad4 and moderately reduced by Smad3 small interfering RNA. We next examined the roles of the hematopoietic cell-specific transcription factors GATA1 and GATA2 in the expression of Mcpt1 and Mcpt2 and demonstrated that knockdown of GATA1 and GATA2 reduced the mRNA levels of Mcpt1 and Mcpt2 in BMMCs. The recruitment of GATA2 and acetylation of histone H4 of the highly conserved GATA-Smad motifs, which were localized in the distal regions of the Mcpt1 and Mcpt2 genes, were markedly increased by TGF-β stimulation, whereas the level of GATA2 binding to the proximal GATA motif was not affected by TGF-β. A reporter assay showed that TGF-β stimulation upregulated GATA2-mediated transactivation activity in a GATA-Smad motif-dependent manner. We also observed that GATA2 and Smad4 interacted in TGF-β-stimulated BMMCs via immunoprecipitation and Western blotting analysis. Taken together, these results demonstrate that TGF-β induced mMCP-1 and -2 expression by accelerating the recruitment of GATA2 to the proximal regions of the Mcpt1 and Mcpt2 genes in mucosal MCs.
Collapse
Affiliation(s)
- Kazumi Kasakura
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and.,Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Kazuki Nagata
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Ryosuke Miura
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Mayu Iida
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Hikaru Nakaya
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Hikaru Okada
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Takahiro Arai
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Takahiro Arai
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Takuya Yashiro
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Chiharu Nishiyama
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| |
Collapse
|
6
|
Yashiro T, Takeuchi H, Nakamura S, Tanabe A, Hara M, Uchida K, Okumura K, Kasakura K, Nishiyama C. PU.1 plays a pivotal role in dendritic cell migration from the periphery to secondary lymphoid organs via regulating CCR7 expression. FASEB J 2019; 33:11481-11491. [PMID: 31314592 DOI: 10.1096/fj.201900379rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
C-C chemokine receptor type 7 (CCR7) is essential for migration of dendritic cells (DCs) to draining lymph nodes. PU.1/Spi1 is a transcription factor playing a critical role in the gene regulation of DCs. PU.1 knockdown decreased the expression of CCR7 in bone marrow-derived DCs and subsequently attenuated migration in vitro and in vivo. Reporter assays, EMSA, and chromatin immunoprecipitation assays revealed that PU.1 binds to the most proximal Ets motif of the Ccr7 promoter, which is involved in transcriptional activation. The CCR7 expression level, which was higher in the programmed cell death 1 ligand 2 (PD-L2)+ population than in the PD-L2- population and was markedly suppressed by TGF-β treatment, coincided with the binding level of PU.1 to the Ccr7 promoter. The PU.1 binding level in CCR7high mesenteric lymph nodes DCs was higher than in other DC subtypes. The involvement of PU.1 in the expression of the CCR7 gene was also observed in human DCs. We conclude that PU.1 plays a pivotal role in DC migration by transactivating the CCR7 gene via the Ets motif in the promoter in both humans and mice.-Yashiro, T., Takeuchi, H., Nakamura, S., Tanabe, A., Hara, M., Uchida, K., Okumura, K., Kasakura, K., Nishiyama, C. PU.1 plays a pivotal role in dendritic cell migration from the periphery to secondary lymphoid organs via regulating CCR7 expression.
Collapse
Affiliation(s)
- Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.,Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiromi Takeuchi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Shusuke Nakamura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Atsushi Tanabe
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Mutsuko Hara
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Koichiro Uchida
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.,Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.,Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
7
|
Tetrahydroxystilbene glycoside antagonizes β-amyloid-induced inflammatory injury in microglia cells by regulating PU.1 expression. Neuroreport 2019; 29:787-793. [PMID: 29668503 PMCID: PMC5999375 DOI: 10.1097/wnr.0000000000001032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inhibiting β-amyloid (Aβ)-induced microglial activation is proposed as an effective strategy for the treatment of Alzheimer’s disease. Tetrahydroxystilbene glycoside (TSG) is the main active ingredient of Polygonum multiflorum and has a wide range of biological properties, including antiinflammation. Here, we focused on the function and regulatory mechanism of TSG in Aβ-induced N9 and BV2 cells. The results showed that Aβ treatment induced the activation of microglia cells and the production of inflammatory molecules, including inducible nitric oxide synthase, nitric oxide, cyclooxygenase 2, and prostaglandin E2, which were significantly inhibited by TSG pretreatment. Furthermore, we found Aβ exposure increased the levels of microglial M1 markers, interleukin (IL)-1β, IL-6, and tumor necrosis factor α, and the pretreatment of TSG suppressed the increase of M1 markers and enhanced the levels of M2 markers, including IL-10, brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and arginase-1. PU.1 overexpression was found to eradicate the anti-inflammatory effects of TSG in Aβ-induced microglial cells. Taken together, these findings indicate that TSG attenuates Aβ-induced microglial activation and polarizes microglia towards M2 phenotype, which may be closely associated with the regulation of PU.1.
Collapse
|
8
|
Yashiro T, Nakano S, Nomura K, Uchida Y, Kasakura K, Nishiyama C. A transcription factor PU.1 is critical for Ccl22 gene expression in dendritic cells and macrophages. Sci Rep 2019; 9:1161. [PMID: 30718772 PMCID: PMC6361964 DOI: 10.1038/s41598-018-37894-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 12/07/2018] [Indexed: 11/16/2022] Open
Abstract
The chemokine CCL22 is predominantly produced by dendritic cells (DCs) and macrophages. CCL22 acts on CCR4-expressing cells including Th2 and Treg. Although a correlation between the CCL22-CCR4 axis and allergic diseases has been established, the mechanism of monocyte lineage-specific Ccl22 gene expression is largely unknown. In the current study, we investigated transcriptional regulation of the Ccl22 gene in DCs and macrophages. Using reporter assays, we identified the critical cis-enhancing elements at 21/−18 and −10/−4 in the Ccl22 promoter. Electrophoretic mobility shift assays proved that transcription factor PU.1 directly binds to the cis-elements. Knockdown of PU.1 markedly decreased Ccl22 expression in bone marrow-derived DCs (BMDCs) and BM macrophages (BMDMs). Chromatin immunoprecipitation assays revealed that PU.1 bound to the Ccl22 promoter in not only BMDCs and BMDMs, but also splenic DCs and peritoneal macrophages. LPS stimulation increased the amount of PU.1 recruited to the promoter, accompanied by upregulation of the Ccl22 mRNA level, which was diminished by Spi1 knockdown. We identified similar cis-elements on the human CCL22 promoter, which were bound with PU.1 in human monocytes. Taken together, these findings indicate that PU.1 transactivates the Ccl22 gene in DCs and macrophages by directly binding to the two elements in the promoter.
Collapse
Affiliation(s)
- Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Shiori Nakano
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Kurumi Nomura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Yuna Uchida
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan.
| |
Collapse
|
9
|
Yashiro T, Yamaguchi M, Watanuki Y, Kasakura K, Nishiyama C. The Transcription Factors PU.1 and IRF4 Determine Dendritic Cell-Specific Expression of RALDH2. THE JOURNAL OF IMMUNOLOGY 2018; 201:3677-3682. [PMID: 30413670 DOI: 10.4049/jimmunol.1800492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/08/2018] [Indexed: 01/22/2023]
Abstract
RALDH2 expressed in dendritic cells (DCs) plays a critical role in the development of regulatory T cells in mesenteric lymph nodes. Despite the importance of RALDH2 in intestinal immunity, little is known about the mechanism of DC-specific expression of RALDH2. In the current study, we focused on the hematopoietic cell-specific transcription factors PU.1 and IRF4 as the determinants of Aldh1a2 gene expression. The mRNA level of Aldh1a2, and subsequently the enzyme activity, were decreased by knockdown of PU.1 and IRF4 in bone marrow-derived DCs (BMDCs) of BALB/c mice. Chromatin immunoprecipitation assays showed that PU.1 and IRF4 bound to the Aldh1a2 gene ∼2 kb upstream from the transcription start site in BMDCs. A reporter assay and an EMSA revealed that the Aldh1a2 promoter was synergistically transactivated by a heterodimer composed with PU.1 and IRF4 via the EICE motif at -1961/-1952 of the gene. The effect of small interfering RNAs for Spi1 and Irf4 and specific binding of PU.1 and IRF4 on the Aldh1a2 gene were also observed in DCs freshly isolated from spleen and mesenteric lymph nodes, respectively. GM-CSF stimulation upregulated the Aldh1a2 transcription in Flt3 ligand-generated BMDCs, in which the IRF4 expression and the PU.1 recruitment to the Aldh1a2 promoter were enhanced. We conclude that PU.1 and IRF4 are transactivators of the Aldh1a2 gene in vitro and ex vivo.
Collapse
Affiliation(s)
- Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Masaki Yamaguchi
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Yumi Watanuki
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan
| |
Collapse
|
10
|
Oda Y, Kasakura K, Fujigaki I, Kageyama A, Okumura K, Ogawa H, Yashiro T, Nishiyama C. The effect of PU.1 knockdown on gene expression and function of mast cells. Sci Rep 2018; 8:2005. [PMID: 29386516 PMCID: PMC5792452 DOI: 10.1038/s41598-018-19378-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/29/2017] [Indexed: 11/09/2022] Open
Abstract
PU.1 is a hematopoietic cell-specific transcription factor. In the current study, we investigated the role of PU.1 in the gene expression and the function of mouse mast cells (MCs) in vitro and in vivo. When PU.1 siRNA was introduced into bone marrow-derived MCs (BMMCs), IgE-mediated activation was reduced, and the Syk and FcεRIβ mRNA levels were significantly decreased. As the regulatory mechanism of the Syk gene is largely unknown, we performed promoter analysis and found that PU.1 transactivated the Syk promoter through direct binding to a cis-element in the 5′-untranslated region. The involvement of PU.1 in the Syk promoter was also observed in mouse dendritic cells and human MCs, suggesting that the relationship between PU.1 and Syk is common in mammals and in hematopoietic lineages. When antigen was administrated intravenously after the transfusion of siRNA-transfected BMMCs in the mouse footpad, the footpad thickening was significantly suppressed by PU.1 knockdown. Finally, administration of the immunomodulator pomalidomide suppressed passive systemic anaphylaxis of mice. Taken together, these results indicate that PU.1 knockdown might be an efficacious strategy for the prevention of MC-mediated allergic diseases.
Collapse
Affiliation(s)
- Yoshihito Oda
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Kazumi Kasakura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Izumi Fujigaki
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Azusa Kageyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Takuya Yashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan. .,Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
11
|
Dar SA, Rai G, Ansari MA, Akhter N, Gupta N, Sharma S, Haque S, Ramachandran VG, Wahid M, Rudramurthy SM, Chakrabarti A, Das S. FcɛR1α gene polymorphism shows association with high IgE and anti‐FcɛR1α in Chronic Rhinosinusitis with Nasal Polyposis. J Cell Biochem 2018; 119:4142-4149. [DOI: 10.1002/jcb.26619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Sajad A. Dar
- Department of MicrobiologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
- Research and Scientific Studies UnitCollege of Nursing & Allied Health SciencesUniversity of JazanJazanSaudi Arabia
| | - Gargi Rai
- Department of MicrobiologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
| | - Mohammad A. Ansari
- Department of MicrobiologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
| | - Naseem Akhter
- Department of Laboratory MedicineFaculty of Applied Medical SciencesAlbaha UniversityAlbahaSaudi Arabia
| | - Neelima Gupta
- Department of OtorhinolaryngologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
| | - Sonal Sharma
- Department of PathologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
| | - Shafiul Haque
- Research and Scientific Studies UnitCollege of Nursing & Allied Health SciencesUniversity of JazanJazanSaudi Arabia
- Department of BiosciencesFaculty of Natural SciencesJamia Millia Islamia (A Central University)New DelhiIndia
| | - Vishnampettai G. Ramachandran
- Department of MicrobiologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
| | - Mohd Wahid
- Research and Scientific Studies UnitCollege of Nursing & Allied Health SciencesUniversity of JazanJazanSaudi Arabia
- Department of BiosciencesFaculty of Natural SciencesJamia Millia Islamia (A Central University)New DelhiIndia
| | - Shivprakash M. Rudramurthy
- Department of Medical MicrobiologyPost Graduate Institute of Medical Education & ResearchChandigarhIndia
| | - Arunaloke Chakrabarti
- Department of Medical MicrobiologyPost Graduate Institute of Medical Education & ResearchChandigarhIndia
| | - Shukla Das
- Department of MicrobiologyUniversity College of Medical Sciences (University of Delhi) & Guru Teg Bahadur HospitalDelhiIndia
| |
Collapse
|
12
|
Ramírez C, Mendoza L. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network. Bioinformatics 2017; 34:1174-1182. [DOI: 10.1093/bioinformatics/btx736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Carlos Ramírez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Mx., México
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Mx., México
| |
Collapse
|
13
|
Koch S, Stroisch TJ, Vorac J, Herrmann N, Leib N, Schnautz S, Kirins H, Förster I, Weighardt H, Bieber T. AhR mediates an anti-inflammatory feedback mechanism in human Langerhans cells involving FcεRI and IDO. Allergy 2017; 72:1686-1693. [PMID: 28376268 DOI: 10.1111/all.13170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Aryl hydrocarbon receptor (AhR), an important regulator of immune responses, is activated by UVB irradiation in the skin. Langerhans cells (LC) in the epidermis of patients with atopic dermatitis (AD) carry the high-affinity receptor for IgE, FcεRI, and are crucially involved in the pathogenesis of AD by inducing inflammatory responses and regulating tolerogenic processes. OBJECTIVES We investigated AhR and AhR repressor (AhRR) expression and functional consequences of AhR activation in human ex vivo skin cells and in in vitro-generated LC. METHODS Epidermal cells from healthy skin were analyzed for their expression of AhR and AhRR. LC generated from CD34+ hematopoietic stem cells (CD34LC) were treated with the UV photoproduct and AhR ligand 6-formylindolo[3,2-b]carbazole (FICZ). Cell surface receptors, transcription factors, and the tolerogenic tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) were analyzed using flow cytometry and quantitative PCR. RESULTS Epidermal LC and CD34LC express AhR and AhRR. AhR was also found in keratinocytes, which lack AhRR. AhR activation of LC by FICZ caused downregulation of FcεRI in CD34LC without affecting their maturation. AhR-mediated regulation of FcεRI did not involve any known transcription factors related to this receptor. Furthermore, we could show upregulation of IDO mediated by AhR engagement. CONCLUSIONS Our study shows that AhR activation by FICZ reduces FcεRI and upregulates IDO expression in LC. This AhR-mediated anti-inflammatory feedback mechanism may dampen the allergen-induced inflammation in AD.
Collapse
Affiliation(s)
- S. Koch
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| | - T. J. Stroisch
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| | - J. Vorac
- LIMES Institute, Immunology and EnvironmentUniversity of BonnBonnGermany
| | - N. Herrmann
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| | - N. Leib
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| | - S. Schnautz
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| | - H. Kirins
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| | - I. Förster
- LIMES Institute, Immunology and EnvironmentUniversity of BonnBonnGermany
| | - H. Weighardt
- LIMES Institute, Immunology and EnvironmentUniversity of BonnBonnGermany
- Innate Immunity and Extrinsic Skin AgingIUF ‐ Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | - T. Bieber
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| |
Collapse
|
14
|
Goto H, Kariya R, Kudo E, Okuno Y, Ueda K, Katano H, Okada S. Restoring PU.1 induces apoptosis and modulates viral transactivation via interferon-stimulated genes in primary effusion lymphoma. Oncogene 2017; 36:5252-5262. [PMID: 28481873 DOI: 10.1038/onc.2017.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/20/2022]
Abstract
Primary effusion lymphoma (PEL), which is an aggressive subgroup of B-cell lymphoma associated with Kaposi sarcoma-associated herpes virus/human herpes virus-8, is refractory to the standard treatment, and exhibits a poor survival. Although PU.1 is downregulated in PEL, the potential role of its reduction remains to be elucidated. In this investigation, we analyzed the DNA methylation of PU.1 cis-regulatory elements in PEL and the effect of restoring PU.1 on PEL cells. The mRNA level of PU.1 was downregulated in PEL cells. The methylated promoter and enhancer regions of the PU.1 gene were detected in PEL cells. Suppression of cell growth and apoptosis were caused by the restoration of PU.1 in PEL cells. A microarray analysis revealed that interferon-stimulated genes (ISGs) including pro-apoptotic ISGs were strongly increased in BCBL-1 cells after the induction of PU.1. Reporter assays showed that PU.1 transactivated pro-apoptotic ISG promoters, such as the XAF1, OAS1 and TRAIL promoters. Mutations at the PU.1 binding sequences suppressed its transactivation. We confirmed the binding of PU.1 to the XAF1, OAS1 and TRAIL promoters in a chromatin immunoprecipitation assay. PU.1 suppressed ORF57 activation by inducing IRF7. The reinduction of PU.1 reduced formation of ascites and lymphoma cell infiltration of distant organs in PEL xenograft model mice. Collectively, PU.1 has a role in tumor suppression in PEL and its down-regulation is associated with PEL development. Restoring PU.1 with demethylation agents may be a novel therapeutic approach for PEL.
Collapse
Affiliation(s)
- H Goto
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo, Kumamoto, Japan
| | - R Kariya
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo, Kumamoto, Japan
| | - E Kudo
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo, Kumamoto, Japan
| | - Y Okuno
- Departments of Hematology, Rheumatology, and Infectious Disease, Kumamoto University Graduate School of Medicine, Honjo, Kumamoto, Japan
| | - K Ueda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - H Katano
- Department of Pathology, National Institute of Infectious Diseases, Toyama, Shinjuku, Tokyo, Japan
| | - S Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Honjo, Kumamoto, Japan
| |
Collapse
|
15
|
Yashiro T, Kasakura K, Oda Y, Kitamura N, Inoue A, Nakamura S, Yokoyama H, Fukuyama K, Hara M, Ogawa H, Okumura K, Nishiyama M, Nishiyama C. The hematopoietic cell-specific transcription factor PU.1 is critical for expression of CD11c. Int Immunol 2017; 29:87-94. [PMID: 28338898 DOI: 10.1093/intimm/dxx009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
PU.1 is a hematopoietic cell-specific transcription factor belonging to the Ets family, which plays an important role in the development of dendritic cells (DCs). CD11c (encoded by Itgax) is well established as a characteristic marker of hematopoietic lineages including DCs. In the present study, we analyzed the role of PU.1 (encoded by Spi-1) in the expression of CD11c. When small interfering RNA (siRNA) for Spi-1 was introduced into bone marrow-derived DCs (BMDCs), the mRNA level and cell surface expression of CD11c were dramatically reduced. Using reporter assays, the TTCC sequence at -56/-53 was identified to be critical for PU.1-mediated activation of the promoter. An EMSA showed that PU.1 directly bound to this region. ChIP assays demonstrated that a significant amount of PU.1 bound to this region on chromosomal DNA in BMDCs, which was decreased in LPS-stimulated BMDCs in accordance with the reduced levels of mRNAs of Itgax and Spi-1, and the histone acetylation degree. Enforced expression of exogenous PU.1 induced the expression of the CD11c protein on the cell surface of mast cells, whereas control transfectants rarely expressed CD11c. Quantitative RT-PCR also showed that the expression of a transcription factor Irf4, which is a partner molecule of PU.1, was reduced in PU.1-knocked down BMDCs. IRF4 transactivated the Itgax gene in a synergistic manner with PU.1. Taken together, these results indicate that PU.1 functions as a positive regulator of CD11c gene expression by directly binding to the Itgax promoter and through transactivation of the Irf4 gene.
Collapse
Affiliation(s)
- Takuya Yashiro
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.,Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kazumi Kasakura
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.,Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yoshihito Oda
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Nao Kitamura
- Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akihito Inoue
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Shusuke Nakamura
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hokuto Yokoyama
- Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Laboratory of Cell Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kanako Fukuyama
- Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.,Laboratory of Cell Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mutsuko Hara
- Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Hideoki Ogawa
- Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Makoto Nishiyama
- Laboratory of Cell Biotechnology, Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chiharu Nishiyama
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.,Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
16
|
Shim SY, Lee KD, Lee M. Vaccinium angustifolium Root Extract Suppresses FcɛRI Expression in Human Basophilic KU812F Cells. Prev Nutr Food Sci 2017; 22:9-15. [PMID: 28401082 PMCID: PMC5383136 DOI: 10.3746/pnf.2017.22.1.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
Vaccinium angustifolium, commonly known as the lowbush blueberry, is a rich source of flavonoids, with which various human physiological activities have been associated. The present study focuses on the investigation of the effect of the methanolic extract of V. angustifolium root extract (VAE) on high affinity immunoglobulin E receptor (FcɛRI) α chain antibody (CRA-1)-induced allergic reaction in human basophilic KU812F cells. The total phenolic content of VAE was found to be 170±1.9 mg gallic acid equivalents/g. Flow cytometry analysis revealed that the cell surface expression of FcɛRI was suppressed in a concentration-dependent manner upon culture with VAE. Reverse-transcriptase polymerase chain reaction analysis showed that the mRNA level of the FcɛRI α chain was reduced in a concentration-dependent manner as a result of VAE treatment. Western blot analysis revealed that the protein expression of FcɛRI and the phosphorylation of extracellular signal-regulated kinases (ERK) 1/2 were concentration-dependently inhibited by VAE. We determined that VAE inhibited anti-CRA-1-induced histamine release, in addition to the elevation of intracellular calcium concentration ([Ca2+]i), in a concentration-dependent manner. These results indicate that VAE may exert an anti-allergic effect via the inhibition of calcium influx and histamine release, which occurs as a result of the down-regulation of FcɛRI expression through inhibition of ERK 1/2 activation.
Collapse
Affiliation(s)
- Sun Yup Shim
- College of Pharmacy, Sunchon National University, Jeonnam 57922,
Korea
| | - Kyung Dong Lee
- Department of Oriental Medicine Materials, Dongsin University, Jeonnam 58245,
Korea
| | - Mina Lee
- College of Pharmacy, Sunchon National University, Jeonnam 57922,
Korea
| |
Collapse
|
17
|
Critical Role of Transcription Factor PU.1 in the Function of the OX40L/TNFSF4 Promoter in Dendritic Cells. Sci Rep 2016; 6:34825. [PMID: 27708417 PMCID: PMC5052589 DOI: 10.1038/srep34825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/19/2016] [Indexed: 11/15/2022] Open
Abstract
PU.1 is a hematopoietic lineage-specific transcription factor belonging to the Ets family. We investigated the role of PU.1 in the expression of OX40L in dendritic cells (DCs), because the regulatory mechanism of cell type-specific expression of OX40L, which is mainly restricted to antigen-presenting cells, is largely unknown despite the critical involvement in Th2 and Tfh development. PU.1 knockdown decreased the expression of OX40L in mouse DCs. Chromatin immunoprecipitation (ChIP) assays demonstrated that PU.1 constitutively bound to the proximal region of the OX40L promoter. Reporter assays and electrophoretic mobility shift assays revealed that PU.1 transactivated the OX40L promoter through direct binding to the most-proximal Ets motif. We found that this Ets motif is conserved between mouse and human, and that PU.1 bound to the human OX40L promoter in ChIP assay using human monocyte-derived DCs. ChIP assays based on ChIP-seq datasets revealed that PU.1 binds to several sites distant from the transcription start site on the OX40L gene in addition to the most-proximal site in mouse DCs. In the present study, the structure of the OX40L promoter regulated by PU.1 is determined. It is also suggested that PU.1 is involved in mouse OX40L expression via multiple binding sites on the gene.
Collapse
|
18
|
PU.1 Suppresses Th2 Cytokine Expression via Silencing of GATA3 Transcription in Dendritic Cells. PLoS One 2015; 10:e0137699. [PMID: 26361334 PMCID: PMC4567381 DOI: 10.1371/journal.pone.0137699] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/19/2015] [Indexed: 01/04/2023] Open
Abstract
The transcription factor PU.1 is predominantly expressed in dendritic cells (DCs) and is essential for DC differentiation. Although there are several reports that PU.1 positively regulates the expression of DC-specific genes, whether PU.1 also has a suppressive effect on DCs is largely unknown. Here we demonstrate that PU.1 suppresses the expression of Th2 cytokines including IL-13 and IL-5 in bone marrow-derived DCs (BMDCs), through repression of the expression of GATA3, which is a master regulator of Th2 differentiations. When PU.1 siRNA was introduced into BMDCs, LPS-induced expression of IL-13 and IL-5 was increased along with upregulation of the constitutive expression of GATA2 and GATA3. The additional introduction of GATA3 siRNA but not of GATA2 siRNA abrogated PU.1 siRNA-mediated upregulation of IL-13 and IL-5. A chromatin immunoprecipitation assay showed that PU.1 bound to Gata3 proximal promoter region, which is more dominant than the distal promoter in driving GATA3 transcription in DCs. The degree of histone acetylation at the Gata3 promoter was decreased in PU.1 siRNA-introduced DCs, suggesting the involvement of PU.1 in chromatin modification of the Gata3 promoter. Treatment with a histone deacetylase (HDAC) inhibitor, trichostatin A, increased the degree of histone H3 acetylation at the Gata3 promoter and induced the subsequent expression of GATA3. Experiments using HDAC inhibitors and siRNAs showed that HDAC3 suppressed GATA3 expression. The recruitment of HDAC3 to the Gata3 promoter was decreased by PU.1 knockdown. LPS-induced IL-13 expression was dramatically reduced in BMDCs generated from mice lacking the conserved GATA3 response element, termed CGRE, which is an essential site for the binding of GATA3 on the Il-13 promoter. The degree of H3K4me3 at CGRE was significantly increased in PU.1 siRNA-transfected stimulated DCs. Our results indicate that PU.1 plays pivotal roles in DC development and function, serving not only as a transcriptional activator but also as a repressor.
Collapse
|
19
|
Yamazaki S, Nakano N, Honjo A, Hara M, Maeda K, Nishiyama C, Kitaura J, Ohtsuka Y, Okumura K, Ogawa H, Shimizu T. The Transcription Factor Ehf Is Involved in TGF-β–Induced Suppression of FcεRI and c-Kit Expression and FcεRI-Mediated Activation in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:3427-35. [DOI: 10.4049/jimmunol.1402856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/28/2015] [Indexed: 01/21/2023]
|
20
|
Ishiyama K, Yashiro T, Nakano N, Kasakura K, Miura R, Hara M, Kawai F, Maeda K, Tamura N, Okumura K, Ogawa H, Takasaki Y, Nishiyama C. Involvement of PU.1 in NFATc1 promoter function in osteoclast development. Allergol Int 2015; 64:241-7. [PMID: 26117255 DOI: 10.1016/j.alit.2015.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The transcription factors NFATc1 and PU.1 play important roles in osteoclast development. NFATc1 and PU.1 transactivate osteoclast-specific gene expression and a deficiency in NFATc1 or PU.1 genes causes osteopetrosis due to an insufficient development of osteoclasts. However, the existence of cross-regulation between NFATc1 and PU.1 is largely unknown. In the present study, the role of PU.1 in NFATc1 expression was investigated. METHODS Osteoclasts were generated from mouse bone marrow cells. PU.1 knockdown was performed with siRNA introduction. The mRNA levels in siRNA-introduced cells were determined by quantitative RT-PCR. The involvement of PU.1 in the NFATc1 promoter was analyzed by using a chromatin immunoprecipitation (ChIP) assay and a reporter assay. Retrovirus vector was used for enforced expression of PU.1. RESULTS Introduction of PU.1 siRNA into bone marrow-derived osteoclasts resulted in a decrease in NFATc1 mRNA level. A ChIP assay showed that PU.1 bound to the NFATc1 promoter in osteoclasts. NFATc1 promoter activity was reduced in PU.1 knockdown cells as assessed by a reporter assay. PU.1 siRNA introduction also downregulated the expression of osteoclast-specific genes and tartrate resistant acid phosphatase (TRAP) activity. Enforced expression of PU.1 using a retrovirus vector increased NFATc1 expression and TRAP activity. When NFATc1 expression was knocked down by using siRNA, the induction of osteoclast-specific genes and TRAP-positive cells was suppressed without affecting the expression level of PU.1. CONCLUSIONS These results indicate that PU.1 is involved in osteoclast development by transactivating NFATc1 expression via direct binding to the NFATc1 promoter.
Collapse
Affiliation(s)
- Kentaro Ishiyama
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan; Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takuya Yashiro
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan; Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazumi Kasakura
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan; Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Ryosuke Miura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Fumitaka Kawai
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan; Bay Bioscience Corporation, Hyogo, Japan
| | - Keiko Maeda
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshinari Takasaki
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Chiharu Nishiyama
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan; Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
21
|
Nishiyama C. Molecular Mechanism of Allergy-Related Gene Regulation and Hematopoietic Cell Development by Transcription Factors. Biosci Biotechnol Biochem 2014; 70:1-9. [PMID: 16428815 DOI: 10.1271/bbb.70.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional regulation for the genes encoding alpha- and beta-chains of the high-affinity receptor for IgE (FcepsilonRI) have been analyzed in mast cells and regulatory mechanisms are beginning to be elucidated. Transcription factors GATA-1 and PU.1 cooperatively transactivate the alpha-chain gene, and three transcription factors, GATA-1, Oct-1, and MZF-1, are involved in regulation of beta-chain gene expression. No single nucleotide polymorphisms (SNPs) that are functionally related to the allergic diseases have been identified in coding regions of the alpha- and beta-chain genes in a definitive way. However, recent studies on SNPs in the promoter regions have revealed that these genes are probable candidates for new types of allergy-related genes whose transcription levels are affected by transcription factors which discriminate SNPs in the promoters. Another interesting finding on transcription factors functioning in mast cells is that the expression level of PU.1 determines cell fate between mast cells and monocytes.
Collapse
Affiliation(s)
- Chiharu Nishiyama
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Japan.
| |
Collapse
|
22
|
Inage E, Kasakura K, Yashiro T, Suzuki R, Baba Y, Nakano N, Hara M, Tanabe A, Oboki K, Matsumoto K, Saito H, Niyonsaba F, Ohtsuka Y, Ogawa H, Okumura K, Shimizu T, Nishiyama C. Critical Roles for PU.1, GATA1, and GATA2 in the expression of human FcεRI on mast cells: PU.1 and GATA1 transactivate FCER1A, and GATA2 transactivates FCER1A and MS4A2. THE JOURNAL OF IMMUNOLOGY 2014; 192:3936-46. [PMID: 24639354 DOI: 10.4049/jimmunol.1302366] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The high-affinity IgE receptor, FcεRI, which is composed of α-, β-, and γ-chains, plays an important role in IgE-mediated allergic responses. In the current study, involvement of the transcription factors, PU.1, GATA1, and GATA2, in the expression of FcεRI on human mast cells was investigated. Transfection of small interfering RNAs (siRNAs) against PU.1, GATA1, and GATA2 into the human mast cell line, LAD2, caused significant downregulation of cell surface expression of FcεRI. Quantification of the mRNA levels revealed that PU.1, GATA1, and GATA2 siRNAs suppressed the α transcript, whereas the amount of β mRNA was reduced in only GATA2 siRNA transfectants. In contrast, γ mRNA levels were not affected by any of the knockdowns. Chromatin immunoprecipitation assay showed that significant amounts of PU.1, GATA1, and GATA2 bind to the promoter region of FCER1A (encoding FcεRIα) and that GATA2 binds to the promoter of MS4A2 (encoding FcεRIβ). Luciferase assay and EMSA showed that GATA2 transactivates the MS4A2 promoter via direct binding. These knockdowns of transcription factors also suppressed the IgE-mediated degranulation activity of LAD2. Similarly, all three knockdowns suppressed FcεRI expression in primary mast cells, especially PU.1 siRNA and GATA2 siRNA, which target FcεRIα and FcεRIβ, respectively. From these results, we conclude that PU.1 and GATA1 are involved in FcεRIα transcription through recruitment to its promoter, whereas GATA2 positively regulates FcεRIβ transcription. Suppression of these transcription factors leads to downregulation of FcεRI expression and IgE-mediated degranulation activity. Our findings will contribute to the development of new therapeutic approaches for FcεRI-mediated allergic diseases.
Collapse
Affiliation(s)
- Eisuke Inage
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Herrmann N, Koch S, Leib N, Bedorf J, Wilms H, Schnautz S, Fimmers R, Bieber T. TLR2 down-regulates FcεRI and its transcription factor PU.1 in human Langerhans cells. Allergy 2013; 68:621-8. [PMID: 23534406 DOI: 10.1111/all.12145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 01/31/2023]
Abstract
BACKGROUND Epidermal Langerhans cells (LC) expressing the high-affinity receptor for IgE (FcεRI) play a key role in atopic dermatitis (AD). AD skin is highly colonized with Staphylococcus aureus (S.a.), which are sensed by Toll-like receptor 2 (TLR2). We hypothesized that TLR2 may impact on the expression of FcεRI on LC. OBJECTIVES To study a putative impact of TLR2 signaling on FcεRI, we analyzed FcεRI and known transcription factors of the receptor after ligand binding to TLR2. METHODS We generated LC from CD34(+) progenitors in vitro (CD34LC) expressing FcεRI and TLR2 as well as its partners TLR1 and TLR6. The expression of FcεRI and known transcription factors of the receptor was analyzed on the protein and RNA level by flow cytometry, Western blotting, and real-time PCR. RESULTS For CD34LC from 123 donors, we observed a high heterogeneity in FcεRI surface expression correlating with mRNA level of its α-chain. Stimulation of TLR1/2 or TLR2/6 dramatically down-regulated FcεRI on protein and mRNA level of both α- and γ-chain. Further analysis of putative transcription factors for FCER1A revealed the lack of GATA1 in CD34LC, weak expression of ELF1 and YY1, and high expression of PU.1. While ELF1 and YY1 appeared to be little affected by TLR2 engagement, PU.1 was significantly down-regulated. CONCLUSIONS Taken together, our findings show that in human, LC ligation of TLR2 by S.a.-derived products down-regulates FcεRI and its transcription factor PU.1, thus suggesting that FcεRI is controlled by PU.1 in these cells.
Collapse
Affiliation(s)
- N. Herrmann
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| | - S. Koch
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| | - N. Leib
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| | - J. Bedorf
- Department of Pathology; University of Bonn; Bonn; Germany
| | - H. Wilms
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| | - S. Schnautz
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| | - R. Fimmers
- Institute for Medical Biometry, Informatics and Epidemiology; University of Bonn; Bonn; Germany
| | - T. Bieber
- Department of Dermatology and Allergy; University of Bonn; Bonn; Germany
| |
Collapse
|
24
|
Transcriptional regulation of the mouse CD11c promoter by AP-1 complex with JunD and Fra2 in dendritic cells. Mol Immunol 2012; 53:295-301. [PMID: 22990073 DOI: 10.1016/j.molimm.2012.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/07/2012] [Indexed: 11/23/2022]
Abstract
CD11c, a member of the β(2) integrin family of adhesion molecule, is expressed on the surface of myeloid lineages and activated lymphoid cells and forms a heterodimeric receptor with CD18. We analyzed the mouse CD11c promoter structure to elucidate the transcriptional regulation in dendritic cells (DCs). By reporter assay, the -84/-65 region was identified to be essential for activity of the mouse CD11c promoter in the mouse bone marrow-derived (BM) DCs and monocyte cell line RAW264.7. An electrophoretic mobility shift assay using a number of antibodies against transcription factors revealed that the target region was recognized by a complex including JunD and Fra2, which are transcription factors belonging to the AP-1 family. The direct interaction of JunD and Fra2 with the CD11c promoter was further confirmed by a chromatin immunoprecipitation assay using CD11c-positive cells purified from BMDCs. Finally, mouse JunD and/or Fra2 siRNA was introduced into BMDCs to evaluate the involvement of these factors against CD11c transcription and found that Fra2 siRNA reduced cell surface expression level of CD11c. These results indicate that AP-1 composed with JunD and Fra2 protein plays a primary role in enhancing the transcription level of the CD11c gene in DC.
Collapse
|
25
|
Baba Y, Maeda K, Yashiro T, Inage E, Niyonsaba F, Hara M, Suzuki R, Ohtsuka Y, Shimizu T, Ogawa H, Okumura K, Nishiyama C. Involvement of PU.1 in mast cell/basophil-specific function of the human IL1RL1/ST2 promoter. Allergol Int 2012; 61:461-7. [PMID: 22824976 DOI: 10.2332/allergolint.12-oa-0424] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/19/2012] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The human IL1RL1/ST2 gene encodes IL33 receptor. Recently, IL33 has been recognized as a key molecule for the development of Th2 response. Although mast cells and basophils are major targets of IL33 and play important roles in IL33-mediated Th2-type immune responses, the expression mechanism of ST2 in mast cells and basophils is largely unknown. In the present study, we analyzed regulation mechanism of the human ST2 promoter in the human mast cell line LAD2 and basophilic cell line KU812. METHODS Promoter activity was determined by reporter assay with plasmids carrying the wild-type ST2 promoter obtained from human genomic DNA and its mutant. The transcription factor binding to the identified cis-element was identified by an electrophoretic mobility shift assay (EMSA). The effect of candidate transcription factor on ST2 expression was confirmed by analyzing ST2 mRNA level in siRNA-introduced cells. RESULTS Reporter assay demonstrated that a cis-element of typical Ets-family binding sequence was critical for promoter activity in LAD2 and KU812. An Ets-family transcription factor PU.1 bound to this element in an EMSA. When PU.1 expression was suppressed by siRNA, ST2 mRNA level was significantly reduced in KU812. CONCLUSIONS These observations indicated that PU.1 positively regulates the ST2 promoter as a transcription factor that directly transactivates the ST2 promoter via Ets-family-related cis-element in mast cells and basophils.
Collapse
Affiliation(s)
- Yosuke Baba
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2−1−1 Hongo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yamashita S, Tsukamoto S, Kumazoe M, Kim YH, Yamada K, Tachibana H. Isoflavones suppress the expression of the FcεRI high-affinity immunoglobulin E receptor independent of the estrogen receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:8379-85. [PMID: 22871233 DOI: 10.1021/jf301759s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Isoflavones found in soybeans and soy products possess clinically relevant properties. However, the anti-allergic effect of isoflavones has been poorly studied. We examined the effects of isoflavones, genistein, daidzein, and equol, on the expression of the high-affinity immunoglobulin E (IgE) receptor, FcεRI, which plays a central role in IgE-mediated allergic response. Flow cytometric analysis showed that all of these isoflavones reduced the cell surface expression of FcεRI on mouse bone-marrow-derived mast cells and human basophilic KU812 cells. All isoflavones decreased the levels of the FcεRIα mRNA in the cells. Genistein reduced the mRNA expression of the β chain, and daidzein and equol downregulated that of the γ chain. The suppressive effects of isoflavones on FcεRI expression were unaffected by ICI 182,780, an estrogen receptor antagonist, suggesting that these effects were independent of estrogen receptors.
Collapse
Affiliation(s)
- Shuya Yamashita
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University , Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Baba Y, Maeda K, Yashiro T, Inage E, Kasakura K, Suzuki R, Niyonsaba F, Hara M, Tanabe A, Ogawa H, Okumura K, Ohtsuka Y, Shimizu T, Nishiyama C. GATA2 is a critical transactivator for the human IL1RL1/ST2 promoter in mast cells/basophils: opposing roles for GATA2 and GATA1 in human IL1RL1/ST2 gene expression. J Biol Chem 2012; 287:32689-96. [PMID: 22865859 DOI: 10.1074/jbc.m112.374876] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The IL1RL1/ST2 gene encodes a receptor for IL-33. Signaling from IL1RL1/ST2 induced by IL-33 binding was recently identified as a modulator of the Th2 response. The target cells for IL-33 are restricted in some hematopoietic lineages, including mast cells, basophils, eosinophils, Th2 cells, natural killer cells, and dendritic cells. To clarify the molecular mechanisms of cell type-specific IL1RL1/ST2 expression in mast cells and basophils, transcriptional regulation of the human IL1RL1/ST2 promoter was investigated using the mast cell line LAD2 and the basophilic cell line KU812. Reporter assays suggested that two GATA motifs just upstream of the transcription start site in the ST2 promoter are critical for transcriptional activity. These two GATA motifs possess the capacity to bind GATA1 and GATA2 in EMSA. ChIP assay showed that GATA2, but not GATA1, bound to the ST2 promoter in LAD2 cells and that histone H3 at the ST2 promoter was acetylated in LAD2 cells, whereas binding of GATA1 and GATA2 to the ST2 promoter was detected in KU812 cells. Knockdown of GATA2 mRNA by siRNA reduced ST2 mRNA levels in KU812 and LAD2 cells and ST2 protein levels in LAD2 cells; in contrast, GATA1 siRNA transfection up-regulated ST2 mRNA levels in KU812 cells. The ST2 promoter was transactivated by GATA2 and repressed by GATA1 in coexpression analysis. When these siRNAs were introduced into human peripheral blood basophils, GATA2 siRNA reduced ST2 mRNA, whereas GATA1 siRNA up-regulated ST2 mRNA. These results indicate that GATA2 and GATA1 positively and negatively control human ST2 gene transcription, respectively.
Collapse
Affiliation(s)
- Yosuke Baba
- Atopy Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kitamura N, Yokoyama H, Yashiro T, Nakano N, Nishiyama M, Kanada S, Fukai T, Hara M, Ikeda S, Ogawa H, Okumura K, Nishiyama C. Role of PU.1 in MHC class II expression through transcriptional regulation of class II transactivator pI in dendritic cells. J Allergy Clin Immunol 2011; 129:814-824.e6. [PMID: 22112519 DOI: 10.1016/j.jaci.2011.10.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/30/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND PU.1 is a hematopoietic cell-specific transcription factor belonging to the Ets family. We hypothesized that PU.1 is involved in MHC class II expression in dendritic cells (DCs). OBJECTIVE The role of PU.1 in MHC class II expression in DCs was analyzed. METHODS Transcriptional regulation of the DC-specific pI promoter of the class II transactivator (CIITA) gene and subsequent MHC class II expression was investigated by using PU.1 small interfering RNA (siRNA) and reporter, chromatin immunoprecipitation, and electrophoretic mobility shift assays. RESULTS PU.1 siRNA introduction suppressed MHC class II expression, allogeneic and syngeneic T-cell activation activities of bone marrow-derived DCs (BMDCs) with reduction of CIITA mRNA driven by the DC-specific promoter pI, and MHC class II mRNA. The chromatin immunoprecipitation assay showed constitutive binding of PU.1 to the pI region in BMDCs, whereas acetylation of histone H3 on pI was suppressed by LPS stimulation in parallel with shutdown of CIITA transcription. PU.1 transactivated the pI promoter through cis-elements at -47/-44 and -30/-27 in a reporter assay and to which PU.1 directly bound in an electrophoretic mobility shift assay. Acetylation of histones H3 and H4 on pI was reduced in PU.1 siRNA-introduced BMDCs. Knockdown of interferon regulatory factor 4 or 8, which is a heterodimer partner of PU.1, by siRNA did not affect pI-driven CIITA transcription or MHC class II expression. CONCLUSION PU.1 basally transactivates the CIITA pI promoter in DCs by functioning as a monomeric transcription factor and by affecting histone modification, resulting in the subsequent expression and function of MHC class II.
Collapse
Affiliation(s)
- Nao Kitamura
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The Transcription Factor PU.1 is a Critical Regulator of Cellular Communication in the Immune System. Arch Immunol Ther Exp (Warsz) 2011; 59:431-40. [DOI: 10.1007/s00005-011-0147-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/25/2011] [Indexed: 12/22/2022]
|
30
|
Critical role of transcription factor PU.1 in the expression of CD80 and CD86 on dendritic cells. Blood 2010; 117:2211-22. [PMID: 21119111 DOI: 10.1182/blood-2010-06-291898] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In this study, we investigated the role of a transcription factor, PU.1, in the regulation of CD80 and CD86 expression in dendritic cells (DCs). A chromatin immunoprecipitation assay revealed that PU.1 is constitutively bound to the CD80 and CD86 promoters in bone marrow-derived DCs. In addition, co-expression of PU.1 resulted in the transactivation of the CD80 and CD86 promoters in a reporter assay. The binding of PU.1 to cis-enhancing regions was confirmed by electromobility gel-shift assay. As expected, inhibition of PU.1 expression by short interfering RNA (siRNA) in bone marrow-derived DCs resulted in marked down-regulation of CD80 and CD86 expression. Moreover, overexpression of PU.1 in murine bone marrow-derived lineage-negative cells induced the expression of CD80 and CD86 in the absence of monocyte/DC-related growth factors and/or cytokines. Based on these results, we conclude that PU.1 is a critical factor for the expression of CD80 and CD86. We also found that subcutaneous injection of PU.1 siRNA or topical application of a cream-emulsified PU.1 siRNA efficiently inhibited murine contact hypersensitivity. Our results suggest that PU.1 is a potential target for the treatment of immune-related diseases.
Collapse
|
31
|
Maeda K, Nishiyama C, Ogawa H, Okumura K. GATA2 and Sp1 Positively Regulate the c-kitPromoter in Mast Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:4252-60. [DOI: 10.4049/jimmunol.1001228] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Calero-Nieto FJ, Wood AD, Wilson NK, Kinston S, Landry JR, Göttgens B. Transcriptional regulation of Elf-1: locus-wide analysis reveals four distinct promoters, a tissue-specific enhancer, control by PU.1 and the importance of Elf-1 downregulation for erythroid maturation. Nucleic Acids Res 2010; 38:6363-74. [PMID: 20525788 PMCID: PMC2965225 DOI: 10.1093/nar/gkq490] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ets transcription factors play important roles during the development and maintenance of the haematopoietic system. One such factor, Elf-1 (E74-like factor 1) controls the expression of multiple essential haematopoietic regulators including Scl/Tal1, Lmo2 and PU.1. However, to integrate Elf-1 into the wider regulatory hierarchies controlling haematopoietic development and differentiation, regulatory elements as well as upstream regulators of Elf-1 need to be identified. Here, we have used locus-wide comparative genomic analysis coupled with chromatin immunoprecipitation (ChIP-chip) assays which resulted in the identification of five distinct regulatory regions directing expression of Elf-1. Further, ChIP-chip assays followed by functional validation demonstrated that the key haematopoietic transcription factor PU.1 is a major upstream regulator of Elf-1. Finally, overexpression studies in a well-characterized erythroid differentiation assay from primary murine fetal liver cells demonstrated that Elf-1 downregulation is necessary for terminal erythroid differentiation. Given the known activation of PU.1 by Elf-1 and our newly identified reciprocal activation of Elf-1 by PU.1, identification of an inhibitory role for Elf-1 has significant implications for our understanding of how PU.1 controls myeloid-erythroid differentiation. Our findings therefore not only represent the first report of Elf-1 regulation but also enhance our understanding of the wider regulatory networks that control haematopoiesis.
Collapse
Affiliation(s)
- Fernando J Calero-Nieto
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge University, Hills Road, Cambridge CB2 0XY, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Potaczek DP, Nishiyama C, Sanak M, Szczeklik A, Okumura K. Genetic variability of the high-affinity IgE receptor alpha-subunit (FcepsilonRIalpha). Immunol Res 2010; 45:75-84. [PMID: 18726713 DOI: 10.1007/s12026-008-8042-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our knowledge on the variability of FCER1A gene encoding for alpha-subunit of the high-affinity immunoglobulin E receptor (FcepsilonRI) that plays a central role in the pathogenesis of allergy and related disorders, has been recently much extended. Last findings from FCER1A mutational screening and genetic association studies, followed by functional analyses of the polymorphisms, are briefly summarized in this mini-review. The association between FCER1A gene variants and total serum IgE levels seems especially interesting and, supported by functional analyses of polymorphisms, may provide a rationale for pharmacogenetic studies on anti-IgE therapy that indirectly suppresses FcepsilonRI expression.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | |
Collapse
|
34
|
Shimokawa N, Nishiyama C, Nakano N, Maeda K, Suzuki R, Hara M, Fukai T, Tokura T, Miyajima H, Nakao A, Ogawa H, Okumura K. Suppressive effects of transcription factor GATA-1 on cell type-specific gene expression in dendritic cells. Immunogenetics 2010; 62:421-9. [DOI: 10.1007/s00251-010-0444-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 03/19/2010] [Indexed: 11/24/2022]
|
35
|
FcepsilonRIalpha gene -18483A>C polymorphism affects transcriptional activity through YY1 binding. Immunogenetics 2009; 61:649-55. [PMID: 19685047 DOI: 10.1007/s00251-009-0391-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 07/27/2009] [Indexed: 10/20/2022]
Abstract
Three frequent genetic polymorphisms in the human high-affinity IgE receptor alpha-subunit (FcepsilonRIalpha) were shown to be associated with allergic disorders and/or total serum IgE levels in allergic patients. Two of these were previously demonstrated to affect FcepsilonRIalpha expression while the third -18483A>C (rs2494262) has not yet been subjected to functional studies. We hypothesized that the -18483A>C variant affects transcriptional activity of the FcepsilonRIalpha distal promoter in monocytes in which FcepsilonRIalpha transcription is driven through that regulatory region. Indeed, we confirmed preferential binding of the YY1 transcription factor to the -18483C allele, resulting in lower transcriptional activity when compared with the -18483A allele.
Collapse
|
36
|
Involvement of PU.1 in the transcriptional regulation of TNF-alpha. Biochem Biophys Res Commun 2009; 388:102-6. [PMID: 19646961 DOI: 10.1016/j.bbrc.2009.07.126] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 07/24/2009] [Indexed: 11/23/2022]
Abstract
PU.1 is a myeloid- and lymphoid-specific transcription factor that serves many important roles in the development and specific gene regulation of hematopoietic lineages. Mast cells (MC) and dendritic cells (DC) express PU.1 at low and high levels, respectively. Previously, we found that enforced expression of PU.1 in MC resulted in acquisition of DC-like characteristics, including repression of several IgE-mediated responses due to reduced expression of IgE-signaling related molecules. In contrast, PU.1 overexpression in MC up-regulated TNF-alpha production in response to IgE- and LPS-stimulation suggesting that PU.1 positively regulates TNF-alpha expression. However, the role of PU.1 in the expression of TNF-alpha is largely unknown. In the present study, the effects of PU.1 on the TNF-alpha promoter in mouse bone marrow-derived (BM) MC and DC were studied. Real-time PCR, ELISA, and chromatin immunoprecipitation assays indicated that the kinetics and magnitude of TNF-alpha expression levels following LPS- or IgE-stimulation are related to the amount of PU.1 binding to the promoter. In brief, higher and delayed up-regulation of TNF-alpha promoter function was observed in DC, whereas there were lower and rapid responses in MC. When PU.1-overexpressing retrovirus vector was introduced into MC, the amount of PU.1 recruited to the TNF-alpha promoter markedly increased. The knockdown of PU.1 in BMDC by siRNA resulted in a reduction of TNF-alpha protein produced from LPS-stimulated BMDC. These observations indicate that PU.1 transactivates the TNF-alpha promoter and that the amount of PU.1 binding on the promoter is associated with promoter activity.
Collapse
|
37
|
Shim SY, Choi JS, Byun DS. Inhibitory effects of phloroglucinol derivatives isolated from Ecklonia stolonifera on Fc(epsilon)RI expression. Bioorg Med Chem 2009; 17:4734-9. [PMID: 19443227 DOI: 10.1016/j.bmc.2009.04.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 11/27/2022]
Abstract
Two bioactive phloroglucinol derivatives, dioxinodehydroeckol (DHE) and phlorofucofuroeckol A (PFF-A) were isolated from edible marine brown alga, Ecklonia stolonifera, and evaluated for effects on cell surface Fc(epsilon)RI expression in KU812F cells. DHE and PFF-A were found to reduce the cell surface expression, and total cellular protein and mRNA levels for the Fc(epsilon)RI alpha chain. Moreover, both compounds exerted inhibitory effects against the elevation of intracellular calcium concentration [Ca(2+)](i) and histamine release from anti-Fc(epsilon)RI alpha chain antibody (CRA-1)-stimulated cells. These inhibitory effects were stronger for PFF-A than for DHE. These results show that two phloroglucinol derivatives, DHE and PFF-A, may exert anti-allergic effects via the inhibition of Fc(epsilon)RI expression, calcium influx, and degranulation in basophils, and contributes to the pharmacological activities of marine brown alga, including E. stolonifera.
Collapse
Affiliation(s)
- Sun-Yup Shim
- Institute of Marine Life Science, Pukyong National University, Busan, Republic of Korea
| | | | | |
Collapse
|
38
|
Ito T, Nishiyama C, Nakano N, Nishiyama M, Usui Y, Takeda K, Kanada S, Fukuyama K, Akiba H, Tokura T, Hara M, Tsuboi R, Ogawa H, Okumura K. Roles of PU.1 in monocyte- and mast cell-specific gene regulation: PU.1 transactivates CIITA pIV in cooperation with IFN-gamma. Int Immunol 2009; 21:803-16. [PMID: 19502584 DOI: 10.1093/intimm/dxp048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over-expression of PU.1, a myeloid- and lymphoid-specific transcription factor belonging to the Ets family, induces monocyte-specific gene expression in mast cells. However, the effects of PU.1 on each target gene and the involvement of cytokine signaling in PU.1-mediated gene expression are largely unknown. In the present study, PU.1 was over-expressed in two different types of bone marrow-derived cultured mast cells (BMMCs): BMMCs cultured with IL-3 plus stem cell factor (SCF) and BMMCs cultured with pokeweed mitogen-stimulated spleen-conditioned medium (PWM-SCM). PU.1 over-expression induced expression of MHC class II, CD11b, CD11c and F4/80 on PWM-SCM-cultured BMMCs, whereas IL-3/SCF-cultured BMMCs expressed CD11b and F4/80, but not MHC class II or CD11c. When IFN-gamma was added to the IL-3/SCF-based medium, PU.1 transfectant acquired MHC class II expression, which was abolished by antibody neutralization or in Ifngr(-/-) BMMCs, through the induction of expression of the MHC class II transactivator, CIITA. Real-time PCR detected CIITA mRNA driven by the fourth promoter, pIV, and chromatin immunoprecipitation indicated direct binding of PU.1 to pIV in PU.1-over-expressing BMMCs. PU.1-over-expressing cells showed a marked increase in IL-6 production in response to LPS stimulation in both IL-3/SCF and PWM-SCM cultures. These results suggest that PU.1 overproduction alone is sufficient for both expression of CD11b and F4/80 and for amplification of LPS-induced IL-6 production. However, IFN-gamma stimulation is essential for PU.1-mediated transactivation of CIITA pIV. Reduced expression of mast cell-related molecules and transcription factors GATA-1/2 and up-regulation of C/EBPalpha in PU.1 transfectants indicate that enforced PU.1 suppresses mast cell-specific gene expression through these transcription factors.
Collapse
Affiliation(s)
- Tomonobu Ito
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shim SY, Seo YK, Park JR. Down-Regulation of FcɛRI Expression byHouttuynia cordataThunb Extract in Human Basophilic KU812F Cells. J Med Food 2009; 12:383-8. [DOI: 10.1089/jmf.2007.0684] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sun-Yup Shim
- Institute of Marine Life Science, Pukyong National University, Busan, Republic of Korea
| | - Young-Kook Seo
- Department of Food and Nutrition, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| | - Jeong-Ro Park
- Department of Food and Nutrition, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
- Research Institute for Useful Natural Resources, Sunchon National University, Suncheon, Jeonnam, Republic of Korea
| |
Collapse
|
40
|
Shim SY, Quang-To L, Lee SH, Kim SK. Ecklonia cava extract suppresses the high-affinity IgE receptor, FcepsilonRI expression. Food Chem Toxicol 2009; 47:555-60. [PMID: 19138721 DOI: 10.1016/j.fct.2008.12.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 12/11/2008] [Accepted: 12/15/2008] [Indexed: 11/25/2022]
Abstract
Basophils and mast cells express FcepsilonRI, a high-affinity receptor for IgE, on the cell surface and act as effector cells in allergic reactions. In this study, we investigated the inhibitory effect of Ecklonia cava (EC) methanolic extract on the expression of FcepsilonRI in human basophilic KU812F cells. Flow cytometric analysis revealed that EC extract caused a concentration-dependent reduction in the cell surface expression of FcepsilonRI. The extract was also capable of reducing the binding between IgE or serum IgE and cell surface FcepsilonRI. RT-PCR analysis revealed that EC extract reduced the mRNA expression of total cellular FcepsilonRI alpha-chain. Moreover, data obtained by fluorescence spectrophotometry showed that the extract inhibited the FcepsilonRI-mediated release of histamine in a concentration-dependent manner. These results suggest that EC extract may exert its anti-allergic activity through negative-regulation of FcepsilonRI expression and a decrease in histamine release.
Collapse
Affiliation(s)
- Sun-Yup Shim
- Institute of Marine Life Science, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | | | |
Collapse
|
41
|
Juang YT, Wang Y, Jiang G, Peng HB, Ergin S, Finnell M, Magilavy A, Kyttaris VC, Tsokos GC. PP2A dephosphorylates Elf-1 and determines the expression of CD3zeta and FcRgamma in human systemic lupus erythematosus T cells. THE JOURNAL OF IMMUNOLOGY 2008; 181:3658-64. [PMID: 18714041 DOI: 10.4049/jimmunol.181.5.3658] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cells from patients with systemic lupus erythematosus are characterized by decreased expression of CD3zeta-chain and increased expression of FcRgamma-chain, which becomes part of the CD3 complex and contributes to aberrant signaling. Elf-1 enhances the expression of CD3zeta, whereas it suppresses the expression of FcRgamma gene and lupus T cells have decreased amounts of DNA-binding 98 kDa form of Elf-1. We show that the aberrantly increased PP2A in lupus T cells dephosphorylates Elf-1 at Thr-231. Dephosphorylation results in limited expression and binding of the 98 kDa Elf-1 form to the CD3zeta and FcRgamma promoters. Suppression of the expression of the PP2A leads to increased expression of CD3zeta and decreased expression of FcRgamma genes and correction of the early signaling response. Therefore, PP2A serves as a central determinant of abnormal T cell function in human lupus and may represent an appropriate treatment target.
Collapse
Affiliation(s)
- Yuang-Taung Juang
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kanada S, Nakano N, Potaczek DP, Maeda K, Shimokawa N, Niwa Y, Fukai T, Sanak M, Szczeklik A, Yagita H, Okumura K, Ogawa H, Nishiyama C. Two different transcription factors discriminate the -315C>T polymorphism of the Fc epsilon RI alpha gene: binding of Sp1 to -315C and of a high mobility group-related molecule to -315T. THE JOURNAL OF IMMUNOLOGY 2008; 180:8204-10. [PMID: 18523286 DOI: 10.4049/jimmunol.180.12.8204] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The alpha-chain is a specific component of FcepsilonRI, which is essential for the cell surface expression of FcepsilonRI and the binding of IgE. Recently, two single nucleotide polymorphisms (SNPs) in the alpha-chain promoter, -315C>T and -66T>C, have been shown by statistic studies to associate with allergic diseases. The effect of -66 SNP on GATA-1-mediated promoter activity has been already indicated. In the present study, to investigate roles of the -315 SNP on the alpha-chain promoter functions, the transcription activity was evaluated by reporter assay. The alpha-chain promoter carrying -315T (minor allele) possessed significantly higher transcriptional activity than that of -315C (major allele). EMSA indicated that the transcription factor Sp1, but not Myc-associated zinc finger protein (MAZ), was bound to the -315C allele probe and that a transcription factor belonging to a high mobility group-family bound to the -315T allele probe. The chromatin immunoprecipitation assay suggested that high mobility group 1, 2, and Sp1 bound around -315 of FcepsilonRIalpha genomic DNA in vivo in the human basophil cell line KU812 with -315C/T and in human peripheral blood basophils with -315C/C, respectively. When cell surface expression level of FcepsilonRI on basophils was analyzed by flow cytometry, basophils from individuals carrying -315T allele expressed significantly higher amount of FcepsilonRI compared with those of -315C/C. The findings demonstrate that a -315 SNP significantly affects human FcepsilonRI alpha-chain promoter activity and expression level of FcepsilonRI on basophils by binding different transcription factors to the SNP site.
Collapse
Affiliation(s)
- Shunsuke Kanada
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sawada T, Nishiyama C, Kishi T, Sasazuki T, Komazawa-Sakon S, Xue X, Piao JH, Ogata H, Nakayama JI, Taki T, Hayashi Y, Watanabe M, Yagita H, Okumura K, Nakano H. Fusion of OTT to BSAC results in aberrant up-regulation of transcriptional activity. J Biol Chem 2008; 283:26820-8. [PMID: 18667423 DOI: 10.1074/jbc.m802315200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OTT/RBM15-BSAC/MAL/MKL1/MRTF-A was identified as a fusion transcript generated by t(1;22)(p13;q13) in acute megakaryoblastic leukemia. Previous studies have shown that BSAC (basic, SAP, and coiled-coil domain) activates the promoters containing CArG boxes via interaction with serum response factor, and OTT (one twenty-two) negatively regulates the development of megakaryocytes and myeloid cells. However, the mechanism by which OTT-BSAC promotes leukemia is largely unknown. Here we show that OTT-BSAC, but not BSAC or OTT strongly activates several promoters containing a transcription factor Yin Yang 1-binding sequence. In addition, although BSAC predominantly localizes in the cytoplasm and its nuclear translocation is considered to be regulated by the Rho-actin signaling pathway, OTT-BSAC exclusively localizes in the nucleus. Moreover, OTT interacts with histone deacetylase 3, but this interaction is abolished in OTT-BSAC. Collectively, these functional and spatial changes of OTT and BSAC caused by the fusion might perturb their functions, culminating in the development of acute megakaryoblastic leukemia.
Collapse
Affiliation(s)
- Taisuke Sawada
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Suppressive effect of Elf-1 on FcεRI α-chain expression in primary mast cells. Immunogenetics 2008; 60:557-63. [DOI: 10.1007/s00251-008-0318-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
|
45
|
Sanak M, Potaczek DP, Nizankowska-Mogilnicka E, Szczeklik A. Genetic variability of the high-affinity IgE receptor alpha subunit (Fc epsilon RI alpha) is related to total serum IgE levels in allergic subjects. Allergol Int 2007; 56:397-401. [PMID: 17965580 DOI: 10.2332/allergolint.r-07-145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Indexed: 11/20/2022] Open
Abstract
Known susceptibility genes to atopy and asthma have been identified by linkage or associations with clinical phenotypes, including total serum IgE levels. IgE-mediated sensitivity reactions require a high-affinity IgE receptor (FcepsilonRI), which immobilizes the immunoglobulin on the surface of the effector cells, mostly mast cells and basophils. In this mini-review, recent findings are presented on genetic variation of this receptor, as related to atopy. Transcription of FCER1A gene encoding the receptor alpha subunit can be initiated from two separate promoters, the proximal one and the distal one, which results in a transcript containing two novel untranslated exons (1A, 2A). Our knowledge on the role of this mechanism in allergic diseases is still at an infancy stage. Within regulatory elements of FCER1A some common single nucleotide polymorphisms have functional associations, which were recently reported and replicated in different ethnical groups. Interestingly, these associations do not confer susceptibility to allergic diseases, but rather modulate serum concentrations of IgE. Similarly to the previously investigated beta subunit of the receptor, FCER1A is a good candidate for a quantitative trait locus (QTL) in allergic diseases, and appears to participate in the systemic regulation of IgE levels.
Collapse
Affiliation(s)
- Marek Sanak
- Department of Medicine, Jagiellonian University School of Medicine, Cracow, Poland
| | | | | | | |
Collapse
|
46
|
Nakano N, Nishiyama C, Kanada S, Niwa Y, Shimokawa N, Ushio H, Nishiyama M, Okumura K, Ogawa H. Involvement of mast cells in IL-12/23 p40 production is essential for survival from polymicrobial infections. Blood 2007; 109:4846-55. [PMID: 17289816 DOI: 10.1182/blood-2006-09-045641] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Interleukin-12 (IL-12), a heterodimeric cytokine (p35/p40) produced mainly from macrophages and dendritic cells, is an important regulator of T-helper 1 cell responses and for host defense. We found that interferon (IFN) consensus sequence binding protein (ICSBP), which is a transcription factor essential for the expression of p40, was expressed in mouse bone marrow-derived mast cells (BMMCs). The transcription levels of p35 and p40 were increased by stimulation of BMMCs with IFN-gamma/lipopolysaccharide (LPS). IL-12 was secreted from BMMCs in response to LPS but not by FcepsilonRI cross-linking. The p40 levels in the peritoneal cavity of mast cell-deficient W/W(v) and W/W(v) reconstituted with p40(-/-) BMMCs were significantly lower than those of WBB6F(1)(+/+) and wild-type (WT) BMMC-reconstituted W/W(v) in the acute septic peritonitis model. The survival rate of W/W(v) reconstituted with p40(-/-) BMMCs was significantly decreased compared to those of WBB6F(1)(+/+) and WT-BMMC-reconstituted W/W(v), which was due to reduced production of IFN-gamma and subsequent impaired activation of neutrophils in the peritoneal cavity. Survival rate of p40(-/-) mice was also restored by adoptive transfer of WT-BMMCs. These results demonstrate that mast cells play a significant role in the production of IL-12 required for host defense. This is the first report to demonstrate that mast cells are a crucial source of functional IL-12.
Collapse
Affiliation(s)
- Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Okayama Y, Kawakami T. Development, migration, and survival of mast cells. Immunol Res 2006; 34:97-115. [PMID: 16760571 PMCID: PMC1490026 DOI: 10.1385/ir:34:2:97] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/16/2022]
Abstract
Mast cells play a pivotal role in immediate hypersensitivity and chronic allergic reactions that can contribute to asthma, atopic dermatitis, and other allergic diseases. Because mast cell numbers are increased at sites of inflammation in allergic diseases, pharmacologic intervention into the proliferation, migration, and survival (or apoptosis) of mast cells could be a promising strategy for the management of allergic diseases. Mast cells differentiate from multipotent hematopoietic progenitors in the bone marrow. Stem cell factor (SCF) is a major chemotactic factor for mast cells and their progenitors. SCF also elicits cell-cell and cell-substratum adhesion, facilitates the proliferation, and sustains the survival, differentiation, and maturation, of mast cells. Therefore, many aspects of mast cell biology can be understood as interactions of mast cells and their precursors with SCF and factors that modulate their responses to SCF and its signaling pathways. Numerous factors known to have such a capacity include cytokines that are secreted from activated T cells and other immune cells including mast cells themselves. Recent studies also demonstrated that monomeric IgE binding to FcepsilonRI can enhance mast-cell survival. In this review we discuss the factors that regulate mast cell development, migration, and survival.
Collapse
Affiliation(s)
- Yoshimichi Okayama
- Research Unit for Allergy Transcriptome, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Japan
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA
| |
Collapse
|
48
|
Maeda K, Nishiyama C, Tokura T, Nakano H, Kanada S, Nishiyama M, Okumura K, Ogawa H. FOG-1 represses GATA-1-dependent FcepsilonRI beta-chain transcription: transcriptional mechanism of mast-cell-specific gene expression in mice. Blood 2006; 108:262-9. [PMID: 16522818 DOI: 10.1182/blood-2005-07-2878] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell-type-specific transcription of mouse high-affinity IgE receptor (FcepsilonRI) beta-chain is positively regulated by the transcription factor GATA-1. Although GATA-1 is expressed in erythroid cells, megakaryocytes, and mast cells, the expression of mouse FcepsilonRI beta-chain is restricted to mast cells. In the present study, we characterized the role of GATA-associated cofactor FOG-1 in the regulation of the FcepsilonRI beta-chain promoter. The expression levels of FOG-1, GATA-1, and beta-chain in each hematopoietic cell line were analyzed by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. FOG-1 expression was higher in the beta-chain-negative hematopoietic progenitor cell line Ba/F3 than in the beta-chain-positive mast cell line PT18. By contrast, GATA-1 expression was similar when comparing the 2 cell lines. A transient reporter assay demonstrated that the beta-chain promoter functioned in PT18 but not in Ba/F3 and that the transcription activity of the beta-chain promoter in PT18 was markedly suppressed by overexpression of FOG-1. Although the activity of the beta-chain promoter, which was upregulated by coexpression of GATA-1, was significantly suppressed by coexpression of FOG-1 in the simian kidney CV-1 cells (beta-chain(-), GATA-1(-), and FOG-1(-)), the transactivation of the beta-chain promoter by the GATA-1 mutant V205G, which cannot bind FOG-1, was not affected by coexpression of FOG-1. Further, overexpression of FOG-1 in PT18 resulted in decreases in cell surface expression of FcepsilonRI and beta-chain transcription. Finally, suppression of FOG-1 expression using an siRNA approach resulted in increased beta-chain promoter activity in Ba/F3. These results suggest that FOG-1 expression level regulates the GATA-1-dependent FcepsilonRI beta-chain promoter.
Collapse
Affiliation(s)
- Keiko Maeda
- Atopy (Allergy) Research Center and Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Le Clech M, Chalhoub E, Dohet C, Roure V, Fichelson S, Moreau-Gachelin F, Mathieu D. PU.1/Spi-1 Binds to the Human TAL-1 Silencer to Mediate its Activity. J Mol Biol 2006; 355:9-19. [PMID: 16298389 DOI: 10.1016/j.jmb.2005.10.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/13/2005] [Accepted: 10/17/2005] [Indexed: 11/16/2022]
Abstract
The TAL-1/SCL gene encodes a basic helix-loop-helix (bHLH) transcription factor essential for primitive hematopoiesis and for adult erythroid and megakaryocytic development. Activated transcription of TAL-1 as a consequence of chromosomal rearrangements is associated with a high proportion of human T cell acute leukemias, showing that appropriate control of TAL-1 is crucial for the formation and subsequent fate of hematopoietic cells. Hence, the knowledge of the mechanisms, which govern the pattern of TAL-1 expression in hematopoiesis, is of great interest. We previously described a silencer in the 3'-untranslated region of human TAL-1, the activity of which is mediated through binding of a tissue-specific 40 kDa nuclear protein to a new DNA recognition motif, named tal-RE. Here, we show that tal-RE-binding activity, high in immature human hematopoietic progenitors is down regulated upon erythroid and megakaryocytic differentiation. This expression profile helped us to identify that PU.1/Spi-1 binds to the tal-RE sequences in vitro and occupies the TAL-1 silencer in vivo. By expressing a mutant protein containing only the ETS domain of PU.1 in human erythroleukemic HEL cells, we demonstrated that PU.1 mediates the transcriptional repression activity of the silencer. We found that ectopic PU.1 is not able to induce silencing activity in PU.1-negative Jurkat T cells, indicating that PU.1 activity, although necessary, is not sufficient to confer transcriptional repression activity to the TAL-1 silencer. Finally, we showed that the silencer is also active in TAL-1-negative myeloid HL60 cells that express PU.1 at high levels. In summary, our study shows that PU.1, in addition to its positive role in TAL-1 expression in early hematopoietic progenitors, may also act as a mediator of TAL-1 silencing in some hematopoietic lineages.
Collapse
Affiliation(s)
- Mikaël Le Clech
- Institut de Génétique Moléculaire-UMR5535-IFR22, CNRS 1919 Route de Mende F-34980 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Kawada H, Nishiyama C, Takagi A, Tokura T, Nakano N, Maeda K, Mayuzumi N, Ikeda S, Okumura K, Ogawa H. Transcriptional regulation of ATP2C1 gene by Sp1 and YY1 and reduced function of its promoter in Hailey-Hailey disease keratinocytes. J Invest Dermatol 2005; 124:1206-14. [PMID: 15955096 DOI: 10.1111/j.0022-202x.2005.23748.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hailey-Hailey disease (HHD) is a blistering skin disease caused by malfunction of the Ca2+-dependent ATPase, ATP2C1. In this study, key regulatory regions necessary for the expression of the gene encoding human ATP2C1 were investigated. The transient reporter assay demonstrated that region +21/+57 was necessary for activation of the ATP2C1 promoter, and the electrophoretic mobility shift assay demonstrated that the region was recognized by the transcription factors, Sp1 and YY1. In accordance with this result, when Sp1 or YY1 was overexpressed in keratinocytes, an obvious increase in ATP2C1 promoter activity was observed, which was in contrast with the case where a mutant promoter lacking the binding sites for Sp1 and YY1 was used as the reporter. Ca2+-stimulation signal increased nuclear Sp1 proteins and ATP2C1 mRNA levels in normal keratinocytes. In contrast, both these increases were suppressed in keratinocytes from HHD patients. These results indicate that Sp1 and YY1 transactivate the human ATP2C1 promoter via cis-enhancing elements and that incomplete upregulation of ATP2C1 transcription contributes to the keratinocyte-specific pathogenesis of HHD. This is a report describing the regulation of the expression of ATP2C1.
Collapse
Affiliation(s)
- Hiroshi Kawada
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|