1
|
Fogang B, Schoenhals M, Maloba FM, Biabi MF, Essangui E, Donkeu C, Cheteug G, Kapen M, Keumoe R, Kemleu S, Nsango S, Cornwall DH, Eboumbou C, Perraut R, Megnekou R, Lamb TJ, Ayong LS. Asymptomatic carriage of Plasmodium falciparum in children living in a hyperendemic area occurs independently of IgG responses but is associated with a balanced inflammatory cytokine ratio. Malar J 2024; 23:268. [PMID: 39232787 PMCID: PMC11375831 DOI: 10.1186/s12936-024-05086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/17/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Asymptomatic carriage of infected red blood cells (iRBCs) can be prevalent in communities regardless of transmission patterns and can occur with infection of different Plasmodium species. Clinical immunity dampens the inflammatory responses leading to disease symptoms in malaria. The aim of this study was to define the immunological correlates of asymptomatic carriage of Plasmodium falciparum in a highly exposed population. METHODS 142 asymptomatic Plasmodium-infected individuals greater than 2 years of age without fever (body temperature <37.5 ℃) were followed weekly for 10 weeks before being treated with artemisinin-based combination therapy (ACT). Plasma levels of 38 cytokines were measured at baseline by Luminex and the quantity and growth inhibitory activities of circulating parasite-reactive antibodies measured. The Plasmodium antigen tested included P. falciparum merozoite extract (ME) and schizont extract (SE), and the recombinant proteins erythrocyte binding antigen 175 (EBA-175) and merozoite surface protein 1 (MSP-119). RESULTS Median levels of IgG against P. falciparum EBA-175 and MSP-119 at baseline were significantly higher in those older than 20 years of age compared with the younger age group and appeared to correlate with better parasite control. Amongst all participants there were no discernible changes in IgG levels over time. Parasite density was higher in the younger age group and associated with IL-10, TNF and MCP-1 levels. A balanced IL-10:TNF ratio was associated with asymptomatic malaria regardless of age, and balanced ratios of IL-10/TNF and IL-10/IFN-γ were the only significant correlate of maintenance of asymptomatic malaria over the course of the study in individuals 20 years of age and younger. CONCLUSION The above findings indicate that asymptomatic carriage of P. falciparum in children living in a hyperendemic area occurs independently of IgG but is associated with a balanced inflammatory cytokine ratio.
Collapse
Affiliation(s)
- Balotin Fogang
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
- Department of Animal Biology and Physiology of the University of Yaoundé I, BP 812, Yaounde, Cameroon
| | - Matthieu Schoenhals
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
| | - Franklin M Maloba
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
| | - Marie Florence Biabi
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
- Department of Biochemistry, University of Douala, BP 24157, Douala, Cameroon
| | - Estelle Essangui
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
| | - Christiane Donkeu
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
- Department of Animal Biology and Physiology of the University of Yaoundé I, BP 812, Yaounde, Cameroon
| | - Glwadys Cheteug
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
- Department of Medical Laboratory Sciences, University of Buea, BP 63, Buea, Cameroon
| | - Marie Kapen
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
| | - Rodrigue Keumoe
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
| | - Sylvie Kemleu
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
| | - Sandrine Nsango
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, BP 2701, Douala, Cameroon
| | - Douglas H Cornwall
- Department of Pathology, University of Utah, 15 N Medical Drive, Salt Lake City, 84112, USA
| | - Carole Eboumbou
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, BP 2701, Douala, Cameroon
| | - Ronald Perraut
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon
| | - Rosette Megnekou
- Department of Animal Biology and Physiology of the University of Yaoundé I, BP 812, Yaounde, Cameroon
| | - Tracey J Lamb
- Department of Pathology, University of Utah, 15 N Medical Drive, Salt Lake City, 84112, USA.
| | - Lawrence S Ayong
- Molecular Parasitology Laboratory, Centre Pasteur du Cameroun, BP 1274, Yaounde, Cameroon.
| |
Collapse
|
2
|
Mertens JE, Rigby CA, Bardelli M, Quinkert D, Hou MM, Diouf A, Silk SE, Chitnis CE, Minassian AM, Moon RW, Long CA, Draper SJ, Miura K. Evaluation of the precision of the Plasmodium knowlesi growth inhibition assay for Plasmodium vivax Duffy-binding protein-based malaria vaccine development. Vaccine 2024; 42:3621-3629. [PMID: 38704253 PMCID: PMC11128340 DOI: 10.1016/j.vaccine.2024.04.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
Recent data indicate increasing disease burden and importance of Plasmodium vivax (Pv) malaria. A robust assay will be essential for blood-stage Pv vaccine development. Results of the in vitro growth inhibition assay (GIA) with transgenic P. knowlesi (Pk) parasites expressing the Pv Duffy-binding protein region II (PvDBPII) correlate with in vivo protection in the first PvDBPII controlled human malaria infection (CHMI) trials, making the PkGIA an ideal selection tool once the precision of the assay is defined. To determine the precision in percentage of inhibition in GIA (%GIA) and in GIA50 (antibody concentration that gave 50 %GIA), ten GIAs with transgenic Pk parasites were conducted with four different anti-PvDBPII human monoclonal antibodies (mAbs) at concentrations of 0.016 to 2 mg/mL, and three GIAs with eighty anti-PvDBPII human polyclonal antibodies (pAbs) at 10 mg/mL. A significant assay-to-assay variation was observed, and the analysis revealed a standard deviation (SD) of 13.1 in the mAb and 5.94 in the pAb dataset for %GIA, with a LogGIA50 SD of 0.299 (for mAbs). Moreover, the ninety-five percent confidence interval (95 %CI) for %GIA or GIA50 in repeat assays was calculated in this investigation. The error range determined in this study will help researchers to compare PkGIA results from different assays and studies appropriately, thus supporting the development of future blood-stage malaria vaccine candidates, specifically second-generation PvDBPII-based formulations.
Collapse
Affiliation(s)
- Jonas E Mertens
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Institute for Infection Research and Vaccine Development (IIRVD), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Cassandra A Rigby
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Martino Bardelli
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Doris Quinkert
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Mimi M Hou
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville 20852, MD, United States
| | - Sarah E Silk
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Institut Pasteur, Université Paris Cité, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Angela M Minassian
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Robert W Moon
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville 20852, MD, United States
| | - Simon J Draper
- Department of Biochemistry, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, United Kingdom; NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom.
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville 20852, MD, United States.
| |
Collapse
|
3
|
Nkumama IN, Ogwang R, Odera D, Musasia F, Mwai K, Nyamako L, Murungi L, Tuju J, Fürle K, Rosenkranz M, Kimathi R, Njuguna P, Hamaluba M, Kapulu MC, Frank R, Osier FHA. Breadth of Fc-mediated effector function correlates with clinical immunity following human malaria challenge. Immunity 2024; 57:1215-1224.e6. [PMID: 38788711 PMCID: PMC7616646 DOI: 10.1016/j.immuni.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Malaria is a life-threatening disease of global health importance, particularly in sub-Saharan Africa. The growth inhibition assay (GIA) is routinely used to evaluate, prioritize, and quantify the efficacy of malaria blood-stage vaccine candidates but does not reliably predict either naturally acquired or vaccine-induced protection. Controlled human malaria challenge studies in semi-immune volunteers provide an unparalleled opportunity to robustly identify mechanistic correlates of protection. We leveraged this platform to undertake a head-to-head comparison of seven functional antibody assays that are relevant to immunity against the erythrocytic merozoite stage of Plasmodium falciparum. Fc-mediated effector functions were strongly associated with protection from clinical symptoms of malaria and exponential parasite multiplication, while the gold standard GIA was not. The breadth of Fc-mediated effector function discriminated clinical immunity following the challenge. These findings present a shift in the understanding of the mechanisms that underpin immunity to malaria and have important implications for vaccine development.
Collapse
Affiliation(s)
- Irene N Nkumama
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany; Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; European Vaccine Initiative, Heidelberg, Germany
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Dennis Odera
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany; Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Fauzia Musasia
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Lydia Nyamako
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Linda Murungi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Department of Biotechnology and Biochemistry, Pwani University, Kilifi, Kenya
| | - Kristin Fürle
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Micha Rosenkranz
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Rinter Kimathi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Patricia Njuguna
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mainga Hamaluba
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya
| | - Roland Frank
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Faith H A Osier
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany; Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute, Wellcome Trust Research Programme, Kilifi, Kenya; Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
4
|
Miura K. How to Accelerate Early Stage of Malaria Vaccine Development by Optimizing Functional Assays. Vaccines (Basel) 2024; 12:586. [PMID: 38932315 PMCID: PMC11209467 DOI: 10.3390/vaccines12060586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
While two Plasmodium falciparum circumsporozoite protein-based pre-erythrocytic vaccines (PEV), RTS,S and R21, have been approved by the WHO, no blood-stage vaccine (BSV) or transmission-blocking vaccine (TBV) has reached a phase 3 trial. One of the major obstacles that slows down malaria vaccine development is the shortage (or lack) of in vitro assays or animal models by which investigators can reasonably select the best vaccine formulation (e.g., antigen, adjuvant, or platform) and/or immunization strategy (e.g., interval of inoculation or route of immunization) before a human phase 2 trial. In the case of PEV, RTS,S and R21 have set a benchmark, and a new vaccine can be compared with (one of) the approved PEV directly in preclinical or early clinical studies. However, such an approach cannot be utilized for BSV or TBV development at this moment. The focus of this review is in vitro assays or in vivo models that can be used for P. falciparum BSV or TBV development, and I discuss important considerations during assay selection, standardization, qualification, validation, and interpretation of the assay results. Establishment of a robust assay/model with proper interpretation of the results is the one of key elements to accelerate future vaccine development.
Collapse
Affiliation(s)
- Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
5
|
Ogwang R, Murugu L, Nkumama IN, Nyamako L, Kai O, Mwai K, Murungi L, Idro R, Bejon P, Tuju J, Kinyanjui SM, Osier FHA. Bi-isotype immunoglobulins enhance antibody-mediated neutrophil activity against Plasmodium falciparum parasites. Front Immunol 2024; 15:1360220. [PMID: 38650925 PMCID: PMC11033408 DOI: 10.3389/fimmu.2024.1360220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Malaria remains a major global health priority, and monoclonal antibodies (mAbs) are emerging as potential new tools to support efforts to control the disease. Recent data suggest that Fc-dependent mechanisms of immunity are important mediators of protection against the blood stages of the infection, but few studies have investigated this in the context of mAbs. We aimed to isolate mAbs agnostic to cognate antigens that target whole merozoites and simultaneously induce potent neutrophil activity measured by the level of reactive oxygen species (ROS) production using an antibody-dependent respiratory burst (ADRB) assay. Methods We used samples from semi-immune adults living in coastal Kenya to isolate mAbs that induce merozoite-specific ADRB activity. We then tested whether modifying the expressed IgG1 isotype to an IgG-IgA Fc region chimera would enhance the level of ADRB activity. Results We isolated a panel of nine mAbs with specificity to whole merozoites. mAb J31 induced ADRB activity in a dose-dependent fashion. Compared to IgG1, our modified antibody IgG-IgA bi-isotype induced higher ADRB activity across all concentrations tested. Further, we observed a negative hook effect at high IgG1 mAb concentrations (i.e., >200 µg/mL), but this was reversed by Fc modification. We identified MSP3.5 as the potential cognate target of mAb J31. Conclusions We demonstrate an approach to engineer mAbs with enhanced ADRB potency against blood-stage parasites.
Collapse
Affiliation(s)
- Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Lewis Murugu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Irene N. Nkumama
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Lydia Nyamako
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Oscar Kai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Linda Murungi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Richard Idro
- College of Health Sciences, Makerere University, Kampala, Uganda
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Philip Bejon
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Sam Muchina Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Faith H. A. Osier
- Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Rathay V, Fürle K, Kiehl V, Ulmer A, Lanzer M, Thomson-Luque R. IgG Subclass Switch in Volunteers Repeatedly Immunized with the Full-Length Plasmodium falciparum Merozoite Surface Protein 1 (MSP1). Vaccines (Basel) 2024; 12:208. [PMID: 38400191 PMCID: PMC10893298 DOI: 10.3390/vaccines12020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are highly effective tools against infectious diseases and are also considered necessary in the fight against malaria. Vaccine-induced immunity is frequently mediated by antibodies. We have recently conducted a first-in-human clinical trial featuring SumayaVac-1, a malaria vaccine based on the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as an adjuvant. Vaccination with MSP1FL was safe and elicited sustainable IgG antibody titers that exceeded those observed in semi-immune populations from Africa. Moreover, IgG antibodies stimulated various Fc-mediated effector mechanisms associated with protection against malaria. However, these functionalities gradually waned. Here, we show that the initial two doses of SumayaVac-1 primarily induced the cytophilic subclasses IgG1 and IgG3. Unexpectedly, a shift in the IgG subclass composition occurred following the third and fourth vaccinations. Specifically, there was a progressive transition to IgG4 antibodies, which displayed a reduced capacity to engage in Fc-mediated effector functions and also exhibited increased avidity. In summary, our analysis of antibody responses to MSP1FL vaccination unveils a temporal shift towards noninflammatory IgG4 antibodies. These findings underscore the importance of considering the impact of IgG subclass composition on vaccine-induced immunity, particularly concerning Fc-mediated effector functions. This knowledge is pivotal in guiding the design of optimal vaccination strategies against malaria, informing decision making for future endeavors in this critical field.
Collapse
Affiliation(s)
- Veronika Rathay
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Kristin Fürle
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Viktoria Kiehl
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Anne Ulmer
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Lanzer
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Richard Thomson-Luque
- Parasitology, Centre for Infectious Diseases, University Hospital Heidelberg, Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- Sumaya-Biotech GmbH & Co. KG, 69115 Heidelberg, Germany
| |
Collapse
|
7
|
Mutemi DD, Tuju J, Ogwang R, Nyamako L, Wambui KM, Cruz IR, Villner P, Yman V, Kinyanjui SM, Rooth I, Ngasala B, Färnert A, Osier FHA. Antibody-Dependent Respiratory Burst against Plasmodium falciparum Merozoites in Individuals Living in an Area with Declining Malaria Transmission. Vaccines (Basel) 2024; 12:203. [PMID: 38400186 PMCID: PMC10892224 DOI: 10.3390/vaccines12020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Malaria transmission intensity affects the development of naturally acquired immunity to malaria. An absolute correlate measure of protection against malaria is lacking. However, antibody-mediated functions against Plasmodium falciparum correlate with protection against malaria. In children, antibody-mediated functions against P. falciparum decline with reduced exposure. It is unclear whether adults maintain antibody-mediated functions as malaria transmission declines. This study assessed antibody-dependent respiratory burst (ADRB) in individuals from an area with declining malaria transmission. In an age-matched analysis, we compare ADRB activity during high versus low malaria transmission periods. Age significantly predicted higher ADRB activity in the high (p < 0.001) and low (p < 0.001) malaria transmission periods. ADRB activity was higher during the high compared to the low malaria transmission period in older children and adults. Only older adults during the high malaria transmission period had their median ADRB activity above the ADRB cut-off. Ongoing P. falciparum infection influenced ADRB activity during the low (p = 0.01) but not the high (p = 0.29) malaria transmission period. These findings propose that naturally acquired immunity to P. falciparum is affected in children and adults as malaria transmission declines, implying that vaccines will be necessary to induce and maintain protection against malaria.
Collapse
Affiliation(s)
- Doreen D. Mutemi
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam 11102, Tanzania
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - Rodney Ogwang
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - Lydia Nyamako
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
| | - Kennedy M. Wambui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Ivette R. Cruz
- Division of Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Pär Villner
- Division of Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Victor Yman
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Infectious Diseases, Södersjukhuset, 118 61 Stockholm, Sweden
| | - Samson M. Kinyanjui
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Pwani University Bioscience Research Centre, Pwani University, Kilifi 80108, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LG, UK
- School of Business Studies, Strathmore University, Nairobi 0200, Kenya
| | - Ingegerd Rooth
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Nyamisati Malaria Research Group, Pwani 61621, Tanzania
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam 11102, Tanzania
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, 751 05 Uppsala, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Faith H. A. Osier
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi 80108, Kenya
- Centre of Infectious Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Painter H, Harriss E, Fletcher HA, McShane H, Tanner R. Development and application of the direct mycobacterial growth inhibition assay: a systematic review. Front Immunol 2024; 15:1355983. [PMID: 38380319 PMCID: PMC10877019 DOI: 10.3389/fimmu.2024.1355983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction First described by Wallis et al. in 2001 for the assessment of TB drugs, the direct mycobacterial growth inhibition assay (MGIA) offers a tractable ex vivo tool measuring the combined influences of host immunity, strain virulence and intervention effects. Over the past 13 years, we have led efforts to adapt the direct MGIA for the assessment of TB vaccines including optimisation, harmonisation and validation of BCG vaccine-induced responses as a benchmark, as well as assay transfer to institutes worldwide. Methods We have performed a systematic review on the primary published literature describing the development and applications of the direct MGIA from 2001 to June 2023 in accordance with the PRISMA reporting guidelines. Results We describe 63 studies in which the direct MGIA has been applied across species for the evaluation of TB drugs and novel TB vaccine candidates, the study of clinical cohorts including those with comorbidities, and to further understanding of potential immune correlates of protection from TB. We provide a comprehensive update on progress of the assay since its conception and critically evaluate current findings and evidence supporting its utility, highlighting priorities for future directions. Discussion While further standardisation and validation work is required, significant advancements have been made in the past two decades. The direct MGIA provides a potentially valuable tool for the early evaluation of TB drug and vaccine candidates, clinical cohorts, and immune mechanisms of mycobacterial control. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023423491.
Collapse
Affiliation(s)
- Hannah Painter
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Eli Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, United Kingdom
| | - Helen A. Fletcher
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen McShane
- Nuffield Department of Medicine, Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Su X, Stadler RV, Xu F, Wu J. Malaria Genomics, Vaccine Development, and Microbiome. Pathogens 2023; 12:1061. [PMID: 37624021 PMCID: PMC10459703 DOI: 10.3390/pathogens12081061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Recent advances in malaria genetics and genomics have transformed many aspects of malaria research in areas of molecular evolution, epidemiology, transmission, host-parasite interaction, drug resistance, pathogenicity, and vaccine development. Here, in addition to introducing some background information on malaria parasite biology, parasite genetics/genomics, and genotyping methods, we discuss some applications of genetic and genomic approaches in vaccine development and in studying interactions with microbiota. Genetic and genomic data can be used to search for novel vaccine targets, design an effective vaccine strategy, identify protective antigens in a whole-organism vaccine, and evaluate the efficacy of a vaccine. Microbiota has been shown to influence disease outcomes and vaccine efficacy; studying the effects of microbiota in pathogenicity and immunity may provide information for disease control. Malaria genetics and genomics will continue to contribute greatly to many fields of malaria research.
Collapse
Affiliation(s)
- Xinzhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; (R.V.S.); (F.X.); (J.W.)
| | | | | | | |
Collapse
|
10
|
Rosenkranz M, Fürle K, Hibbert J, Ulmer A, Ali A, Giese T, Blank A, Haefeli WE, Böhnlein E, Lanzer M, Thomson-Luque R. Multifunctional IgG/IgM antibodies and cellular cytotoxicity are elicited by the full-length MSP1 SumayaVac-1 malaria vaccine. NPJ Vaccines 2023; 8:112. [PMID: 37558673 PMCID: PMC10412566 DOI: 10.1038/s41541-023-00701-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/27/2023] [Indexed: 08/11/2023] Open
Abstract
Radical control of malaria likely requires a vaccine that targets both the asymptomatic liver stages and the disease-causing blood stages of the human malaria parasite Plasmodium falciparum. While substantial progress has been made towards liver stage vaccines, the development of a blood stage vaccine is lagging behind. We have recently conducted a first-in-human clinical trial to evaluate the safety and immunogenicity of the recombinant, full-length merozoite surface protein 1 (MSP1FL) formulated with GLA-SE as adjuvant. Here, we show that the vaccine, termed SumayaVac-1, elicited both a humoral and cellular immune response as well as a recall T cell memory. The induced IgG and IgM antibodies were able to stimulate various Fc-mediated effector mechanisms associated with protection against malaria, including phagocytosis, release of reactive oxygen species, production of IFN-γ as well as complement activation and fixation. The multifunctional activity of the humoral immune response remained for at least 6 months after vaccination and was comparable to that of naturally acquired anti-MSP1 antibodies from semi-immune adults from Kenya. We further present evidence of SumayaVac-1 eliciting a recallable cellular cytotoxicity by IFN-γ producing CD8+ T cells. Our study revitalizes MSP1FL as a relevant blood stage vaccine candidate and warrants further evaluation of SumayaVac-1 in a phase II efficacy trial.
Collapse
Affiliation(s)
- Micha Rosenkranz
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Fürle
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julia Hibbert
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anne Ulmer
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Arin Ali
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Giese
- Institute for Immunology, Heidelberg University Hospital and German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Antje Blank
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Walter E Haefeli
- Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Michael Lanzer
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Richard Thomson-Luque
- Center for Infectious Diseases-Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Sumaya-Biotech GmbH & Co. KG, Heidelberg, Germany.
| |
Collapse
|
11
|
Odera DO, Tuju J, Mwai K, Nkumama IN, Fürle K, Chege T, Kimathi R, Diehl S, Musasia FK, Rosenkranz M, Njuguna P, Hamaluba M, Kapulu MC, Frank R, Osier FHA. Anti-merozoite antibodies induce natural killer cell effector function and are associated with immunity against malaria. Sci Transl Med 2023; 15:eabn5993. [PMID: 36753561 PMCID: PMC7616656 DOI: 10.1126/scitranslmed.abn5993] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Natural killer (NK) cells are potent immune effectors that can be activated via antibody-mediated Fc receptor engagement. Using multiparameter flow cytometry, we found that NK cells degranulate and release IFN-γ upon stimulation with antibody-opsonized Plasmodium falciparum merozoites. Antibody-dependent NK (Ab-NK) activity was largely strain transcending and enhanced invasion inhibition into erythrocytes. Ab-NK was associated with the successful control of parasitemia after experimental malaria challenge in African adults. In an independent cohort study in children, Ab-NK increased with age, was boosted by concurrent P. falciparum infections, and was associated with a lower risk of clinical episodes of malaria. Nine of the 14 vaccine candidates tested induced Ab-NK, including some less well-characterized antigens: P41, P113, MSP11, RHOPH3, and Pf_11363200. These data highlight an important role of Ab-NK activity in immunity against malaria and provide a potential mechanism for evaluating vaccine candidates.
Collapse
Affiliation(s)
- Dennis O. Odera
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Irene N. Nkumama
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Fürle
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy Chege
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rinter Kimathi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Stefan Diehl
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Fauzia K. Musasia
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Micha Rosenkranz
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Patricia Njuguna
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mainga Hamaluba
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C. Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Roland Frank
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Faith H. A. Osier
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Life Sciences, Imperial College London, UK
| |
Collapse
|
12
|
Kyei-Baafour E, Kusi KA, Arthur FK, Tiendrebeogo RW, Owusu-Yeboa E, Singh SK, Friedrich S, Gerds TA, Dodoo D, Theisen M, Adu B. High opsonic phagocytosis activity and growth inhibition of merozoites are associated with RON4 antibody levels and protect against febrile malaria in Ghanaian children. Front Immunol 2023; 14:1161301. [PMID: 37197657 PMCID: PMC10183564 DOI: 10.3389/fimmu.2023.1161301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023] Open
Abstract
Background Naturally acquired immunity to malaria may involve different immune mechanisms working in concert, however, their respective contributions and potential antigenic targets have not been clearly established. Here, we assessed the roles of opsonic phagocytosis and antibody-mediated merozoite growth inhibition in Plasmodium falciparum (P. falciparum) infection outcomes in Ghanaian children. Methods The levels of merozoite opsonic phagocytosis, growth inhibition activities and six P. falciparum antigen-specific IgG of plasma samples from children (n=238, aged 0.5 to 13 years) were measured at baseline prior to the malaria seasons in southern Ghana. The children were then actively and passively followed up for febrile malaria and asymptomatic P. falciparum infection detection in a 50-week longitudinal cohort. P. falciparum infection outcome was modelled as a function of the measured immune parameters while accounting for important demographic factors. Results High plasma activity of opsonic phagocytosis [adjusted odds ratio (aOR)= 0.16; 95%CI= 0.05 - 0.50, p = 0.002], and growth inhibition (aOR=0.15; 95% CI = 0.04-0.47; p = 0.001) were individually associated with protection against febrile malaria. There was no evidence of correlation (b= 0.13; 95% CI= -0.04-0.30; p=0.14) between the two assays. IgG antibodies against MSPDBL1 correlated with opsonic phagocytosis (OP) while IgG against PfRh2a correlated with growth inhibition. Notably, IgG antibodies against RON4 correlated with both assays. Conclusion Opsonic phagocytosis and growth inhibition are protective immune mechanisms against malaria that may be acting independently to confer overall protection. Vaccines incorporating RON4 may benefit from both immune mechanisms.
Collapse
Affiliation(s)
- Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon Accra, Ghana
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kwadwo Asamoah Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon Accra, Ghana
| | - Fareed K.N. Arthur
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Regis W. Tiendrebeogo
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Eunice Owusu-Yeboa
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon Accra, Ghana
| | - Susheel K. Singh
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Sarah Friedrich
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Department of Medical Statistics, University Medical Center Goettingen, Goettingen, Germany
| | - Thomas A. Gerds
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Dodoo
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon Accra, Ghana
| | - Michael Theisen
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon Accra, Ghana
- *Correspondence: Bright Adu,
| |
Collapse
|
13
|
Mueller I, Vantaux A, Karl S, Laman M, Witkowski B, Pepey A, Vinit R, White M, Barry A, Beeson JG, Robinson LJ. Asia-Pacific ICEMR: Understanding Malaria Transmission to Accelerate Malaria Elimination in the Asia Pacific Region. Am J Trop Med Hyg 2022; 107:131-137. [PMID: 36228917 PMCID: PMC9662229 DOI: 10.4269/ajtmh.21-1336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/06/2022] [Indexed: 01/31/2023] Open
Abstract
Gaining an in-depth understanding of malaria transmission requires integrated, multifaceted research approaches. The Asia-Pacific International Center of Excellence in Malaria Research (ICEMR) is applying specifically developed molecular and immunological assays, in-depth entomological assessments, and advanced statistical and mathematical modeling approaches to a rich series of longitudinal cohort and cross-sectional studies in Papua New Guinea and Cambodia. This is revealing both the essential contribution of forest-based transmission and the particular challenges posed by Plasmodium vivax to malaria elimination in Cambodia. In Papua New Guinea, these studies document the complex host-vector-parasite interactions that are underlying both the stunning reductions in malaria burden from 2006 to 2014 and the significant resurgence in transmission in 2016 to 2018. Here we describe the novel analytical, surveillance, molecular, and immunological tools that are being applied in our ongoing Asia-Pacific ICEMR research program.
Collapse
Affiliation(s)
- Ivo Mueller
- Population Health & Immunity Division, Walter + Eliza Hall Institutes, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
| | | | - Stephan Karl
- Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, Australia
- PNG Institute of Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- PNG Institute of Medical Research, Madang, Papua New Guinea
| | | | - Anais Pepey
- Institute Pasteur Cambodia, Phnom Penh, Cambodia
| | - Rebecca Vinit
- PNG Institute of Medical Research, Madang, Papua New Guinea
| | | | - Alyssa Barry
- Deakin University, Geelong, Australia
- Burnet Institute, Melbourne, Australia
| | - James G. Beeson
- University of Melbourne, Melbourne, Australia
- Burnet Institute, Melbourne, Australia
- Monash University, Victoria, Australia
| | - Leanne J. Robinson
- Population Health & Immunity Division, Walter + Eliza Hall Institutes, Melbourne, Australia
- PNG Institute of Medical Research, Madang, Papua New Guinea
- Burnet Institute, Melbourne, Australia
- Monash University, Victoria, Australia
| |
Collapse
|
14
|
Opi DH, Kurtovic L, Chan JA, Horton JL, Feng G, Beeson JG. Multi-functional antibody profiling for malaria vaccine development and evaluation. Expert Rev Vaccines 2021; 20:1257-1272. [PMID: 34530671 DOI: 10.1080/14760584.2021.1981864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A vaccine would greatly accelerate current global efforts toward malaria elimination. While a partially efficacious vaccine has been achieved for Plasmodium falciparum, a major bottleneck in developing highly efficacious vaccines is a lack of reliable correlates of protection, and the limited application of assays that quantify functional immune responses to evaluate and down-select vaccine candidates in pre-clinical studies and clinical trials. AREAS COVERED In this review, we describe the important role of antibodies in immunity against malaria and detail the nature and functional activities of antibodies against the malaria-causing parasite. We highlight the growing understanding of antibody effector functions against malaria and in vitro assays to measure these functional antibody responses. We discuss the application of these assays to quantify antibody functions in vaccine development and evaluation. EXPERT OPINION It is becoming increasingly clear that multiple antibody effector functions are involved in immunity to malaria. Therefore, we propose that evaluating vaccine candidates needs to move beyond individual assays or measuring IgG magnitude alone. Instead, vaccine evaluation should incorporate the full breadth of antibody response types and harness a wider range of assays measuring functional antibody responses. We propose a 3-tier approach to implementing assays to inform vaccine evaluation.
Collapse
Affiliation(s)
- D Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jessica L Horton
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
15
|
Guiding the Immune Response to a Conserved Epitope in MSP2, an Intrinsically Disordered Malaria Vaccine Candidate. Vaccines (Basel) 2021; 9:vaccines9080855. [PMID: 34451980 PMCID: PMC8402609 DOI: 10.3390/vaccines9080855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
The malaria vaccine candidate merozoite surface protein 2 (MSP2) has shown promise in clinical trials and is in part responsible for a reduction in parasite densities. However, strain-specific reductions in parasitaemia suggested that polymorphic regions of MSP2 are immuno-dominant. One strategy to bypass the hurdle of strain-specificity is to bias the immune response towards the conserved regions. Two mouse monoclonal antibodies, 4D11 and 9H4, recognise the conserved C-terminal region of MSP2. Although they bind overlapping epitopes, 4D11 reacts more strongly with native MSP2, suggesting that its epitope is more accessible on the parasite surface. In this study, a structure-based vaccine design approach was applied to the intrinsically disordered antigen, MSP2, using a crystal structure of 4D11 Fv in complex with its minimal binding epitope. Molecular dynamics simulations and surface plasmon resonance informed the design of a series of constrained peptides that mimicked the 4D11-bound epitope structure. These peptides were conjugated to keyhole limpet hemocyanin and used to immunise mice, with high to moderate antibody titres being generated in all groups. The specificities of antibody responses revealed that a single point mutation can focus the antibody response towards a more favourable epitope. This structure-based approach to peptide vaccine design may be useful not only for MSP2-based malaria vaccines, but also for other intrinsically disordered antigens.
Collapse
|
16
|
Moita D, Nunes-Cabaço H, Mendes AM, Prudêncio M. A guide to investigating immune responses elicited by whole-sporozoite pre-erythrocytic vaccines against malaria. FEBS J 2021; 289:3335-3359. [PMID: 33993649 DOI: 10.1111/febs.16016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/19/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
In the last few decades, considerable efforts have been made toward the development of efficient vaccines against malaria. Whole-sporozoite (Wsp) vaccines, which induce efficient immune responses against the pre-erythrocytic (PE) stages (sporozoites and liver forms) of Plasmodium parasites, the causative agents of malaria, are among the most promising immunization strategies tested until present. Several Wsp PE vaccination approaches are currently under evaluation in the clinic, including radiation- or genetically-attenuated Plasmodium sporozoites, live parasites combined with chemoprophylaxis, or genetically modified rodent Plasmodium parasites. In addition to the assessment of their protective efficacy, clinical trials of Wsp PE vaccine candidates inevitably involve the thorough investigation of the immune responses elicited by vaccination, as well as the identification of correlates of protection. Here, we review the main methodologies employed to dissect the humoral and cellular immune responses observed in the context of Wsp PE vaccine clinical trials and discuss future strategies to further deepen the knowledge generated by these studies, providing a toolbox for the in-depth analysis of vaccine-induced immunogenicity.
Collapse
Affiliation(s)
- Diana Moita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - António M Mendes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| |
Collapse
|
17
|
Tanner R, Hoogkamer E, Bitencourt J, White A, Boot C, Sombroek CC, Harris SA, O'Shea MK, Wright D, Wittenberg R, Sarfas C, Satti I, Verreck FA, Sharpe SA, Fletcher HA, McShane H. The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Res 2021; 10:257. [PMID: 33976866 PMCID: PMC8097740 DOI: 10.12688/f1000research.51640.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 04/04/2024] Open
Abstract
The only currently available approach to early efficacy testing of tuberculosis (TB) vaccine candidates is in vivo preclinical challenge models. These typically include mice, guinea pigs and non-human primates (NHPs), which must be exposed to virulent M.tb in a 'challenge' experiment following vaccination in order to evaluate protective efficacy. This procedure results in disease development and is classified as 'Moderate' in severity under EU legislation and UK ASPA licensure. Furthermore, experiments are relatively long and animals must be maintained in high containment level facilities, making them relatively costly. We describe an in vitro protocol for the direct mycobacterial growth inhibition assay (MGIA) for use in the macaque model of TB vaccine development with the aim of overcoming some of these limitations. Importantly, using an in vitro assay in place of in vivo M.tb challenge represents a significant refinement to the existing procedure for early vaccine efficacy testing. Peripheral blood mononuclear cell and autologous serum samples collected from vaccinated and unvaccinated control animals are co-cultured with mycobacteria in a 48-well plate format for 96 hours. Adherent monocytes are then lysed to release intracellular mycobacteria which is quantified using the BACTEC MGIT system and colony-forming units determined relative to an inoculum control and stock standard curve. We discuss related optimisation and characterisation experiments, and review evidence that the direct NHP MGIA provides a biologically relevant model of vaccine-induced protection. The potential end-users of the NHP MGIA are academic and industry organisations that conduct the assessment of TB vaccine candidates and associated protective immunity using the NHP model. This approach aims to provide a method for high-throughput down-selection of vaccine candidates going forward to in vivo efficacy testing, thus expediting the development of a more efficacious TB vaccine and offering potential refinement and reduction to the use of NHPs for this purpose.
Collapse
Affiliation(s)
- Rachel Tanner
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Emily Hoogkamer
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Public Health England, Salisbury, SP4 0JG, UK
| | - Julia Bitencourt
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Gonҫalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, 40296-710, Brazil
| | | | - Charelle Boot
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | - Claudia C. Sombroek
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | | | - Matthew K. O'Shea
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK, Birmingham, B15 2TH, UK
| | - Daniel Wright
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Rachel Wittenberg
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | | | - Iman Satti
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Frank A.W. Verreck
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | | | - Helen A. Fletcher
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Helen McShane
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| |
Collapse
|
18
|
Tanner R, Hoogkamer E, Bitencourt J, White A, Boot C, Sombroek CC, Harris SA, O'Shea MK, Wright D, Wittenberg R, Sarfas C, Satti I, Verreck FAW, Sharpe SA, Fletcher HA, McShane H. The in vitro direct mycobacterial growth inhibition assay (MGIA) for the early evaluation of TB vaccine candidates and assessment of protective immunity: a protocol for non-human primate cells. F1000Res 2021; 10:257. [PMID: 33976866 PMCID: PMC8097740.2 DOI: 10.12688/f1000research.51640.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 11/29/2022] Open
Abstract
The only currently available approach to early efficacy testing of tuberculosis (TB) vaccine candidates is in vivo preclinical challenge models. These typically include mice, guinea pigs and non-human primates (NHPs), which must be exposed to virulent M.tb in a 'challenge' experiment following vaccination in order to evaluate protective efficacy. This procedure results in disease development and is classified as 'Moderate' in severity under EU legislation and UK ASPA licensure. Furthermore, experiments are relatively long and animals must be maintained in high containment level facilities, making them relatively costly. We describe an in vitro protocol for the direct mycobacterial growth inhibition assay (MGIA) for use in the macaque model of TB vaccine development with the aim of overcoming some of these limitations. Importantly, using an in vitro assay in place of in vivo M.tb challenge represents a significant refinement to the existing procedure for early vaccine efficacy testing. Peripheral blood mononuclear cell and autologous serum samples collected from vaccinated and unvaccinated control animals are co-cultured with mycobacteria in a 48-well plate format for 96 hours. Adherent monocytes are then lysed to release intracellular mycobacteria which is quantified using the BACTEC MGIT system and colony-forming units determined relative to an inoculum control and stock standard curve. We discuss related optimisation and characterisation experiments, and review evidence that the direct NHP MGIA provides a biologically relevant model of vaccine-induced protection. The potential end-users of the NHP MGIA are academic and industry organisations that conduct the assessment of TB vaccine candidates and associated protective immunity using the NHP model. This approach aims to provide a method for high-throughput down-selection of vaccine candidates going forward to in vivo efficacy testing, thus expediting the development of a more efficacious TB vaccine and offering potential refinement and reduction to the use of NHPs for this purpose.
Collapse
Affiliation(s)
- Rachel Tanner
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Emily Hoogkamer
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Public Health England, Salisbury, SP4 0JG, UK
| | - Julia Bitencourt
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Gonҫalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, 40296-710, Brazil
| | | | - Charelle Boot
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | - Claudia C Sombroek
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | - Stephanie A Harris
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Matthew K O'Shea
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK, Birmingham, B15 2TH, UK
| | - Daniel Wright
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Rachel Wittenberg
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | | | - Iman Satti
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| | - Frank A W Verreck
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, 2288 GJ, The Netherlands
| | | | - Helen A Fletcher
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Helen McShane
- Nuffield Department of Medicine, The Jenner Institute, Oxford, OX3 7DQ, UK
| |
Collapse
|
19
|
Abstract
Introduction: An effective vaccine against malaria forms a global health priority. Both naturally acquired immunity and sterile protection induced by irradiated sporozoite immunization were described decades ago. Still no vaccine exists that sufficiently protects children in endemic areas. Identifying immunological correlates of vaccine efficacy can inform rational vaccine design and potentially accelerate clinical development.Areas covered: We discuss recent research on immunological correlates of malaria vaccine efficacy, including: insights from state-of-the-art omics platforms and systems vaccinology analyses; functional anti-parasitic assays; pre-immunization predictors of vaccine efficacy; and comparison of correlates of vaccine efficacy against controlled human malaria infections (CHMI) and against naturally acquired infections.Expert Opinion: Effective vaccination may be achievable without necessarily understanding immunological correlates, but the relatively disappointing efficacy of malaria vaccine candidates in target populations is concerning. Hypothesis-generating omics and systems vaccinology analyses, alongside assessment of pre-immunization correlates, have the potential to bring about paradigm-shifts in malaria vaccinology. Functional assays may represent in vivo effector mechanisms, but have scarcely been formally assessed as correlates. Crucially, evidence is still meager that correlates of vaccine efficacy against CHMI correspond with those against naturally acquired infections in target populations. Finally, the diversity of immunological assays and efficacy endpoints across malaria vaccine trials remains a major confounder.
Collapse
Affiliation(s)
| | - Matthew B B McCall
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands.,Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| |
Collapse
|
20
|
Liposome engraftment and antigen combination potentiate the immune response towards conserved epitopes of the malaria vaccine candidate MSP2. Vaccine 2021; 39:1746-1757. [PMID: 33618946 DOI: 10.1016/j.vaccine.2021.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/30/2021] [Accepted: 02/06/2021] [Indexed: 11/23/2022]
Abstract
Merozoite surface protein 2 (MSP2) is a highly abundant, GPI-anchored surface antigen on merozoites of the malaria parasite Plasmodium falciparum. It consists of highly conserved N- and C-terminal domains, and a central polymorphic region that allows all MSP2 alleles to be categorized into the 3D7 or FC27 family. Previously it has been shown that epitope accessibility differs between lipid-bound and lipid-free MSP2, suggesting that lipid interactions modulate the conformation and antigenicity in a way that may better mimic native MSP2 on the merozoite surface. Therefore, we have immunised mice with MSP2 engrafted onto liposomes using a C-terminal tether that mimics the native GPI anchor. To improve the immunogenicity of the formulated antigen, liposomes were supplemented with Pathogen Associated Molecular Pattern molecules, specifically agonists of the Toll-like receptor 4 (TLR4) or TLR2. Induced antibodies were directed mostly towards conserved epitopes, predominantly in the conserved C-terminal region of MSP2. We also found that immunisation with a combination of 3D7 and FC27 MSP2 enhanced antibody responses to conserved epitopes, and that the overall responses of mice immunised with MSP2-engrafted liposomes were comparable in magnitude to those of mice immunised with MSP2 formulated in Montanide ISA720. The antibodies elicited in mice by immunising with MSP2-engrafted liposomes recognised the native form of parasite MSP2 on western blots and were found to be cross-reactive with isolated 3D7 and FC27 merozoites when investigated by ELISA. The liposome-tethered MSP2 induced higher titres of complement-fixing antibodies to 3D7 and FC27 MSP2 than did MSP2 formulated in Montanide ISA720. Our results indicate that liposomal formulation represents a viable strategy for eliciting a strong immune response that favours conserved epitopes in MSP2 and thus a strain-transcendent immune response.
Collapse
|
21
|
Bliss' and Loewe's additive and synergistic effects in Plasmodium falciparum growth inhibition by AMA1-RON2L, RH5, RIPR and CyRPA antibody combinations. Sci Rep 2020; 10:11802. [PMID: 32678144 PMCID: PMC7366652 DOI: 10.1038/s41598-020-67877-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/15/2020] [Indexed: 01/10/2023] Open
Abstract
Plasmodium invasion of red blood cells involves malaria proteins, such as reticulocyte-binding protein homolog 5 (RH5), RH5 interacting protein (RIPR), cysteine-rich protective antigen (CyRPA), apical membrane antigen 1 (AMA1) and rhoptry neck protein 2 (RON2), all of which are blood-stage malaria vaccine candidates. So far, vaccines containing AMA1 alone have been unsuccessful in clinical trials. However, immunization with AMA1 bound with RON2L (AMA1-RON2L) induces better protection against P. falciparum malaria in Aotus monkeys. We therefore sought to determine whether combinations of RH5, RIPR, CyRPA and AMA1-RON2L antibodies improve their biological activities and sought to develop a robust method for determination of synergy or additivity in antibody combinations. Rabbit antibodies against AMA1-RON2L, RH5, RIPR or CyRPA were tested either alone or in combinations in P. falciparum growth inhibition assay to determine Bliss' and Loewe's additivities. The AMA1-RON2L/RH5 combination consistently demonstrated an additive effect while the CyRPA/RIPR combination showed a modest synergistic effect with Hewlett’s \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$S=1.07 \left[95\% \mathrm{C}\mathrm{I}: 1.03, 1.19\right].$$\end{document}S=1.0795%CI:1.03,1.19. Additionally, we provide a publicly-available, online tool to aid researchers in analyzing and planning their own synergy experiments. This study supports future blood-stage vaccine development by providing a solid methodology to evaluate additive and/or synergistic (or antagonistic) effect of vaccine-induced antibodies.
Collapse
|
22
|
Mitran CJ, Yanow SK. The Case for Exploiting Cross-Species Epitopes in Malaria Vaccine Design. Front Immunol 2020; 11:335. [PMID: 32174924 PMCID: PMC7056716 DOI: 10.3389/fimmu.2020.00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
The infection dynamics between different species of Plasmodium that infect the same human host can both suppress and exacerbate disease. This could arise from inter-parasite interactions, such as competition, from immune regulation, or both. The occurrence of protective, cross-species (heterologous) immunity is an unlikely event, especially considering that strain-transcending immunity within a species is only partial despite lifelong exposure to that species. Here we review the literature in humans and animal models to identify the contexts where heterologous immunity can arise, and which antigens may be involved. From the perspective of vaccine design, understanding the mechanisms by which exposure to an antigen from one species can elicit a protective response to another species offers an alternative strategy to conventional approaches that focus on immunodominant antigens within a single species. The underlying hypothesis is that certain epitopes are conserved across evolution, in sequence or in structure, and shared in antigens from different species. Vaccines that focus on conserved epitopes may overcome the challenges posed by polymorphic immunodominant antigens; but to uncover these epitopes requires approaches that consider the evolutionary history of protein families across species. The key question for vaccinologists will be whether vaccines that express these epitopes can elicit immune responses that are functional and contribute to protection against Plasmodium parasites.
Collapse
Affiliation(s)
| | - Stephanie K. Yanow
- School of Public Health, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Kana IH, Singh SK, Garcia-Senosiain A, Dodoo D, Singh S, Adu B, Theisen M. Breadth of Functional Antibodies Is Associated With Plasmodium falciparum Merozoite Phagocytosis and Protection Against Febrile Malaria. J Infect Dis 2020; 220:275-284. [PMID: 30820557 DOI: 10.1093/infdis/jiz088] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/26/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The specific targets of functional antibodies against Plasmodium falciparum merozoites remain largely unexplored and, more importantly, their relevance to naturally acquired immunity in longitudinal cohort studies (LCSs) is yet to be tested. METHODS Functionality of immunoglobulin G (IgG) antibodies against 24 merozoite antigens was determined at the baseline of an LCS in Ghana using a bead-based opsonic phagocytosis assay (BPA). Antigen-specific IgG3 subclass antibodies were quantified in the same samples by the Luminex multiplex system. RESULTS A wide range of BPA activity was observed across the different antigens. High BPA responses of nMSP3K1, GLURP-R2, MSP23D7, MSP119k, and PfRh2-2030 coupled beads were significantly associated with a higher probability of children not experiencing febrile malaria. Children with high breadth of functional antibodies against these antigens together with cMSP33D7 had a significantly reduced risk of febrile malaria (adjusted hazard ratio, 0.36 [95% confidence interval, .18-.72]; P = .004). Five of the 6 BPA activities significantly (likelihood ratio rest, P ≤ .05) contributed to the protective immunity observed with the IgG3 antibodies. CONCLUSIONS The development of BPA allowed profiling of functional antibodies in an LCS. Identification of targets of opsonic phagocytosis may have implications in the development of a subunit malaria vaccine.
Collapse
Affiliation(s)
- Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Susheel Kumar Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Asier Garcia-Senosiain
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon
| | | | - Bright Adu
- Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
24
|
Blank A, Fürle K, Jäschke A, Mikus G, Lehmann M, Hüsing J, Heiss K, Giese T, Carter D, Böhnlein E, Lanzer M, Haefeli WE, Bujard H. Immunization with full-length Plasmodium falciparum merozoite surface protein 1 is safe and elicits functional cytophilic antibodies in a randomized first-in-human trial. NPJ Vaccines 2020; 5:10. [PMID: 32025341 PMCID: PMC6994672 DOI: 10.1038/s41541-020-0160-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
A vaccine remains a priority in the global fight against malaria. Here, we report on a single-center, randomized, double-blind, placebo and adjuvant-controlled, dose escalation phase 1a safety and immunogenicity clinical trial of full-length Plasmodium falciparum merozoite surface protein 1 (MSP1) in combination with GLA-SE adjuvant. Thirty-two healthy volunteers were vaccinated at least three times with MSP1 plus adjuvant, adjuvant alone, or placebo (24:4:4) to evaluate the safety and immunogenicity. MSP1 was safe, well tolerated and immunogenic, with all vaccinees sero-converting independent of the dose. The MSP1-specific IgG and IgM titers persisted above levels found in malaria semi-immune humans for at least 6 months after the last immunization. The antibodies were variant- and strain-transcending and stimulated respiratory activity in granulocytes. Furthermore, full-length MSP1 induced memory T-cells. Our findings encourage challenge studies as the next step to evaluate the efficacy of full-length MSP1 as a vaccine candidate against falciparum malaria (EudraCT 2016-002463-33).
Collapse
Affiliation(s)
- Antje Blank
- Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Kristin Fürle
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Anja Jäschke
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Gerd Mikus
- Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Monika Lehmann
- Koordinierungszentrum für Klinische Studien (KKS), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Johannes Hüsing
- Koordinierungszentrum für Klinische Studien (KKS), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Kirsten Heiss
- PEPperPRINT GmbH, Rischerstrasse 12, 69123 Heidelberg, Germany
| | - Thomas Giese
- Institut für Immunologie, Universitätsklinikum Heidelberg und Deutsches Zentrum für Infektionsforschung (DZIF) Standort Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Darrick Carter
- PAI Life Sciences, 1616 Eastlake Ave E, Suite 550, Seattle, WA 98102 USA
| | - Ernst Böhnlein
- Sumaya Biotech GmbH & Co. KG, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Walter E. Haefeli
- Klinische Pharmakologie und Pharmakoepidemiologie, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Hermann Bujard
- Sumaya Biotech GmbH & Co. KG, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
- Zentrum für Molekulare Biologie Heidelberg, Universität Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| |
Collapse
|
25
|
Tanner R, Satti I, Harris SA, O'Shea MK, Cizmeci D, O'Connor D, Chomka A, Matsumiya M, Wittenberg R, Minassian AM, Meyer J, Fletcher HA, McShane H. Tools for Assessing the Protective Efficacy of TB Vaccines in Humans: in vitro Mycobacterial Growth Inhibition Predicts Outcome of in vivo Mycobacterial Infection. Front Immunol 2020; 10:2983. [PMID: 31998295 PMCID: PMC6968127 DOI: 10.3389/fimmu.2019.02983] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) remains a leading global cause of morbidity and mortality and an effective new vaccine is urgently needed. A major barrier to the rational development of novel TB vaccines is the lack of a validated immune correlate or biomarker of protection. Mycobacterial Growth Inhibition Assays (MGIAs) provide an unbiased measure of ability to control mycobacterial growth in vitro, and may represent a functional correlate of protection. However, the biological relevance of any potential correlate can only be assessed by determining the association with in vivo protection from either a controlled mycobacterial infection or natural development of TB disease. Our data demonstrate that the direct MGIA using peripheral blood mononuclear cells (PBMC) is measuring a biologically relevant response that correlates with protection from in vivo human BCG infection across two independent cohorts. This is the first report of an MGIA correlating with in vivo protection in the species-of-interest, humans, and furthermore on a per-individual as well as per-group basis. Control of mycobacterial growth in the MGIA is associated with a range of immune parameters measured post-BCG infection in vivo including the IFN-γ ELISpot response, frequency of PPD-specific IFN-γ or TNF-α producing CD4+ T cells and frequency of specific sub-populations of polyfunctional CD4+ T cells. Distinct transcriptomic profiles are associated with good vs. poor mycobacterial control in the MGIA, with good controllers showing enrichment for gene sets associated with antigen processing/presentation and the IL-23 pathway, and poor controllers showing enrichment for hypoxia-related pathways. This study represents an important step toward biologically validating the direct PBMC MGIA for use in TB vaccine development and furthermore demonstrates the utility of this assay in determining relevant immune mechanisms and pathways of protection.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Iman Satti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephanie A. Harris
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthew K. O'Shea
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Deniz Cizmeci
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel O'Connor
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Agnieszka Chomka
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Magali Matsumiya
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel Wittenberg
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Angela M. Minassian
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Joel Meyer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen A. Fletcher
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Kapulu MC, Njuguna P, Hamaluba MM. Controlled Human Malaria Infection in Semi-Immune Kenyan Adults (CHMI-SIKA): a study protocol to investigate in vivo Plasmodium falciparum malaria parasite growth in the context of pre-existing immunity. Wellcome Open Res 2019; 3:155. [PMID: 31803847 PMCID: PMC6871356 DOI: 10.12688/wellcomeopenres.14909.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2019] [Indexed: 01/09/2023] Open
Abstract
Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy. We will use the controlled human malaria infection (CHMI) models with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo. Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and whole blood will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. Registration: ClinicalTrials.gov identifier NCT02739763.
Collapse
Affiliation(s)
- Melissa C. Kapulu
- KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, UK
| | | | | | - CHMI-SIKA Study Team
- KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, UK
| |
Collapse
|
27
|
Kurtovic L, Boyle MJ, Opi DH, Kennedy AT, Tham WH, Reiling L, Chan JA, Beeson JG. Complement in malaria immunity and vaccines. Immunol Rev 2019; 293:38-56. [PMID: 31556468 PMCID: PMC6972673 DOI: 10.1111/imr.12802] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022]
Abstract
Developing efficacious vaccines for human malaria caused by Plasmodium falciparum is a major global health priority, although this has proven to be immensely challenging over the decades. One major hindrance is the incomplete understanding of specific immune responses that confer protection against disease and/or infection. While antibodies to play a crucial role in malaria immunity, the functional mechanisms of these antibodies remain unclear as most research has primarily focused on the direct inhibitory or neutralizing activity of antibodies. Recently, there is a growing body of evidence that antibodies can also mediate effector functions through activating the complement system against multiple developmental stages of the parasite life cycle. These antibody‐complement interactions can have detrimental consequences to parasite function and viability, and have been significantly associated with protection against clinical malaria in naturally acquired immunity, and emerging findings suggest these mechanisms could contribute to vaccine‐induced immunity. In order to develop highly efficacious vaccines, strategies are needed that prioritize the induction of antibodies with enhanced functional activity, including the ability to activate complement. Here we review the role of complement in acquired immunity to malaria, and provide insights into how this knowledge could be used to harness complement in malaria vaccine development.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | | | | | - Alexander T Kennedy
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute, Melbourne, Vic., Australia
| | | | - Jo-Anne Chan
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Vic., Australia.,Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Microbiology, Monash University, Clayton, Vic., Australia.,Department of Medicine, The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
28
|
Kana IH, Garcia-Senosiain A, Singh SK, Tiendrebeogo RW, Chourasia BK, Malhotra P, Sharma SK, Das MK, Singh S, Adu B, Theisen M. Cytophilic Antibodies Against Key Plasmodium falciparum Blood Stage Antigens Contribute to Protection Against Clinical Malaria in a High Transmission Region of Eastern India. J Infect Dis 2019; 218:956-965. [PMID: 29733355 DOI: 10.1093/infdis/jiy258] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background The collection of clinical data from a tribal population in a malaria-endemic area of India suggests the occurrence of naturally acquired immunity (NAI) against Plasmodium falciparum malaria. Methods Quantity and functionality of immunoglobulin G (IgG) antibodies against intact merozoites and recombinant proteins were assessed in a 13-month longitudinal cohort study of 121 individuals, 3-60 years of age. Results Opsonic phagocytosis of merozoites activity was strongly associated (hazard ratio [HR] = 0.34; 95% confidence interval [CI] = .18-.66; P = .0013) with protection against febrile malaria. Of the different IgG subclasses, only IgG3 antibodies against intact whole merozoites was significantly associated with protection against febrile malaria (HR = 0.47; 95% CI = .26-.86; P = .01). Furthermore, a combination of IgG3 antibody responses against Pf12, MSP3.7, MSP3.3, and MSP2FC27 was strongly associated with protection against febrile malaria (HR = 0.15; 95% CI, .06-.37; P = .0001). Conclusions These data suggest that NAI may, at least in part, be explained by opsonic phagocytosis of merozoites and IgG3 responses against whole merozoites, and in particular to a combination of 4 antigens is critical in this population. These results may have implications in the development of a subunit malaria vaccine. Opsonic phagocytosis of Plasmodium falciparum merozoites was associated with protection against clinical malaria in an India population. Antibody profiling identified four merozoite antigens (Pf12, MSP3.7, MSP3.3, and MSP2) as targets of protective Immunoglobuline G3 antibodies.
Collapse
Affiliation(s)
- Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Asier Garcia-Senosiain
- Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Régis Wendpayangde Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Bishwanath Kumar Chourasia
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Surya K Sharma
- National Institute of Malaria Research, Indian Council of Medical Research, New Delhi, India
| | - Manoj K Das
- National Institute of Malaria Research, Field Unit, Ranchi (Jharkhand), India
| | - Subhash Singh
- Indian Institute of Integrative Medicine, Canal Road, Jammu, India
| | - Bright Adu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Denmark
| |
Collapse
|
29
|
Eacret JS, Gonzales DM, Franks RG, Burns JM. Immunization with merozoite surface protein 2 fused to a Plasmodium-specific carrier protein elicits strain-specific and strain-transcending, opsonizing antibody. Sci Rep 2019; 9:9022. [PMID: 31227760 PMCID: PMC6588637 DOI: 10.1038/s41598-019-45440-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/06/2019] [Indexed: 11/21/2022] Open
Abstract
Vaccine trials and cohort studies in Plasmodium falciparum endemic areas indicate that naturally-acquired and vaccine-induced antibodies to merozoite surface protein 2 (MSP2) are associated with resistance to malaria. These data indicate that PfMSP2 has significant potential as a component of a multi-antigen malaria vaccine. To overcome challenges encountered with subunit malaria vaccines, we established that the use of highly immunogenic rPfMSP8 as a carrier protein for leading vaccine candidates rPfMSP119 and rPfs25 facilitated antigen production, minimized antigenic competition and enhanced induction of functional antibodies. We applied this strategy to optimize a rPfMSP2 (3D7)-based subunit vaccine by producing unfused rPfMSP2 or chimeric rPfMSP2/8 in Escherichia coli. rPfMSP2 formed fibrils, which induced splenocyte proliferation in an antigen receptor-independent, TLR2-dependent manner. However, fusion to rPfMSP8 prevented rPfMSP2 amyloid-like fibril formation. Immunization of rabbits elicited high-titer anti-PfMSP2 antibodies that recognized rPfMSP2 of the 3D7 and FC27 alleles, as well as native PfMSP2. Competition assays revealed a difference in the specificity of antibodies induced by the two rPfMSP2-based vaccines, with evidence of epitope masking by rPfMSP2-associated fibrils. Rabbit anti-PfMSP2/8 was superior to rPfMSP2-elicited antibody at opsonizing P. falciparum merozoites for phagocytosis. These data establish rPfMSP8 as an effective carrier for a PfMSP2-based subunit malaria vaccine.
Collapse
Affiliation(s)
- Jacqueline S Eacret
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - Donna M Gonzales
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - Raymond G Franks
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA
| | - James M Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA.
| |
Collapse
|
30
|
Moormann AM, Nixon CE, Forconi CS. Immune effector mechanisms in malaria: An update focusing on human immunity. Parasite Immunol 2019; 41:e12628. [PMID: 30972776 DOI: 10.1111/pim.12628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed dramatic decreases in malaria-associated mortality and morbidity around the world. This progress has largely been due to intensified malaria control measures, implementation of rapid diagnostics and establishing a network to anticipate and mitigate antimalarial drug resistance. However, the ultimate tool for malaria prevention is the development and implementation of an effective vaccine. To date, malaria vaccine efforts have focused on determining which of the thousands of antigens expressed by Plasmodium falciparum are instrumental targets of protective immunity. The antigenic variation and antigenic polymorphisms arising in parasite genes under immune selection present a daunting challenge for target antigen selection and prioritization, and is a given caveat when interpreting immune recall responses or results from monovalent vaccine trials. Other immune evasion strategies executed by the parasite highlight the myriad of ways in which it can become a recurrent infection. This review provides an update on immune effector mechanisms in malaria and focuses on our improved ability to interrogate the complexity of human immune system, accelerated by recent methodological advances. Appreciating how the human immune landscape influences the effectiveness and longevity of antimalarial immunity will help explain which conditions are necessary for immune effector mechanisms to prevail.
Collapse
Affiliation(s)
- Ann M Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Christina E Nixon
- Department of Pathology and Lab Medicine, Brown University, Providence, Rhode Island
| | - Catherine S Forconi
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| |
Collapse
|
31
|
Targets of complement-fixing antibodies in protective immunity against malaria in children. Nat Commun 2019; 10:610. [PMID: 30723225 PMCID: PMC6363798 DOI: 10.1038/s41467-019-08528-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
Antibodies against P. falciparum merozoites fix complement to inhibit blood-stage replication in naturally-acquired and vaccine-induced immunity; however, specific targets of these functional antibodies and their importance in protective immunity are unknown. Among malaria-exposed individuals, we show that complement-fixing antibodies to merozoites are more strongly correlated with protective immunity than antibodies that inhibit growth quantified using the current reference assay for merozoite vaccine evaluation. We identify merozoite targets of complement-fixing antibodies and identify antigen-specific complement-fixing antibodies that are strongly associated with protection from malaria in a longitudinal study of children. Using statistical modelling, combining three different antigens targeted by complement-fixing antibodies could increase the potential protective effect to over 95%, and we identify antigens that were common in the most protective combinations. Our findings support antibody-complement interactions against merozoite antigens as important anti-malaria immune mechanisms, and identify specific merozoite antigens for further evaluation as vaccine candidates. Antibodies against Plasmodium falciparum merozoites that fix complement can inhibit blood-stage replication. Here, Reiling et al. show that complement-fixing antibodies strongly correlate with protective immunity in children, identify the merozoite targets, and predict antigen combinations that should result in strong protection.
Collapse
|
32
|
Tan J, Piccoli L, Lanzavecchia A. The Antibody Response to Plasmodium falciparum: Cues for Vaccine Design and the Discovery of Receptor-Based Antibodies. Annu Rev Immunol 2018; 37:225-246. [PMID: 30566366 DOI: 10.1146/annurev-immunol-042617-053301] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plasmodium falciparum remains a serious public health problem and a continuous challenge for the immune system due to the complexity and diversity of the pathogen. Recent advances from several laboratories in the characterization of the antibody response to the parasite have led to the identification of critical targets for protection and revealed a new mechanism of diversification based on the insertion of host receptors into immunoglobulin genes, leading to the production of receptor-based antibodies. These advances have opened new possibilities for vaccine design and passive antibody therapies to provide sterilizing immunity and control blood-stage parasites.
Collapse
Affiliation(s)
- Joshua Tan
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; .,Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, United Kingdom.,Current affiliation: National Institute of Allergy and Infectious Diseases, Rockville, Maryland 20852, USA
| | - Luca Piccoli
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland;
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland; .,VIR Biotechnology, San Francisco, California 94158, USA
| |
Collapse
|
33
|
Kapulu MC, Njuguna P, Hamaluba MM. Controlled Human Malaria Infection in Semi-Immune Kenyan Adults (CHMI-SIKA): a study protocol to investigate in vivo Plasmodium falciparum malaria parasite growth in the context of pre-existing immunity. Wellcome Open Res 2018; 3:155. [PMID: 31803847 PMCID: PMC6871356 DOI: 10.12688/wellcomeopenres.14909.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 10/20/2023] Open
Abstract
Malaria remains a major public health burden despite approval for implementation of a partially effective pre-erythrocytic malaria vaccine. There is an urgent need to accelerate development of a more effective multi-stage vaccine. Adults in malaria endemic areas may have substantial immunity provided by responses to the blood stages of malaria parasites, but field trials conducted on several blood-stage vaccines have not shown high levels of efficacy. We will use controlled human malaria infection (CHMI) studies with malaria-exposed volunteers to identify correlations between immune responses and parasite growth rates in vivo. Immune responses more strongly associated with control of parasite growth should be prioritized to accelerate malaria vaccine development. We aim to recruit up to 200 healthy adult volunteers from areas of differing malaria transmission in Kenya, and after confirming their health status through clinical examination and routine haematology and biochemistry, we will comprehensively characterize immunity to malaria using >100 blood-stage antigens. We will administer 3,200 aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (PfSPZ Challenge) by direct venous inoculation. Serial quantitative polymerase chain reaction to measure parasite growth rate in vivo will be undertaken. Clinical and laboratory monitoring will be undertaken to ensure volunteer safety. In addition, we will also explore the perceptions and experiences of volunteers and other stakeholders in participating in a malaria volunteer infection study. Serum, plasma, peripheral blood mononuclear cells and extracted DNA will be stored to allow a comprehensive assessment of adaptive and innate host immunity. We will use CHMI in semi-immune adult volunteers to relate parasite growth outcomes with antibody responses and other markers of host immunity. Registration: ClinicalTrials.gov identifier NCT02739763.
Collapse
Affiliation(s)
- Melissa C. Kapulu
- KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, UK
| | | | | | - CHMI-SIKA Study Team
- KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University Oxford, Oxford, UK
| |
Collapse
|
34
|
Foquet L, Schafer C, Minkah NK, Alanine DGW, Flannery EL, Steel RWJ, Sack BK, Camargo N, Fishbaugher M, Betz W, Nguyen T, Billman ZP, Wilson EM, Bial J, Murphy SC, Draper SJ, Mikolajczak SA, Kappe SHI. Plasmodium falciparum Liver Stage Infection and Transition to Stable Blood Stage Infection in Liver-Humanized and Blood-Humanized FRGN KO Mice Enables Testing of Blood Stage Inhibitory Antibodies (Reticulocyte-Binding Protein Homolog 5) In Vivo. Front Immunol 2018; 9:524. [PMID: 29593746 PMCID: PMC5861195 DOI: 10.3389/fimmu.2018.00524] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/28/2018] [Indexed: 11/18/2022] Open
Abstract
The invention of liver-humanized mouse models has made it possible to directly study the preerythrocytic stages of Plasmodium falciparum. In contrast, the current models to directly study blood stage infection in vivo are extremely limited. Humanization of the mouse blood stream is achievable by frequent injections of human red blood cells (hRBCs) and is currently the only system with which to study human malaria blood stage infections in a small animal model. Infections have been primarily achieved by direct injection of P. falciparum-infected RBCs but as such, this modality of infection does not model the natural route of infection by mosquito bite and lacks the transition of parasites from liver stage infection to blood stage infection. Including these life cycle transition points in a small animal model is of relevance for testing therapeutic interventions. To this end, we used FRGN KO mice that were engrafted with human hepatocytes and performed a blood exchange under immune modulation to engraft the animals with more than 50% hRBCs. These mice were infected by mosquito bite with sporozoite stages of a luciferase-expressing P. falciparum parasite, resulting in noninvasively measurable liver stage burden by in vivo bioluminescent imaging (IVIS) at days 5–7 postinfection. Transition to blood stage infection was observed by IVIS from day 8 onward and then blood stage parasitemia increased with a kinetic similar to that observed in controlled human malaria infection. To assess the utility of this model, we tested whether a monoclonal antibody targeting the erythrocyte invasion ligand reticulocyte-binding protein homolog 5 (with known growth inhibitory activity in vitro) was capable of blocking blood stage infection in vivo when parasites emerge from the liver and found it highly effective. Together, these results show that a combined liver-humanized and blood-humanized FRGN mouse model infected with luciferase-expressing P. falciparum will be a useful tool to study P. falciparum preerythrocytic and erythrocytic stages and enables the testing of interventions that target either one or both stages of parasite infection.
Collapse
Affiliation(s)
- Lander Foquet
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Carola Schafer
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Nana K Minkah
- Center for Infectious Disease Research, Seattle, WA, United States
| | | | - Erika L Flannery
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Ryan W J Steel
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Brandon K Sack
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Nelly Camargo
- Center for Infectious Disease Research, Seattle, WA, United States
| | | | - Will Betz
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Thao Nguyen
- Center for Infectious Disease Research, Seattle, WA, United States
| | - Zachary P Billman
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.,Department of Microbiology, University of Washington, Seattle, WA, United States
| | | | - John Bial
- Yecuris Corporation, Tualatin, OR, United States
| | - Sean C Murphy
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.,Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Stefan H I Kappe
- Center for Infectious Disease Research, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| |
Collapse
|
35
|
Good MF, Miller LH. Interpreting challenge data from early phase malaria blood stage vaccine trials. Expert Rev Vaccines 2018; 17:189-196. [PMID: 29382292 DOI: 10.1080/14760584.2018.1435278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION As the quest for an effective blood stage malaria vaccine continues, there is increasing reliance on the use of controlled human malaria infections (CHMI) in non-endemic settings to test vaccine efficacy at the earliest possible time. This is seen as a way to accelerate vaccine research and quickly eliminate candidates with poor efficacy. Areas covered: The data from these studies need to be carefully examined and interpreted in light of the very different roles that antibody and cellular immunity play in protection and within the context of the distinct clinical sensitivities of volunteers living in malaria-non-endemic countries compared to those living in endemic countries. With current strategies, it is likely that vaccines with protective immunological 'signatures' will be missed and potentially good candidates discarded. Expert commentary: Efficacy data from early phase vaccine trials in non-endemic countries should not be used to decide whether or not to proceed to vaccine trials in endemic countries.
Collapse
Affiliation(s)
- Michael F Good
- a Institute for Glycomics , Griffith University , Queensland , Australia.,b Department of Medical Microbiology and Immunology, University of Alberta , Edmonton , Canada
| | - Louis H Miller
- c Malaria Cell Biology Section, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
36
|
Merozoite Surface Protein 1 from Plasmodium falciparum Is a Major Target of Opsonizing Antibodies in Individuals with Acquired Immunity against Malaria. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00155-17. [PMID: 28877929 DOI: 10.1128/cvi.00155-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022]
Abstract
Naturally acquired immunity against malaria is largely mediated by serum antibodies controlling levels of blood-stage parasites. A limited understanding of the antigenic targets and functional mechanisms of protective antibodies has hampered the development of efficient malaria vaccines. Besides directly inhibiting the growth of Plasmodium parasites, antibodies can opsonize merozoites and recruit immune effector cells such as monocytes and neutrophils. Antibodies against the vaccine candidate merozoite surface protein 1 (MSP-1) are acquired during natural infections and have been associated with protection against malaria in several epidemiological studies. Here we analyzed serum antibodies from semi-immune individuals from Burkina Faso for their potential (i) to directly inhibit the growth of P. falciparum blood stages in vitro and (ii) to opsonize merozoites and to induce the antibody-dependent respiratory burst (ADRB) activity of neutrophils. While a few sera that directly inhibited the growth of P. falciparum blood stages were identified, immunoglobulin G (IgG) from all individuals clearly mediated the activation of neutrophils. The level of neutrophil activation correlated with levels of antibodies to MSP-1, and affinity-purified MSP-1-specific antibodies elicited ADRB activity. Furthermore, immunization of nonhuman primates with recombinant full-size MSP-1 induced antibodies that efficiently opsonized P. falciparum merozoites. Reversing the function by preincubation with recombinant antigens allowed us to quantify the contribution of MSP-1 to the antiparasitic effect of serum antibodies. Our data suggest that MSP-1, especially the partially conserved subunit MSP-183, is a major target of opsonizing antibodies acquired during natural exposure to malaria. Induction of opsonizing antibodies might be a crucial effector mechanism for MSP-1-based malaria vaccines.
Collapse
|
37
|
Tuju J, Kamuyu G, Murungi LM, Osier FHA. Vaccine candidate discovery for the next generation of malaria vaccines. Immunology 2017; 152:195-206. [PMID: 28646586 PMCID: PMC5588761 DOI: 10.1111/imm.12780] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022] Open
Abstract
Although epidemiological observations, IgG passive transfer studies and experimental infections in humans all support the feasibility of developing highly effective malaria vaccines, the precise antigens that induce protective immunity remain uncertain. Here, we review the methodologies applied to vaccine candidate discovery for Plasmodium falciparum malaria from the pre- to post-genomic era. Probing of genomic and cDNA libraries with antibodies of defined specificities or functional activity predominated the former, whereas reverse vaccinology encompassing high throughput in silico analyses of genomic, transcriptomic or proteomic parasite data sets is the mainstay of the latter. Antibody-guided vaccine design spanned both eras but currently benefits from technological advances facilitating high-throughput screening and downstream applications. We make the case that although we have exponentially increased our ability to identify numerous potential vaccine candidates in a relatively short space of time, a significant bottleneck remains in their validation and prioritization for evaluation in clinical trials. Longitudinal cohort studies provide supportive evidence but results are often conflicting between studies. Demonstration of antigen-specific antibody function is valuable but the relative importance of one mechanism over another with regards to protection remains undetermined. Animal models offer useful insights but may not accurately reflect human disease. Challenge studies in humans are preferable but prohibitively expensive. In the absence of reliable correlates of protection, suitable animal models or a better understanding of the mechanisms underlying protective immunity in humans, vaccine candidate discovery per se may not be sufficient to provide the paradigm shift necessary to develop the next generation of highly effective subunit malaria vaccines.
Collapse
Affiliation(s)
- James Tuju
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
- Department of BiochemistryPwani UniversityKilifiKenya
| | - Gathoni Kamuyu
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Linda M. Murungi
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
| | - Faith H. A. Osier
- KEMRI‐Wellcome Trust Research ProgrammeCentre for Geographic Medicine CoastKilifiKenya
- Centre for Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- Department of Biomedical SciencesPwani UniversityKilifiKenya
| |
Collapse
|
38
|
Tham WH, Beeson JG, Rayner JC. Plasmodium vivax vaccine research - we've only just begun. Int J Parasitol 2016; 47:111-118. [PMID: 27899329 DOI: 10.1016/j.ijpara.2016.09.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 10/25/2022]
Abstract
Plasmodium vivax parasites cause the majority of malaria cases outside Africa, and are increasingly being acknowledged as a cause of severe disease. The unique attributes of P. vivax biology, particularly the capacity of the dormant liver stage, the hypnozoite, to maintain blood-stage infections even in the absence of active transmission, make blood-stage vaccines particularly attractive for this species. However, P. vivax vaccine development remains resolutely in first gear, with only a single blood-stage candidate having been evaluated in any depth. Experience with Plasmodium falciparum suggests that a much broader search for new candidates and a deeper understanding of high priority targets will be required to make significant advances. This review discusses some of the particular challenges of P. vivax blood-stage vaccine development, highlighting both recent advances and key remaining barriers to overcome in order to move development forward.
Collapse
Affiliation(s)
- Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - James G Beeson
- Macfarlane Burnet Institute of Medical Research, 85 Commercial Road, Melbourne, Victoria 3004, Australia; Central Clinical School and Department of Microbiology, Monash University, Victoria, Australia
| | - Julian C Rayner
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
39
|
Murungi LM, Sondén K, Odera D, Oduor LB, Guleid F, Nkumama IN, Otiende M, Kangoye DT, Fegan G, Färnert A, Marsh K, Osier FHA. Cord blood IgG and the risk of severe Plasmodium falciparum malaria in the first year of life. Int J Parasitol 2016; 47:153-162. [PMID: 27890694 PMCID: PMC5297353 DOI: 10.1016/j.ijpara.2016.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 01/18/2023]
Abstract
Severe malaria episodes are rare during the first few months of life. The rate of decay of cord blood IgG is inversely proportional to the starting concentration. Antibody dependent respiratory burst mediated by cord IgG protects from severe malaria during the first 6 months of infancy.
Young infants are less susceptible to severe episodes of malaria but the targets and mechanisms of protection are not clear. Cord blood antibodies may play an important role in mediating protection but many studies have examined their association with the outcome of infection or non-severe malaria. Here, we investigated whether cord blood IgG to Plasmodium falciparum merozoite antigens and antibody-mediated effector functions were associated with reduced odds of developing severe malaria at different time points during the first year of life. We conducted a case-control study of well-defined severe falciparum malaria nested within a longitudinal birth cohort of Kenyan children. We measured cord blood total IgG levels against five recombinant merozoite antigens and antibody function in the growth inhibition activity and neutrophil antibody-dependent respiratory burst assays. We also assessed the decay of maternal antibodies during the first 6 months of life. The mean antibody half-life range was 2.51 months (95% confidence interval (CI): 2.19–2.92) to 4.91 months (95% CI: 4.47–6.07). The rate of decline of maternal antibodies was inversely proportional to the starting concentration. The functional assay of antibody-dependent respiratory burst activity predicted significantly reduced odds of developing severe malaria during the first 6 months of life (Odds ratio (OR) 0.07, 95% CI: 0.007–0.74, P = 0.007). Identification of the targets of antibodies mediating antibody-dependent respiratory burst activity could contribute to the development of malaria vaccines that protect against severe episodes of malaria in early infancy.
Collapse
Affiliation(s)
- Linda M Murungi
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya.
| | - Klara Sondén
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Dennis Odera
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Loureen B Oduor
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Fatuma Guleid
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Irene N Nkumama
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Mark Otiende
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - David T Kangoye
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya; Centre National de Recherche et de Formation sur le Paludisme (CNRFP), 01 BP 2208, Ouagadougou 01, Burkina Faso
| | - Greg Fegan
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| | - Anna Färnert
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, SE-171 76 Stockholm, Sweden; Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kevin Marsh
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya; African Academy of Sciences, P.O. Box 24916-00502, Nairobi, Kenya; Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Faith H A Osier
- Kenya Medical Research Institute, Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya
| |
Collapse
|
40
|
Ntege EH, Arisue N, Ito D, Hasegawa T, Palacpac NM, Egwang TG, Horii T, Takashima E, Tsuboi T. Identification of Plasmodium falciparum reticulocyte binding protein homologue 5-interacting protein, PfRipr, as a highly conserved blood-stage malaria vaccine candidate. Vaccine 2016; 34:5612-5622. [DOI: 10.1016/j.vaccine.2016.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/10/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
|
41
|
Hodgson SH, Llewellyn D, Silk SE, Milne KH, Elias SC, Miura K, Kamuyu G, Juma EA, Magiri C, Muia A, Jin J, Spencer AJ, Longley RJ, Mercier T, Decosterd L, Long CA, Osier FH, Hoffman SL, Ogutu B, Hill AVS, Marsh K, Draper SJ. Changes in Serological Immunology Measures in UK and Kenyan Adults Post-controlled Human Malaria Infection. Front Microbiol 2016; 7:1604. [PMID: 27790201 PMCID: PMC5061779 DOI: 10.3389/fmicb.2016.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/26/2016] [Indexed: 11/15/2022] Open
Abstract
Background: The timing of infection is closely determined in controlled human malaria infection (CHMI) studies, and as such they provide a unique opportunity to dissect changes in immunological responses before and after a single infection. The first Kenyan Challenge Study (KCS) (Pan African Clinical Trial Registry: PACTR20121100033272) was performed in 2013 with the aim of establishing the CHMI model in Kenya. This study used aseptic, cryopreserved, attenuated Plasmodium falciparum sporozoites administered by needle and syringe (PfSPZ Challenge) and was the first to evaluate parasite dynamics post-CHMI in individuals with varying degrees of prior exposure to malaria. Methods: We describe detailed serological and functional immunological responses pre- and post-CHMI for participants in the KCS and compare these with those from malaria-naïve UK volunteers who also underwent CHMI (VAC049) (ClinicalTrials.gov NCT01465048) using PfSPZ Challenge. We assessed antibody responses to three key blood-stage merozoite antigens [merozoite surface protein 1 (MSP1), apical membrane protein 1 (AMA1), and reticulocyte-binding protein homolog 5 (RH5)] and functional activity using two candidate measures of anti-merozoite immunity; the growth inhibition activity (GIA) assay and the antibody-dependent respiratory burst activity (ADRB) assay. Results:Clear serological differences were observed pre- and post-CHMI by ELISA between malaria-naïve UK volunteers in VAC049, and Kenyan volunteers who had prior malaria exposure. Antibodies to AMA1 and schizont extract correlated with parasite multiplication rate (PMR) post-CHMI in KCS. Serum from volunteer 110 in KCS, who demonstrated a dramatically reduced PMR in vivo, had no in vitro GIA prior to CHMI but the highest level of ADRB activity. A significant difference in ADRB activity was seen between KCS volunteers with minimal and definite prior exposure to malaria and significant increases were seen in ADRB activity post-CHMI in Kenyan volunteers. Quinine and atovaquone/proguanil, previously assumed to be removed by IgG purification, were identified as likely giving rise to aberrantly high in vitro GIA results. Conclusions: The ADRB activity assay is a promising functional assay that warrants further investigation as a measure of prior exposure to malaria and predictor of control of parasite growth. The CHMI model can be used to evaluate potential measures of naturally-acquired immunity to malaria.
Collapse
Affiliation(s)
| | | | - Sarah E Silk
- The Jenner Institute, University of Oxford Oxford, UK
| | | | - Sean C Elias
- The Jenner Institute, University of Oxford Oxford, UK
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIH-National Institute of Allergy and Infectious Diseases Rockville, MD, USA
| | - Gathoni Kamuyu
- Centre for Geographical Medical Research (Coast), Kenya Medical Research Institute-Wellcome Trust Kilifi, Kenya
| | - Elizabeth A Juma
- Centre for Clinical Research, Kenya Medical Research InstituteNairobi, Kenya; Centre for Research in Therapeutic Sciences, Strathmore UniversityNairobi, Kenya
| | - Charles Magiri
- Centre for Clinical Research, Kenya Medical Research Institute Nairobi, Kenya
| | - Alfred Muia
- Centre for Clinical Research, Kenya Medical Research Institute Nairobi, Kenya
| | - Jing Jin
- The Jenner Institute, University of Oxford Oxford, UK
| | | | | | - Thomas Mercier
- Division of Clinical Pharmacology, Hôpital Beaumont, Université de Lausanne Lausanne, Switzerland
| | - Laurent Decosterd
- Division of Clinical Pharmacology, Hôpital Beaumont, Université de Lausanne Lausanne, Switzerland
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIH-National Institute of Allergy and Infectious Diseases Rockville, MD, USA
| | - Faith H Osier
- Centre for Geographical Medical Research (Coast), Kenya Medical Research Institute-Wellcome Trust Kilifi, Kenya
| | | | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research InstituteNairobi, Kenya; Centre for Research in Therapeutic Sciences, Strathmore UniversityNairobi, Kenya
| | | | - Kevin Marsh
- Centre for Geographical Medical Research (Coast), Kenya Medical Research Institute-Wellcome TrustKilifi, Kenya; Department of Tropical Medicine, University of OxfordOxford, UK
| | | |
Collapse
|
42
|
Teo A, Feng G, Brown GV, Beeson JG, Rogerson SJ. Functional Antibodies and Protection against Blood-stage Malaria. Trends Parasitol 2016; 32:887-898. [PMID: 27546781 DOI: 10.1016/j.pt.2016.07.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/09/2016] [Accepted: 07/14/2016] [Indexed: 01/06/2023]
Abstract
Numerous efforts to understand the functional roles of antibodies demonstrated that they can protect against malaria. However, it is unclear which antibody responses are the best correlates of immunity, and which antibody functions are most important in protection from disease. Understanding the role of antibodies in protection against malaria is crucial for antimalarial vaccine design. In this review, the specific functional properties of naturally acquired and vaccine-induced antibodies that correlate to protection from the blood stages of Plasmodium falciparum malaria are re-examined and the gaps in knowledge related to antibody function in malarial immunity are highlighted.
Collapse
Affiliation(s)
- Andrew Teo
- Department of Medicine, University of Melbourne (Royal Melbourne Hospital), Parkville, Australia; Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Australia
| | - Graham V Brown
- Department of Medicine, University of Melbourne (Royal Melbourne Hospital), Parkville, Australia; Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Victorian Infectious Diseases Service, Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James G Beeson
- Department of Medicine, University of Melbourne (Royal Melbourne Hospital), Parkville, Australia; Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Australia; Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Stephen J Rogerson
- Department of Medicine, University of Melbourne (Royal Melbourne Hospital), Parkville, Australia; Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia; Victorian Infectious Diseases Service, Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
43
|
Tanner R, O'Shea MK, Fletcher HA, McShane H. In vitro mycobacterial growth inhibition assays: A tool for the assessment of protective immunity and evaluation of tuberculosis vaccine efficacy. Vaccine 2016; 34:4656-4665. [PMID: 27527814 DOI: 10.1016/j.vaccine.2016.07.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/07/2016] [Accepted: 07/29/2016] [Indexed: 01/28/2023]
Abstract
Tuberculosis (TB) continues to pose a serious global health threat, and the current vaccine, BCG, has variable efficacy. However, the development of a more effective vaccine is severely hampered by the lack of an immune correlate of protection. Candidate vaccines are currently evaluated using preclinical animal models, but experiments are long and costly and it is unclear whether the outcomes are predictive of efficacy in humans. Unlike measurements of single immunological parameters, mycobacterial growth inhibition assays (MGIAs) represent an unbiased functional approach which takes into account a range of immune mechanisms and their complex interactions. Such a controlled system offers the potential to evaluate vaccine efficacy and study mediators of protective immunity against Mycobacterium tuberculosis (M.tb). This review discusses the underlying principles and relative merits and limitations of the different published MGIAs, their demonstrated abilities to measure mycobacterial growth inhibition and vaccine efficacy, and what has been learned about the immune mechanisms involved.
Collapse
Affiliation(s)
- Rachel Tanner
- The Jenner Institute, University of Oxford, Oxford, UK.
| | | | | | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Peng K, Goh YS, Siau A, Franetich JF, Chia WN, Ong ASM, Malleret B, Wu YY, Snounou G, Hermsen CC, Adams JH, Mazier D, Preiser PR, Sauerwein RW, Grüner AC, Rénia L. Breadth of humoral response and antigenic targets of sporozoite-inhibitory antibodies associated with sterile protection induced by controlled human malaria infection. Cell Microbiol 2016; 18:1739-1750. [PMID: 27130708 DOI: 10.1111/cmi.12608] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 11/28/2022]
Abstract
The development of an effective malaria vaccine has remained elusive even until today. This is because of our incomplete understanding of the immune mechanisms that confer and/or correlate with protection. Human volunteers have been protected experimentally from a subsequent challenge by immunization with Plasmodium falciparum sporozoites under drug cover. Here, we demonstrate that sera from the protected individuals contain neutralizing antibodies against the pre-erythrocytic stage. To identify the antigen(s) recognized by these antibodies, a newly developed library of P. falciparum antigens was screened with the neutralizing sera. Antibodies from protected individuals recognized a broad antigenic repertoire of which three antigens, PfMAEBL, PfTRAP and PfSEA1 were recognized by most protected individuals. As a proof of principle, we demonstrated that anti-PfMAEBL antibodies block liver stage development in human hepatocytes. Thus, these antigens identified are promising targets for vaccine development against malaria.
Collapse
Affiliation(s)
- Kaitian Peng
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Yun Shan Goh
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Anthony Siau
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jean-François Franetich
- Centre d'Immunologie et de Maladies Infectieuses (CIMI) - Paris, Institut National de la Santé et de la Recherche Médicale (Inserm) U1135 - Centre National de la Recherche Scientifique (CNRS) ERL 8255, F-75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UPMC UMRS CR7, F-75005, Paris, France
| | - Wan Ni Chia
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alice Soh Meoy Ong
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Benoit Malleret
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Ying Ying Wu
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Georges Snounou
- Centre d'Immunologie et de Maladies Infectieuses (CIMI) - Paris, Institut National de la Santé et de la Recherche Médicale (Inserm) U1135 - Centre National de la Recherche Scientifique (CNRS) ERL 8255, F-75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UPMC UMRS CR7, F-75005, Paris, France
| | - Cornelus C Hermsen
- Department of Medical Microbiology, Radboud University, Nijmegen Medical Center, Nijmegen, Netherlands
| | - John H Adams
- Department of Global Health, College of Public Health, University of South Florida, Tampa, USA
| | - Dominique Mazier
- Centre d'Immunologie et de Maladies Infectieuses (CIMI) - Paris, Institut National de la Santé et de la Recherche Médicale (Inserm) U1135 - Centre National de la Recherche Scientifique (CNRS) ERL 8255, F-75013, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UPMC UMRS CR7, F-75005, Paris, France.,AP HP, Centre Hospitalo-Universitaire Pitié-Salpêtrière, F-75013, Paris, France
| | - Peter R Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Robert W Sauerwein
- Department of Medical Microbiology, Radboud University, Nijmegen Medical Center, Nijmegen, Netherlands
| | - Anne-Charlotte Grüner
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Laurent Rénia
- Laboratory of Pathogen Immunobiology, Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
45
|
Murungi LM, Sondén K, Llewellyn D, Rono J, Guleid F, Williams AR, Ogada E, Thairu A, Färnert A, Marsh K, Draper SJ, Osier FHA. Targets and Mechanisms Associated with Protection from Severe Plasmodium falciparum Malaria in Kenyan Children. Infect Immun 2016; 84:950-963. [PMID: 26787721 PMCID: PMC4807498 DOI: 10.1128/iai.01120-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/14/2016] [Indexed: 01/23/2023] Open
Abstract
Severe malaria (SM) is a life-threatening complication of infection with Plasmodium falciparum Epidemiological observations have long indicated that immunity against SM is acquired relatively rapidly, but prospective studies to investigate its immunological basis are logistically challenging and have rarely been undertaken. We investigated the merozoite targets and antibody-mediated mechanisms associated with protection against SM in Kenyan children aged 0 to 2 years. We designed a unique prospective matched case-control study of well-characterized SM clinical phenotypes nested within a longitudinal birth cohort of children (n= 5,949) monitored over the first 2 years of life. We quantified immunological parameters in sera collected before the SM event in cases and their individually matched controls to evaluate the prospective odds of developing SM in the first 2 years of life. Anti-AMA1 antibodies were associated with a significant reduction in the odds of developing SM (odds ratio [OR] = 0.37; 95% confidence interval [CI] = 0.15 to 0.90; P= 0.029) after adjustment for responses to all other merozoite antigens tested, while those against MSP-2, MSP-3, Plasmodium falciparum Rh2 [PfRh2], MSP-119, and the infected red blood cell surface antigens were not. The combined ability of total IgG to inhibit parasite growth and mediate the release of reactive oxygen species from neutrophils was associated with a marked reduction in the odds of developing SM (OR = 0.07; 95% CI = 0.006 to 0.82;P= 0.03). Assays of these two functional mechanisms were poorly correlated (Spearman rank correlation coefficient [rs] = 0.12;P= 0.07). Our data provide epidemiological evidence that multiple antibody-dependent mechanisms contribute to protective immunity via distinct targets whose identification could accelerate the development of vaccines to protect against SM.
Collapse
Affiliation(s)
- Linda M Murungi
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | - Klara Sondén
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - David Llewellyn
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Josea Rono
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | - Fatuma Guleid
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | | | - Edna Ogada
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | - Amos Thairu
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| | - Anna Färnert
- Unit of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| | - Kevin Marsh
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Faith H A Osier
- KEMRI Wellcome Trust Research Programme, Centre for Geographical Medicine Research-Coast, Kilifi, Kenya
| |
Collapse
|
46
|
Ord RL, Rodriguez M, Lobo CA. Malaria invasion ligand RH5 and its prime candidacy in blood-stage malaria vaccine design. Hum Vaccin Immunother 2016; 11:1465-73. [PMID: 25844685 DOI: 10.1080/21645515.2015.1026496] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
With drug resistance to available therapeutics continuing to develop against Plasmodium falciparum malaria, the development of an effective vaccine candidate remains a major research goal. Successful interruption of invasion of parasites into erythrocytes during the blood stage of infection will prevent the severe clinical symptoms and complications associated with malaria. Previously studied blood stage antigens have highlighted the hurdles that are inherent to this life-cycle stage, namely that highly immunogenic antigens are also globally diverse, resulting in protection only against the vaccine strain, or that naturally acquired immunity to blood stage antigens do not always correlate with actual protection. The blood stage antigen reticulocyte binding homolog RH5 is essential for parasite viability, has globally limited diversity, and is associated with protection from disease. Here we summarize available information on this invasion ligand and recent findings that highlight its candidacy for inclusion in a blood-stage malaria vaccine.
Collapse
Affiliation(s)
- Rosalynn L Ord
- a Blood-Borne Parasites; Lindsley Kimball Research Institute; New York Blood Center ; New York , NY , USA
| | | | | |
Collapse
|
47
|
Abstract
There have been significant decreases in malaria mortality and morbidity in the last 10-15 years, and the most advanced pre-erythrocytic malaria vaccine, RTS,S, received a positive opinion from European regulators in July 2015. However, no blood-stage vaccine has reached a phase III trial. The first part of this review summarizes the pros and cons of various assays and models that have been and will be used to predict the efficacy of blood-stage vaccines. In the second part, blood-stage vaccine candidates that showed some efficacy in human clinical trials or controlled human malaria infection models are discussed. Then, candidates under clinical investigation are described in the third part, and other novel candidates and strategies are reviewed in the last part.
Collapse
Affiliation(s)
- Kazutoyo Miura
- a Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Rockville , MD , USA
| |
Collapse
|
48
|
Abstract
With increasing malaria control and goals of malaria elimination, many endemic areas are transitioning from high-to-low-to-no malaria transmission. Reductions in transmission will impact on the development of naturally acquired immunity to malaria, which develops after repeated exposure to Plasmodium spp. However, it is currently unclear how declining transmission and malaria exposure will affect the development and maintenance of naturally acquired immunity. Here we review the key processes which underpin this knowledge; the amount of Plasmodium spp. exposure required to generate effective immune responses, the longevity of antibody responses and the ability to mount an effective response upon re-exposure through memory responses. Lastly we identify research priorities which will increase our understanding of how changing transmission will impact on malarial immunity.
Collapse
|
49
|
Douglas AD, Baldeviano GC, Lucas CM, Lugo-Roman LA, Crosnier C, Bartholdson SJ, Diouf A, Miura K, Lambert LE, Ventocilla JA, Leiva KP, Milne KH, Illingworth JJ, Spencer AJ, Hjerrild KA, Alanine DGW, Turner AV, Moorhead JT, Edgel KA, Wu Y, Long CA, Wright GJ, Lescano AG, Draper SJ. A PfRH5-based vaccine is efficacious against heterologous strain blood-stage Plasmodium falciparum infection in aotus monkeys. Cell Host Microbe 2015; 17:130-9. [PMID: 25590760 PMCID: PMC4297294 DOI: 10.1016/j.chom.2014.11.017] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 09/11/2014] [Accepted: 11/13/2014] [Indexed: 12/22/2022]
Abstract
Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans. Vaccines based on the P. falciparum merozoite antigen PfRH5 were tested in Aotus monkeys PfRH5-based vaccines afforded protection against heterologous strains of P. falciparum Protection correlated with anti-PfRH5 IgG concentration and in vivo neutralization
Collapse
Affiliation(s)
| | | | - Carmen M Lucas
- US Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | | | | | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Rockville, MD 20852, USA
| | | | - Karina P Leiva
- US Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | | | | | | | | | | | | | | | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Rockville, MD 20852, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | | | | | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
50
|
Viebig NK, D'Alessio F, Draper SJ, Sim BKL, Mordmüller B, Bowyer PW, Luty AJF, Jungbluth S, Chitnis CE, Hill AVS, Kremsner P, Craig AG, Kocken CHM, Leroy O. Workshop report: Malaria vaccine development in Europe--preparing for the future. Vaccine 2015; 33:6137-44. [PMID: 26431986 DOI: 10.1016/j.vaccine.2015.09.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 10/23/2022]
Abstract
The deployment of a safe and effective malaria vaccine will be an important tool for the control of malaria and the reduction in malaria deaths. With the launch of the 2030 Malaria Vaccine Technology Roadmap, the malaria community has updated the goals and priorities for the development of such a vaccine and is now paving the way for a second phase of malaria vaccine development. During a workshop in Brussels in November 2014, hosted by the European Vaccine Initiative, key players from the European, North American and African malaria vaccine community discussed European strategies for future malaria vaccine development in the global context. The recommendations of the European malaria community should guide researchers, policy makers and funders of global health research and development in fulfilling the ambitious goals set in the updated Malaria Vaccine Technology Roadmap.
Collapse
Affiliation(s)
- Nicola K Viebig
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
| | - Flavia D'Alessio
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Simon J Draper
- The Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD 20850, USA
| | - Benjamin Mordmüller
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, B.P. 118 Lambaréné, Gabon
| | - Paul W Bowyer
- The National Institute for Biological Standards and Control (NIBSC), Blanche Lane, South Mimms, Potters Bar, Hertfordshire, EN6 3QG, UK
| | - Adrian J F Luty
- IRD MERIT UMR 216, 75006 Paris, France; COMUE Sorbonne Paris Cité, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, 75270 Paris, France
| | - Stefan Jungbluth
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Chetan E Chitnis
- Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford , Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Peter Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Wilhelmstraße 27, 72074 Tübingen, Germany; Centre de Recherches Médicales de Lambaréné, B.P. 118 Lambaréné, Gabon
| | - Alister G Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Clemens H M Kocken
- Biomedical Primate Research Centre, Department of Parasitology, Lange Kleiweg 161, 2288 GJ Rijswijk, The Netherlands
| | - Odile Leroy
- European Vaccine Initiative, UniversitätsKlinikum Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|