1
|
|
Benyair R, Panapakkam Giridharan SS, Rivero-ríos P, Hasegawa J, Bristow E, Eskelinen E, Shmueli MD, Fishbain-yoskovitz V, Merbl Y, Sharkey LM, Paulson HL, Hanson PI, Patnaik S, Al-ramahi I, Botas J, Marugan J, Weisman LS. Upregulation of the ESCRT pathway and multivesicular bodies accelerates degradation of proteins associated with neurodegeneration. Autophagy Reports 2023;2. [DOI: 10.1080/27694127.2023.2166722] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/24/2023]
|
2
|
|
Odate A, Kirrander A, Weber PM, Minitti MP. Brighter, faster, stronger: ultrafast scattering of free molecules. Adv Phys X 2023;8. [DOI: 10.1080/23746149.2022.2126796] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/29/2022]
|
3
|
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Lopes Alberto Duque T, He CY, Heussler V, Le Roch KG, Li F, Perrone Bezerra de Menezes J, Menna-barreto RFS, Mottram JC, Schmuckli-maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? Autophagy Reports 2023;2. [DOI: 10.1080/27694127.2022.2149211] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/12/2023]
|
4
|
|
Park MG, Kim SY, Lee CJ. DMSO-tolerant ornithine decarboxylase (ODC) tandem assay optimised for high-throughput screening. J Enzyme Inhib Med Chem 2023;38:309-318. [DOI: 10.1080/14756366.2022.2150186] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/03/2022] Open
|
5
|
|
Zhang H, Qin W, Romero H, Leonhardt H, Cardoso MC. Heterochromatin organization and phase separation. Nucleus 2023;14:2159142. [PMID: 36710442 DOI: 10.1080/19491034.2022.2159142] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/31/2023] Open
Abstract
The eukaryotic nucleus displays a variety of membraneless compartments with distinct biomolecular composition and specific cellular activities. Emerging evidence indicates that protein-based liquid-liquid phase separation (LLPS) plays an essential role in the formation and dynamic regulation of heterochromatin compartmentalization. This feature is especially conspicuous at the pericentric heterochromatin domains. In this review, we will describe our understanding of heterochromatin organization and LLPS. In addition, we will highlight the increasing importance of multivalent weak homo- and heteromolecular interactions in LLPS-mediated heterochromatin compartmentalization in the complex environment inside living cells.
Collapse
|
6
|
|
Keuenhof KS, Kohler V, Broeskamp F, Panagaki D, Speese SD, Büttner S, Höög JL. Nuclear envelope budding and its cellular functions. Nucleus 2023;14:2178184. [PMID: 36814098 DOI: 10.1080/19491034.2023.2178184] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/24/2023] Open
Abstract
The nuclear pore complex (NPC) has long been assumed to be the sole route across the nuclear envelope, and under normal homeostatic conditions it is indeed the main mechanism of nucleo-cytoplasmic transport. However, it has also been known that e.g. herpesviruses cross the nuclear envelope utilizing a pathway entitled nuclear egress or envelopment/de-envelopment. Despite this, a thread of observations suggests that mechanisms similar to viral egress may be transiently used also in healthy cells. It has since been proposed that mechanisms like nuclear envelope budding (NEB) can facilitate the transport of RNA granules, aggregated proteins, inner nuclear membrane proteins, and mis-assembled NPCs. Herein, we will summarize the known roles of NEB as a physiological and intrinsic cellular feature and highlight the many unanswered questions surrounding these intriguing nuclear events.
Collapse
|
7
|
|
Tang Y. Plant nuclear envelope as a hub connecting genome organization with regulation of gene expression. Nucleus 2023;14:2178201. [PMID: 36794966 DOI: 10.1080/19491034.2023.2178201] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/17/2023] Open
Abstract
Eukaryotic cells organize their genome within the nucleus with a double-layered membrane structure termed the nuclear envelope (NE) as the physical barrier. The NE not only shields the nuclear genome but also spatially separates transcription from translation. Proteins of the NE including nucleoskeleton proteins, inner nuclear membrane proteins, and nuclear pore complexes have been implicated in interacting with underlying genome and chromatin regulators to establish a higher-order chromatin architecture. Here, I summarize recent advances in the knowledge of NE proteins that are involved in chromatin organization, gene regulation, and coordination of transcription and mRNA export. These studies support an emerging view of plant NE as a central hub that contributes to chromatin organization and gene expression in response to various cellular and environmental cues.
Collapse
|
8
|
|
Wang TY, Meng FD, Sang GJ, Zhang HL, Tian ZJ, Zheng H, Cai XH, Tang YD. A novel viral vaccine platform based on engineered transfer RNA. Emerg Microbes Infect 2023;12:2157339. [PMID: 36482724 DOI: 10.1080/22221751.2022.2157339] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/14/2022]
Abstract
In recent years, an increasing number of emerging and remerging virus outbreaks have occurred and the rapid development of vaccines against these viruses has been crucial. Controlling the replication of premature termination codon (PTC)-containing viruses is a promising approach to generate live but replication-defective viruses that can be used for potent vaccines. Here, we used anticodon-engineered transfer RNAs (ACE-tRNAs) as powerful precision switches to control the replication of PTC-containing viruses. We showed that ACE-tRNAs display higher potency of reading through PTCs than genetic code expansion (GCE) technology. Interestingly, ACE-tRNA has a site preference that may influence its read-through efficacy. We further attempted to use ACE-tRNAs as a novel viral vaccine platform. Using a human immunodeficiency virus type 1 (HIV-1) pseudotyped virus as an RNA virus model, we found that ACE-tRNAs display high potency for read-through viral PTCs and precisely control their production. Pseudorabies virus (PRV), a herpesvirus, was used as a DNA virus model. We found that ACE-tRNAs display high potency for reading through viral PTCs and precisely controlling PTC-containing virus replication. In addition, PTC-engineered PRV completely attenuated and lost virulence in mice in vivo, and immunization with PRV containing a PTC elicited a robust immune response and provided complete protection against wild-type PRV challenge. Overall, replication-controllable PTC-containing viruses based on ACE-tRNAs provide a new strategy to rapidly attenuate virus infection and prime robust immune responses. This technology can be used as a platform for rapidly developing viral vaccines in the future.
Collapse
|
9
|
|
Cascella R, Banchelli M, Abolghasem Ghadami S, Ami D, Gagliani MC, Bigi A, Staderini T, Tampellini D, Cortese K, Cecchi C, Natalello A, Adibi H, Matteini P, Chiti F. An in situ and in vitro investigation of cytoplasmic TDP-43 inclusions reveals the absence of a clear amyloid signature. Ann Med 2023;55:72-88. [PMID: 36495262 DOI: 10.1080/07853890.2022.2148734] [Cited by in Crossref: 1] [Cited by in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/13/2022] Open
Abstract
Introduction: Several neurodegenerative conditions are associated with a common histopathology within neurons of the central nervous system, consisting of the deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43). Such inclusions have variably been described as morphologically and molecularly ordered aggregates having amyloid properties, as filaments without the cross-β-structure and dye binding specific for amyloid, or as amorphous aggregates with no defined structure and fibrillar morphology.Aims and Methods: Here we have expressed human full-length TDP-43 in neuroblastoma x spinal cord 34 (NSC-34) cells to investigate the morphological, structural, and tinctorial properties of TDP-43 inclusions in situ. We have used last-generation amyloid diagnostic probes able to cross the cell membrane and detect amyloid in the cytoplasm and have adopted Raman and Fourier transform infrared microspectroscopies to study in situ the secondary structure of the TDP-43 protein in the inclusions. We have then used transmission electron microscopy to study the morphology of the TDP-43 inclusions.Results: The results show the absence of amyloid dye binding, the lack of an enrichment of cross-β structure in the inclusions, and of a fibrillar texture in the round inclusions. The aggregates formed in vitro from the purified protein under conditions in which it is initially native also lack all these characteristics, ruling out a clear amyloid-like signature.Conclusions: These findings indicate a low propensity of TDP-43 to form amyloid fibrils and even non-amyloid filaments, under conditions in which the protein is initially native and undergoes its typical nucleus-to-cell mislocalization. It cannot be excluded that filaments emerge on the long time scale from such inclusions, but the high propensity of the protein to form initially other types of inclusions appear to be an essential characteristic of TDP-43 proteinopathies.KEY MESSAGESCytoplasmic inclusions of TDP-43 formed in NSC-34 cells do not stain with amyloid-diagnostic dyes, are not enriched with cross-β structure, and do not show a fibrillar morphology.TDP-43 assemblies formed in vitro from pure TDP-43 do not have any hallmarks of amyloid.
Collapse
|
10
|
|
Liu J, Wang R, Luo N, Li Z, Mao H, Zhou Y. Mitochondrial DNA copy number in peripheral blood of IgA nephropathy: a cross-sectional study. Ren Fail 2023;45:2182133. [PMID: 36880600 DOI: 10.1080/0886022X.2023.2182133] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/08/2023] Open
Abstract
Mitochondrial DNA (mtDNA) copy number (CN) is a biomarker of mitochondrial function and has been reported associated with kidney disease. However, its association with IgA nephropathy (IgAN), the most common cause of glomerulonephritis (GN), has not been evaluated. We included 664 patients with biopsy-proven IgAN and measured mtDNA-CN in peripheral blood by multiplexed real-time quantitative polymerase chain reaction (RT-qPCR). We examined the associations between mtDNA-CN and clinical variables and found that patients with higher mtDNA-CN had higher estimated glomerular filtration rate (eGFR) (r = 0.1009, p = .0092) and lower serum creatinine (SCr), blood urea nitrogen (BUN), and uric acid (UA) (r=-0.1101, -0.1023, -0.07806, respectively, all p values <.05). In terms of pathological injury, mtDNA-CN was higher in patients with less mesangial hypercellularity (p = .0385, M0 vs. M1 score by Oxford classification). Multivariable logistic regression analyses also showed that mtDNA-CN was lower for patients with moderate to severe renal impairment (defined as eGFR < 60 mL/min/1.73 m2) vs. mild renal impairment, with the odds ratio of 0.757 (95% confidence interval: 0.579-0.990, p = .042). In conclusion, mtDNA-CN was correlated with better renal function and less pathological injury in patients with IgAN, proposing that systemic mitochondrial dysfunction may be involved in or reflect the development of IgAN.
Collapse
|
11
|
|
Liu J, Liu C, Chen H, Cen H, Yang H, Liu P, Liu F, Ma L, Chen Q, Wang L. Tongguan capsule for treating myocardial ischemia-reperfusion injury: integrating network pharmacology and mechanism study. Pharm Biol 2023;61:437-48. [PMID: 36789620 DOI: 10.1080/13880209.2023.2175877] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/16/2023] Open
Abstract
CONTEXT Although Tongguan capsule (TGC) is used in the treatment of coronary atherosclerotic disease, the exact mechanism remains unclear. OBJECTIVE Network pharmacology and experimental validation were applied to examine the mechanism of TGC for treating myocardial ischemia-reperfusion injury (MIRI). MATERIALS AND METHODS The components and candidate targets were searched based on various databases such as TCMSP, TCMID, BATMAN-TCM. The binding ability was determined by molecular docking. The ischemia-reperfusion (I/R) model was constructed by ligating the left anterior descending (LAD) coronary artery. APOE-/- mice were divided into three groups (n = 6): Sham group, I/R group, and TGC group (1 g/kg/d). To further verification, HCAEC cells were subjected to hypoxia-reoxygenation (H/R) to establish in vitro model. RESULTS The compounds, such as quercetin, luteolin, tanshinone IIA, kaempferol and bifendate, were obtained after screening. The affinity values of the components with GSK-3β, mTOR, Beclin-1, and LC3 were all <-5 kcal/mol. In vivo, TGC improved LVEF and FS, reducing infarct size. In vitro, Hoechst 33258 staining result showed TGC inhibited apoptosis. Compare with the H/R model, TGC treatment increased the levels of GSK-3β, LC3, and Beclin1, while decreasing the expression of mTOR and p62 (p < 0.05). DISCUSSION AND CONCLUSION The findings revealed that TGC exerted a cardioprotective effect by up regulating autophagy-related proteins through the mTOR pathway, which may be a therapeutic option for MIRI. However, there are still some limitations in this research. It is necessary to search more databases to obtain information and further demonstrated through randomized controlled trials for generalization.
Collapse
|
12
|
|
Gu Y, Feng X, Jin Y, Liu Y, Zeng L, Zhou D, Feng Y. Upregulation of miRNA-10a-5p promotes tumor progression in cervical cancer by suppressing UBE2I signaling. J OBSTET GYNAECOL 2023;43:2171283. [PMID: 36744815 DOI: 10.1080/01443615.2023.2171283] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/07/2023]
Abstract
Cervical cancer (CC) is a common malignant neoplasm in gynecology. There is increasing evidence to suggest that microRNAs (miRNAs) act as crucial regulators of CC. However, whether miR-10a-5p plays a role in CC is under investigation. The aim of this stuy was to assess the miR-10a-5p expression pattern in the development of CC and investigate its downstream target. MiR-10a-5p inhibition decreased CC cell proliferation and impaired CC cell invasion and migration but enhanced apoptosis. UBE2I was a direct target of miR-10a-5p. QRT-PCR results showed a down-regulation of UBE2I in CC cells, opposing miR-10a-5p. Besides, overexpression of miR-10a-5p down-regulated UBE2I. Functional rescue experiments further indicated the miR-10a-5p-UBE2I axis was linked to CC cell growth, apoptosis and metastasis. MiR-10a-5p upregulation promotes cervical cancer development by inhibiting UBE2I. These results also predict that miR-10a-5p may be a potential target for the clinical treatment of CC.IMPACT STATEMENTWhat is already known on this subject? As a widely researched cancer-related miRNA, the overexpression of miR-10a-5p has been verified in various cancers. It has been described in a meta-analysis report that there were 42 miRNAs up-regulated and 21 miRNAs down-regulated in different stages of cervical cancer tissue versus healthy tissue.What do the results of this study add? We verified that miR-10a-5p initiates and promotes tumor cell development by decreasing UBE2I abundance. This miR-10a-5p-mediated post-transcriptional regulation of UBE2I is involved in the tumorigenesis, invasion and migration of human cervical cancer.What are the implications of these findings for clinical practice and/or further research? These findings provide mechanistic insights into how miR-10a-5p regulates cervical cancer hyper-proliferation and metastasis, as well as a new target for clinical treatment. Nevertheless, whether miR-10a-5p/UBE2I axis can be regulated by non-invasive methods need further exploration, which will be the focus of our future research.
Collapse
|
13
|
|
Işık K, Soydan E. Purification and characterisation of glutathione reductase from scorpionfish (scorpaena porcus) and investigation of heavy metal ions inhibition. J Enzyme Inhib Med Chem 2023;38:2167078. [PMID: 36938699 DOI: 10.1080/14756366.2023.2167078] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/21/2023] Open
Abstract
In the current study, glutathione reductase was purified from Scorpion fish (Scorpaena porcus) liver tissue and the effects of heavy metal ions on the enzyme activity were determined. The purification process consisted of three stages; preparation of the homogenate, ammonium sulphate precipitation and affinity chromatography purification. At the end of these steps, the enzyme was purified 25.9-fold with a specific activity of 10.479 EU/mg and a yield of 28.3%. The optimum pH was found to be 6.5, optimum substrate concentration was 2 mM NADPH and optimum buffer was 300 mM KH2PO4. After purification, inhibition effects of Mn+2, Cd+2, Ni+2, and Cr3+, as heavy metal ions were investigated. IC50 values of the heavy metals were calculated as 2.4 µM, 30 µM, 135 µM and 206 µM, respectively.
Collapse
|
14
|
|
Pfeiffer P, Coates JR, Esqueda YM, Kennedy A, Getchell K, McLenon M, Kosa E, Agbas A. Exosomal TAR DNA binding protein 43 profile in canine model of amyotrophic lateral sclerosis: a preliminary study in developing blood-based biomarker for neurodegenerative diseases. Ann Med 2023;55:34-41. [PMID: 36495266 DOI: 10.1080/07853890.2022.2153162] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Blood-based biomarkers provide a crucial information in the progress of neurodegenerative diseases with a minimally invasive sampling method. Validated blood-based biomarker application in people with amyotrophic lateral sclerosis would derive numerous benefits. Canine degenerative myelopathy is a naturally occurring animal disease model to study the biology of human amyotrophic lateral sclerosis. Serum derived exosomes are potential carriers for cell-specific cargoes making them ideal venue to study biomarkers for a variety of diseases and biological processes. This study assessed the exosomal proteins that may be assigned as surrogate biomarker that may reflect biochemical changes in the central nervous system. METHODS Exosomes were isolated from canine serum using commercial exosome isolation reagents. Exosomes target proteins contents were analyzed by the Western blotting method. RESULTS The profiles of potential biomarker candidates in spinal cord homogenate and that of serum-derived exosomes were found elevated in dogs with degenerative myelopathy as compared to control subjects. CONCLUSIONS Serum-derived exosomal biomolecules can serve as surrogate biomarkers in neurodegenerative diseases.KEY MESSAGESA canine with degenerative myelopathy can serve as a model animal to study human amyotrophic lateral sclerosis.Serum-derived exosomes contain Transactive Response DNA Binding Protein 43 (TDP-43), a potential biomarker candidate.The levels of spinal cord TDP-43 proteins and that of serum-derived exosomes exhibited similar profiling. Therefore, serum derived exosomes may be used as a venue for establishing blood-based biomarkers for neurodegenerative diseases.
Collapse
|
15
|
|
Chen K, Yuan J, Sia Y, Chen Z. Mechanism of action of the SWI/SNF family complexes. Nucleus 2023;14:2165604. [PMID: 36633435 DOI: 10.1080/19491034.2023.2165604] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Figures] [Indexed: 01/13/2023] Open
|
16
|
|
Juusela A, Jung E, Gallo DM, Bosco M, Suksai M, Diaz-Primera R, Tarca AL, Than NG, Gotsch F, Romero R, Chaiworapongsa T. Maternal plasma syndecan-1: a biomarker for fetal growth restriction. J Matern Fetal Neonatal Med 2023;36:2150074. [PMID: 36597808 DOI: 10.1080/14767058.2022.2150074] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The identification of fetal growth disorders is an important clinical priority given that they increase the risk of perinatal morbidity and mortality as well as long-term diseases. A subset of small-for-gestational-age (SGA) infants are growth-restricted, and this condition is often attributed to placental insufficiency. Syndecan-1, a product of the degradation of the endothelial glycocalyx, has been proposed as a biomarker of endothelial damage in different pathologies. During pregnancy, a "specialized" form of the glycocalyx-the "syncytiotrophoblast glycocalyx"-covers the placental villi. The purpose of this study was to determine whether the concentration of maternal plasma syndecan-1 can be proposed as a biomarker for fetal growth restriction. STUDY DESIGN A cross-sectional study was designed to include women with normal pregnancy (n = 130) and pregnant women who delivered an SGA neonate (n = 50). Doppler velocimetry of the uterine and umbilical arteries was performed in women with an SGA fetus at the time of diagnosis. Venipuncture was performed within 48 h of Doppler velocimetry and plasma concentrations of syndecan-1 were determined by a specific and sensitive immunoassay. RESULTS (1) Plasma syndecan-1 concentration followed a nonlinear increase with gestational age in uncomplicated pregnancies (R2 = 0.27, p < .001); (2) women with a pregnancy complicated with an SGA fetus had a significantly lower mean plasma concentration of syndecan-1 than those with an appropriate-for-gestational-age fetus (p = .0001); (3) this difference can be attributed to fetal growth restriction, as the mean plasma syndecan-1 concentration was significantly lower only in the group of women with an SGA fetus who had abnormal umbilical and uterine artery Doppler velocimetry compared to controls (p = .00071; adjusted p = .0028). A trend toward lower syndecan-1 concentrations was also noted for SGA with abnormal uterine but normal umbilical artery Doppler velocimetry (p = .0505; adjusted p = .067); 4) among women with an SGA fetus, those with abnormal umbilical and uterine artery Doppler findings had a lower mean plasma syndecan-1 concentration than women with normal Doppler velocimetry (p = .02; adjusted p = .04); 5) an inverse relationship was found between the maternal plasma syndecan-1 concentration and the umbilical artery pulsatility index (r = -0.5; p = .003); and 6) a plasma syndecan-1 concentration ≤ 850 ng/mL had a positive likelihood ratio of 4.4 and a negative likelihood ratio of 0.24 for the identification of a mother with an SGA fetus who had abnormal umbilical artery Doppler velocimetry (area under the ROC curve 0.83; p < .001). CONCLUSION Low maternal plasma syndecan-1 may reflect placental diseases and this protein could be a biomarker for fetal growth restriction. However, as a sole biomarker for this condition, its accuracy is low.
Collapse
|
17
|
|
Hussey JW, Limpitikul WB, Dick IE. Calmodulin Mutations in Human Disease. Channels (Austin) 2023;17:2165278. [PMID: 36629534 DOI: 10.1080/19336950.2023.2165278] [Cited by in Crossref: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Indexed: 01/12/2023] Open
Abstract
Calcium ions (Ca2+) are the basis of a unique and potent array of cellular responses. Calmodulin (CaM) is a small but vital protein that is able to rapidly transmit information about changes in Ca2+ concentrations to its regulatory targets. CaM plays a critical role in cellular Ca2+ signaling, and interacts with a myriad of target proteins. Ca2+-dependent modulation by CaM is a major component of a diverse array of processes, ranging from gene expression in neurons to the shaping of the cardiac action potential in heart cells. Furthermore, the protein sequence of CaM is highly evolutionarily conserved, and identical CaM proteins are encoded by three independent genes (CALM1-3) in humans. Mutations within any of these three genes may lead to severe cardiac deficits including severe long QT syndrome (LQTS) and/or catecholaminergic polymorphic ventricular tachycardia (CPVT). Research into disease-associated CaM variants has identified several proteins modulated by CaM that are likely to underlie the pathogenesis of these calmodulinopathies, including the cardiac L-type Ca2+ channel (LTCC) CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 2 (RyR2). Here, we review the research that has been done to identify calmodulinopathic CaM mutations and evaluate the mechanisms underlying their role in disease.
Collapse
|
18
|
|
Kuang L, Li C. ΔNp63α-mediated epigenetic regulation in keratinocyte senescence. Epigenetics 2023;18:2173931. [PMID: 36760085 DOI: 10.1080/15592294.2023.2173931] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 02/11/2023] Open
Abstract
Keratinocyte senescence contributes to skin ageing and epidermal dysfunction. According to the existing knowledge, the transcription factor ΔNp63α plays pivotal roles in differentiation and proliferation of keratinocytes. It is traditionally accepted that ΔNp63α exerts its functions via binding to promoter regions to activate or repress gene transcription. However, accumulating evidence demonstrates that ΔNp63α can bind to elements away from promoter regions of its target genes, mediating epigenetic regulation. On the other hand, several epigenetic alterations, including DNA methylation, histone modification and variation, chromatin remodelling, as well as enhancer-promoter looping, are found to be related to cell senescence. To systematically elucidate how ΔNp63α affects keratinocyte senescence via epigenetic regulation, we comprehensively compiled the literatures on the roles of ΔNp63α in keratinocyte senescence, epigenetics in cellular senescence, and the relation between ΔNp63α-mediated epigenetic regulation and keratinocyte senescence. Based on the published data, we conclude that ΔNp63α mediates epigenetic regulation via multiple mechanisms: recruiting epigenetic enzymes to modify DNA or histones, coordinating chromatin remodelling complexes (CRCs) or regulating their expression, and mediating enhancer-promoter looping. Consequently, the expression of genes related to cell cycle is modulated, and proliferation of keratinocytes and renewal of stem cells are maintained, by ΔNp63α. During skin inflammaging, the decline of ΔNp63α may lead to epigenetic dysregulation, resultantly deteriorating keratinocyte senescence.
Collapse
|
19
|
|
El-Behairy MF, Abd-Allah WH, Khalifa MM, Nafie MS, Saleh MA, Abdel-Maksoud MS, Al-Warhi T, Eldehna WM, Al-Karmalawy AA. Design and synthesis of novel rigid dibenzo[b,f]azepines through ring closure technique as promising anticancer candidates against leukaemia and acting as selective topoisomerase II inhibitors and DNA intercalators. J Enzyme Inhib Med Chem 2023;38:2157825. [PMID: 36629421 DOI: 10.1080/14756366.2022.2157825] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/12/2023] Open
Abstract
In this research, two novel series of dibenzo[b,f]azepines (14 candidates) were designed and synthesised based on the rigidification principle and following the reported doxorubicin's pharmacophoric features. The anti-proliferative activity was evaluated at the NCI against a panel of 60 cancer cell lines. Further, the promising candidates (5a-g) were evaluated for their ability to inhibit topoisomerase II, where 5e was noticed to be the most active congener. Moreover, its cytotoxicity was evaluated against leukaemia SR cells. Also, 5e arrested the cell cycle at the G1 phase and increased the apoptosis ratio by 37.34%. Furthermore, in vivo studies of 5e showed the inhibition of tumour proliferation and the decrease in its volume. Histopathology and liver enzymes were examined as well. Besides, molecular docking, physicochemical, and pharmacokinetic properties were carried out. Finally, a SAR study was discussed to open the gate for further optimisation of the most promising candidate (5e).HighlightsTwo novel series of dibenzo[b,f]azepines were designed and synthesised based on the rigidification principle in drug design.The anti-proliferative activity was evaluated at the NCI against a panel of 60 cancer cell lines.5e was the most active anti-topo II congener (IC50 = 6.36 ± 0.36 µM).5e was evaluated against leukaemia SR cells and its cytotoxic effect was confirmed (IC50 = 13.05 ± 0.62 µM).In vivo studies of 5e significantly inhibited tumour proliferation by 62.7% and decreased tumour volume to 30.1 mm3 compared to doxorubicin treatment.
Collapse
|
20
|
|
Abouaitah K, Hassan HA, Ammar NM, Abou Baker DH, Higazy IM, Shaker OG, Elsayed AAA, Hassan AME. Novel delivery system with a dual–trigger release of savory essential oil by mesoporous silica nanospheres and its possible targets in leukemia cancer cells: in vitro study. Cancer Nanotechnol 2023;14:3. [DOI: 10.1186/s12645-022-00152-9] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/15/2023] Open
Abstract
Abstract
Introduction
Essential oils (EOs) are complex structures and possess several pharmacological effects. Nanomedicine offers a solution for their major limitations, including poor solubility, volatility, and non–controlled release, preventing their clinical use.
Methods
Here, we developed a novel delivery system by nanoformulations that were prepared by impregnating savory essential oil (SA) into mesoporous silica nanoparticles (MSNs). The nanoformulations were characterized and examined for their anticancer activities on cancer cells (HepG2 liver and HL60 leukemia cells) and MRC5 normal cells. We further tested the mechanisms of action and possible molecular targets against HL60 cells.
Results
The results demonstrated that SA was governed by nanoformulations under the dual–trigger release of pH/glutathione, and it typically fit the Korsmeyer–Peppas kinetic model. The nanoformulations enhanced the anticancer effect against HepG2 cells and HL60 cells compared to SA but were less cytotoxic to MRC5 normal cells and regulated various molecular pathways of apoptosis. Most importantly, new results were obtained on the genetic regulation principle through the high inhibition of long noncoding RNAs (HOTAIR, HULC, CCAT1, and H19) and matrix metalloproteinases (MMP–2 and MMP–9), providing a novel leukemia target.
Conclusions
These results suggest potential impacts for nanoformulations composed of SA with a sustained release pattern controlled by dual–trigger release of pH/GSH that enhanced anticancer cells. This approach may offer a new route for using EOs as new targets for cancers and open the door for deep preclinical investigations.
Collapse
|
21
|
|
Rykowski S, Gurda-Woźna D, Fedoruk-Wyszomirska A, Orlicka-Płocka M, Kowalczyk A, Stączek P, Denel-Bobrowska M, Biniek-Antosiak K, Rypniewski W, Wyszko E, Olejniczak AB. Carboranyl-1,8-naphthalimide intercalators induce lysosomal membrane permeabilization and ferroptosis in cancer cell lines. J Enzyme Inhib Med Chem 2023;38:2171028. [PMID: 36715272 DOI: 10.1080/14756366.2023.2171028] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Figures] [Indexed: 01/31/2023] Open
Abstract
The synthesis of carborane-1,8-naphthalimide conjugates and evaluation of their DNA-binding ability and anticancer activity were performed. A series of 4-carboranyl-3-nitro-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, were synthesised via amidation and reductive amination reactions, and their calf thymus DNA (ct-DNA)-binding properties were investigated using circular dichroism, UV-vis spectroscopy, and thermal denaturation. Results showed that conjugates 34-37 interacted very strongly with ct-DNA (ΔTm = 10.00-13.00 °C), indicating their ability to intercalate with DNA, but did not inhibit the activity of topoisomerase II. The conjugates inhibited the cell growth of the HepG2 cancer cell line in vitro. The same compounds caused the G2M phase arrest. Cell lines treated with these conjugates showed an increase in reactive oxygen species, glutathione, and Fe2+ levels, lipid peroxidation, and mitochondrial membrane potential relative to controls, indicating the involvement of ferroptosis. Furthermore, these conjugates caused lysosomal membrane permeabilization in HepG2 cells but not in MRC-5 cells.
Collapse
|
22
|
|
Kilwein MD, Johnson MR, Thomalla JM, Mahowald AP, Welte MA. Drosophila embryos spatially sort their nutrient stores to facilitate their utilization. Development 2023;150:dev201423. [PMID: 36805634 DOI: 10.1242/dev.201423] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/23/2023]
Abstract
Animal embryos are provided by their mothers with a diverse nutrient supply that is crucial for development. In Drosophila, the three most abundant nutrients (triglycerides, proteins and glycogen) are sequestered in distinct storage structures: lipid droplets (LDs), yolk vesicles (YVs) and glycogen granules (GGs). Using transmission electron microscopy as well as live and fixed sample fluorescence imaging, we find that all three storage structures are dispersed throughout the egg but are then spatially allocated to distinct tissues by gastrulation: LDs largely to the peripheral epithelium, YVs and GGs to the central yolk cell. To confound the embryo's ability to sort its nutrients, we employ Jabba and mauve mutants to generate LD-GG and LD-YV compound structures. In these mutants, LDs are mis-sorted to the yolk cell and their turnover is delayed. Our observations demonstrate dramatic spatial nutrient sorting in early embryos and provide the first evidence for its functional importance.
Collapse
|
23
|
|
Wang J, Zhang L, Xu C, Qin X, Liu S, Wen B, Ren H. KRT17 serves as an oncogene biomarker of poor survival in patients with hepatocellular carcinoma. Biomedical Technology 2023;3:18-25. [DOI: 10.1016/j.bmt.2022.12.002] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/23/2023]
|
24
|
|
Liao J, Li X, Fan Y. Prevention strategies of postoperative adhesion in soft tissues by applying biomaterials: Based on the mechanisms of occurrence and development of adhesions. Bioact Mater 2023;26:387-412. [DOI: 10.1016/j.bioactmat.2023.02.026] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/19/2023] Open
|
25
|
|
Zhao S, Zhang Q, Liu M, Du J, Wang T, Li Y, Zeng W. Application of stem cells in engineered vascular graft and vascularized organs. Semin Cell Dev Biol 2023;144:31-40. [PMID: 36411157 DOI: 10.1016/j.semcdb.2022.10.003] [Cited by in Crossref: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/19/2022]
Abstract
Recent studies report that stem cell therapies have been applied successfully to patients, This has increased anticipations that this regeneration strategy could be a potential method to treat a wide range of intractable diseases some day. Stem cells offer new prospects for the treatment of incurable diseases and for tissue regeneration and repairation because of their unique biological properties. Angiogenesis a key process in tissue regeneration and repairation. Vascularization of organs is one of the main challenges hindering the clinical application of engineered tissues. Efficient production of engineered vascular grafts and vascularized organs is of critical importance for regenerative medicine. In this review, we focus on the types of stem cells that are widely used in tissue engineering and regeneration, as well as their application of these stem cells in the construction of tissue-engineered vascular grafts and vascularization of tissue-engineered organs.
Collapse
|
26
|
|
Richards BJ, Slavin M, Oliveira AN, Sanfrancesco VC, Hood DA. Mitochondrial protein import and UPR(mt) in skeletal muscle remodeling and adaptation. Semin Cell Dev Biol 2023;143:28-36. [PMID: 35063351 DOI: 10.1016/j.semcdb.2022.01.002] [Cited by in Crossref: 3] [Cited by in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/03/2023]
Abstract
The biogenesis of mitochondria requires the coordinated expression of the nuclear and the mitochondrial genomes. However, the vast majority of gene products within the organelle are encoded in the nucleus, synthesized in the cytosol, and imported into mitochondria via the protein import machinery, which permit the entry of proteins to expand the mitochondrial network. Once inside, proteins undergo a maturation and folding process brought about by enzymes comprising the unfolded protein response (UPRmt). Protein import and UPRmt activity must be synchronized and matched with mtDNA-encoded subunit synthesis for proper assembly of electron transport chain complexes to avoid proteotoxicity. This review discusses the functions of the import and UPRmt systems in mammalian skeletal muscle, as well as how exercise alters the equilibrium of these pathways in a time-dependent manner, leading to a new steady state of mitochondrial content resulting in enhanced oxidative capacity and improved muscle health.
Collapse
|
27
|
|
Lei J, Zhang S, Ding W, Lv Y, Zhai H, Wei S, Ma P, Hu Y. Antifungal effects of trans-anethole, the main constituent of Illicium verum fruit volatiles, on Aspergillus flavus in stored wheat. Food Control 2023;149:109721. [DOI: 10.1016/j.foodcont.2023.109721] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/06/2023]
|
28
|
|
Jurcau A, Jurcau CM. Mitochondria in Huntington's disease: implications in pathogenesis and mitochondrial-targeted therapeutic strategies. Neural Regen Res 2023;18:1472-7. [PMID: 36571344 DOI: 10.4103/1673-5374.360289] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/19/2022] Open
Abstract
Huntington's disease is a genetic disease caused by expanded CAG repeats on exon 1 of the huntingtin gene located on chromosome 4. Compelling evidence implicates impaired mitochondrial energetics, altered mitochondrial biogenesis and quality control, disturbed mitochondrial trafficking, oxidative stress and mitochondrial calcium dyshomeostasis in the pathogenesis of the disorder. Unfortunately, conventional mitochondrial-targeted molecules, such as cysteamine, creatine, coenzyme Q10, or triheptanoin, yielded negative or inconclusive results. However, future therapeutic strategies, aiming to restore mitochondrial biogenesis, improving the fission/fusion balance, and improving mitochondrial trafficking, could prove useful tools in improving the phenotype of Huntington's disease and, used in combination with genome-editing methods, could lead to a cure for the disease.
Collapse
|
29
|
|
Yang F, Chen WZ, Jiang SS, Wang XH, Xu RS. A candidate protective factor in amyotrophic lateral sclerosis: heterogenous nuclear ribonucleoprotein G. Neural Regen Res 2023;18:1527-34. [PMID: 36571358 DOI: 10.4103/1673-5374.357916] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/19/2022] Open
Abstract
Heterogenous nuclear ribonucleoprotein G is down-regulated in the spinal cord of the Tg(SOD1*G93A)1Gur (TG) amyotrophic lateral sclerosis mouse model. However, most studies have only examined heterogenous nuclear ribonucleoprotein G expression in the amyotrophic lateral sclerosis model and heterogenous nuclear ribonucleoprotein G effects in amyotrophic lateral sclerosis pathogenesis such as in apoptosis are unknown. In this study, we studied the potential mechanism of heterogenous nuclear ribonucleoprotein G in neuronal death in the spinal cord of TG and wild-type mice and examined the mechanism by which heterogenous nuclear ribonucleoprotein G induces apoptosis. Heterogenous nuclear ribonucleoprotein G in spinal cord was analyzed using immunohistochemistry and western blotting, and cell proliferation and proteins (TAR DNA binding protein 43, superoxide dismutase 1, and Bax) were detected by the Cell Counting Kit-8 and western blot analysis in heterogenous nuclear ribonucleoprotein G siRNA-transfected PC12 cells. We analyzed heterogenous nuclear ribonucleoprotein G distribution in spinal cord in the amyotrophic lateral sclerosis model at various time points and the expressions of apoptosis and proliferation-related proteins. Heterogenous nuclear ribonucleoprotein G was mainly localized in neurons. Amyotrophic lateral sclerosis mice were examined at three stages: preonset (60-70 days), onset (90-100 days) and progression (120-130 days). The number of heterogenous nuclear ribonucleoprotein G-positive cells was significantly higher in the anterior horn of the lumbar spinal cord segment of TG mice at the preonset stage than that of control group but lower than that of the control group at the onset stage. The number of heterogenous nuclear ribonucleoprotein G-positive cells in both central canal and surrounding gray matter of the whole spinal cord of TG mice at the onset stage was significantly lower than that in the control group, whereas that of the lumbar spinal cord segment of TG mice was significantly higher than that in the control group at preonset stage and significantly lower than that in the control group at the progression stage. The numbers of heterogenous nuclear ribonucleoprotein G-positive cells in the posterior horn of cervical and thoracic segments of TG mice at preonset and progression stages were significantly lower than those in the control group. The expression of heterogenous nuclear ribonucleoprotein G in the cervical spinal cord segment of TG mice was significantly higher than that in the control group at the preonset stage but significantly lower at the progression stage. The expression of heterogenous nuclear ribonucleoprotein G in the thoracic spinal cord segment of TG mice was significantly increased at the preonset stage, significantly decreased at the onset stage, and significantly increased at the progression stage compared with the control group. heterogenous nuclear ribonucleoprotein G expression in the lumbar spinal cord segment of TG mice was significantly lower than that of the control group at the progression stage. After heterogenous nuclear ribonucleoprotein G gene silencing, PC12 cell survival was lower than that of control cells. Both TAR DNA binding protein 43 and Bax expressions were significantly increased in heterogenous nuclear ribonucleoprotein G-silenced cells compared with control cells. Our study suggests that abnormal distribution and expression of heterogenous nuclear ribonucleoprotein G might play a protective effect in amyotrophic lateral sclerosis development via preventing neuronal death by reducing abnormal TAR DNA binding protein 43 generation in the spinal cord.
Collapse
|
30
|
|
Wang L, Yao L, Ma Q, Mao Y, Qu H, Zheng L. Investigation on small molecule-aptamer dissociation equilibria based on antisense displacement probe. FOOD SCI HUM WELL 2023;12:1257-1264. [DOI: 10.1016/j.fshw.2022.10.008] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 11/19/2022] Open
|
31
|
|
Çelik S, Demirag AD, Coşgun AO, Özel A, Akyüz S. Computational Investigation of the Interaction Mechanism of Some anti-Alzheimer Drugs with the Acetylcholinesterase Enzyme. ojn 2023;8:11-21. [DOI: 10.56171/ojn.1109606] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/21/2023]
Abstract
The molecular structures of the lowest-energy conformers of donepezil (C24H29NO3), rivastigmine (C14H22N2O2), and galantamine (C17H21NO3), which are extensively used in Alzheimer's disease and other memory disorders, were identified using the Spartan06 program and the MMFF method. The optimized geometries, obtained with the same method, were used as initial data in molecular docking investigations with the Acetylcholinesterase enzyme. The binding modes, binding affinities, and interactions were comparatively determined as consequence of the calculations.
Collapse
|
32
|
|
Ghosh A, Kumar S, Das J. Impact of leachate and landfill gas on the ecosystem and health: Research trends and the way forward towards sustainability. J Environ Manage 2023;336:117708. [PMID: 36913859 DOI: 10.1016/j.jenvman.2023.117708] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/13/2023]
Abstract
Globally, a whopping increase in solid waste (SW) generation and the risks posed by climate change are major concerns. A wide spread practice for disposal of municipal solid waste (MSW) is landfill, which swells with population and urbanization. Waste, if treated properly, can be used to produce renewable energy. The recent global event COP 27 mainly stressed on production of renewable energy to achieve the Net Zero target. The MSW landfill is the most significant anthropogenic source of methane (CH4) emission. On one side, CH4 is a greenhouse gas (GHG), and on the other it is a main component of biogas. Wastewater that collects due to rainwater percolation in landfills creates landfill leachate. There is a need to understand global landfill management practices thoroughly for implementation of better practices and policies related to this threat. This study critically reviews recent publications on leachate and landfill gas. The review discusses leachate treatment and landfill gas emissions, focusing on the possible reduction technology of CH4 emission and its impact on the environment. Mixed leachate will benefit from the combinational therapy method because of its intricate combination. Implementation of circular material management, entrepreneurship ideas, blockchain, machine learning, LCA usage in waste management, and economic benefits from CH4 production have been emphasized. Bibliometric analysis of 908 articles from the last 37 years revealed that industrialized nations dominate this research domain, with the United States having the highest number of citations.
Collapse
|
33
|
|
Wang Y, Shao Z, Song C, Zhou H, Zhao J, Zong K, Zhou G, Meng D. Clinopodium chinense Kuntze ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by reducing systematic inflammation and regulating metabolism. J Ethnopharmacol 2023;309:116330. [PMID: 36868438 DOI: 10.1016/j.jep.2023.116330] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinopodium chinense Kuntze (CC), traditional Chinese medicine with anti-inflammatory, anti-diarrheal, and hemostatic activities, has been used to treat dysentery and bleeding diseases for thousands of years, which are similar to the symptoms of ulcerative colitis (UC). AIM OF THE STUDY To obtain a novel treatment for UC, an integrated strategy was developed in this study to investigate the effect and mechanism of CC against UC. MATERIALS AND METHODS The chemical characterization of CC was scanned by UPLC-MS/MS. Network pharmacology analysis was performed to predict the active ingredients and pharmacological mechanisms of CC against UC. Further, the results of network pharmacology were validated using LPS-induced RAW 264.7 cells and DSS-induced UC mice. The production of pro-inflammatory mediators and biochemical parameters was tested using the ELISA kits. The expression of NF-κB, COX-2, and iNOS proteins was evaluated using Western blot analysis. Body weight, disease activity index, colon length, histopathological examination, and metabolomics analysis in colon tissues were carried out to confirm the effect and mechanism of CC. RESULTS Based on the chemical characterization and literature collection, a rich database of ingredients in CC was constructed. Network pharmacology analysis provided five core components as well as revealed that the mechanism of CC against UC was highly related to inflammation, especially the NF-κB signaling pathway. In vitro experiments showed CC could inhibit inflammation by LPS-TLR4-NF-κB-iNOS/COX-2 signaling pathway in RAW264.7 cells. Meanwhile, in vivo experimental results proved that CC significantly alleviated pathological features with increased body weight and colonic length, decreased DAI and oxidative damage, as well as mediated inflammatory factors like NO, PGE2, IL-6, IL-10, and TNF-ɑ. In addition, colon metabolomics analysis revealed CC could restore the abnormal endogenous metabolite levels in UC. 18 screened biomarkers were further enriched in four pathways including Arachidonic acid metabolism, Histidine metabolism, Alanine, aspartate and glutamate metabolism as well as the Pentose phosphate pathway. CONCLUSION This study demonstrates that CC could alleviate UC by reducing systematic inflammation and regulating metabolism, which is beneficial for providing scientific data for the development of UC treatment.
Collapse
|
34
|
|
Udi Y, Zhang W, Stein ME, Ricardo-Lax I, Pasolli HA, Chait BT, Rout MP. A general method for quantitative fractionation of mammalian cells. J Cell Biol 2023;222:e202209062. [PMID: 36920247 DOI: 10.1083/jcb.202209062] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/16/2023] Open
Abstract
Subcellular fractionation in combination with mass spectrometry-based proteomics is a powerful tool to study localization of key proteins in health and disease. Here we offered a reliable and rapid method for mammalian cell fractionation, tuned for such proteomic analyses. This method proves readily applicable to different cell lines in which all the cellular contents are accounted for, while maintaining nuclear and nuclear envelope integrity. We demonstrated the method's utility by quantifying the effects of a nuclear export inhibitor on nucleoplasmic and cytoplasmic proteomes.
Collapse
|
35
|
|
Sun J, Wen J, Wang J, Yang Y, Wang G, Liu J, Yu Q, Liu M. Unraveling the atomic-level vacancy modulation in Cu(9)S(5) for NIR-driven efficient inhibition of drug-resistant bacteria: Key role of Cu vacancy position. J Hazard Mater 2023;451:131082. [PMID: 36870131 DOI: 10.1016/j.jhazmat.2023.131082] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023]
Abstract
Cu9S5 possesses high hole concentration and potential superior electrical conductivity as a novel p-type semiconductor, whose biological applications remain largely unexploited. Encouraged by our recent work that Cu9S5 has enzyme-like antibacterial activity in the absence of light, which may further enhance the near infrared (NIR) antibacterial performance. Moreover, vacancy engineering can modulate the electronic structure of the nanomaterials and thus optimize their photocatalytic antibacterial activities. Here, we designed two different atomic arrangements with same VCuSCu vacancies of Cu9S5 nanomaterials (CSC-4 and CSC-3) determined by positron annihilation lifetime spectroscopy (PALS). Aiming at CSC-4 and CSC-3 as a model system, for the first time, we investigated the key role of different copper (Cu) vacancies positions in vacancy engineering toward optimizing the photocatalytic antibacterial properties of the nanomaterials. Combined with the experimental and theoretical approach, CSC-3 exhibited stronger absorption energy of surface adsorbate (LPS and H2O), longer lifetime of photogenerated charge carriers (4.29 ns), and lower reaction active energy (0.76 eV) than those of CSC-4, leading to the generation of abundant ·OH for attaining rapid drug-resistant bacteria killed and wound healed under NIR light irradiation. This work provided a novel insight for the effective inhibition of drug-resistant bacteria infection via vacancy engineering at the atomic-level modulation.
Collapse
|
36
|
|
Ochiai H. Facilitating genome function understanding using genome editing dependent bioimaging techniques. Gene and Genome Editing 2023;5:100022. [DOI: 10.1016/j.ggedit.2022.100022] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 12/12/2022]
|
37
|
|
Ahmadi SE, Shabestari RM, Kojabad AA, Safa M. A straightforward microfluidic-based approach toward optimizing transduction efficiency of HIV-1-derived lentiviral vectors in BCP-ALL cells. Biotechnol Rep (Amst) 2023;38:e00792. [PMID: 36950261 DOI: 10.1016/j.btre.2023.e00792] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/13/2023] Open
Abstract
Background HIV-1-derived lentiviral vectors (LVs) are capable of transducing human cells by integrating the transgene into the host genome. In order to do that, LVs should have enough time and space to interact with the surface of the target cells. Herein, we used a microfluidic system to facilitate the transduction of BCP-ALL cells. Methods and Results We used a SU-8 mold to fabricate a PDMS microfluidic chip containing three channels with a 50 μm height and a surface matching 96-well plates. In order to produce LVs, we used HEK293T cells to package the second generation of LVs. First, we evaluated the cell recovery from the microfluidic chip. Cell recovery assessment showcased that 3 h and 6 h of incubation in microfluidic channels containing 100,000 NALM-6 (BCP-ALL) cells with 2μL of culture media yielded 87±7.2% and 80.6 ± 10% of cell recovery, respectively. Afterward, the effects of LV-induced toxicity were evaluated using 10-30% LV concentrations in time frames ranging from 3 h to 24 h. In 96-well plates, it took 12-24 h for the viruses with 20% and 30% concentrations to affect the cell survival significantly. These effects were intensified in the microfluidic system implying that microfluidic is capable of enhancing LV transduction. Based on the evidence of cell recovery and cell survival we chose 6 h of incubation with 20% LV. Conclusion The results from EGFP expression showcased that a microfluidic system could increase the LV transduction in BCP-ALL cells by almost 9-folds. All in all, the microfluidic system seems to be a great armamentarium in optimizing LV-based transduction.
Collapse
|
38
|
|
Calil Brondani J, Afful D, Nune H, Hart J, Cook S, Momany C. Overproduction, purification, and transcriptional activity of recombinant Acinetobacter baylyi ADP1 RNA polymerase holoenzyme. Protein Expr Purif 2023;206:106254. [PMID: 36804950 DOI: 10.1016/j.pep.2023.106254] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/19/2023]
Abstract
Acinetobacter baylyi is an interesting model organism to investigate bacterial metabolism due to its vast repertoire of metabolic enzymes and ease of genetic manipulation. However, the study of gene expression in vitro is dependent on the availability of its RNA polymerase (RNAp), an essential enzyme in transcription. In this work, we developed a convenient method of producing the recombinant A. baylyi ADP1 RNA polymerase holoenzyme (RNApholo) in E. coli that yields 22 mg of a >96% purity protein from a 1-liter shake flask culture. We further characterized the A. baylyi ADP1 RNApholo kinetic profile using T7 Phage DNA as template and demonstrated that it is a highly transcriptionally active enzyme with an elongation rate of 24 nt/s and a termination efficiency of 94%. Moreover, the A. baylyi ADP1 RNApholo has a substantial sequence identity (∼95%) with the RNApholo from the human pathogen Acinetobacter baumannii. This protein can serve as a source of material for structural and biological studies towards advancing our understanding of genome expression and regulation in Acinetobacter species.
Collapse
|
39
|
|
Li K, Wang C, Wang Y, Fu L, Zhang N. Future foods, dietary factors and healthspan. Journal of Future Foods 2023;3:75-98. [DOI: 10.1016/j.jfutfo.2022.12.001] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 02/05/2023]
|
40
|
|
Zhao W, Li X, Ren Q, Wang Q, Liao C, Ding T, Li P, Liu J. Molecular mechanism of miRNA regulating PD-L1 expression. Gene Reports 2023;31:101763. [DOI: 10.1016/j.genrep.2023.101763] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/17/2023]
|
41
|
|
Groh C, Haberkant P, Stein F, Filbeck S, Pfeffer S, Savitski MM, Boos F, Herrmann JM. Mitochondrial dysfunction rapidly modulates the abundance and thermal stability of cellular proteins. Life Sci Alliance 2023;6:e202201805. [PMID: 36941057 DOI: 10.26508/lsa.202201805] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/23/2023] Open
Abstract
Cellular functionality relies on a well-balanced, but highly dynamic proteome. Dysfunction of mitochondrial protein import leads to the cytosolic accumulation of mitochondrial precursor proteins which compromise cellular proteostasis and trigger a mitoprotein-induced stress response. To dissect the effects of mitochondrial dysfunction on the cellular proteome as a whole, we developed pre-post thermal proteome profiling. This multiplexed time-resolved proteome-wide thermal stability profiling approach with isobaric peptide tags in combination with a pulsed SILAC labelling elucidated dynamic proteostasis changes in several dimensions: In addition to adaptations in protein abundance, we observed rapid modulations of the thermal stability of individual cellular proteins. Different functional groups of proteins showed characteristic response patterns and reacted with group-specific kinetics, allowing the identification of functional modules that are relevant for mitoprotein-induced stress. Thus, our new pre-post thermal proteome profiling approach uncovered a complex response network that orchestrates proteome homeostasis in eukaryotic cells by time-controlled adaptations of the abundance and the conformation of proteins.
Collapse
|
42
|
|
Tyler SEB, Tyler LDK. Pathways to healing: Plants with therapeutic potential for neurodegenerative diseases. IBRO Neurosci Rep 2023;14:210-34. [PMID: 36880056 DOI: 10.1016/j.ibneur.2023.01.006] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/12/2023] Open
Abstract
Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.
Collapse
|
43
|
|
Saha S, González-Maeso J. The crosstalk between 5-HT(2A)R and mGluR2 in schizophrenia. Neuropharmacology 2023;230:109489. [PMID: 36889432 DOI: 10.1016/j.neuropharm.2023.109489] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/08/2023]
Abstract
Schizophrenia is a severe brain disorder that usually produces a lifetime of disability. First generation or typical antipsychotics such as haloperidol and second generation or atypical antipsychotics such as clozapine and risperidone remain the current standard for schizophrenia treatment. In some patients with schizophrenia, antipsychotics produce complete remission of positive symptoms, such as hallucinations and delusions. However, antipsychotic drugs are ineffective against cognitive deficits and indeed treated schizophrenia patients have small improvements or even deterioration in several cognitive domains. This underlines the need for novel and more efficient therapeutic targets for schizophrenia treatment. Serotonin and glutamate have been identified as key parts of two neurotransmitter systems involved in fundamental brain processes. Serotonin (or 5-hydroxytryptamine) 5-HT2A receptor (5-HT2AR) and metabotropic glutamate 2 receptor (mGluR2) are G protein-coupled receptors (GPCRs) that interact at epigenetic and functional levels. These two receptors can form GPCR heteromeric complexes through which their pharmacology, function and trafficking becomes affected. Here we review past and current research on the 5-HT2AR-mGluR2 heterocomplex and its potential implication in schizophrenia and antipsychotic drug action. This article is part of the Special Issue on "The receptor-receptor interaction as a new target for therapy".
Collapse
|
44
|
|
Wilde ML, Ruparel U, Klemm T, Lee VV, Calleja DJ, Komander D, Tonkin CJ. Characterisation of the OTU domain deubiquitinase complement of Toxoplasma gondii. Life Sci Alliance 2023;6:e202201710. [PMID: 36958824 DOI: 10.26508/lsa.202201710] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/25/2023] Open
Abstract
The phylum Apicomplexa contains several parasitic species of medical and agricultural importance. The ubiquitination machinery remains, for the most part, uncharacterised in apicomplexan parasites, despite the important roles that it plays in eukaryotic biology. Bioinformatic analysis of the ubiquitination machinery in apicomplexan parasites revealed an expanded ovarian tumour domain-containing (OTU) deubiquitinase (DUB) family in Toxoplasma, potentially reflecting functional importance in apicomplexan parasites. This study presents comprehensive characterisation of Toxoplasma OTU DUBs. AlphaFold-guided structural analysis not only confirmed functional orthologues found across eukaryotes, but also identified apicomplexan-specific enzymes, subsequently enabling discovery of a cryptic OTU DUB in Plasmodium species. Comprehensive biochemical characterisation of 11 Toxoplasma OTU DUBs revealed activity against ubiquitin- and NEDD8-based substrates and revealed ubiquitin linkage preferences for Lys6-, Lys11-, Lys48-, and Lys63-linked chain types. We show that accessory domains in Toxoplasma OTU DUBs impose linkage preferences, and in case of apicomplexan-specific TgOTU9, we discover a cryptic ubiquitin-binding domain that is essential for TgOTU9 activity. Using the auxin-inducible degron (AID) to generate knockdown parasite lines, TgOTUD6B was found to be important for Toxoplasma growth.
Collapse
|
45
|
|
Chen J, Lu X, Chen P, Shen Y, Zheng B, Guo Z. Anti-fatigue effect of glycoprotein from hairtail (Trichiurus lepturus) by-products in a behavioral mouse model. Food Chemistry: X 2023;18:100645. [DOI: 10.1016/j.fochx.2023.100645] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/18/2023]
|
46
|
|
Yang X, Guan C, Ma C, Xu H. Nuclei-induced formation of amyloid fibrils in whey protein: Effects of enzyme hydrolysis on the ability of nuclei to induce fibril formation. Food Chem 2023;410:135433. [PMID: 36640658 DOI: 10.1016/j.foodchem.2023.135433] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/09/2023]
Abstract
Homogeneous and secondary nuclei (HN and SN) are aggregates formed at different stages of whey protein isolate (WPI) self-assembly. More fibrils can form when HN/SN are added as nuclei than when WPI self-assembles. We evaluated the effect of hydrolysis treatment on fibril-induction ability of nuclei derived from WPI, and investigated the relationship between induction ability and nuclear structure. Hydrolyzed SN-induced 9.47% more WPI fibrils than unhydrolyzed SN-induced. Infrared spectroscopy, X-ray diffraction analysis, and atomic force microscopy were used to examine the structural changes in hydrolyzed nuclei and the fibrils induced using these nuclei. We concluded that hydrolysis treatment led to a looser inter-β-sheet packaging in nuclei by increasing the inter-β-sheet distance. The inter-β-sheet distance of cross-β structure was a key determinant of fibril-induction ability of nuclei, which could be enhanced when inter-β-sheet structure was moderately loose. This research may provide a theoretical basis for the mechanism of nuclei-induced WPI fibrillation.
Collapse
|
47
|
|
Zhao Y, Fan X, Wang Q, Zhen J, Li X, Zhou P, Lang Y, Sheng Q, Zhang T, Huang T, Zhao Y, Lv Z, Wang R. ROS promote hyper-methylation of NDRG2 promoters in a DNMTS-dependent manner: Contributes to the progression of renal fibrosis. Redox Biol 2023;62:102674. [DOI: 10.1016/j.redox.2023.102674] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/28/2023] Open
|
48
|
|
Introduction. Biomedical Micro‐ and Nanorobots in Disease Treatment 2023. [DOI: 10.1002/9783527839773.ch1] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 01/21/2023]
|
49
|
|
Hartmann J, Mayor R. Self-organized collective cell behaviors as design principles for synthetic developmental biology. Semin Cell Dev Biol 2023;141:63-73. [PMID: 35450765 DOI: 10.1016/j.semcdb.2022.04.009] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 10/18/2022]
Abstract
Over the past two decades, molecular cell biology has graduated from a mostly analytic science to one with substantial synthetic capability. This success is built on a deep understanding of the structure and function of biomolecules and molecular mechanisms. For synthetic biology to achieve similar success at the scale of tissues and organs, an equally deep understanding of the principles of development is required. Here, we review some of the central concepts and recent progress in tissue patterning, morphogenesis and collective cell migration and discuss their value for synthetic developmental biology, emphasizing in particular the power of (guided) self-organization and the role of theoretical advances in making developmental insights applicable in synthesis.
Collapse
|
50
|
|
Xiao F, Wang Z, Li W, Qi W, Bai X, Xu H. Cefepime-modified magnetic nanoparticles and enzymatic colorimetry for the detection of Listeria monocytogenes in lettuces. Food Chem 2023;409:135296. [PMID: 36586253 DOI: 10.1016/j.foodchem.2022.135296] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/24/2022]
Abstract
A novel sandwich assay for the detection of L. monocytogenes was designed based on antibiotic magnetic separation and enzymatic colorimetry. PEG-mediated cefepime functionalized magnetic nanoparticles (Cefe-PEG-MNPs) was reported for the first time to anchor L. monocytogenes cells with excellent bacterial capture capacity. The capture efficiency of L. monocytogenes in lettuce sample with high concentration (3.1 × 106 CFU/mL) was more than 73.8%. Anti-L. monocytogenes monoclonal antibody was adopted as the second anchoring agent to ensure the specificity for L. monocytogenes, which was co-modified with HRP on the surface of gold nanoparticles (AuNPs-HRP/mAb) to form AuNPs-HRP/mAb@L. monocytogenes@Cefe-PEG-MNPs sandwich complexes, and TMB was added to generate a colorimetric signal. The limit of detection in contaminated lettuce, watermelon juice, and fresh meat samples were both 3.1 × 102 CFU/mL, and the whole assay takes about 110 min. Based on the above facts, the proposed method has great potential for rapid separation and detection of pathogenic bacteria in food.
Collapse
|