1
|
Lewis CM, Hoffmann A, Helmchen F. Linking brain activity across scales with simultaneous opto- and electrophysiology. Neurophotonics 2024; 11:033403. [PMID: 37662552 PMCID: PMC10472193 DOI: 10.1117/1.nph.11.3.033403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
The brain enables adaptive behavior via the dynamic coordination of diverse neuronal signals across spatial and temporal scales: from fast action potential patterns in microcircuits to slower patterns of distributed activity in brain-wide networks. Understanding principles of multiscale dynamics requires simultaneous monitoring of signals in multiple, distributed network nodes. Combining optical and electrical recordings of brain activity is promising for collecting data across multiple scales and can reveal aspects of coordinated dynamics invisible to standard, single-modality approaches. We review recent progress in combining opto- and electrophysiology, focusing on mouse studies that shed new light on the function of single neurons by embedding their activity in the context of brain-wide activity patterns. Optical and electrical readouts can be tailored to desired scales to tackle specific questions. For example, fast dynamics in single cells or local populations recorded with multi-electrode arrays can be related to simultaneously acquired optical signals that report activity in specified subpopulations of neurons, in non-neuronal cells, or in neuromodulatory pathways. Conversely, two-photon imaging can be used to densely monitor activity in local circuits while sampling electrical activity in distant brain areas at the same time. The refinement of combined approaches will continue to reveal previously inaccessible and under-appreciated aspects of coordinated brain activity.
Collapse
Affiliation(s)
| | - Adrian Hoffmann
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
- University of Zurich, University Research Priority Program, Adaptive Brain Circuits in Development and Learning, Zurich, Switzerland
| |
Collapse
|
2
|
Jiang H, Tang M, Xu Z, Wang Y, Li M, Zheng S, Zhu J, Lin Z, Zhang M. CRISPR/Cas9 system and its applications in nervous system diseases. Genes Dis 2024; 11:675-686. [PMID: 37692518 PMCID: PMC10491921 DOI: 10.1016/j.gendis.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is an acquired immune system of many bacteria and archaea, comprising CRISPR loci, Cas genes, and its associated proteins. This system can recognize exogenous DNA and utilize the Cas9 protein's nuclease activity to break DNA double-strand and to achieve base insertion or deletion by subsequent DNA repair. In recent years, multiple laboratory and clinical studies have revealed the therapeutic role of the CRISPR/Cas9 system in neurological diseases. This article reviews the CRISPR/Cas9-mediated gene editing technology and its potential for clinical application against neurological diseases.
Collapse
Affiliation(s)
- Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengyan Tang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuyin Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
3
|
Liu J, Xin X, Sun J, Fan Y, Zhou X, Gong W, Yang M, Li Z, Wang Y, Yang Y, Gao C. Dual-targeting AAV9P1-mediated neuronal reprogramming in a mouse model of traumatic brain injury. Neural Regen Res 2024; 19:629-635. [PMID: 37721294 DOI: 10.4103/1673-5374.380907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Traumatic brain injury results in neuronal loss and glial scar formation. Replenishing neurons and eliminating the consequences of glial scar formation are essential for treating traumatic brain injury. Neuronal reprogramming is a promising strategy to convert glial scars to neural tissue. However, previous studies have reported inconsistent results. In this study, an AAV9P1 vector incorporating an astrocyte-targeting P1 peptide and glial fibrillary acidic protein promoter was used to achieve dual-targeting of astrocytes and the glial scar while minimizing off-target effects. The results demonstrate that AAV9P1 provides high selectivity of astrocytes and reactive astrocytes. Moreover, neuronal reprogramming was induced by downregulating the polypyrimidine tract-binding protein 1 gene via systemic administration of AAV9P1 in a mouse model of traumatic brain injury. In summary, this approach provides an improved gene delivery vehicle to study neuronal programming and evidence of its applications for traumatic brain injury.
Collapse
Affiliation(s)
- Jingzhou Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Xin
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiejie Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Xun Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wei Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Meiyan Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhiping Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuli Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
4
|
Ahn SI, Kim Y. On-chip physiological mimicry of neurovascular unit: challenges and perspectives. Neural Regen Res 2024; 19:499-500. [PMID: 37721272 DOI: 10.4103/1673-5374.380892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Song Ih Ahn
- School of Mechanical Engineering, Pusan National University, Busan, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering; Parker H. Petit Institute for Bioengineering and Bioscience; Wallace H. Coulter Department of Biomedical Engineering; Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
5
|
Jourdi G, Fleury S, Boukhatem I, Lordkipanidzé M. Soluble p75 neurotrophic receptor as a reliable biomarker in neurodegenerative diseases: what is the evidence? Neural Regen Res 2024; 19:536-541. [PMID: 37721281 DOI: 10.4103/1673-5374.380873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Neurodegenerative diseases are often misdiagnosed, especially when the diagnosis is based solely on clinical symptoms. The p75 neurotrophic receptor (p75NTR) has been studied as an index of sensory and motor nerve development and maturation. Its cleavable extracellular domain (ECD) is readily detectable in various biological fluids including plasma, serum and urine. There is evidence for increased p75NTR ECD levels in neurodegenerative diseases such as Alzheimer's disease, amyotrophic lateral sclerosis, age-related dementia, schizophrenia, and diabetic neuropathy. Whether p75NTR ECD could be used as a biomarker for diagnosis and/or prognosis in these disorders, and whether it could potentially lead to the development of targeted therapies, remains an open question. In this review, we present and discuss published studies that have evaluated the relevance of this emerging biomarker in the context of various neurodegenerative diseases. We also highlight areas that require further investigation to better understand the role of p75NTR ECD in the clinical diagnosis and management of neurodegenerative disorders.
Collapse
Affiliation(s)
- Georges Jourdi
- Research Center, Montreal Heart Institute; Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada; Université Paris Cité, INSERM, Innovative Therapies in Haemostasis; Service d'Hématologie Biologique, AP-HP, Hôpital Lariboisière, Paris, France
| | - Samuel Fleury
- Research Center, Montreal Heart Institute, Montreal, QC, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Imane Boukhatem
- Research Center, Montreal Heart Institute, Montreal, QC, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, QC, Canada; Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
6
|
Gu Y, Zhang J, Zhao X, Nie W, Xu X, Liu M, Zhang X. Olfactory dysfunction and its related molecular mechanisms in Parkinson's disease. Neural Regen Res 2024; 19:583-590. [PMID: 37721288 DOI: 10.4103/1673-5374.380875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Changes in olfactory function are considered to be early biomarkers of Parkinson's disease. Olfactory dysfunction is one of the earliest non-motor features of Parkinson's disease, appearing in about 90% of patients with early-stage Parkinson's disease, and can often predate the diagnosis by years. Therefore, olfactory dysfunction should be considered a reliable marker of the disease. However, the mechanisms responsible for olfactory dysfunction are currently unknown. In this article, we clearly explain the pathology and medical definition of olfactory function as a biomarker for early-stage Parkinson's disease. On the basis of the findings of clinical olfactory function tests and animal model experiments as well as neurotransmitter expression levels, we further characterize the relationship between olfactory dysfunction and neurodegenerative diseases as well as the molecular mechanisms underlying olfactory dysfunction in the pathology of early-stage Parkinson's disease. The findings highlighted in this review suggest that olfactory dysfunction is an important biomarker for preclinical-stage Parkinson's disease. Therefore, therapeutic drugs targeting non-motor symptoms such as olfactory dysfunction in the early stage of Parkinson's disease may prevent or delay dopaminergic neurodegeneration and reduce motor symptoms, highlighting the potential of identifying effective targets for treating Parkinson's disease by inhibiting the deterioration of olfactory dysfunction.
Collapse
Affiliation(s)
- Yingying Gu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Jiaying Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xinru Zhao
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Wenyuan Nie
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaole Xu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Mingxuan Liu
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoling Zhang
- College of Pharmacy, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
7
|
Silva Oliveira Junior M, Reiche L, Daniele E, Kortebi I, Faiz M, Küry P. Star power: harnessing the reactive astrocyte response to promote remyelination in multiple sclerosis. Neural Regen Res 2024; 19:578-582. [PMID: 37721287 DOI: 10.4103/1673-5374.380879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Astrocytes are indispensable for central nervous system development and homeostasis. In response to injury and disease, astrocytes are integral to the immunological- and the, albeit limited, repair response. In this review, we will examine some of the functions reactive astrocytes play in the context of multiple sclerosis and related animal models. We will consider the heterogeneity or plasticity of astrocytes and the mechanisms by which they promote or mitigate demyelination. Finally, we will discuss a set of biomedical strategies that can stimulate astrocytes in their promyelinating response.
Collapse
Affiliation(s)
- Markley Silva Oliveira Junior
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laura Reiche
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Emerson Daniele
- Institute of Medical Science; Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Ines Kortebi
- Institute of Medical Science; Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Maryam Faiz
- Institute of Medical Science; Division of Anatomy, Department of Surgery, University of Toronto, Toronto, Canada
| | - Patrick Küry
- Department of Neurology, Neuroregeneration laboratory, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
8
|
Gales L. Detection and clearance in Alzheimer's disease: leading with illusive chemical, structural and morphological features of the targets. Neural Regen Res 2024; 19:497-498. [PMID: 37721271 DOI: 10.4103/1673-5374.380897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Luís Gales
- i3S - Instituto de Investigação e Inovação em Saúde; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| |
Collapse
|
9
|
Zhang G, Li L, Kong Y, Xu D, Bao Y, Zhang Z, Liao Z, Jiao J, Fan D, Long X, Dai J, Xie C, Meng Z, Zhang Z. Vitamin D-binding protein in plasma microglia-derived extracellular vesicles as a potential biomarker for major depressive disorder. Genes Dis 2024; 11:1009-1021. [PMID: 37692510 PMCID: PMC10491883 DOI: 10.1016/j.gendis.2023.02.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/21/2023] [Indexed: 09/12/2023] Open
Abstract
No well-established biomarkers are available for the clinical diagnosis of major depressive disorder (MDD). Vitamin D-binding protein (VDBP) is altered in plasma and postmortem dorsolateral prefrontal cortex (DLPFC) tissues of MDD patients. Thereby, the role of VDBP as a potential biomarker of MDD diagnosis was further assessed. Total extracellular vesicles (EVs) and brain cell-derived EVs (BCDEVs) were isolated from the plasma of first-episode drug-naïve or drug-free MDD patients and well-matched healthy controls (HCs) in discovery (20 MDD patients and 20 HCs) and validation cohorts (88 MDD patients and 38 HCs). VDBP level in the cerebrospinal fluid (CSF) from chronic glucocorticoid-induced depressed rhesus macaques or prelimbic cortex from lipopolysaccharide (LPS)-induced depressed mice and wild control groups was measured to evaluate its relationship with VDBP in plasma microglia-derived extracellular vesicles (MDEVs). VDBP was significantly decreased in MDD plasma MDEVs compared to HCs, and negatively correlated with HAMD-24 score with the highest diagnostic accuracy among BCDEVs. VDBP in plasma MDEVs was decreased both in depressed rhesus macaques and mice. A positive correlation of VDBP in MDEVs with that in CSF was detected in depressed rhesus macaques. VDBP levels in prelimbic cortex microglia were negatively correlated with those in plasma MDEVs in depressed mice. The main results suggested that VDBP in plasma MDEVs might serve as a prospective candidate biomarker for MDD diagnosis.
Collapse
Affiliation(s)
- Gaojia Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ling Li
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Dandan Xu
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yu Bao
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong 518000, China
| | - Zhiting Zhang
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhixiang Liao
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiao Jiao
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Dandan Fan
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Xiaojing Long
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Ji Dai
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Shenzhen-Hong Kong Institute of Brain Sciences-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518000, China
| | - Chunming Xie
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Zhiqiang Meng
- Shenzhen Key Laboratory of Drug Addiction, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, Guangdong 518000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Shenzhen-Hong Kong Institute of Brain Sciences-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong 518000, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
- Brain Cognition and Brain Disease Institute, Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
10
|
Han B, Liang W, Hai Y, Sun D, Ding H, Yang Y, Yin P. Neurophysiological, histological, and behavioral characterization of animal models of distraction spinal cord injury: a systematic review. Neural Regen Res 2024; 19:563-570. [PMID: 37721285 DOI: 10.4103/1673-5374.380871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Distraction spinal cord injury is caused by some degree of distraction or longitudinal tension on the spinal cord and commonly occurs in patients who undergo corrective operation for severe spinal deformity. With the increased degree and duration of distraction, spinal cord injuries become more serious in terms of their neurophysiology, histology, and behavior. Very few studies have been published on the specific characteristics of distraction spinal cord injury. In this study, we systematically review 22 related studies involving animal models of distraction spinal cord injury, focusing particularly on the neurophysiological, histological, and behavioral characteristics of this disease. In addition, we summarize the mechanisms underlying primary and secondary injuries caused by distraction spinal cord injury and clarify the effects of different degrees and durations of distraction on the primary injuries associated with spinal cord injury. We provide new concepts for the establishment of a model of distraction spinal cord injury and related basic research, and provide reference guidelines for the clinical diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Bo Han
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weishi Liang
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Duan Sun
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongtao Ding
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yihan Yang
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Peng Yin
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Lai Y, Lu X, Liao Y, Ouyang P, Wang H, Zhang X, Huang G, Qi S, Li Y. Crosstalk between glioblastoma and tumor microenvironment drives proneural-mesenchymal transition through ligand-receptor interactions. Genes Dis 2024; 11:874-889. [PMID: 37692522 PMCID: PMC10491977 DOI: 10.1016/j.gendis.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common intrinsic and aggressive primary brain tumor in adults, with a median survival of approximately 15 months. GBM heterogeneity is considered responsible for the treatment resistance and unfavorable prognosis. Proneural-mesenchymal transition (PMT) represents GBM malignant progression and recurrence, which might be a breakthrough to understand GBM heterogeneity and overcome treatment resistance. PMT is a complicated process influenced by crosstalk between GBM and tumor microenvironment, depending on intricate ligand-receptor interactions. In this review, we summarize the autocrine and paracrine pathways in the GBM microenvironment and related ligand-receptor interactions inducing PMT. We also discuss the current therapies targeting the PMT-related autocrine and paracrine pathways. Together, this review offers a comprehensive understanding of the failure of GBM-targeted therapy and ideas for future tendencies of GBM treatment.
Collapse
Affiliation(s)
- Yancheng Lai
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaole Lu
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yankai Liao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Ouyang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Wang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xian Zhang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanglong Huang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yaomin Li
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
12
|
Batenburg KL, Scheper W. Neuron-to-astrocyte proteostatic stress signaling in response to tau pathology. Neural Regen Res 2024; 19:505-506. [PMID: 37721275 DOI: 10.4103/1673-5374.377609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Affiliation(s)
- Kevin Llewelyn Batenburg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, Amsterdam, The Netherlands
| | - Wiep Scheper
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Luo X, Tang X. Single-cell RNA sequencing in juvenile idiopathic arthritis. Genes Dis 2024; 11:633-644. [PMID: 37692495 PMCID: PMC10491939 DOI: 10.1016/j.gendis.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 04/11/2023] [Indexed: 09/12/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is one of the most common chronic inflammatory rheumatic diseases in children, with onset before age 16 and lasting for more than 6 weeks. JIA is a highly heterogeneous condition with various consequences for health and quality of life. For some JIA patients, early detection and intervention remain challenging. As a result, further investigation of the complex and unknown mechanisms underlying JIA is required. Advances in technology now allow us to describe the biological heterogeneity and function of individual cell populations in JIA. Through this review, we hope to provide novel ideas and potential targets for the diagnosis and treatment of JIA by summarizing the current findings of single-cell RNA sequencing studies and understanding how the major cell subsets drive JIA pathogenesis.
Collapse
Affiliation(s)
- Xiwen Luo
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| |
Collapse
|
14
|
Zhang K, Blokhina E, Krupitsky E, Vetrova M, Yuan TF, Wang H. Liver-brain axis with alcohol: Role of fibroblast growth factor 21 (FGF21). Genes Dis 2024; 11:509-511. [PMID: 37692520 PMCID: PMC10491937 DOI: 10.1016/j.gendis.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/06/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Ke Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Elena Blokhina
- Pavlov University, Valdman Institute of Pharmacology, St. Petersburg 197022, Russia
| | - Evgeny Krupitsky
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg 192019, Russia
| | - Marina Vetrova
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg 192019, Russia
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226007, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
15
|
Hernández-Cáceres MP, Pinto-Nuñez D, Rivera P, Burgos P, Díaz-Castro F, Criollo A, Yañez MJ, Morselli E. Role of lipids in the control of autophagy and primary cilium signaling in neurons. Neural Regen Res 2024; 19:264-271. [PMID: 37488876 PMCID: PMC10503597 DOI: 10.4103/1673-5374.377414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Abstract
The brain is, after the adipose tissue, the organ with the greatest amount of lipids and diversity in their composition in the human body. In neurons, lipids are involved in signaling pathways controlling autophagy, a lysosome-dependent catabolic process essential for the maintenance of neuronal homeostasis and the function of the primary cilium, a cellular antenna that acts as a communication hub that transfers extracellular signals into intracellular responses required for neurogenesis and brain development. A crosstalk between primary cilia and autophagy has been established; however, its role in the control of neuronal activity and homeostasis is barely known. In this review, we briefly discuss the current knowledge regarding the role of autophagy and the primary cilium in neurons. Then we review the recent literature about specific lipid subclasses in the regulation of autophagy, in the control of primary cilium structure and its dependent cellular signaling in physiological and pathological conditions, specifically focusing on neurons, an area of research that could have major implications in neurodevelopment, energy homeostasis, and neurodegeneration.
Collapse
Affiliation(s)
- María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Daniela Pinto-Nuñez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Patricia Rivera
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Burgos
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Francisco Díaz-Castro
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| | - Maria Jose Yañez
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile
- Autophagy Research Center, Santiago, Chile
| |
Collapse
|
16
|
Mukhtar T, Taylor V. Dynamic transcriptional programs define distinct mammalian cortical lineages. Neural Regen Res 2024; 19:387-389. [PMID: 37488895 PMCID: PMC10503623 DOI: 10.4103/1673-5374.377589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
- Tanzila Mukhtar
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Chen X, Zhang Y. A review of the neurotransmitter system associated with cognitive function of the cerebellum in Parkinson's disease. Neural Regen Res 2024; 19:324-330. [PMID: 37488885 PMCID: PMC10503617 DOI: 10.4103/1673-5374.379042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/30/2023] [Accepted: 05/08/2023] [Indexed: 07/26/2023] Open
Abstract
The dichotomized brain system is a concept that was generalized from the 'dual syndrome hypothesis' to explain the heterogeneity of cognitive impairment, in which anterior and posterior brain systems are independent but partially overlap. The dopaminergic system acts on the anterior brain and is responsible for executive function, working memory, and planning. In contrast, the cholinergic system acts on the posterior brain and is responsible for semantic fluency and visuospatial function. Evidence from dopaminergic/cholinergic imaging or functional neuroimaging has shed significant insight relating to the involvement of the cerebellum in the cognitive process of patients with Parkinson's disease. Previous research has reported evidence that the cerebellum receives both dopaminergic and cholinergic projections. However, whether these two neurotransmitter systems are associated with cognitive function has yet to be fully elucidated. Furthermore, the precise role of the cerebellum in patients with Parkinson's disease and cognitive impairment remains unclear. Therefore, in this review, we summarize the cerebellar dopaminergic and cholinergic projections and their relationships with cognition, as reported by previous studies, and investigated the role of the cerebellum in patients with Parkinson's disease and cognitive impairment, as determined by functional neuroimaging. Our findings will help us to understand the role of the cerebellum in the mechanisms underlying cognitive impairment in Parkinson's disease.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Shantou University Medical College, Shantou, Guangdong Province, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
18
|
Zhou M, Li S, Huang C. Physiological and pathological functions of circular RNAs in the nervous system. Neural Regen Res 2024; 19:342-349. [PMID: 37488888 PMCID: PMC10503630 DOI: 10.4103/1673-5374.379017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNAs that are expressed during the development of specific cells and tissues. CircRNAs play crucial roles in physiological and pathological processes by sponging microRNAs, modulating gene transcription, controlling the activity of certain RNA-binding proteins, and producing functional peptides. A key focus of research at present is the functionality of circRNAs in the nervous system and several advances have emerged over the last 2 years. However, the precise role of circRNAs in the nervous system has yet to be comprehensively reviewed. In this review, we first summarize the recently described roles of circRNAs in brain development, maturity, and aging. Then, we focus on the involvement of circRNAs in various diseases of the central nervous system, such as brain cancer, chronic neurodegenerative diseases, acute injuries of the nervous system, and neuropathic pain. A better understanding of the functionality of circRNAs will help us to develop potential diagnostic, prognostic, and therapeutic strategies to treat diseases of the nervous system.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
19
|
Estivill-Torrús G, Martínez-Padilla AB, Sánchez-Salido L, Evercooren ABV, García-Díaz B. The dorsal root ganglion as a target for neurorestoration in neuropathic pain. Neural Regen Res 2024; 19:296-301. [PMID: 37488881 PMCID: PMC10503598 DOI: 10.4103/1673-5374.374655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/22/2023] [Accepted: 05/19/2023] [Indexed: 07/26/2023] Open
Abstract
Neuropathic pain is a severe and chronic condition widely found in the general population. The reason for this is the extensive variety of damage or diseases that can spark this unpleasant constant feeling in patients. During the processing of pain, the dorsal root ganglia constitute an important region where dorsal root ganglion neurons play a crucial role in the transmission and propagation of sensory electrical stimulation. Furthermore, the dorsal root ganglia have recently exhibited a regenerative capacity that should not be neglected in the understanding of the development and resolution of neuropathic pain and in the elucidation of innovative therapies. Here, we will review the complex interplay between cells (satellite glial cells and inflammatory cells) and factors (cytokines, neurotrophic factors and genetic factors) that takes place within the dorsal root ganglia and accounts for the generation of the aberrant excitation of primary sensory neurons occurring in neuropathic pain. More importantly, we will summarize an updated view of the current pharmacologic and nonpharmacologic therapies targeting the dorsal root ganglia for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Guillermo Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | - Lourdes Sánchez-Salido
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Anne Baron-Van Evercooren
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Beatriz García-Díaz
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
- Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Málaga, Spain
| |
Collapse
|
20
|
Wang N, Wan R, Tang K. Transcriptional regulation in the development and dysfunction of neocortical projection neurons. Neural Regen Res 2024; 19:246-254. [PMID: 37488873 PMCID: PMC10503610 DOI: 10.4103/1673-5374.379039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/10/2023] [Accepted: 05/17/2023] [Indexed: 07/26/2023] Open
Abstract
Glutamatergic projection neurons generate sophisticated excitatory circuits to integrate and transmit information among different cortical areas, and between the neocortex and other regions of the brain and spinal cord. Appropriate development of cortical projection neurons is regulated by certain essential events such as neural fate determination, proliferation, specification, differentiation, migration, survival, axonogenesis, and synaptogenesis. These processes are precisely regulated in a tempo-spatial manner by intrinsic factors, extrinsic signals, and neural activities. The generation of correct subtypes and precise connections of projection neurons is imperative not only to support the basic cortical functions (such as sensory information integration, motor coordination, and cognition) but also to prevent the onset and progression of neurodevelopmental disorders (such as intellectual disability, autism spectrum disorders, anxiety, and depression). This review mainly focuses on the recent progress of transcriptional regulations on the development and diversity of neocortical projection neurons and the clinical relevance of the failure of transcriptional modulations.
Collapse
Affiliation(s)
- Ningxin Wang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong Province, China
| |
Collapse
|
21
|
Yu Z, Teng Y, Yang J, Yang L. The role of exosomes in adult neurogenesis: implications for neurodegenerative diseases. Neural Regen Res 2024; 19:282-288. [PMID: 37488879 PMCID: PMC10503605 DOI: 10.4103/1673-5374.379036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 07/26/2023] Open
Abstract
Exosomes are cup-shaped extracellular vesicles with a lipid bilayer that is approximately 30 to 200 nm in thickness. Exosomes are widely distributed in a range of body fluids, including urine, blood, milk, and saliva. Exosomes exert biological function by transporting factors between different cells and by regulating biological pathways in recipient cells. As an important form of intercellular communication, exosomes are increasingly being investigated due to their ability to transfer bioactive molecules such as lipids, proteins, mRNAs, and microRNAs between cells, and because they can regulate physiological and pathological processes in the central nervous system. Adult neurogenesis is a multistage process by which new neurons are generated and migrate to be integrated into existing neuronal circuits. In the adult brain, neurogenesis is mainly localized in two specialized niches: the subventricular zone adjacent to the lateral ventricles and the subgranular zone of the dentate gyrus. An increasing body of evidence indicates that adult neurogenesis is tightly controlled by environmental conditions with the niches. In recent studies, exosomes released from different sources of cells were shown to play an active role in regulating neurogenesis both in vitro and in vivo, thereby participating in the progression of neurodegenerative disorders in patients and in various disease models. Here, we provide a state-of-the-art synopsis of existing research that aimed to identify the diverse components of exosome cargoes and elucidate the therapeutic potential of exosomal contents in the regulation of neurogenesis in several neurodegenerative diseases. We emphasize that exosomal cargoes could serve as a potential biomarker to monitor functional neurogenesis in adults. In addition, exosomes can also be considered as a novel therapeutic approach to treat various neurodegenerative disorders by improving endogenous neurogenesis to mitigate neuronal loss in the central nervous system.
Collapse
Affiliation(s)
- Zhuoyang Yu
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Yan Teng
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Jing Yang
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
22
|
Huang L, Xiao W, Wang Y, Li J, Gong J, Tu E, Long L, Xiao B, Yan X, Wan L. Metabotropic glutamate receptors (mGluRs) in epileptogenesis: an update on abnormal mGluRs signaling and its therapeutic implications. Neural Regen Res 2024; 19:360-368. [PMID: 37488891 PMCID: PMC10503602 DOI: 10.4103/1673-5374.379018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by high morbidity, high recurrence, and drug resistance. Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity. Dysregulated mGluR signaling has been associated with various neurological disorders, and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy. In this review, we first introduce the three groups of mGluRs and their associated signaling pathways. Then, we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis. In addition, strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized. We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| |
Collapse
|
23
|
Chen Y, Tang W, Huang X, An Y, Li J, Yuan S, Shan H, Zhang M. Mitophagy in intracerebral hemorrhage: a new target for therapeutic intervention. Neural Regen Res 2024; 19:316-323. [PMID: 37488884 PMCID: PMC10503626 DOI: 10.4103/1673-5374.379019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/12/2023] [Accepted: 05/18/2023] [Indexed: 07/26/2023] Open
Abstract
Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae. However, there is currently no treatment available for intracerebral hemorrhage, unlike for other stroke subtypes. Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage. Mitophagy, or selective autophagy of mitochondria, is an essential pathway to preserve mitochondrial homeostasis by clearing up damaged mitochondria. Mitophagy markedly contributes to the reduction of secondary brain injury caused by mitochondrial dysfunction after intracerebral hemorrhage. This review provides an overview of the mitochondrial dysfunction that occurs after intracerebral hemorrhage and the underlying mechanisms regarding how mitophagy regulates it, and discusses the new direction of therapeutic strategies targeting mitophagy for intracerebral hemorrhage, aiming to determine the close connection between mitophagy and intracerebral hemorrhage and identify new therapies to modulate mitophagy after intracerebral hemorrhage. In conclusion, although only a small number of drugs modulating mitophagy in intracerebral hemorrhage have been found thus far, most of which are in the preclinical stage and require further investigation, mitophagy is still a very valid and promising therapeutic target for intracerebral hemorrhage in the long run.
Collapse
Affiliation(s)
- Yiyang Chen
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice (Academy of Forensic Science), Shanghai, China
| | - Wenxuan Tang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiawen Li
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Shengye Yuan
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu Province, China
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice (Academy of Forensic Science), Shanghai, China
| |
Collapse
|
24
|
Ruiz-Reig N, Hakanen J, Tissir F. Connecting neurodevelopment to neurodegeneration: a spotlight on the role of kinesin superfamily protein 2A (KIF2A). Neural Regen Res 2024; 19:375-379. [PMID: 37488893 PMCID: PMC10503618 DOI: 10.4103/1673-5374.375298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 07/26/2023] Open
Abstract
Microtubules play a central role in cytoskeletal changes during neuronal development and maintenance. Microtubule dynamics is essential to polarity and shape transitions underlying neural cell division, differentiation, motility, and maturation. Kinesin superfamily protein 2A is a member of human kinesin 13 gene family of proteins that depolymerize and destabilize microtubules. In dividing cells, kinesin superfamily protein 2A is involved in mitotic progression, spindle assembly, and chromosome segregation. In postmitotic neurons, it is required for axon/dendrite specification and extension, neuronal migration, connectivity, and survival. Humans with kinesin superfamily protein 2A mutations suffer from a variety of malformations of cortical development, epilepsy, autism spectrum disorder, and neurodegeneration. In this review, we discuss how kinesin superfamily protein 2A regulates neuronal development and function, and how its deregulation causes neurodevelopmental and neurological disorders.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Université catholique de Louvain, Institute of neuroscience, Brussels, Belgium
| | - Janne Hakanen
- Université catholique de Louvain, Institute of neuroscience, Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of neuroscience, Brussels, Belgium
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
25
|
Wang G, Wang W, Zhang Y, Gou X, Zhang Q, Huang Y, Zhang K, Zhang H, Yang J, Li Y. Ethanol changes Nestin-promoter induced neural stem cells to disturb newborn dendritic spine remodeling in the hippocampus of mice. Neural Regen Res 2024; 19:416-424. [PMID: 37488906 PMCID: PMC10503613 DOI: 10.4103/1673-5374.379051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/14/2023] [Accepted: 05/04/2023] [Indexed: 07/26/2023] Open
Abstract
Adolescent binge drinking leads to long-lasting disorders of the adult central nervous system, particularly aberrant hippocampal neurogenesis. In this study, we applied in vivo fluorescent tracing using NestinCreERT2::Rosa26-tdTomato mice and analyzed the endogenous neurogenesis lineage progression of neural stem cells (NSCs) and dendritic spine formation of newborn neurons in the subgranular zone of the dentate gyrus. We found abnormal orientation of tamoxifen-induced tdTomato+ (tdTom+) NSCs in adult mice 2 months after treatment with EtOH (5.0 g/kg, i.p.) for 7 consecutive days. EtOH markedly inhibited tdTom+ NSCs activation and hippocampal neurogenesis in mouse dentate gyrus from adolescence to adulthood. EtOH (100 mM) also significantly inhibited the proliferation to 39.2% and differentiation of primary NSCs in vitro. Adult mice exposed to EtOH also exhibited marked inhibitions in dendritic spine growth and newborn neuron maturation in the dentate gyrus, which was partially reversed by voluntary running or inhibition of the mammalian target of rapamycin-enhancer of zeste homolog 2 pathway. In vivo tracing revealed that EtOH induced abnormal orientation of tdTom+ NSCs and spatial misposition defects of newborn neurons, thus causing the disturbance of hippocampal neurogenesis and dendritic spine remodeling in mice.
Collapse
Affiliation(s)
- Guixiang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Wenjia Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Ye Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Xiaoying Gou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Qingqing Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yanmiao Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Haotian Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| | - Yuting Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, China
| |
Collapse
|
26
|
Celorrio M, Shumilov K, Friess SH. Gut microbial regulation of innate and adaptive immunity after traumatic brain injury. Neural Regen Res 2024; 19:272-276. [PMID: 37488877 PMCID: PMC10503601 DOI: 10.4103/1673-5374.379014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 07/26/2023] Open
Abstract
Acute care management of traumatic brain injury is focused on the prevention and reduction of secondary insults such as hypotension, hypoxia, intracranial hypertension, and detrimental inflammation. However, the imperative to balance multiple clinical concerns simultaneously often results in therapeutic strategies targeted to address one clinical concern causing unintended effects in other remote organ systems. Recently the bidirectional communication between the gastrointestinal tract and the brain has been shown to influence both the central nervous system and gastrointestinal tract homeostasis in health and disease. A critical component of this axis is the microorganisms of the gut known as the gut microbiome. Changes in gut microbial populations in the setting of central nervous system disease, including traumatic brain injury, have been reported in both humans and experimental animal models and can be further disrupted by off-target effects of patient care. In this review article, we will explore the important role gut microbial populations play in regulating brain-resident and peripheral immune cell responses after traumatic brain injury. We will discuss the role of bacterial metabolites in gut microbial regulation of neuroinflammation and their potential as an avenue for therapeutic intervention in the setting of traumatic brain injury.
Collapse
Affiliation(s)
- Marta Celorrio
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Kirill Shumilov
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Stuart H. Friess
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| |
Collapse
|
27
|
Attardo A, Cambridge SB. Learning to become addicted, one synapse at a time. Neural Regen Res 2024; 19:401-402. [PMID: 37488901 PMCID: PMC10503633 DOI: 10.4103/1673-5374.379046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
| | - Sidney B. Cambridge
- Institute for Anatomy II, Dr. Senckenberg Anatomy, Goethe-University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
28
|
Jiao H, Fan Y, Gong A, Li T, Fu X, Yan Z. Xiaoyaosan ameliorates CUMS-induced depressive-like and anorexia behaviors in mice via necroptosis related cellular senescence in hypothalamus. J Ethnopharmacol 2024; 318:116938. [PMID: 37495029 DOI: 10.1016/j.jep.2023.116938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression and anorexia often co-occur and share symptoms such as low mood, lack of energy, and weight loss. Xiaoyaosan is a classic formula comprising of a combination of eight herbs, possessing definitive therapeutic effects, minimal side effects, and economical benefits. It has been extensively employed in clinical treatment of ailments and symptoms such as depression, anxiety, and appetite problems. Nonetheless, its exact pharmacological mechanism with necroptosis remains incompletely explicit. AIM OF THE STUDY The aim of this study is to explore the potential mechanisms of anti-depressive and appetite-regulating effects of the active ingredients in Xiaoyaosan, and to investigate whether there is a correlation with necroptosis. MATERIALS AND METHODS The network pharmacology method was conducted to identify active ingredients, which were used to predict the possible targets of Xiaoyaosan and explore the potential targets in treating depression and anorexia by overlapping with differentially expressed genes (DEGs) screened from GEO datasets (GSE125441, GSE198597, and GSE69151). Afterwards, the protein-protein interaction (PPI) network, enrichment analyses, hub gene identification, co-expression study and molecular docking were used to study the potential mechanism of Xiaoyaosan. Then, a mice model of depression was established by chronic unpredictable mild stress (CUMS) and the incidence of necroptosis in the hypothalamus of CUMS mice was investigated, while verifying the key therapeutic target of Xiaoyaosan. RESULTS Through network pharmacology research, it had been discovered that the 145 active ingredients of the 8 herbs in the Xiaoyaosan could regulate 198 disease targets. Through PPI network analysis and functional enrichment analysis, it had been found that the pharmacological mechanism of Xiaoyaosan mainly involved biological processes such as oxidative stress, kinase activity, and DNA metabolism. It is related to various pathways such as cellular senescence, immune inflammation, and the cell cycle, and 9 hub targets had been identified. Further analysis of the 9 hub targets and the key PPI network clusters clarified the key mechanisms by which Xiaoyaosan exerts anti-depressant and appetite regulating effects, possibly related to necroptosis-mediated cellular senescence. Molecular docking of the key indicators of cellular senescence screened by bioinformatics, SIRT1, ABL1, and MYC, revealed that the key component regulating SIRT1 is 2-[3,4-dihydroxyphenyl]-5,7-dihydroxy-6-[3-methylbut-2-enyl]chromone in licorice root, Glabridin in licorice root regulates ABL1, and β-sitosterol found in Chinese angelica, debark peony root, and fresh ginger regulates MYC. Finally, through in vivo experiments, the expression of necroptosis in the hypothalamus of CUMS mice was verified. The regulatory effects of Xiaoyaosan on key substances RIPK1, RIPK3, MLKL, and p-MLKL were determined, while regulating effects on SIRT1, ABL1, and MYC were also observed. CONCLUSION The present study have revealed the common mechanism of Xiaoyaosan in treating depression and anorexia, indicating that the active ingredients of Xiaoyaosan may alleviate the symptoms of depression and anorexia by intervening in the pathways related to necroptosis and cellular senescence. The hub genes and common pathways identified by the study also provide new insights into the therapeutic targets of depression and anorexia, as well as the exploration of pharmacological mechanism of Xiaoyaosan.
Collapse
|