1
|
Mkhikian H, Zhou RW, Saryan H, Sánchez CD, Balakrishnan A, Dang J, Mortales CL, Demetriou M. N-Glycan Branching Regulates BTLA Opposite to PD-1 to Limit T Cell Hyperactivity Induced by Branching Deficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1329-1337. [PMID: 39269653 DOI: 10.4049/jimmunol.2300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
N-glycan branching is a potent and multifaceted negative regulator of proinflammatory T cell and B cell function. By promoting multivalent galectin-glycoprotein lattice formation at the cell surface, branching regulates clustering and/or endocytosis of the TCR complex (TCR+CD4/CD8), CD45, CD25, BCR, TLR2 and TLR4 to inhibit T cell and B cell activation/proliferation and proinflammatory TH1 and TH17 over TH2 and induced T regulatory cell responses. In addition, branching promotes cell surface retention of the growth inhibitory receptor CTLA-4. However, the role of N-glycan branching in regulating cell surface levels of other checkpoint receptors such as BTLA (B and T lymphocyte attenuator) and PD-1 (programmed cell death protein 1) is unknown. In this study, we report that whereas branching significantly enhances PD-1 cell surface expression by reducing loss from endocytosis, the opposite occurs with BTLA in both T cells and B cells. T cell hyperactivity induced by branching deficiency was opposed by BTLA ligation proportional to increased BTLA expression. Other members of the BTLA/HVEM (herpesvirus entry mediator) signaling axis in T cells, including HVEM, LIGHT, and CD160, are largely unaltered by branching. Thus, branching-mediated endocytosis of BTLA is opposite of branching-induced inhibition of PD-1 endocytosis. In this manner, branching deficiency-induced upregulation of BTLA appears to serve as a checkpoint to limit extreme T cell hyperactivity and proinflammatory outcomes in T cells with low branching.
Collapse
Affiliation(s)
- Haik Mkhikian
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA
| | - Raymond W Zhou
- Department of Neurology, University of California, Irvine, Irvine, CA
| | - Hayk Saryan
- Department of Neurology, University of California, Irvine, Irvine, CA
| | | | - Aswath Balakrishnan
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA
| | - Justin Dang
- Department of Neurology, University of California, Irvine, Irvine, CA
| | | | - Michael Demetriou
- Department of Neurology, University of California, Irvine, Irvine, CA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA
| |
Collapse
|
2
|
Dalle S, Verronese E, N’Kodia A, Bardin C, Rodriguez C, Andrieu T, Eberhardt A, Chemin G, Hasan U, Le-Bouar M, Caramel J, Amini-Adle M, Bendriss-Vermare N, Dubois B, Caux C, Ménétrier-Caux C. Modulation of blood T cell polyfunctionality and HVEM/BTLA expression are critical determinants of clinical outcome in anti-PD1-treated metastatic melanoma patients. Oncoimmunology 2024; 13:2372118. [PMID: 38939518 PMCID: PMC11210932 DOI: 10.1080/2162402x.2024.2372118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
The need for reliable biomarkers to predict clinical benefit from anti-PD1 treatment in metastatic melanoma (MM) patients remains unmet. Several parameters have been considered in the tumor environment or the blood, but none has yet achieved sufficient accuracy for routine clinical practice. Whole blood samples from MM patients receiving second-line anti-PD1 treatment (NCT02626065), collected longitudinally, were analyzed by flow cytometry to assess the immune cell subsets absolute numbers, the expression of immune checkpoints or ligands on T cells and the functionality of innate immune cells and T cells. Clinical response was assessed according to Progression-Free Survival (PFS) status at one-year following initiation of anti-PD1 (responders: PFS > 1 year; non-responders: PFS ≤ 1 year). At baseline, several phenotypic and functional alterations in blood immune cells were observed in MM patients compared to healthy donors, but only the proportion of polyfunctional memory CD4+ T cells was associated with response to anti-PD1. Under treatment, a decreased frequency of HVEM on CD4+ and CD8+ T cells after 3 months of treatment identified responding patients, whereas its receptor BTLA was not modulated. Both reduced proportion of CD69-expressing CD4+ and CD8+ T cells and increased number of polyfunctional blood memory T cells after 3 months of treatment were associated with response to anti-PD1. Of upmost importance, the combination of changes of all these markers accurately discriminated between responding and non-responding patients. These results suggest that drugs targeting HVEM/BTLA pathway may be of interest to improve anti-PD1 efficacy.
Collapse
Affiliation(s)
- Stéphane Dalle
- Department of Dermatology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon 1 University, Lyon, France
- Cancer Research Center of Lyon, INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Estelle Verronese
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Axelle N’Kodia
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Christine Bardin
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Céline Rodriguez
- Cancer Research Center of Lyon, INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Thibault Andrieu
- Cancer Research Center of Lyon, INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Anais Eberhardt
- Department of Dermatology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon 1 University, Lyon, France
- Cancer Research Center of Lyon, INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Gabriel Chemin
- Cancer Research Center of Lyon, INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Uzma Hasan
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Myrtille Le-Bouar
- Department of Dermatology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon 1 University, Lyon, France
| | - Julie Caramel
- Cancer Research Center of Lyon, INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Mona Amini-Adle
- Department of Dermatology, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, Lyon 1 University, Lyon, France
| | - Nathalie Bendriss-Vermare
- Cancer Research Center of Lyon, INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Bertrand Dubois
- Cancer Research Center of Lyon, INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Christophe Caux
- Cancer Research Center of Lyon, INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| | - Christine Ménétrier-Caux
- Cancer Research Center of Lyon, INSERM 1052 - CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Lyon Immunotherapy for Cancer Laboratory (LICL), Centre Léon Bérard, Lyon, France
| |
Collapse
|
3
|
Guruprasad P, Carturan A, Zhang Y, Cho JH, Kumashie KG, Patel RP, Kim KH, Lee JS, Lee Y, Kim JH, Chung J, Joshi A, Cohen I, Shestov M, Ghilardi G, Harris J, Pajarillo R, Angelos M, Lee YG, Liu S, Rodriguez J, Wang M, Ballard HJ, Gupta A, Ugwuanyi OH, Hong SJA, Bochi-Layec AC, Sauter CT, Chen L, Paruzzo L, Kammerman S, Shestova O, Liu D, Vella LA, Schuster SJ, Svoboda J, Porazzi P, Ruella M. The BTLA-HVEM axis restricts CAR T cell efficacy in cancer. Nat Immunol 2024; 25:1020-1032. [PMID: 38831106 DOI: 10.1038/s41590-024-01847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/17/2024] [Indexed: 06/05/2024]
Abstract
The efficacy of T cell-based immunotherapies is limited by immunosuppressive pressures in the tumor microenvironment. Here we show a predominant role for the interaction between BTLA on effector T cells and HVEM (TNFRSF14) on immunosuppressive tumor microenvironment cells, namely regulatory T cells. High BTLA expression in chimeric antigen receptor (CAR) T cells correlated with poor clinical response to treatment. Therefore, we deleted BTLA in CAR T cells and show improved tumor control and persistence in models of lymphoma and solid malignancies. Mechanistically, BTLA inhibits CAR T cells via recruitment of tyrosine phosphatases SHP-1 and SHP-2, upon trans engagement with HVEM. BTLA knockout thus promotes CAR signaling and subsequently enhances effector function. Overall, these data indicate that the BTLA-HVEM axis is a crucial immune checkpoint in CAR T cell immunotherapy and warrants the use of strategies to overcome this barrier.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Mice, Knockout
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Puneeth Guruprasad
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Alberto Carturan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yunlin Zhang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Cho
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | | | - Ruchi P Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ki-Hyun Kim
- R&D Center, AbClon Inc., Seoul, Republic of Korea
| | - Jong-Seo Lee
- R&D Center, AbClon Inc., Seoul, Republic of Korea
| | - Yoon Lee
- R&D Center, AbClon Inc., Seoul, Republic of Korea
| | | | - Junho Chung
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Akshita Joshi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Cohen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Maksim Shestov
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Guido Ghilardi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jaryse Harris
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Raymone Pajarillo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Mathew Angelos
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Yong Gu Lee
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Shan Liu
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse Rodriguez
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Wang
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Hatcher J Ballard
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Aasha Gupta
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Ositadimma H Ugwuanyi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Seok Jae Albert Hong
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Audrey C Bochi-Layec
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher T Sauter
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Linhui Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Paruzzo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Shane Kammerman
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Olga Shestova
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Dongfang Liu
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Laura A Vella
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen J Schuster
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Jakub Svoboda
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrizia Porazzi
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco Ruella
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Medicine, Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Hu X. The role of the BTLA-HVEM complex in the pathogenesis of breast cancer. Breast Cancer 2024; 31:358-370. [PMID: 38483699 DOI: 10.1007/s12282-024-01557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/17/2024] [Indexed: 04/26/2024]
Abstract
Breast cancer (BC) is widely recognized as a prevalent contributor to cancer mortality and ranks as the second most prevalent form of cancer among women across the globe. Hence, the development of innovative therapeutic strategies is imperative to effectively manage BC. The B- and T-lymphocyte attenuator (BTLA)-Herpesvirus entry mediator (HVEM) complex has garnered significant scientific interest as a crucial regulator in various immune contexts. The interaction between BTLA-HVEM ligand on the surface of T cells results in reduced cellular activation, cytokine synthesis, and proliferation. The BTLA-HVEM complex has been investigated in various cancers, yet its specific mechanisms in BC remain indeterminate. In this study, we aim to examine the function of BTLA-HVEM and provide a comprehensive overview of the existing evidence in relation to BC. The obstruction or augmentation of these pathways may potentially enhance the efficacy of BC treatment.
Collapse
Affiliation(s)
- Xue Hu
- College of Health Industry, Changchun University of Architecture and Civil Engineering, Changchun, 130000, China.
| |
Collapse
|
5
|
Kamali AN, Bautista JM, Eisenhut M, Hamedifar H. Immune checkpoints and cancer immunotherapies: insights into newly potential receptors and ligands. Ther Adv Vaccines Immunother 2023; 11:25151355231192043. [PMID: 37662491 PMCID: PMC10469281 DOI: 10.1177/25151355231192043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/14/2023] [Indexed: 09/05/2023] Open
Abstract
Checkpoint markers and immune checkpoint inhibitors have been increasingly identified and developed as potential immunotherapeutic targets in various human cancers. Despite valuable efforts to discover novel immune checkpoints and their ligands, the precise roles of their therapeutic functions, as well as the broad identification of their counterpart receptors, remain to be addressed. In this context, it has been suggested that various putative checkpoint receptors can be induced upon activation. In the tumor microenvironment, T cells, as crucial immune response against malignant diseases as well as other immune central effector cells, such as natural killer cells, are regulated via co-stimulatory or co-inhibitory signals from immune or tumor cells. Studies have shown that exposure of T cells to tumor antigens upregulates the expression of inhibitory checkpoint receptors, leading to T-cell dysfunction or exhaustion. Although targeting immune checkpoint regulators has shown relative clinical efficacy in some tumor types, most trials in the field of cancer immunotherapies have revealed unsatisfactory results due to de novo or adaptive resistance in cancer patients. To overcome these obstacles, combinational therapies with newly discovered inhibitory molecules or combined blockage of several checkpoints provide a rationale for further research. Moreover, precise identification of their receptors counterparts at crucial checkpoints is likely to promise effective therapies. In this review, we examine the prospects for the application of newly emerging checkpoints, such as T-cell immunoglobulin and mucin domain 3, lymphocyte activation gene-3, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), V-domain Ig suppressor of T-cell activation (VISTA), new B7 family proteins, and B- and T-cell lymphocyte attenuator, in association with immunotherapy of malignancies. In addition, their clinical and biological significance is discussed, including their expression in various human cancers, along with their roles in T-cell-mediated immune responses.
Collapse
Affiliation(s)
- Ali N. Kamali
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Simin Dasht Industrial Area, Karaj, Iran
- CinnaGen Research and Production Co., Alborz 3165933155, Iran
| | - José M. Bautista
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Complutense University of Madrid, Madrid, Spain
- Research Institute Hospital 12 de Octubre, Madrid, Spain
| | - Michael Eisenhut
- Department of Pediatrics, Luton and Dunstable University Hospital NHS Foundation Trust, Luton, UK
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
- CinnaGen Research and Production Co., Alborz, Iran
| |
Collapse
|
6
|
Immune Checkpoint Receptors Signaling in T Cells. Int J Mol Sci 2022; 23:ijms23073529. [PMID: 35408889 PMCID: PMC8999077 DOI: 10.3390/ijms23073529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
The characterization of the receptors negatively modulating lymphocyte function is rapidly advancing, driven by success in tumor immunotherapy. As a result, the number of immune checkpoint receptors characterized from a functional perspective and targeted by innovative drugs continues to expand. This review focuses on the less explored area of the signaling mechanisms of these receptors, of those expressed in T cells. Studies conducted mainly on PD-1, CTLA-4, and BTLA have evidenced that the extracellular parts of some of the receptors act as decoy receptors for activating ligands, but in all instances, the tyrosine phosphorylation of their cytoplasmatic tail drives a crucial inhibitory signal. This negative signal is mediated by a few key signal transducers, such as tyrosine phosphatase, inositol phosphatase, and diacylglycerol kinase, which allows them to counteract TCR-mediated activation. The characterization of these signaling pathways is of great interest in the development of therapies for counteracting tumor-infiltrating lymphocyte exhaustion/anergy independently from the receptors involved.
Collapse
|
7
|
Bu X, Juneja VR, Reynolds CG, Mahoney KM, Bu MT, McGuire KA, Maleri S, Hua P, Zhu B, Klein SR, Greenfield EA, Armand P, Ritz J, Sharpe AH, Freeman GJ. Monitoring PD-1 Phosphorylation to Evaluate PD-1 Signaling during Antitumor Immune Responses. Cancer Immunol Res 2021; 9:1465-1475. [PMID: 34635486 DOI: 10.1158/2326-6066.cir-21-0493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022]
Abstract
PD-1 expression marks activated T cells susceptible to PD-1-mediated inhibition but not whether a PD-1-mediated signal is being delivered. Molecular predictors of response to PD-1 immune checkpoint blockade (ICB) are needed. We describe a monoclonal antibody (mAb) that detects PD-1 signaling through the detection of phosphorylation of the immunotyrosine switch motif (ITSM) in the intracellular tail of mouse and human PD-1 (phospho-PD-1). We showed PD-1+ tumor-infiltrating lymphocytes (TILs) in MC38 murine tumors had high phosphorylated PD-1, particularly in PD-1+TIM-3+ TILs. Upon PD-1 blockade, PD-1 phosphorylation was decreased in CD8+ TILs. Phospho-PD-1 increased in T cells from healthy human donors after PD-1 engagement and decreased in patients with Hodgkin lymphoma following ICB. These data demonstrate that phosphorylation of the ITSM motif of PD-1 marks dysfunctional T cells that may be rescued with PD-1 blockade. Detection of phospho-PD-1 in TILs is a potential biomarker for PD-1 immunotherapy responses.
Collapse
Affiliation(s)
- Xia Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Vikram R Juneja
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts.,Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Carol G Reynolds
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kathleen M Mahoney
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Melissa T Bu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kathleen A McGuire
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Seth Maleri
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Ping Hua
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Baogong Zhu
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Sarah R Klein
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Edward A Greenfield
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, and Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
8
|
Demerlé C, Gorvel L, Olive D. BTLA-HVEM Couple in Health and Diseases: Insights for Immunotherapy in Lung Cancer. Front Oncol 2021; 11:682007. [PMID: 34532285 PMCID: PMC8438526 DOI: 10.3389/fonc.2021.682007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/09/2021] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths worldwide. Immunotherapies (IT) have been rapidly approved for lung cancer treatment after the spectacular results in melanoma. Responses to the currently used checkpoint inhibitors are strikingly good especially in metastatic diseases. However, durable responses are observed in only 25% of cases. Consequently, there is an urgent need for new immunotherapy targets. Among the multiple checkpoints involved in the tumor immune escape, the BTLA-HVEM couple appears to be a promising target. BTLA (B- and T- Lymphocyte Attenuator) is a co-inhibitory receptor mainly expressed by B and T cells, repressing the activation signal transduction. BTLA shares similarities with other immune checkpoints such as PD-1 and CTLA-4 which are the targets of the currently used immunotherapies. Furthermore, BTLA expression points out terminally exhausted and dysfunctional lymphocytes, and correlates with lung cancer progression. The ligand of BTLA is HVEM (Herpes Virus Entry Mediator) which belongs to the TNF receptor family. Often described as a molecular switch, HVEM is constitutively expressed by many cells, including cells from tumor and healthy tissues. In addition, HVEM seems to be involved in tumor immuno-evasion, especially in lung tumors lacking PD-L1 expression. Here, we propose to review the role of BTLA-HVEM in immuno-escape in order to highlight its potential for designing new immunotherapies.
Collapse
Affiliation(s)
- Clemence Demerlé
- Cancer Research Center in Marseille (CRCM), INSERM U1068, CNRS U7258, Aix Marseille University (AMU), Paoli Calmette Institute (IPC), Marseille, France
| | - Laurent Gorvel
- Cancer Research Center in Marseille (CRCM), INSERM U1068, CNRS U7258, Aix Marseille University (AMU), Paoli Calmette Institute (IPC), Marseille, France
| | - Daniel Olive
- Cancer Research Center in Marseille (CRCM), INSERM U1068, CNRS U7258, Aix Marseille University (AMU), Paoli Calmette Institute (IPC), Marseille, France
| |
Collapse
|
9
|
Deng Z, Zheng Y, Cai P, Zheng Z. The Role of B and T Lymphocyte Attenuator in Respiratory System Diseases. Front Immunol 2021; 12:635623. [PMID: 34163466 PMCID: PMC8215117 DOI: 10.3389/fimmu.2021.635623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/18/2021] [Indexed: 01/03/2023] Open
Abstract
B and T lymphocyte attenuator (BTLA), an immunomodulatory molecule widely expressed on the surface of immune cells, can influence various signaling pathways and negatively regulate the activation and proliferation of immune cells by binding to its ligand herpes virus entry mediator (HVEM). BTLA plays an important role in immunoregulation and is involved in the pathogenesis of various respiratory diseases, including airway inflammation, asthma, infection, pneumonia, acute respiratory distress syndrome and lung cancer. In recent years, some studies have found that BTLA also has played a positive regulatory effect on immunity system in the occurrence and development of respiratory diseases. Since severe pulmonary infection is a risk factor for sepsis, this review also summarized the new findings on the role of BTLA in sepsis.
Collapse
Affiliation(s)
- Zheng Deng
- General Department, Hunan Institute for Tuberculosis Control, Changsha, China.,General Department, Hunan Chest Hospital, Changsha, China
| | - Yi Zheng
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Pei Cai
- Department of Pharmacy, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zheng Zheng
- General Department, Hunan Institute for Tuberculosis Control, Changsha, China.,General Department, Hunan Chest Hospital, Changsha, China
| |
Collapse
|
10
|
Ning Z, Liu K, Xiong H. Roles of BTLA in Immunity and Immune Disorders. Front Immunol 2021; 12:654960. [PMID: 33859648 PMCID: PMC8043046 DOI: 10.3389/fimmu.2021.654960] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
B and T lymphocyte attenuator (BTLA) is one of the most important cosignaling molecules. It belongs to the CD28 superfamily and is similar to programmed cell death-1 (PD-1) and cytotoxic T lymphocyte associated antigen-4 (CTLA-4) in terms of its structure and function. BTLA can be detected in most lymphocytes and induces immunosuppression by inhibiting B and T cell activation and proliferation. The BTLA ligand, herpesvirus entry mediator (HVEM), does not belong to the classic B7 family. Instead, it is a member of the tumor necrosis factor receptor (TNFR) superfamily. The association of BTLA with HVEM directly bridges the CD28 and TNFR families and mediates broad and powerful immune effects. Recently, a large number of studies have found that BTLA participates in numerous physiopathological processes, such as tumor, inflammatory diseases, autoimmune diseases, infectious diseases, and transplantation rejection. Therefore, the present work aimed to review the existing knowledge about BTLA in immunity and summarize the diverse functions of BTLA in various immune disorders.
Collapse
Affiliation(s)
- Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Keyan Liu
- Department of Public Health, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China.,Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| |
Collapse
|
11
|
Xu X, Hou B, Fulzele A, Masubuchi T, Zhao Y, Wu Z, Hu Y, Jiang Y, Ma Y, Wang H, Bennett EJ, Fu G, Hui E. PD-1 and BTLA regulate T cell signaling differentially and only partially through SHP1 and SHP2. J Cell Biol 2021; 219:151801. [PMID: 32437509 PMCID: PMC7265324 DOI: 10.1083/jcb.201905085] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 02/09/2020] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Blockade antibodies of the immunoinhibitory receptor PD-1 can stimulate the anti-tumor activity of T cells, but clinical benefit is limited to a fraction of patients. Evidence suggests that BTLA, a receptor structurally related to PD-1, may contribute to resistance to PD-1 targeted therapy, but how BTLA and PD-1 differ in their mechanisms is debated. Here, we compared the abilities of BTLA and PD-1 to recruit effector molecules and to regulate T cell signaling. While PD-1 selectively recruited SHP2 over the stronger phosphatase SHP1, BTLA preferentially recruited SHP1 to more efficiently suppress T cell signaling. Contrary to the dominant view that PD-1 and BTLA signal exclusively through SHP1/2, we found that in SHP1/2 double-deficient primary T cells, PD-1 and BTLA still potently inhibited cell proliferation and cytokine production, albeit more transiently than in wild type T cells. Thus, PD-1 and BTLA can suppress T cell signaling through a mechanism independent of both SHP1 and SHP2.
Collapse
Affiliation(s)
- Xiaozheng Xu
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Bowen Hou
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Amitkumar Fulzele
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Takeya Masubuchi
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Yunlong Zhao
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Zijun Wu
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Yanyan Hu
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yong Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yanzhe Ma
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Eric J Bennett
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| | - Guo Fu
- School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Enfu Hui
- Division of Biological Sciences, University of California San Diego, La Jolla, CA
| |
Collapse
|
12
|
Hwang HJ, Lee JJ, Kang SH, Suh JK, Choi ES, Jang S, Hwang SH, Koh KN, Im HJ, Kim N. The BTLA and PD-1 signaling pathways independently regulate the proliferation and cytotoxicity of human peripheral blood γδ T cells. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:274-287. [PMID: 33332777 PMCID: PMC7860523 DOI: 10.1002/iid3.390] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022]
Abstract
Background B‐ and T‐lymphocyte attenuator (BTLA) and programmed cell death‐1 (PD‐1) inhibit γδ T cell homeostasis and activation. This study aimed to determine whether BTLA and PD‐1 signaling pathways were convergent or independent in human peripheral blood γδ T cells. Herein we demonstrate that the signalings of BTLA and PD‐1 regulated proliferation and cytotoxicity of human γδ T cells, respectively. Methods Human peripheral blood γδ T cells were cultured with inactivated Jurkat cells in the presence of interleukin‐2 and zoledronate (Zol) for 14 days. Flow cytometry was performed to evaluate the phenotypes and functions of γδ T cells. Results The proliferation of the γδ T cells was increased when PBMCs were cocultured with inactivated herpes virus entry mediator (HVEM)low Jurkat cells. The cytotoxicity of the expanded γδ T cells was not affected by coculture with inactivated HVEMlow Jurkat cells and was further increased in the presence of anti‐PD‐L1 mAb. These results suggest that the inactivation of the BTLA signaling pathway during expansion could help produce more γδ T cells without compromising γδ T cell function. The inhibition of BTLA or PD‐1 signaling repressed phosphorylation of the src homology region 2‐containing protein tyrosine phosphatase 2 and increased the phosphorylation of protein kinase B in γδ T cells. However, there were no synergistic or additive effects by a combination of BTLA and PD‐1 blockade. Conclusion These results suggest that BTLA signaling is crucial in regulating γδ T cell proliferation and function and that the BTLA and PD‐1 signaling pathways act independently on the proliferation and cytotoxicity of human peripheral γδ T cells.
Collapse
Affiliation(s)
- Hyun J Hwang
- Asan Institute for Life Sciences and Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Asan Medical Institute for Convergence Science and Technology, Asan Medical Center, Seoul, Republic of Korea
| | - Jae J Lee
- Asan Institute for Life Sciences and Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung H Kang
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin K Suh
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun S Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Hyun Hwang
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung-Nam Koh
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ho J Im
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Nayoung Kim
- Asan Institute for Life Sciences and Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
13
|
Chandler NJ, Call MJ, Call ME. T Cell Activation Machinery: Form and Function in Natural and Engineered Immune Receptors. Int J Mol Sci 2020; 21:E7424. [PMID: 33050044 PMCID: PMC7582382 DOI: 10.3390/ijms21197424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
The impressive success of chimeric antigen receptor (CAR)-T cell therapies in treating advanced B-cell malignancies has spurred a frenzy of activity aimed at developing CAR-T therapies for other cancers, particularly solid tumors, and optimizing engineered T cells for maximum clinical benefit in many different disease contexts. A rapidly growing body of design work is examining every modular component of traditional single-chain CARs as well as expanding out into many new and innovative engineered immunoreceptor designs that depart from this template. New approaches to immune cell and receptor engineering are being reported with rapidly increasing frequency, and many recent high-quality reviews (including one in this special issue) provide comprehensive coverage of the history and current state of the art in CAR-T and related cellular immunotherapies. In this review, we step back to examine our current understanding of the structure-function relationships in natural and engineered lymphocyte-activating receptors, with an eye towards evaluating how well the current-generation CAR designs recapitulate the most desirable features of their natural counterparts. We identify key areas that we believe are under-studied and therefore represent opportunities to further improve our grasp of form and function in natural and engineered receptors and to rationally design better therapeutics.
Collapse
Affiliation(s)
- Nicholas J. Chandler
- Structural Biology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (N.J.C.); (M.J.C.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Melissa J. Call
- Structural Biology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (N.J.C.); (M.J.C.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Matthew E. Call
- Structural Biology Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; (N.J.C.); (M.J.C.)
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
14
|
D'Arrigo P, Tufano M, Rea A, Vigorito V, Novizio N, Russo S, Romano MF, Romano S. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Curr Med Chem 2020; 27:2402-2448. [PMID: 30398102 DOI: 10.2174/0929867325666181106114421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
The immune system actively counteracts the tumorigenesis process; a breakout of the immune system function, or its ability to recognize transformed cells, can favor cancer development. Cancer becomes able to escape from immune system control by using multiple mechanisms, which are only in part known at a cellular and molecular level. Among these mechanisms, in the last decade, the role played by the so-called "inhibitory immune checkpoints" is emerging as pivotal in preventing the tumor attack by the immune system. Physiologically, the inhibitory immune checkpoints work to maintain the self-tolerance and attenuate the tissue injury caused by pathogenic infections. Cancer cell exploits such immune-inhibitory molecules to contrast the immune intervention and induce tumor tolerance. Molecular agents that target these checkpoints represent the new frontier for cancer treatment. Despite the heterogeneity and multiplicity of molecular alterations among the tumors, the immune checkpoint targeted therapy has been shown to be helpful in selected and even histologically different types of cancer, and are currently being adopted against an increasing variety of tumors. The most frequently used is the moAb-based immunotherapy that targets the Programmed Cell Death 1 protein (PD-1), the PD-1 Ligand (PD-L1) or the cytotoxic T lymphocyte antigen-4 (CTLA4). However, new therapeutic approaches are currently in development, along with the discovery of new immune checkpoints exploited by the cancer cell. This article aims to review the inhibitory checkpoints, which are known up to now, along with the mechanisms of cancer immunoediting. An outline of the immune checkpoint targeting approaches, also including combined immunotherapies and the existing trials, is also provided. Notwithstanding the great efforts devoted by researchers in the field of biomarkers of response, to date, no validated FDA-approved immunological biomarkers exist for cancer patients. We highlight relevant studies on predictive biomarkers and attempt to discuss the challenges in this field, due to the complex and largely unknown dynamic mechanisms that drive the tumor immune tolerance.
Collapse
Affiliation(s)
- Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Rea
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vincenza Vigorito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Novizio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
15
|
Melaiu O, Lucarini V, Giovannoni R, Fruci D, Gemignani F. News on immune checkpoint inhibitors as immunotherapy strategies in adult and pediatric solid tumors. Semin Cancer Biol 2020; 79:18-43. [PMID: 32659257 DOI: 10.1016/j.semcancer.2020.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/19/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have shown unprecedented benefits in various adult cancers, and this success has prompted the exploration of ICI therapy even in childhood malignances. Although the use of ICIs as individual agents has achieved disappointing response rates, combinational therapies are likely to promise better results. However, only a subset of patients experienced prolonged clinical effects, thus suggesting the need to identify robust bio-markers that predict individual clinical response or resistance to ICI therapy as the main challenge. In this review, we focus on how the use of ICIs in adult cancers can be translated into pediatric malignances. We discuss the physiological mechanism of action of each IC, including PD-1, PD-L1 and CTLA-4 and the new emerging ones, LAG-3, TIM-3, TIGIT, B7-H3, BTLA and IDO-1, and evaluate their prognostic value in both adult and childhood tumors. Furthermore, we offer an overview of preclinical models and clinical trials currently under investigation to improve the effectiveness of cancer immunotherapies in these patients. Finally, we outline the main predictive factors that influence the efficacy of ICIs, in order to lay the basis for the development of a pan-cancer immunogenomic model, able to direct young patients towards more specific immunotherapy.
Collapse
Affiliation(s)
- Ombretta Melaiu
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Valeria Lucarini
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Ospedale Pediatrico Bambino Gesù, Rome, Italy.
| | | |
Collapse
|
16
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|
17
|
Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:85-133. [PMID: 31758532 DOI: 10.1007/978-981-32-9717-3_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.
Collapse
|
18
|
Starke RM, McCarthy DJ, Komotar RJ, Connolly ES. New Risk Allele for Intracranial Aneurysm in French-Canadians. Neurosurgery 2018; 83:E101-E102. [PMID: 30125025 DOI: 10.1093/neuros/nyy294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Robert M Starke
- Department of Neurosurgery University of Miami School of Medicine Miami, Florida
| | - David J McCarthy
- Department of Neurosurgery University of Miami School of Medicine Miami, Florida
| | - Ricardo J Komotar
- Department of Neurosurgery University of Miami School of Medicine Miami, Florida
| | - E Sander Connolly
- Department of Neurological Surgery Columbia University College of Physicians and Surgeons New York, New York
| |
Collapse
|
19
|
Genome-wide association analysis identifies new candidate risk loci for familial intracranial aneurysm in the French-Canadian population. Sci Rep 2018. [PMID: 29531279 PMCID: PMC5847615 DOI: 10.1038/s41598-018-21603-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Intracranial Aneurysm (IA) is a common disease with a worldwide prevalence of 1–3%. In the French-Canadian (FC) population, where there is an important founder effect, the incidence of IA is higher and is frequently seen in families. In this study, we genotyped a cohort of 257 mostly familial FC IA patients and 1,992 FC controls using the Illumina NeuroX SNP-chip. The most strongly associated loci were tested in 34 Inuit IA families and in 32 FC IA patients and 106 FC controls that had been exome sequenced (WES). After imputation, one locus at 3p14.2 (FHIT, rs1554600, p = 4.66 × 10–9) reached a genome-wide significant level of association and a subsequent validation in Nunavik Inuit cohort further confirmed the significance of the FHIT variant association (rs780365, FBAT-O, p = 0.002839). Additionally, among the other promising loci (p < 5 × 10−6), the one at 3q13.2 (rs78125721, p = 4.77 × 10−7), which encompasses CCDC80, also showed an increased mutation burden in the WES data (CCDC80, SKAT-O, p = 0.0005). In this study, we identified two new potential IA loci in the FC population: FHIT, which is significantly associated with hypertensive IA, and CCDC80, which has potential genetic and functional relevance to IA pathogenesis, providing evidence on the additional risk loci for familial IA. We also replicated the previous IA GWAS risk locus 18q11.2, and suggested a potential locus at 8p23.1 that warrants further study.
Collapse
|
20
|
Ritthipichai K, Haymaker CL, Martinez M, Aschenbrenner A, Yi X, Zhang M, Kale C, Vence LM, Roszik J, Hailemichael Y, Overwijk WW, Varadarajan N, Nurieva R, Radvanyi LG, Hwu P, Bernatchez C. Multifaceted Role of BTLA in the Control of CD8 + T-cell Fate after Antigen Encounter. Clin Cancer Res 2017; 23:6151-6164. [PMID: 28754817 DOI: 10.1158/1078-0432.ccr-16-1217] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 01/29/2017] [Accepted: 07/19/2017] [Indexed: 01/13/2023]
Abstract
Purpose: Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes (TIL) has shown an overall clinical response rate 40%-50% in metastatic melanoma patients. BTLA (B-and-T lymphocyte associated) expression on transferred CD8+ TILs was associated with better clinical outcome. The suppressive function of the ITIM and ITSM motifs of BTLA is well described. Here, we sought to determine the functional characteristics of the CD8+BTLA+TIL subset and define the contribution of the Grb2 motif of BTLA in T-cell costimulation.Experimental Design: We determined the functional role and downstream signal of BTLA in both human CD8+ TILs and mouse CD8+ T cells. Functional assays were used including single-cell analysis, reverse-phase protein array (RPPA), antigen-specific vaccination models with adoptively transferred TCR-transgenic T cells as well as patient-derived xenograft (PDX) model using immunodeficient NOD-scid IL2Rgammanull (NSG) tumor-bearing mice treated with autologous TILs.Results: CD8+BTLA- TILs could not control tumor growth in vivo as well as their BTLA+ counterpart and antigen-specific CD8+BTLA- T cells had impaired recall response to a vaccine. However, CD8+BTLA+ TILs displayed improved survival following the killing of a tumor target and heightened "serial killing" capacity. Using mutants of BTLA signaling motifs, we uncovered a costimulatory function mediated by Grb2 through enhancing the secretion of IL-2 and the activation of Src after TCR stimulation.Conclusions: Our data portrays BTLA as a molecule with the singular ability to provide both costimulatory and coinhibitory signals to activated CD8+ T cells, resulting in extended survival, improved tumor control, and the development of a functional recall response. Clin Cancer Res; 23(20); 6151-64. ©2017 AACR.
Collapse
Affiliation(s)
- Krit Ritthipichai
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate Program in Immunology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Cara L Haymaker
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melisa Martinez
- Department of Chemical and Biomolecular Engineering, Cullen College of Engineering, University of Houston, Texas
| | - Andrew Aschenbrenner
- Graduate Program in Biostatistics, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Xiaohui Yi
- Immunology Platform, Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Minying Zhang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charuta Kale
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luis M Vence
- Immunology Platform, Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Yared Hailemichael
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate Program in Immunology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, Cullen College of Engineering, University of Houston, Texas
| | - Roza Nurieva
- Graduate Program in Immunology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laszlo G Radvanyi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Graduate Program in Immunology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Graduate Program in Immunology, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
21
|
Jutz S, Hennig A, Paster W, Asrak Ö, Dijanovic D, Kellner F, Pickl WF, Huppa JB, Leitner J, Steinberger P. A cellular platform for the evaluation of immune checkpoint molecules. Oncotarget 2017; 8:64892-64906. [PMID: 29029399 PMCID: PMC5630299 DOI: 10.18632/oncotarget.17615] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/22/2017] [Indexed: 12/31/2022] Open
Abstract
Blockade of the T cell coinhibitory molecules CTLA-4 and PD-1 has clinical utility to strengthen T cell responses. In addition to these immune checkpoints an ever-growing number of molecules has been implicated in generating coinhibitory signals in T cells. However, investigating coinhibitory molecules in primary human cells is complicated by the restricted expression and promiscuity of both coinhibitory receptors and their ligands. Here we have evaluated the potential of fluorescence-based transcriptional reporters based on the human Jurkat T cell line in conjunction with engineered T cell stimulator cell lines for investigating coinhibitory pathways. CTLA-4, PD-1, TIGIT, BTLA and 2B4 expressing reporter cells were generated and activated with T cell stimulator cells expressing cognate ligands of these molecules. All accessory molecules tested were functional in our reporter system. Engagement of CTLA-4, PD-1, BTLA and TIGIT by their ligands significantly inhibited T cell activation, whereas binding of 2B4 by CD48 resulted in enhanced responses. Mutational analysis revealed intracellular motifs that are responsible for BTLA mediated T cell inhibition and demonstrates potent reporter inhibition by CTLA-4 independent of cytoplasmic signaling motifs. Moreover, considerably higher IC50 values were measured for the CTLA-4 blocker Ipilimumab compared to the PD-1 antibody Nivolumab. Our findings show that coinhibitory pathways can be evaluated in Jurkat-based transcriptional reporters and yield novel insights on their function. Results obtained from this robust reductionist system can complement more time consuming and complex studies of such pathways in primary T cells.
Collapse
Affiliation(s)
- Sabrina Jutz
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Annika Hennig
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ömer Asrak
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dejana Dijanovic
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Florian Kellner
- Department of Molecular Immunology, Immune Recognition Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Division of Cellular Immunology and Immunohematology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes B Huppa
- Department of Molecular Immunology, Immune Recognition Unit, Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
22
|
Xu B, Yuan L, Gao Q, Yuan P, Zhao P, Yuan H, Fan H, Li T, Qin P, Han L, Fang W, Suo Z. Circulating and tumor-infiltrating Tim-3 in patients with colorectal cancer. Oncotarget 2016; 6:20592-603. [PMID: 26008981 PMCID: PMC4653028 DOI: 10.18632/oncotarget.4112] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/22/2015] [Indexed: 02/07/2023] Open
Abstract
T-cell exhaustion represents a progressive loss of T-cell function. The inhibitory receptor PD-1 is known to negatively regulate CD8+ T cell responses directed against tumor antigen, but the blockades of PD-1 pathway didn't show the objective responses in patients with colorectal cancer (CRC). Thus, further exploring the molecular mechanism responsible for inducing T-cell dysfunction in CRC patients may reveal effective strategies for immune therapy. This study aims to characterize co-inhibitory receptors on T cells in CRC patients to identify novel targets for immunotherapy. In this study, peripheral blood samples from 20 healthy controls and 54 consented CRC patients, and tumor and matched paraneoplastic tissues from 7 patients with advanced CRC, subjected to multicolor flow cytometric analysis of the expression of PD-1 and Tim-3 receptors on CD8+ T cells. It was found that CRC patients presented with significantly higher levels of circulating Tim-3+PD-1+CD8+ T cells compared to the healthy controls (medians of 3.12% and 1.99%, respectively, p = 0.0403). A similar increase of Tim-3+PD-1+CD8+ T cells was also observed in the tumor tissues compared to paraneoplastic tussues. Tim-3+PD-1+CD8+ T cells in tumor tissues produced even less cytokine than that in paraneoplastic tissues. Functional ex vivo experiments showed that Tim-3+PD-1+CD8+ T cells produced significantly less IFN-γ than Tim-3-PD-1-CD8+ T cells, followed by Tim-3+PD-1-CD8+ T cells, and Tim-3-PD-1+CD8+ T cells, indicating a stronger inhibition of IFN-γ production of Tim-3+CD8+ T cells . It is also found in this study that Tim-3+PD-1+CD8+ T cell increase in circulation was correlated with clinical cancer stage but not histologic grade and serum concentrations of cancer biomarker CEA. Our results indicate that upregulation of the inhibitory receptor Tim-3 may restrict T cell responses in CRC patients, and therefore blockage of Tim-3 and thus restoring T cell responses may be a potential therapeutic approach for CRC patients.
Collapse
Affiliation(s)
- Benling Xu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China.,Department of Cancer Biotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Long Yuan
- Department of Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Quanli Gao
- Department of Cancer Biotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Peng Yuan
- Department of Cancer Biotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Peng Zhao
- Department of Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, Henan, P. R. China
| | - Huijie Fan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Tiepeng Li
- Department of Cancer Biotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Peng Qin
- Department of Cancer Biotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Lu Han
- Department of Cancer Biotherapy, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Weijia Fang
- Department of Oncology, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, P. R. China
| | - Zhenhe Suo
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China.,Department of Pathology, Oslo University Hospital and Clinical Institute, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Saha A, O'Connor RS, Thangavelu G, Lovitch SB, Dandamudi DB, Wilson CB, Vincent BG, Tkachev V, Pawlicki JM, Furlan SN, Kean LS, Aoyama K, Taylor PA, Panoskaltsis-Mortari A, Foncea R, Ranganathan P, Devine SM, Burrill JS, Guo L, Sacristan C, Snyder NW, Blair IA, Milone MC, Dustin ML, Riley JL, Bernlohr DA, Murphy WJ, Fife BT, Munn DH, Miller JS, Serody JS, Freeman GJ, Sharpe AH, Turka LA, Blazar BR. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest 2016; 126:2642-60. [PMID: 27294527 DOI: 10.1172/jci85796] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
Programmed death ligand-1 (PD-L1) interaction with PD-1 induces T cell exhaustion and is a therapeutic target to enhance immune responses against cancer and chronic infections. In murine bone marrow transplant models, PD-L1 expression on host target tissues reduces the incidence of graft-versus-host disease (GVHD). PD-L1 is also expressed on T cells; however, it is unclear whether PD-L1 on this population influences immune function. Here, we examined the effects of PD-L1 modulation of T cell function in GVHD. In patients with severe GVHD, PD-L1 expression was increased on donor T cells. Compared with mice that received WT T cells, GVHD was reduced in animals that received T cells from Pdl1-/- donors. PD-L1-deficient T cells had reduced expression of gut homing receptors, diminished production of inflammatory cytokines, and enhanced rates of apoptosis. Moreover, multiple bioenergetic pathways, including aerobic glycolysis, oxidative phosphorylation, and fatty acid metabolism, were also reduced in T cells lacking PD-L1. Finally, the reduction of acute GVHD lethality in mice that received Pdl1-/- donor cells did not affect graft-versus-leukemia responses. These data demonstrate that PD-L1 selectively enhances T cell-mediated immune responses, suggesting a context-dependent function of the PD-1/PD-L1 axis, and suggest selective inhibition of PD-L1 on donor T cells as a potential strategy to prevent or ameliorate GVHD.
Collapse
|
24
|
Kannan S, Kurupati RK, Doyle SA, Freeman GJ, Schmader KE, Ertl HCJ. BTLA expression declines on B cells of the aged and is associated with low responsiveness to the trivalent influenza vaccine. Oncotarget 2016; 6:19445-55. [PMID: 26277622 PMCID: PMC4637297 DOI: 10.18632/oncotarget.4597] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/11/2015] [Indexed: 12/31/2022] Open
Abstract
Virus-neutralizing antibody and B cell responses to influenza A viruses were measured in 35 aged and 28 middle-aged individuals following vaccination with the 2012 and 2013 trivalent inactivated influenza vaccines. Antibody responses to the vaccine strains were lower in the aged. An analysis of B cell subsets by flow cytometry with stains for immunoregulators showed that B cells of multiple subsets from the aged as compared to younger human subjects showed differences in the expression of the co-inhibitor B and T lymphocyte attenuator (BTLA). Expression of BTLA inversely correlated with age and appears to be linked to shifting the nature of the response from IgM to IgG. High BTLA expression on mature B cells was linked to higher IgG responses to the H1N1 virus. Finally, high BTLA expression on isotype switched memory B cells was linked to better preservation of virus neutralizing antibody titers and improved recall responses to vaccination given the following year.
Collapse
Affiliation(s)
- Senthil Kannan
- Biomedical Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.,The Wistar Institute, Philadelphia, PA, USA
| | | | - Susan A Doyle
- GRECC, Durham VA Medical Center and Center for the Study of Aging and Human, Development and Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Gordon J Freeman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kenneth E Schmader
- GRECC, Durham VA Medical Center and Center for the Study of Aging and Human, Development and Division of Geriatrics, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
25
|
Rodriguez-Barbosa JI, Fernandez-Renedo C, Moral AMB, Bühler L, Del Rio ML. T follicular helper expansion and humoral-mediated rejection are independent of the HVEM/BTLA pathway. Cell Mol Immunol 2016; 14:497-510. [PMID: 26924526 DOI: 10.1038/cmi.2015.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/02/2015] [Accepted: 11/14/2015] [Indexed: 12/22/2022] Open
Abstract
The molecular pathways contributing to humoral-mediated allograft rejection are poorly defined. In this study, we assessed the role of the herpesvirus entry mediator/B- and T-lymphocyte attenuator (HVEM/BTLA) signalling pathway in the context of antibody-mediated allograft rejection. An experimental setting was designed to elucidate whether the blockade of HVEM/BTLA interactions could modulate de novo induction of host antidonor-specific antibodies during the course of graft rejection. To test this hypothesis, fully allogeneic major histocompatibility complex-mismatched skin grafts were transplanted onto the right flank of recipient mice that were treated with isotype control, anti-CD40L or modulatory antibodies of the HVEM/BTLA signalling pathway. The frequencies of CD4 T follicular helper (Tfh) cells (B220-, CD4+ CXCR5+ PD-1high), extrafollicular helper cells (B220-, CD4+ CXCR5- PD-1+ and PD-1-) and germinal centre (GC) B cells (B220+Fas+ GL7+) were analysed by flow cytometry in draining and non-draining lymph nodes at day 10 post transplantation during the acute phase of graft rejection. The host antidonor isotype-specific humoral immune response was also assessed. Whereas blockade of the CD40/CD40L pathway was highly effective in preventing the allogeneic humoral immune response, antibody-mediated blockade of the HVEM/BTLA-interacting pathway affected neither the expansion of Tfh cells nor the expansion of GC B cells. Consequently, the course of the host antidonor antibody-mediated response proceeded normally, without detectable evidence of impaired development. In summary, these data indicate that HVEM/BTLA interactions are dispensable for the formation of de novo host antidonor isotype-specific antibodies in transplantation.
Collapse
Affiliation(s)
- Jose-Ignacio Rodriguez-Barbosa
- Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital, Leon, Spain
| | - Carlos Fernandez-Renedo
- Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital, Leon, Spain
| | - Ana María Bravo Moral
- Department of Veterinary Clinical Sciences, University of Santiago de Compostela, Veterinary Faculty, Lugo, Spain
| | - Leo Bühler
- Visceral and Transplantation Surgery, Department of Surgery, University Hospitals of Geneva and Faculty of Medicine, Geneva, Switzerland
| | - Maria-Luisa Del Rio
- Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon and Castilla and Leon Regional Transplantation Coordination, Leon University Hospital, Leon, Spain
| |
Collapse
|
26
|
Śledzińska A, Menger L, Bergerhoff K, Peggs KS, Quezada SA. Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol 2015; 9:1936-65. [PMID: 26578451 DOI: 10.1016/j.molonc.2015.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023] Open
Abstract
The term 'inhibitory checkpoint' refers to the broad spectrum of co-receptors expressed by T cells that negatively regulate T cell activation thus playing a crucial role in maintaining peripheral self-tolerance. Co-inhibitory receptor ligands are highly expressed by a variety of malignancies allowing evasion of anti-tumour immunity. Recent studies demonstrate that manipulation of these co-inhibitory pathways can remove the immunological brakes that impede endogenous immune responses against tumours. Antibodies that block the interactions between co-inhibitory receptors and their ligands have delivered very promising clinical responses, as has been shown by recent successful trials targeting the CTLA-4 and PD-1 pathways. In this review, we discuss the mechanisms of action and expression pattern of co-inhibitory receptors on different T cells subsets, emphasising differences between CD4(+) and CD8(+) T cells. We also summarise recent clinical findings utilising immune checkpoint blockade.
Collapse
Affiliation(s)
- Anna Śledzińska
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | - Laurie Menger
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | | | - Karl S Peggs
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK.
| | | |
Collapse
|
27
|
Baksh K, Weber J. Immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Semin Oncol 2015; 42:363-77. [PMID: 25965355 DOI: 10.1053/j.seminoncol.2015.02.015] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last two decades, our understanding of the molecular basis of immunity has revealed the complexity of regulatory pathways involved in immune responses to cancer. A significant body of data support the critical importance of immune checkpoints in the control of the adaptive immune response to malignancy, and suggest that inhibitors of those checkpoints might have significant utility in treating cancer. This has been borne out by the recent US Food and Drug Administration (FDA) approvals of two different antibodies, one against cytotoxic T-lymphocyte antigen-4 (CTLA-4) and one against programmed death-1 (PD-1). Here, we provide a comprehensive review of the literature regarding the preclinical justification for the use of CTLA-4 and PD-1 blockade as monotherapy, and as combination therapy in the treatment of cancer. The animal data strongly supported the use of these drugs in patients, and in many cases suggested strategies that directly led to successful registration trials. In contrast, many of the toxicities, and some of the unusual response patterns seen in patients with these drugs, were not predicted by the preclinical work that we cite, highlighting the importance of early-phase trials with patients to inform future drug development. In addition, we review herein the preclinical data surrounding emerging immune checkpoint proteins, including BTLA, VISTA, CD160, LAG3, TIM3, and CD244 as potential targets for inhibition. The current comprehensive review of the literature regarding CTLA-4 and PD-1, as well as a number of novel checkpoint proteins demonstrates a strong preclinical basis for the use of these antibodies singly and in combination to overcome checkpoint inhibition in the treatment of cancer. We also suggest that the use of these antibodies may augment the efficacy of other activating immune antibodies, cytokines, radiation, and adoptive cell therapy in human cancer.
Collapse
Affiliation(s)
- Kathryn Baksh
- Donald A. Adam Comprehensive Melanoma Research Center and Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL; University of South Florida School of Medicine, Tampa, FL.
| | - Jeffrey Weber
- Donald A. Adam Comprehensive Melanoma Research Center and Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
28
|
Basu S, Hubbard B, Shevach EM. Foxp3-mediated inhibition of Akt inhibits Glut1 (glucose transporter 1) expression in human T regulatory cells. J Leukoc Biol 2014; 97:279-83. [PMID: 25492937 DOI: 10.1189/jlb.2ab0514-273rr] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
CD4(+)CD25(+)Foxp3(+) Tregs have a diminished capacity to activate the PI3K/Akt pathway. Although blunted Akt activity is necessary to maintain Treg function, the consequences of this altered signaling are unclear. Glut1 is a cell-surface receptor responsible for facilitating glucose transport across plasma membranes, whose expression is tightly coupled to costimulatory signals and Akt phosphorylation. Freshly isolated human Tregs were unable to up-regulate Glut1 in response to TCR and costimulatory signals compared with Tconv. Consequently, the ability of Tregs to use glucose was also reduced. Introduction of Foxp3 into Tconv inhibited Akt activation and Glut1 expression, indicating that Foxp3 can regulate Glut1. Finally, pharmacologic activation of Akt in Tregs can induce Glut1, overcoming the effects of Foxp3. Together, these results illustrate the molecular basis behind differential glucose metabolism in Tregs.
Collapse
Affiliation(s)
- Samik Basu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Britany Hubbard
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Holtick U, Frenzel LP, Shimabukuro-Vornhagen A, Theurich S, Claasen J, Scheid C, von Bergwelt-Baildon M, Fröhlich H, Wendtner CM, Chemnitz JM. CD4+ T cell counts reflect the immunosuppressive state of CD4 helper cells in patients after allogeneic stem cell transplantation. Ann Hematol 2014; 94:129-37. [PMID: 25118994 DOI: 10.1007/s00277-014-2166-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/09/2014] [Indexed: 10/24/2022]
Abstract
The recovery of the host immune system after allogeneic hematopoietic stem cell transplantation is pivotal to prevent infections, relapse, and secondary malignancies. In particular, numerical CD4+ T cells reconstitution is delayed and CD4 helper cell function is considered impaired as a consequence of the transplant procedure and concomitant immunosuppressive medication. From HIV/AIDS patients, it is known that numerical and functional CD4 defects increase the risk of opportunistic infections. However, and in contrast to patients with HIV, anti-infective prophylaxis after allogeneic transplantation is usually given for 6 months depending on immunosuppressive medication and existing graft-versus-host disease but independently of absolute CD4+ T cells counts. We hypothesized that a qualitative T cell defect is existing after allogeneic transplantation, especially in patients with delayed immune-reconstitution. Applying transcriptional as well as functional approaches, we show that CD4+ T cells with delayed recovery have a distinct transcriptional profile and cluster differently from T cells originated from patients with completed immune recovery. Moreover, inhibitory signatures are substantially enriched within the transcriptional profile of these T cells translating to functional defects and impaired interleukin 2 production. In addition to time after transplant, CD4+ T cells numbers should be considered for the decision to stop or maintain antimicrobial prophylaxis in patients after allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Udo Holtick
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
del Rio ML, Seebach JD, Fernández-Renedo C, Rodriguez-Barbosa JI. ITIM-dependent negative signaling pathways for the control of cell-mediated xenogeneic immune responses. Xenotransplantation 2013; 20:397-406. [PMID: 23968542 DOI: 10.1111/xen.12049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/31/2013] [Indexed: 12/24/2022]
Abstract
Xenotransplantation is an innovative field of research with the potential to provide us with an alternative source of organs to face the severe shortage of human organ donors. For several reasons, pigs have been chosen as the most suitable source of organs and tissues for transplantation in humans. However, porcine xenografts undergo cellular immune responses representing a major barrier to their acceptance and normal functioning. Innate and adaptive xenogeneic immunity is mediated by both the recognition of xenogeneic tissue antigens and the lack of inhibition due to molecular cross-species incompatibilities of regulatory pathways. Therefore, the delivery of immunoreceptor tyrosine-based inhibitory motif (ITIM)-dependent and related negative signals to control innate (NK cells, macrophages) and adaptive T and B cells might overcome cell-mediated xenogeneic immunity. The proof of this concept has already been achieved in vitro by the transgenic overexpression of human ligands of several inhibitory receptors in porcine cells resulting in their resistance against xenoreactivity. Consequently, several transgenic pigs expressing tissue-specific human ligands of inhibitory coreceptors (HLA-E, CD47) or soluble competitors of costimulation (belatacept) have already been generated. The development of these robust and innovative approaches to modulate human anti-pig cellular immune responses, complementary to conventional immunosuppression, will help to achieve long-term xenograft survival. In this review, we will focus on the current strategies to enhance negative signaling pathways for the regulation of undesirable cell-mediated xenoreactive immune responses.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon, Leon, Spain; Leon University Hospital, Castilla and Leon Transplantation Regional Agency, Leon, Spain
| | | | | | | |
Collapse
|
31
|
HVEM gene polymorphisms are associated with sporadic breast cancer in Chinese women. PLoS One 2013; 8:e71040. [PMID: 23976978 PMCID: PMC3745383 DOI: 10.1371/journal.pone.0071040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/27/2013] [Indexed: 11/19/2022] Open
Abstract
As a costimulatory molecule, Herpesvirus entry mediator (HVEM) can bind with several costimulatory members, thus HVEM plays different roles in T cell immunity. HVEM and its ligands have been involved in the pathogenesis of various autoimmune, inflammatory diseases and tumors. In the current study, we conducted a case-control study comparing polymorphisms of HVEM and breast cancer. Subjects included 575 females with breast cancer and 604 age-matched healthy controls. Six HVEM SNPs (rs2281852, rs1886730, rs2234163, rs11573979, rs2234165, and rs2234167) were genotyped by PCR-RFLP. The results showed significant differences in genotypes and alleles between rs1886730 and rs2234167 (P<0.05). One haplotype (CTGCGG) that was associated with breast cancer was found via haplotype analysis. Our research also indicated an association between polymorphisms of HVEM and clinicopathologic features, including lymph node metastasis, estrogen receptor, progesterone receptor and P53. Our results primarily indicate that polymorphisms of the HVEM gene were associated with the risk of sporadic breast cancer in northeast Chinese females.
Collapse
|
32
|
Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci U S A 2013; 110:E2480-9. [PMID: 23610399 DOI: 10.1073/pnas.1305394110] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High surface expression of programmed death 1 (PD-1) is associated with T-cell exhaustion; however, the relationship between PD-1 expression and T-cell dysfunction has not been delineated. We developed a model to study PD-1 signaling in primary human T cells to study how PD-1 expression affected T-cell function. By determining the number of T-cell receptor/peptide-MHC complexes needed to initiate a Ca(2+) flux, we found that PD-1 ligation dramatically shifts the dose-response curve, making T cells much less sensitive to T-cell receptor-generated signals. Importantly, other T-cell functions were differentially sensitive to PD-1 expression. We observed that high levels of PD-1 expression were required to inhibit macrophage inflammatory protein 1 beta production, lower levels were required to block cytotoxicity and IFN-γ production, and very low levels of PD-1 expression could inhibit TNF-α and IL-2 production as well as T-cell expansion. These findings provide insight into the role of PD-1 expression in enforcing T-cell exhaustion and the therapeutic potential of PD-1 blockade.
Collapse
|
33
|
Wu YL, Liang J, Zhang W, Tanaka Y, Sugiyama H. Immunotherapies: the blockade of inhibitory signals. Int J Biol Sci 2012; 8:1420-30. [PMID: 23197939 PMCID: PMC3509335 DOI: 10.7150/ijbs.5273] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 11/06/2012] [Indexed: 12/30/2022] Open
Abstract
T lymphocytes require signaling by the T cell receptor and by nonclonotypic cosignaling receptors. The costimulatory and inhibitory signals profoundly influence the course of immune responses by amplifying or reducing the transcriptional effects of T cell receptor triggering. The inhibitory receptors such as CTLA-4, PD-1, and BTLA have recently drawn much attention as potential targets for immunotherapies. This review focuses on the progress that has been made with the mentioned receptors in the field of immunotherapies for autoimmune diseases, malignancies, infectious diseases, and transplantation.
Collapse
MESH Headings
- Abatacept
- Animals
- Antigens, Differentiation/chemistry
- Antigens, Differentiation/genetics
- Antigens, Differentiation/immunology
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/physiology
- CD28 Antigens/immunology
- CD28 Antigens/metabolism
- CTLA-4 Antigen/chemistry
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Immunotherapy/trends
- Mice
- Programmed Cell Death 1 Receptor
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/physiology
- Signal Transduction/drug effects
- Transplantation Immunology
Collapse
Affiliation(s)
- Yan-Ling Wu
- 1. Virus Inspection Department of Zhejiang Provincial Center for Disease Control and Prevention, 630 Xincheng Road, Hangzhou, 310051, China
| | - Jing Liang
- 2. Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Wen Zhang
- 2. Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Yoshimasa Tanaka
- 3. Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Hiroshi Sugiyama
- 4. Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
34
|
Marchese ME, Berdnikovs S, Cook-Mills JM. Distinct sites within the vascular cell adhesion molecule-1 (VCAM-1) cytoplasmic domain regulate VCAM-1 activation of calcium fluxes versus Rac1 during leukocyte transendothelial migration. Biochemistry 2012; 51:8235-46. [PMID: 22970700 DOI: 10.1021/bi300925r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vascular adhesion molecules regulate the migration of leukocytes from the blood into tissue during inflammation. Binding of leukocytes to vascular cell adhesion molecule-1 (VCAM-1) activates signals in endothelial cells, including Rac1 and calcium fluxes. These VCAM-1 signals are required for leukocyte transendothelial migration on VCAM-1. However, it has not been reported whether the cytoplasmic domain of VCAM-1 is necessary for these signals. Interestingly, the 19-amino acid sequence of the VCAM-1 cytoplasmic domain is 100% conserved among many mammalian species, suggesting an important functional role for the domain. To examine the function of the VCAM-1 cytoplasmic domain, we deleted the VCAM-1 cytoplasmic domain or mutated the cytoplasmic domain at amino acid N724, S728, Y729, S730, or S737. The cytoplasmic domain and S728, Y729, S730, or S737 were necessary for leukocyte transendothelial migration. S728 and Y729, but not S730 or S737, were necessary for VCAM-1 activation of calcium fluxes. In contrast, S730 and S737, but not S728 or Y729, were necessary for VCAM-1 activation of Rac1. These functional data are consistent with our computational model of the structure of the VCAM-1 cytoplasmic domain as an α-helix with S728 and Y729, and S730 and S737, on opposite sides of the α-helix. Together, these data indicate that S728 and Y729, and S730 and S737, are distinct functional sites that coordinate VCAM-1 activation of calcium fluxes and Rac1 during leukocyte transendothelial migration.
Collapse
Affiliation(s)
- Michelle E Marchese
- Division of Allergy and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
35
|
Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol 2012; 33:364-72. [PMID: 22445288 DOI: 10.1016/j.it.2012.02.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/08/2012] [Accepted: 02/21/2012] [Indexed: 02/06/2023]
Abstract
Memory and effector T cells have the potential to counteract cancer progression, but often fail to control the disease, essentially because of three main stumbling blocks. First, clonal deletion leads to relatively low numbers or low-to-intermediate T cell receptor (TCR) affinity of self/tumor-specific T cells. Second, the poor innate immune stimulation by solid tumors is responsible for inefficient priming and boosting. Third, T cells are suppressed in the tumor microenvironment by inhibitory signals from other immune cells, stroma and tumor cells, which induces T cell exhaustion, as demonstrated in metastases of melanoma patients. State-of-the-art adoptive cell transfer and active immunotherapy can partially overcome the three stumbling blocks. The reversibility of T cell exhaustion and novel molecular insights provide the basis for further improvements of clinical immunotherapy.
Collapse
Affiliation(s)
- Lukas Baitsch
- Clinical Tumor Biology and Immunotherapy Unit, Ludwig Center for Cancer Research of the University of Lausanne, and Service of Radiation Oncology, Lausanne University Hospital Center, CH-1011 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
36
|
del Rio ML, Kurtz J, Perez-Martinez C, Ghosh A, Perez-Simon JA, Rodriguez-Barbosa JI. B- and T-lymphocyte attenuator targeting protects against the acute phase of graft versus host reaction by inhibiting donor anti-host cytotoxicity. Transplantation 2011; 92:1085-93. [PMID: 21978997 DOI: 10.1097/tp.0b013e3182339d4a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND B- and T-lymphocyte attenuator (BTLA) functions as a coinhibitory/costimulatory molecule that belongs to the immunoglobulin superfamily and exhibits a pattern of expression restricted to the hematopoietic compartment. Engagement of BTLA by its ligand, herpes virus entry mediator (HVEM), delivers negative signals to T cells, whereas engagement of HVEM receptor on T cells by surface BTLA expressed on other immune cells costimulates T activation. Previous work has reported that parental donor BTLA knock-out or HVEM knock-out T cells adoptively transferred into nonirradiated F1 recipient mice survived poorly, and the rejection of host hematopoietic cells was attenuated compared with F1 recipients receiving wild-type T cells. METHODS Parent into nonirradiated immunocompetent F1 murine model of acute graft versus host reaction, which is induced with the adoptive transfer of splenocytes from donor B6 mice (H-2(b)) into F1 recipients (BALB/c×B6, H-2(d/b)), was used as an experimental approach to test the therapeutic effect of targeting BTLA during the course of an allogeneic immune response. RESULTS We herein provide evidence that administration of an anti-BTLA monoclonal antibody leads to significant reduction of donor anti-host allogeneic immune response against bone marrow and thymus during the acute phase of graft versus host reaction in a parent into nonirradiated F1 murine model of alloreactivity. Anti-BTLA protection against donor anti-host hematopoietic cell rejection correlated with impaired anti-host cytotoxic T-lymphocyte activity than reduction in T-cell number infiltrating host tissues. CONCLUSIONS These findings place BTLA receptor as a potential immunoregulatory target for the modulation of cytotoxic T-lymphocyte-mediated alloresponses.
Collapse
Affiliation(s)
- Maria-Luisa del Rio
- Immunobiology Section, Institute of Biomedicine, University of Leon, Leon, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Steinberg M, Cheung TC, Ware CF. The signaling networks of the herpesvirus entry mediator (TNFRSF14) in immune regulation. Immunol Rev 2011; 244:169-87. [PMID: 22017438 PMCID: PMC3381650 DOI: 10.1111/j.1600-065x.2011.01064.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The tumor necrosis factor (TNF) receptor superfamily member herpesvirus entry mediator (HVEM) (TNFRSF14) regulates T-cell immune responses by activating both inflammatory and inhibitory signaling pathways. HVEM acts as both a receptor for the canonical TNF-related ligands, LIGHT [lymphotoxin-like, exhibits inducible expression, and competes with herpes simplex virus glycoprotein D for HVEM, a receptor expressed on T lymphocytes] and lymphotoxin-α, and as a ligand for the immunoglobulin superfamily proteins BTLA (B and T lymphocyte attenuator) and CD160, a feature distinguishing HVEM from other immune regulatory molecules. The ability of HVEM to interact with multiple ligands in distinct configurations creates a functionally diverse set of intrinsic and bidirectional signaling pathways that control both inflammatory and inhibitory responses. The HVEM system is integrated into the larger LTβR and TNFR network through extensive shared ligand and receptor usage. Experimental mouse models and human diseases indicate that dysregulation of HVEM network may contribute to autoimmune pathogenesis, making it an attractive target for drug intervention.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Autoimmunity
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gene Expression/immunology
- Herpes Simplex/immunology
- Herpes Simplex/metabolism
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Humans
- Immunity, Innate
- Lymphocyte Activation
- Lymphotoxin beta Receptor/genetics
- Lymphotoxin beta Receptor/immunology
- Lymphotoxin beta Receptor/metabolism
- Lymphotoxin-alpha/genetics
- Lymphotoxin-alpha/immunology
- Lymphotoxin-alpha/metabolism
- Mice
- Mice, Knockout
- Protein Binding/immunology
- Receptor Cross-Talk/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 14/genetics
- Tumor Necrosis Factor Ligand Superfamily Member 14/immunology
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
| | | | - Carl F. Ware
- Laboratory of Molecular Immunology, Center for Infectious and Inflammatory Diseases, Sanford|Burnham Medical Research Institute, La Jolla, CA, USA
| |
Collapse
|
38
|
Zhang Z, Xu X, Lu J, Zhang S, Gu L, Fu J, Jin L, Li H, Zhao M, Zhang J, Wu H, Su L, Fu YX, Wang FS. B and T lymphocyte attenuator down-regulation by HIV-1 depends on type I interferon and contributes to T-cell hyperactivation. J Infect Dis 2011; 203:1668-78. [PMID: 21592997 DOI: 10.1093/infdis/jir165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Nonspecific T-cell hyperactivation is the main driving force for human immunodeficiency virus (HIV)-1 disease progression, but the reasons why the excess immune response is not properly shut off are poorly defined. METHODS Eighty-five HIV-1-infected individuals were enrolled to characterize B and T lymphocyte attenuator (BTLA) expression and function. Infection and blockade assays were used to dissect the factors that influenced BTLA signaling in vitro. RESULTS BTLA expression on overall CD4(+) and CD8(+) T cells was progressively decreased in HIV-1 infection, which was directly correlated with disease progression and CD4(+) T-cell differentiation and activation. BTLA(+)CD4(+) T cells from HIV-1-infected patients also displayed an altered immune status, which was indicated by reduced expression of naive markers but increased activation and exhaustion markers. Cross-linking of BTLA can substantially decrease CD4(+) T-cell activation in vitro. This responsiveness of CD4(+) T cells to BTLA-mediated inhibitory signaling was further found to be impaired in HIV-1-infected patients. Furthermore, HIV-1 NL4-3 down-regulated BTLA expression on CD4(+) T cells dependent on plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α. Blockade of IFN-α or depletion of pDCs prevents HIV-1-induced BTLA down-regulation. CONCLUSIONS HIV-1 infection potentially impairs BTLA-mediated signaling dependent on pDC-derived IFN-α, which may contribute to broad T-cell hyperactivation induced by chronic HIV-1 infection.
Collapse
Affiliation(s)
- Zheng Zhang
- Research Center for Biological Therapy, Beijing 302 Hospital, Institute of Biophysics, Chinese Academy of Science, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li S, Zhang M, Xiang F, Zhao J, Jiang C, Zhu J. Dendritic cells expressing BTLA induces CD8+ T cell tolerance and attenuates the severity of diabetes. Vaccine 2011; 29:7747-51. [PMID: 21827810 DOI: 10.1016/j.vaccine.2011.07.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 01/03/2023]
Abstract
Numerous evidence demonstrate Type 1 diabetes (T1D) is due to a loss of immune tolerance to islet antigens, and CD8(+) T cells play an important role in the development of T1D in NOD mice. The novel coinhibitory receptor BTLA may have a regulatory role in maintaining peripheral tolerance, however, its role in autoimmune diabetes is unknown. To explore whether the generation of tolerance aiming at BTLA will help therapeutic intervention in T1D, the NOD mice were treated with genetically modified dendritic cells (DCs) expressing BTLA. The results demonstrated that transfer of modified DCs significantly induced CD8(+) T cell tolerance and attenuated the severity of diabetes. The findings suggest that genetically modified DC therapies enhancing the BTLA negative cosignal may prove valuable in treating T1D and other autoimmune diseases.
Collapse
Affiliation(s)
- Shufa Li
- Endocrinology Division, The First Municipal Hospital of Guiyang City, Guiyang 550002, China.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
B and T lymphocyte attenuator (BTLA) is a co-inhibitory receptor that interacts with herpesvirus entry mediator (HVEM), and this interaction regulates pathogenesis in various immunologic diseases. In graft-versus-host disease (GVHD), BTLA unexpectedly mediates positive effects on donor T-cell survival, whereas immunologic mechanisms of this function have yet to be explored. In this study, we elucidated a role of BTLA in GVHD by applying the newly established agonistic anti-BTLA monoclonal antibody that stimulates BTLA signal without antagonizing BTLA-HVEM interaction. Our results revealed that provision of BTLA signal inhibited donor antihost T-cell responses and ameliorated GVHD with a successful engraftment of donor hematopoietic cells. These effects were dependent on BTLA signal into donor T cells but neither donor non-T cells nor recipient cells. On the other hand, expression of BTLA mutant lacking an intracellular signaling domain restored impaired survival of BTLA-deficient T cells, suggesting that BTLA also serves as a ligand that delivers HVEM prosurvival signal in donor T cells. Collectively, current study elucidated dichotomous functions of BTLA in GVHD to serve as a costimulatory ligand of HVEM and to transmit inhibitory signal as a receptor.
Collapse
|
41
|
The canonical and unconventional ligands of the herpesvirus entry mediator. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:353-62. [PMID: 21153339 DOI: 10.1007/978-1-4419-6612-4_36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Zhang M, Howard K, Winters A, Steavenson S, Anderson S, Smelt S, Doellgast G, Sheelo C, Stevens J, Kim H, Hamburger A, Sein A, Caughey DJ, Lee F, Hsu H, Siu G, Byrne FR. Monoclonal antibodies to B and T lymphocyte attenuator (BTLA) have no effect on in vitro B cell proliferation and act to inhibit in vitro T cell proliferation when presented in a cis, but not trans, format relative to the activating stimulus. Clin Exp Immunol 2010; 163:77-87. [PMID: 21078085 DOI: 10.1111/j.1365-2249.2010.04259.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
B and T lymphocyte attenuator (BTLA) is an immunoglobulin superfamily member surface protein expressed on B and T cells. Its ligand, herpesvirus entry mediator (HVEM), is believed to act as a monomeric agonist that signals via the CRD1 of HVEM to inhibit lymphocyte activation: HVEM is also the receptor for lymphotoxin-α and LIGHT, which both bind in the CRD2 and CRD3 domains of the HVEM molecule, and for CD160 which competes with BTLA. We have shown that recombinant HVEM and a panel of different monoclonal antibodies specifically bind murine BTLA on both B and T cells and that some antibodies inhibit anti-CD3ε-induced T cell proliferation in vitro, but only when constrained appropriately with a putatively cross-linking reagent. The antibodies had no significant effect on in vitro T cell proliferation in a mixed lymphocyte reaction (MLR) assay nor on in vitro DO11.10 antigen-induced T cell proliferation. None of these antibodies, nor HVEM-Fc, had any significant effect on in vitro B cell proliferation induced by anti-immunoglobulin M antibodies (±anti-CD40) or lipopolysaccharide. We further elucidated the requirements for inhibition of in vitro T cell proliferation using a beads-based system to demonstrate that the antibodies that inhibited T cell proliferation in vitro were required to be presented to the T cell in a cis, and not trans, format relative to the anti-CD3ε stimulus. We also found that antibodies that inhibited T cell proliferation in vitro had no significant effect on the antibody captured interleukin-2 associated with the in vivo activation of DO11.10 T cells transferred to syngeneic recipient BALB/c mice. These data suggest that there may be specific structural requirements for the BTLA molecule to exert its effect on lymphocyte activation and proliferation.
Collapse
Affiliation(s)
- M Zhang
- Amgen Inc., Thousand Oaks, CA 91320, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Serriari NE, Gondois-Rey F, Guillaume Y, Remmerswaal EBM, Pastor S, Messal N, Truneh A, Hirsch I, van Lier RAW, Olive D. B and T lymphocyte attenuator is highly expressed on CMV-specific T cells during infection and regulates their function. THE JOURNAL OF IMMUNOLOGY 2010; 185:3140-8. [PMID: 20693422 DOI: 10.4049/jimmunol.0902487] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B and T lymphocyte attenuator (BTLA), like its relative programmed cell death-1 (PD-1), is a receptor that negatively regulates murine T cell activation. However, its expression and function on human T cells is currently unknown. We report in this study on the expression of BTLA in human T cell subsets as well as its regulation on virus-specific T cells during primary human CMV infection. BTLA is expressed on human CD4(+) T cells during different stages of differentiation, whereas on CD8(+) T cells, it is found on naive T cells and is progressively downregulated in memory and differentiated effector-type cells. During primary CMV infection, BTLA was highly induced on CMV-specific CD8(+) T cells immediately following their differentiation from naive cells. After control of CMV infection, BTLA expression went down on memory CD8(+) cells. Engagement of BTLA by mAbs blocked CD3/CD28-mediated T cell proliferation and Th1 and Th2 cytokine secretion. Finally, in vitro blockade of the BTLA pathway augmented, as efficient as anti-PD-1 mAbs, allogeneic as well as CMV-specific CD8(+) T cell proliferation. Thus, our results suggest that, like PD-1, BTLA provides a potential target for enhancing the functional capacity of CTLs in viral infections.
Collapse
Affiliation(s)
- Nacer-Eddine Serriari
- Institut National de Santé et de Recherche Médicale Unité Mixte de Recherche 891, Institut Paoli Calmettes, Université de Méditerranée, Infrastructures en Biologie Sante et Agronomie Cancer Immunomonitoring Platform, Institut Fédératif de Recherche 137, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zoda MS, Zacharias M, Reissmann S. Syntheses and activities of backbone-side chain cyclic octapeptide ligands with N
-functionalized phosphotyrosine for the N
-terminal SH2-domain of the protein tyrosine phosphatase SHP-1. J Pept Sci 2010; 16:403-13. [DOI: 10.1002/psc.1256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Abstract
B and T lymphocyte associated (BTLA) is an Ig domain superfamily protein with cytoplasmic immunoreceptor tyrosine-based inhibitory motifs. Its ligand, herpesvirus entry mediator (HVEM), is a tumor necrosis factor receptor superfamily member. The unique interaction between BTLA and HVEM allows for a system of bidirectional signaling that must be appropriately regulated to balance the outcome of the immune response. HVEM engagement of BTLA produces inhibitory signals through SH2 domain-containing protein tyrosine phosphatase 1 (Shp-1) and Shp-2 association, whereas BTLA engagement of HVEM produces proinflammatory signals via activation of NF-kappaB. The BTLA-HVEM interaction is intriguing and quite complex given that HVEM has four other ligands that also influence immune responses, the conventional TNF ligand LIGHT and lymphotoxin alpha, as well as herpes simplex virus glycoprotein D and the glycosylphosphatidylinositol-linked Ig domain protein CD160. BTLA-HVEM interactions have been shown to regulate responses in several pathogen and autoimmune settings, but our understanding of this complex system of interactions is certainly incomplete. Recent findings of spontaneous inflammation in BTLA-deficient mice may provide an important clue.
Collapse
Affiliation(s)
- Theresa L Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
46
|
Derré L, Rivals JP, Jandus C, Pastor S, Rimoldi D, Romero P, Michielin O, Olive D, Speiser DE. BTLA mediates inhibition of human tumor-specific CD8+ T cells that can be partially reversed by vaccination. J Clin Invest 2009; 120:157-67. [PMID: 20038811 DOI: 10.1172/jci40070] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 10/07/2009] [Indexed: 12/12/2022] Open
Abstract
The function of antigen-specific CD8+ T cells, which may protect against both infectious and malignant diseases, can be impaired by ligation of their inhibitory receptors, which include CTL-associated protein 4 (CTLA-4) and programmed cell death 1 (PD-1). Recently, B and T lymphocyte attenuator (BTLA) was identified as a novel inhibitory receptor with structural and functional similarities to CTLA-4 and PD-1. BTLA triggering leads to decreased antimicrobial and autoimmune T cell responses in mice, but its functions in humans are largely unknown. Here we have demonstrated that as human viral antigen-specific CD8+ T cells differentiated from naive to effector cells, their surface expression of BTLA was gradually downregulated. In marked contrast, human melanoma tumor antigen-specific effector CD8+ T cells persistently expressed high levels of BTLA in vivo and remained susceptible to functional inhibition by its ligand herpes virus entry mediator (HVEM). Such persistence of BTLA expression was also found in tumor antigen-specific CD8+ T cells from melanoma patients with spontaneous antitumor immune responses and after conventional peptide vaccination. Remarkably, addition of CpG oligodeoxynucleotides to the vaccine formulation led to progressive downregulation of BTLA in vivo and consequent resistance to BTLA-HVEM-mediated inhibition. Thus, BTLA activation inhibits the function of human CD8+ cancer-specific T cells, and appropriate immunotherapy may partially overcome this inhibition.
Collapse
Affiliation(s)
- Laurent Derré
- Ludwig Institute for Cancer Research, Hôpital Orthopédique, Niveau 5 Est, Av. Pierre-Decker 4, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
del Rio ML, Lucas CL, Buhler L, Rayat G, Rodriguez-Barbosa JI. HVEM/LIGHT/BTLA/CD160 cosignaling pathways as targets for immune regulation. J Leukoc Biol 2009; 87:223-35. [DOI: 10.1189/jlb.0809590] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
48
|
Cheung TC, Oborne LM, Steinberg MW, Macauley MG, Fukuyama S, Sanjo H, D'Souza C, Norris PS, Pfeffer K, Murphy KM, Kronenberg M, Spear PG, Ware CF. T cell intrinsic heterodimeric complexes between HVEM and BTLA determine receptivity to the surrounding microenvironment. THE JOURNAL OF IMMUNOLOGY 2009; 183:7286-96. [PMID: 19915044 DOI: 10.4049/jimmunol.0902490] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The inhibitory cosignaling pathway formed between the TNF receptor herpesvirus entry mediator (HVEM, TNFRSF14) and the Ig superfamily members, B and T lymphocyte attenuator (BTLA) and CD160, limits the activation of T cells. However, BTLA and CD160 can also serve as activating ligands for HVEM when presented in trans by adjacent cells, thus forming a bidirectional signaling pathway. BTLA and CD160 can directly activate the HVEM-dependent NF-kappaB RelA transcriptional complex raising the question of how NF-kappaB activation is repressed in naive T cells. In this study, we show BTLA interacts with HVEM in cis, forming a heterodimeric complex in naive T cells that inhibits HVEM-dependent NF-kappaB activation. The cis-interaction between HVEM and BTLA is the predominant form expressed on the surface of naive human and mouse T cells. The BTLA ectodomain acts as a competitive inhibitor blocking BTLA and CD160 from binding in trans to HVEM and initiating NF-kappaB activation. The TNF-related ligand, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for HVEM, a receptor expressed by T lymphocytes, or TNFSF14) binds HVEM in the cis-complex, but NF-kappaB activation was attenuated, suggesting BTLA prevents oligomerization of HVEM in the cis-complex. Genetic deletion of BTLA or pharmacologic disruption of the HVEM-BTLA cis-complex in T cells promoted HVEM activation in trans. Interestingly, herpes simplex virus envelope glycoprotein D formed a cis-complex with HVEM, yet surprisingly, promoted the activation NF-kappaB RelA. We suggest that the HVEM-BTLA cis-complex competitively inhibits HVEM activation by ligands expressed in the surrounding microenvironment, thus helping maintain T cells in the naive state.
Collapse
Affiliation(s)
- Timothy C Cheung
- Division of Molecular Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Detection of protein on BTLAlow cells and in vivo antibody-mediated down-modulation of BTLA on lymphoid and myeloid cells of C57BL/6 and BALB/c BTLA allelic variants. Immunobiology 2009; 215:570-8. [PMID: 19837478 DOI: 10.1016/j.imbio.2009.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 09/26/2009] [Indexed: 01/22/2023]
Abstract
B- and T-lymphocyte attenuator (BTLA, CD272) is a polymorphic molecule belonging to the Ig superfamily (SF) that attenuates BCR and TCR-mediated signaling, and thereby functions as a negative regulator of lymphocyte activation. Herein, we report an anti-murine BTLA mAb (clone 4G12b) that remarkably detects protein expression on BTLA(low) cells such as naïve CD4(+) cells, CD8(+) T cells, dendritic cells (DC), as well as in NKT cells and for the first time, we found BTLA expression on DX5(dim) and DX5(bright) subsets of non-T NK cells in both C57BL/6 (B6) and BALB/c BTLA allelic variants. Anti-BTLA 4G12b mAb binds to an overlapping epitope to that recognized by anti-BTLA 6A6 mAb, but in contrast to the concept widely accepted of blocking activity of 6A6 mAb, surprisingly neither 4G12b nor 6A6 mAbs impeded murine HVEM-mIgG(2a).Fc recombinant fusion protein from interacting with BTLA-expressing cells. Lastly, in vivo administration of anti-BTLA 4G12b mAb induced a profound and lasting down-modulation of BTLA expression that led to BTLA receptor internalization with the potential utility of shutting down BTLA expression at any stage during the course of the immune response in both B6 and BALB/c strains of mice.
Collapse
|
50
|
Abstract
SUMMARY Programmed death-1 (PD-1) is a cell surface molecule that regulates the adaptive immune response. Engagement of PD-1 by its ligands PD-L1 or PD-L2 transduces a signal that inhibits T-cell proliferation, cytokine production, and cytolytic function. While a great deal is known concerning the biologic roles PD-1 plays in regulating the primary immune response and in T-cell exhaustion, comparatively little is known regarding how PD-1 ligation alters signaling pathways. PD-1 ligation is known to inhibit membrane-proximal T-cell signaling events, while ligation of the related inhibitory molecule cytotoxic T-lymphocyte antigen-4 appears to target more downstream signaling pathways. A major obstacle to an in-depth understanding of PD-1 signaling is the lack of physiologic models in which to study signal transduction. This review focuses on: (i) signaling pathways altered by PD-1 ligation, (ii) factors recruited upon PD-1 phosphorylation, and (iii) exploring the hypothesis that PD-1 ligation induces distinct signals during various stages of immune-cell differentiation. Lastly, we describe models to dissect the function of the PD-1 cytoplasmic tail using primary cells in the absence of agonist antibodies.
Collapse
Affiliation(s)
- James L Riley
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, The University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|