1
|
Wu C, Liu H, Zhong D, Yang X, Liao Z, Chen Y, Zhang S, Su D, Zhang B, Li C, Tian L, Xu C, Su P. Mapk7 deletion in chondrocytes causes vertebral defects by reducing MEF2C/PTEN/AKT signaling. Genes Dis 2024; 11:964-977. [PMID: 37692479 PMCID: PMC10491872 DOI: 10.1016/j.gendis.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 03/31/2023] Open
Abstract
Mutation of the MAPK7 gene was related to human scoliosis. Mapk7 regulated the development of limb bones and skulls in mice. However, the role of MAPK7 in vertebral development is still unclear. In this study, we constructed Col2a1-cre; Mapk7f/f transgenic mouse model to delete Mapk7 in cartilage, which displayed kyphosis and osteopenia. Mechanistically, Mapk7 loss decreased MEF2C expression and thus activated PTEN to oppose PI3K/AKT signaling in vertebral growth plate chondrocytes, which impaired chondrocyte hypertrophy and attenuated vertebral ossification. In vivo, systemic pharmacological activation of AKT rescued impaired chondrocyte hypertrophy and alleviated mouse vertebral defects caused by Mapk7 deficiency. Our study firstly clarified the mechanism by which MAPK7 was involved in vertebral development, which might contribute to understanding the pathology of spinal deformity and provide a basis for the treatment of developmental disorders of the spine.
Collapse
Affiliation(s)
- Chengzhi Wu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Hengyu Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Dongmei Zhong
- Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiaoming Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhiheng Liao
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yuyu Chen
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shun Zhang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Deying Su
- Guangdong Provincial Key Laboratory of Proteomics and State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Baolin Zhang
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chuan Li
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Liru Tian
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Caixia Xu
- Research Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Peiqiang Su
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
2
|
Yu Z, Teng Y, Yang J, Yang L. The role of exosomes in adult neurogenesis: implications for neurodegenerative diseases. Neural Regen Res 2024; 19:282-288. [PMID: 37488879 PMCID: PMC10503605 DOI: 10.4103/1673-5374.379036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 07/26/2023] Open
Abstract
Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness. Exosomes are widely distributed in a range of body fluids, including urine, blood, milk, and saliva. Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells. As an important form of intercellular communication, exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids, proteins, mRNAs, and microRNAs between cells, and because they can regulate physiological and pathological processes in the central nervous system. Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches: the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus. An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches. In recent studies, exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo, thereby participating in the progression of neurodegenerative disorders in patients and in various disease models. Here, we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases. We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults. In addition, exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.
Collapse
Affiliation(s)
- Zhuoyang Yu
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Yan Teng
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Jing Yang
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Chen Y, Tang W, Huang X, An Y, Li J, Yuan S, Shan H, Zhang M. Mitophagy in intracerebral hemorrhage: a new target for therapeutic intervention. Neural Regen Res 2024; 19:316-323. [PMID: 37488884 PMCID: PMC10503626 DOI: 10.4103/1673-5374.379019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/12/2023] [Accepted: 05/18/2023] [Indexed: 07/26/2023] Open
Abstract
Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae. However, there is currently no treatment available for intracerebral hemorrhage, unlike for other stroke subtypes. Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage. Mitophagy, or selective autophagy of mitochondria, is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria. Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage. This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it, and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage, aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage. In conclusion, although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far, most of which are in the preclinical stage and require further investigation, mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.
Collapse
Affiliation(s)
- Yiyang Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice (Academy of Forensic Science), Shanghai, China
| | - Wenxuan Tang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiawen Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Shengye Yuan
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice (Academy of Forensic Science), Shanghai, China
| |
Collapse
|
4
|
Han L, Li J, Jiang Y, Lu K, Yang P, Jiang L, Li Y, Qi B. Changes in the structure and functional properties of soybean isolate protein: Effects of different modification methods. Food Chem 2024; 432:137214. [PMID: 37651782 DOI: 10.1016/j.foodchem.2023.137214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Soybean protein isolate (SPI) is an important plant protein in food processing; however, its spherical structure prevents the exposure of its hydrophobic residues and affects its functional properties. In this study, we elucidate the effects of deamidation, phosphorylation, and glycosylation on the structure (Fourier-transform infrared spectroscopy, circular dichroism, fluorescence, and scanning electron microscopy) and functional properties (solubility, emulsifying activity index (EAI), and emulsifying stability index (ESI)) of SPI. The zeta potentials of the deamidated, phosphorylated, and glycosylated (DSPI, PSPI, and MSPI, respectively) samples decreased significantly (p < 0.05) relative to those of SPI. The functional properties of the modified SPI samples were improved, with MSPI-2 showing the best solubility (86.73 ± 0.34%), EAI (118.89 ± 0.73 m2/g), and ESI (273.33 ± 0.59 min). Moreover, the effects of the three modifications on the SPI functional properties increase in the order MSPI > PSPI > DSPI. These results provide a theoretical understanding the relationship between the modifications and SPI structure.
Collapse
Affiliation(s)
- Lu Han
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jinlong Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yitong Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Keyang Lu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Panpan Yang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Jiao H, Fan Y, Gong A, Li T, Fu X, Yan Z. Xiaoyaosan ameliorates CUMS-induced depressive-like and anorexia behaviors in mice via necroptosis related cellular senescence in hypothalamus. J Ethnopharmacol 2024; 318:116938. [PMID: 37495029 DOI: 10.1016/j.jep.2023.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression and anorexia often co-occur and share symptoms such as low mood, lack of energy, and weight loss. Xiaoyaosan is a classic formula comprising of a combination of eight herbs, possessing definitive therapeutic effects, minimal side effects, and economical benefits. It has been extensively employed in clinical treatment of ailments and symptoms such as depression, anxiety, and appetite problems. Nonetheless, its exact pharmacological mechanism with necroptosis remains incompletely explicit. AIM OF THE STUDY The aim of this study is to explore the potential mechanisms of anti-depressive and appetite-regulating effects of the active ingredients in Xiaoyaosan, and to investigate whether there is a correlation with necroptosis. MATERIALS AND METHODS The network pharmacology method was conducted to identify active ingredients, which were used to predict the possible targets of Xiaoyaosan and explore the potential targets in treating depression and anorexia by overlapping with differentially expressed genes (DEGs) screened from GEO datasets (GSE125441, GSE198597, and GSE69151). Afterwards, the protein-protein interaction (PPI) network, enrichment analyses, hub gene identification, co-expression study and molecular docking were used to study the potential mechanism of Xiaoyaosan. Then, a mice model of depression was established by chronic unpredictable mild stress (CUMS) and the incidence of necroptosis in the hypothalamus of CUMS mice was investigated, while verifying the key therapeutic target of Xiaoyaosan. RESULTS Through network pharmacology research, it had been discovered that the 145 active ingredients of the 8 herbs in the Xiaoyaosan could regulate 198 disease targets. Through PPI network analysis and functional enrichment analysis, it had been found that the pharmacological mechanism of Xiaoyaosan mainly involved biological processes such as oxidative stress, kinase activity, and DNA metabolism. It is related to various pathways such as cellular senescence, immune inflammation, and the cell cycle, and 9 hub targets had been identified. Further analysis of the 9 hub targets and the key PPI network clusters clarified the key mechanisms by which Xiaoyaosan exerts anti-depressant and appetite regulating effects, possibly related to necroptosis-mediated cellular senescence. Molecular docking of the key indicators of cellular senescence screened by bioinformatics, SIRT1, ABL1, and MYC, revealed that the key component regulating SIRT1 is 2-[3,4-dihydroxyphenyl]-5,7-dihydroxy-6-[3-methylbut-2-enyl]chromone in licorice root, Glabridin in licorice root regulates ABL1, and β-sitosterol found in Chinese angelica, debark peony root, and fresh ginger regulates MYC. Finally, through in vivo experiments, the expression of necroptosis in the hypothalamus of CUMS mice was verified. The regulatory effects of Xiaoyaosan on key substances RIPK1, RIPK3, MLKL, and p-MLKL were determined, while regulating effects on SIRT1, ABL1, and MYC were also observed. CONCLUSION The present study have revealed the common mechanism of Xiaoyaosan in treating depression and anorexia, indicating that the active ingredients of Xiaoyaosan may alleviate the symptoms of depression and anorexia by intervening in the pathways related to necroptosis and cellular senescence. The hub genes and common pathways identified by the study also provide new insights into the therapeutic targets of depression and anorexia, as well as the exploration of pharmacological mechanism of Xiaoyaosan.
Collapse
Affiliation(s)
- Haiyan Jiao
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Yingli Fan
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Tian Li
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Xing Fu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Zhiyi Yan
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China; Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
6
|
Zhang H, Chen W, Li Z, Huang Q, Wen J, Chang S, Pei H, Ma L, Li H. Huannao Yicong decoction ameliorates cognitive deficits in APP/PS1/tau triple transgenic mice by interfering with neurotoxic interaction of Aβ-tau. J Ethnopharmacol 2024; 318:116985. [PMID: 37532075 DOI: 10.1016/j.jep.2023.116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huannao Yicong decoction (HYD) has been used in the study of AD for many years, which consists of Polygonum multiflorum Thunb., Panax ginseng C.A.Mey., Acorus gramineus Aiton, Coptis chinensis Franch., and Conioselinum acuminatum (Franch.) Lavrova. Previous studies have found that HYD could reduce β-Amyloid (Aβ) deposition and tau hyperphosphorylation which are the two critical pathological factors of AD. However, the mechanism of the neurotoxic interaction between Aβ and tau in AD remains unclear. Thus, the underlying mechanisms for HYD improving cognitive function of AD by interfering with the neurotoxic interaction between Aβ and tau remain to be explored. AIM OF THE STUDY The main objective of this study is to clarify the specific mechanisms of HYD on interfering with the neurotoxic interaction between Aβ and tau of AD both in vivo and in vitro. MATERIALS AND METHODS APP/PS1/tau triple transgenic mice were randomly divided into 4 groups, namely model group, memantine group, HYD low-dose group (HYD-L), and HYD high-dose group (HYD-H) with 28 mice in each group, while 28 C57BL/6J mice as the control group. Gavage was applied to all the mice daily for 24 weeks. SH-SY5Y model cells overexpressing Aβ and tau proteins as the intervention object in vitro experiments. Morris water maze was used to observe the learning and memory ability of APP/PS1/tau mice. Aβ deposition was detected by immunohistochemistry, and the levels of Aβ1-40 and Aβ1-42 were detected by enzyme-linked immunosorbent assay (ELISA). Neurofibrillary tangles (NFTs) were observed by silver staining and the levels of phosphorylated tau proteins were detected by Western blot. The GSK-3β and CDK-5 mRNA expression were detected by real-time polymerase chain reaction (RT-PCR). Besides, the levels of PSD95, GluR1, NR2A, and NR2B were detected by Western blot. Meanwhile, cell experiments were performed to further verify the effect of HYD on tau phosphorylation related kinases (GSK-3β, CDK-5, and PP2A), which further to clarify the mechanism of HYD intervention on the neurotoxic interaction between Aβ and tau. RESULTS HYD improved the learning and memory ability of APP/PS1/tau mice. HYD decreased the levels of Aβ1-40 and Aβ1-42 and inhibited tau hyperphosphorylation, which reduced Aβ deposition and NFTs forming. In addition, HYD inhibited the activity of kinases GSK-3β and CDK-5, and enhancing the activity of kinase PP2A. Moreover, HYD inhibited the overexpression of NR2A and NR2B, and increased the expression of GluR1 and postsynaptic density protein-95 (PSD95). CONCLUSIONS HYD can improve the cognitive deficits by interfering with the neurotoxic interaction between Aβ and tau. In addition, HYD can inhibit the overactivation of NMDARs and increase the levels of GluR1 and PSD95, which may play a role in alleviating neuronal excitotoxicity and improving synaptic function.
Collapse
Affiliation(s)
- Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China
| | - Wenxuan Chen
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China
| | - Zehui Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China
| | - Qiaoyi Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Jiayu Wen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Surui Chang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China
| | - Hui Pei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China
| | - Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China.
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China; Wangjing Hospital, China Academy of Chinese Medical Sciences, Hua Jia Di Jie, Chaoyang District, Beijing, 100102, China.
| |
Collapse
|
7
|
Zhang Y, Lyu X, Chen D, Wu J, Li D, Li Y. DNA induced CTAB-caped gold bipyramidal nanoparticles self-assembly using for Raman detection of DNA molecules. Talanta 2024; 266:124936. [PMID: 37478765 DOI: 10.1016/j.talanta.2023.124936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
DNA is an indispensable part of metabolism, which affects many important processes in the body, including gene expression, protein synthesis, and drug delivery. Surface-enhanced Raman spectroscopy (SERS) is one of the most important methods used to study the structure and function of DNA and can obtain rich DNA molecular fingerprints. However, it is still a great challenge to use SERS to directly analyze the characteristic Raman signals of the DNA molecule and achieve rapid and simple detection. Hence, a detection platform based on gold bipyramidal nanoparticles (AuNBs) self-assembly that can be directly used for the detection of DNA molecules without the need for additional aggregators and cleaning agents was designed in this study. The original hexadecyltrimethylammonium bromide (CTAB) of AuNBs can be used as the internal standard for DNA quantification without an additional standard. This is the first time that the Raman signals of the analyte molecule can be obtained directly without labels by using the interaction between the molecule and the enhanced substrate. We used this method to capture the original DNA molecules in methylated DNA, serum, and cell metabolites and obtained spectral data processing results using linear discriminant analysis (LDA). This provides new ideas for the digitization of disease treatment and the study of the metabolic processes of life.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China; Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaoming Lyu
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China
| | - Dongsu Chen
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China
| | - Jing Wu
- School of Science, Nantong University, No. 9, Seyuan Road, Nantong, Jiangsu, 226019, PR China
| | - Dawei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yang Li
- Department of Pharmaceutical Analysis and Analytical Chemistry (Research Center for Innovative Technology of Pharmaceutical Analysis), College of Pharmacy, Harbin Medical University, 157 Baojian Road, Harbin, Heilongjiang Province, 150081, PR China; Research Unit of Health Sciences and Technology (HST), Faculty of Medicine University of Oulu, 2125B, Aapistie 5A, 90220, Oulu, Finland; Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
8
|
Chen X, Lin Y, Zhang Z, Tang Y, Ye P, Dai W, Zhang W, Liu H, Peng G, Huang S, Qiu J, Guo W, Zhu X, Wu Z, Kuang Y, Xu P, Zhou M. CHCHD2 Thr61Ile mutation impairs F1F0-ATPase assembly in in vitro and in vivo models of Parkinson's disease. Neural Regen Res 2024; 19:196-204. [PMID: 37488867 PMCID: PMC10479855 DOI: 10.4103/1673-5374.378010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/08/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Mitochondrial dysfunction is a significant pathological alteration that occurs in Parkinson's disease (PD), and the Thr61Ile (T61I) mutation in coiled-coil helix coiled-coil helix domain containing 2 (CHCHD2), a crucial mitochondrial protein, has been reported to cause Parkinson's disease. F1F0-ATPase participates in the synthesis of cellular adenosine triphosphate (ATP) and plays a central role in mitochondrial energy metabolism. However, the specific roles of wild-type (WT) CHCHD2 and T61I-mutant CHCHD2 in regulating F1F0-ATPase activity in Parkinson's disease, as well as whether CHCHD2 or CHCHD2 T61I affects mitochondrial function through regulating F1F0-ATPase activity, remain unclear. Therefore, in this study, we expressed WT CHCHD2 and T61I-mutant CHCHD2 in an MPP+-induced SH-SY5Y cell model of PD. We found that CHCHD2 protected mitochondria from developing MPP+-induced dysfunction. Under normal conditions, overexpression of WT CHCHD2 promoted F1F0-ATPase assembly, while T61I-mutant CHCHD2 appeared to have lost the ability to regulate F1F0-ATPase assembly. In addition, mass spectrometry and immunoprecipitation showed that there was an interaction between CHCHD2 and F1F0-ATPase. Three weeks after transfection with AAV-CHCHD2 T61I, we intraperitoneally injected 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine into mice to establish an animal model of chronic Parkinson's disease and found that exogenous expression of the mutant protein worsened the behavioral deficits and dopaminergic neurodegeneration seen in this model. These findings suggest that WT CHCHD2 can alleviate mitochondrial dysfunction in PD by maintaining F1F0-ATPase structure and function.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhiling Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yuting Tang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Panghai Ye
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Hanqun Liu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Guoyou Peng
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shuxuan Huang
- Department of Neurology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoqin Zhu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yaoyun Kuang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Pintado-Grima C, Bárcenas O, Ventura S. Expanding the Landscape of Amyloid Sequences with CARs-DB: A Database of Polar Amyloidogenic Peptides from Disordered Proteins. Methods Mol Biol 2024; 2714:171-185. [PMID: 37676599 DOI: 10.1007/978-1-0716-3441-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Several databases collecting amyloidogenic regions have been released to provide information on protein sequences able to form amyloid fibrils. However, most of these resources are built with data from experiments that detect highly hydrophobic stretches located within transiently exposed protein segments. We recently demonstrated that cryptic amyloidogenic regions (CARs) of polar nature have the potential to form amyloid fibrils in vitro. Given the underrepresentation of these types of sequences in current amyloid databases, we developed CARs-DB, the first repository that collects thousands of predicted CARs from intrinsically disordered regions. This protocol chapter describes how to use CARs-DB to search for sequences of interest that might be connected to disease or functional protein-protein interactions. In addition, we provide study cases to illustrate the database's features to users. The CARs-DB is readily accessible at http://carsdb.ppmclab.com/ .
Collapse
Affiliation(s)
- Carlos Pintado-Grima
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Oriol Bárcenas
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
10
|
Yu J, Chen G, Zhu H, Zhong Y, Yang Z, Jian Z, Xiong X. Metabolic and proteostatic differences in quiescent and active neural stem cells. Neural Regen Res 2024; 19:43-48. [PMID: 37488842 PMCID: PMC10479840 DOI: 10.4103/1673-5374.375306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis. Therefore, neural regeneration may be a promising target for treatment of many neurological illnesses. The regenerative capacity of adult neural stem cells can be characterized by two states: quiescent and active. Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool. Active adult neural stem cells are characterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits. This review focuses on differences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis. Furthermore, we discuss the physiological significance and underlying advantages of these differences. Due to the limited number of adult neural stem cells studies, we referred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.
Collapse
Affiliation(s)
- Jiacheng Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Gang Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhenxing Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
11
|
Zuo Z, Zhou Z, Chang Y, Liu Y, Shen Y, Li Q, Zhang L. Ribonucleotide reductase M2 (RRM2): Regulation, function and targeting strategy in human cancer. Genes Dis 2024; 11:218-233. [PMID: 37588202 PMCID: PMC10425756 DOI: 10.1016/j.gendis.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 12/29/2022] Open
Abstract
Ribonucleotide reductase M2 (RRM2) is a small subunit in ribonucleotide reductases, which participate in nucleotide metabolism and catalyze the conversion of nucleotides to deoxynucleotides, maintaining the dNTP pools for DNA biosynthesis, repair, and replication. RRM2 performs a critical role in the malignant biological behaviors of cancers. The structure, regulation, and function of RRM2 and its inhibitors were discussed. RRM2 gene can produce two transcripts encoding the same ORF. RRM2 expression is regulated at multiple levels during the processes from transcription to translation. Moreover, this gene is associated with resistance, regulated cell death, and tumor immunity. In order to develop and design inhibitors of RRM2, appropriate strategies can be adopted based on different mechanisms. Thus, a greater appreciation of the characteristics of RRM2 is a benefit for understanding tumorigenesis, resistance in cancer, and tumor microenvironment. Moreover, RRM2-targeted therapy will be more attention in future therapeutic approaches for enhancement of treatment effects and amelioration of the dismal prognosis.
Collapse
Affiliation(s)
- Zanwen Zuo
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zerong Zhou
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Yuzhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Shen
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China
| | - Qizhang Li
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lei Zhang
- Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
Fu X, Li P, Zhou Q, He R, Wang G, Zhu S, Bagheri A, Kupfer G, Pei H, Li J. Mechanism of PARP inhibitor resistance and potential overcoming strategies. Genes Dis 2024; 11:306-320. [PMID: 37588193 PMCID: PMC10425807 DOI: 10.1016/j.gendis.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023] Open
Abstract
PARP inhibitors (PARPi) are a kind of cancer therapy that targets poly (ADP-ribose) polymerase. PARPi is the first clinically approved drug to exert synthetic lethality by obstructing the DNA single-strand break repair process. Despite the significant therapeutic effect in patients with homologous recombination (HR) repair deficiency, innate and acquired resistance to PARPi is a main challenge in the clinic. In this review, we mainly discussed the underlying mechanisms of PARPi resistance and summarized the promising solutions to overcome PARPi resistance, aiming at extending PARPi application and improving patient outcomes.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ping Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qi Zhou
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Guannan Wang
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Shiya Zhu
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Amir Bagheri
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Gary Kupfer
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
13
|
Dong X, Li Y, Sheng X, Zhou W, Sun A, Dai H. Mitochondria-related signaling pathways involved in breast cancer regulate ferroptosis. Genes Dis 2024; 11:358-366. [PMID: 37588231 PMCID: PMC10425853 DOI: 10.1016/j.gendis.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 08/18/2023] Open
Abstract
Ferroptosis is a novel form of regulated cell death characterized by iron-dependent excessive lipid peroxidation. The core organelle involved in ferroptosis is mitochondria. Mitochondria undergoing ferroptosis are distinct from normal mitochondria in terms of morphology, biochemistry, gene expression, and energy metabolism. An increasing number of studies have shown that mitochondria and their associated metabolic pathways mediate ferroptosis in the development and progression of breast cancer. In this review, we discuss the relevant research about ferroptosis in breast cancer and provide a comprehensive summary of mitochondrial regulation in ferroptosis from the perspective of lipid metabolism, oxidative phosphorylation, ion metabolism, glycometabolism, and nucleotide metabolism. We also summarize the application of mitochondrial metabolism-related pathways as ferroptosis treatment targets. Here we provide new insights into the relationship between mitochondria, ferroptosis, and breast cancer treatment.
Collapse
Affiliation(s)
- Xinrui Dong
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Ye Li
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xiaonan Sheng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Weihang Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Aijun Sun
- Department of Thyroid and Breast Oncological Surgery, Xuzhou Medical College Affiliated Huaian Hospital, Huai'an, Jiangsu 223001, China
| | - Huijuan Dai
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| |
Collapse
|
14
|
Liu Y, He B, Liu L, Hu L, Jiang G. Fasten the analysis of metal-binding proteins with GE-ICP-MS via increasing the electrolyte concentration of the running buffer. Talanta 2024; 266:125047. [PMID: 37574606 DOI: 10.1016/j.talanta.2023.125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/19/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
The coupled system of column gel electrophoresis and inductively coupled plasma mass spectrometry (GE-ICP-MS) is a highly effective technique for detecting metal-binding proteins. However, it takes a long time for this method to test a single sample, which greatly limits its application. In this study, GE-ICP-MS system was optimized by adjusting the analytical conditions, including the concentration and pH of running buffer and the proportion of polyacrylamide gel. The results of the experiment showed that the migration speed of proteins in GE was enhanced by increasing the electrolyte concentration in the running buffer solution. Additionally, the ICP-MS response, which was dramatically decreased because of the change in running buffer solution, can be stabilized by adjusting pH of running buffer. Meanwhile, the optimization of polyacrylamide gel ratio allows GE-ICP-MS to maintain high resolution for proteins of similar molecular weight with increased detection speed. After increasing the concentration of running buffer by 10 times, four iodine labeled proteins were successfully separated at baseline by the GE-ICP-MS system at pH 8.0 in 40 min using a resolving gel (8%, 7 cm) and a stacking gel (4%, 1 cm), which was three times faster than the original one. Finally, the optimized method was proved by detecting a silver-binding protein in rat plasma samples. The above method provided an effective and rapid detection for metal-binding proteins in organism.
Collapse
Affiliation(s)
- Yingqiu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; School of Environment and Health, Jianghan University, Wuhan, 430056, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
15
|
Zhang B, Tang X, Xu Q, Fan C, Gao Y, Li S, Wang M, Li C. Anionic polyacrylamide alleviates cadmium inhibition on anaerobic digestion of waste activated sludge. Environ Sci Ecotechnol 2024; 17:100306. [PMID: 37701857 PMCID: PMC10494310 DOI: 10.1016/j.ese.2023.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 09/14/2023]
Abstract
The uncontrolled discharge of industrial wastewater leads to a significant cadmium (Cd) accumulation in waste activated sludge (WAS), posing a serious threat to the steady operation of the anaerobic digestion (AD) system in wastewater treatment plants (WWTPs). Therefore, developing a viable approach to cope with the adverse effects of high-concentration Cd on the AD system is urgently required. This study aims to investigate the potential of using anionic polyacrylamide (APAM), a commonly used agent in WWTPs, to mitigate the adverse effects of Cd in a toxic amount (i.e., 5.0 mg per g total suspended solids (TSS)) on AD of WAS. The results showed that the effectiveness of higher APAM on Cd toxicity alleviation was less than that of lower APAM at the studied level (i.e., the effectiveness order was 1.5 mg APAM per g TSS > 3.0 mg APAM per g TSS > 6.0 mg APAM per g TSS). The moderate supplement of APAM (i.e., 1.5 mg per g TSS) recovered the accumulative methane yield from 190.5 ± 3.6 to 228.9 ± 4.1 mL per g volatile solids by promoting solubilization, hydrolysis, and acidification processes related to methane production. The application of APAM also increased the abundance of key microbes in the AD system, especially Methanolinea among methanogens and Caldilineaceae among hydrolyzers. Furthermore, APAM facilitated the key enzyme activities involved in AD processes and reduced reactive oxygen species (induced by Cd) production via adsorption/enmeshment of Cd by APAM. These findings demonstrate the feasibility of using moderate APAM to mitigate Cd toxicity during AD, providing a promising solution for controlling Cd or other heavy metal toxicity in WWTPs.
Collapse
Affiliation(s)
- Baowei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | |
|