1
|
|
Li W, Li SG, Li L, Yang LJ, Li ZS, Li X, Ye AY, Xiong Y, Zhang Y, Xiong YY. Soyasaponin I alleviates hypertensive intracerebral hemorrhage by inhibiting the renin-angiotensin-aldosterone system. Clin Exp Hypertens 2023; 45:2177667. [PMID: 36809885 DOI: 10.1080/10641963.2023.2177667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Hypertensive intracerebral hemorrhage (HICH) is a life-threatening disease and lacks effective treatments. Previous studies have confirmed that metabolic profiles altered after ischemic stroke, but how brain metabolism changes after HICH was unclear. This study aimed to explore the metabolic profiles after HICH and the therapeutic effects of soyasaponin I on HICH. METHODS HICH model was established first. Hematoxylin and eosin staining was used to estimate the pathological changes after HICH. Western blot and Evans blue extravasation assay were applied to determine the integrity of the blood-brain barrier (BBB). Enzyme-linked immunosorbent assay was used to detect the activation of the renin-angiotensin-aldosterone system (RAAS). Next, liquid chromatography-mass spectrometry-untargeted metabolomics was utilized to analyze the metabolic profiles of brain tissues after HICH. Finally, soyasaponin I was administered to HICH rats, and the severity of HICH and activation of the RAAS were further assessed. RESULTS We successfully constructed HICH model. HICH significantly impaired BBB integrity and activated RAAS. HICH increased PE(14:0/24:1(15Z)), arachidonoyl serinol, PS(18:0/22:6(4Z, 7Z, 10Z, 13Z, 16Z, and 19Z)), PS(20:1(11Z)/20:5(5Z, 8Z, 11Z, 14Z, and 17Z)), glucose 1-phosphate, etc., in the brain, whereas decreased creatine, tripamide, D-N-(carboxyacetyl)alanine, N-acetylaspartate, N-acetylaspartylglutamic acid, and so on in the hemorrhagic hemisphere. Cerebral soyasaponin I was found to be downregulated after HICH and supplementation of soyasaponin I inactivated the RAAS and alleviated HICH. CONCLUSION The metabolic profiles of the brains changed after HICH. Soyasaponin I alleviated HICH via inhibiting the RAAS and may serve as an effective drug for the treatment of HICH in the future.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurosurgery, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shao-Guang Li
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lan Li
- Department of Neurosurgery, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Li-Jian Yang
- Department of Neurosurgery, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zeng-Shi Li
- Department of Neurosurgery, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xi Li
- Department of Neurosurgery, The Affiliated Changsha Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - An-Yuan Ye
- Department of Neurosurgery, People's Hospital of Yiyang, Yiyang, China
| | - Yang Xiong
- Department of Comprehensive Intervention, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Zhang
- Department of Neurology, People's Hospital of Wuning County, Wuning, China
| | - Yuan-Yuan Xiong
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
|
Mulla J, Katti R, Scott MJ. The Role of Gasdermin-D-Mediated Pryoptosis in Organ Injury and Its Therapeutic Implications. Organogenesis 2023; 19. [PMID: 36967609 DOI: 10.1080/15476278.2023.2177484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Gasdermin-D (GSDMD) belongs to the Gasdermin family (GSDM), which are pore-forming effector proteins that facilitate inflammatory cell death, also known as pyroptosis. This type of programmed cell death is dependent on inflammatory caspase activation, which cleaves gasdermin-D (GSDMD) to form membrane pores and initiates the release of pro-inflammatory cytokines. Pyroptosis plays an important role in achieving immune regulation and homeostasis within various organ systems. The role of GSDMD in pyroptosis has been extensively studied in recent years. In this review, we summarize the role of GSDMD in cellular and organ injury mediated by pyroptosis. We will also provide an outlook on GSDMD therapeutic targets in various organ systems.
Collapse
Affiliation(s)
- Joud Mulla
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rohan Katti
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melanie J. Scott
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
|
He J, Zhong X, Cheng C, Dong D, Zhang B, Wang X, Yao S. Characteristics of white matter structural connectivity in healthy adults with childhood maltreatment. Eur J Psychotraumatol 2023; 14. [PMID: 37052100 DOI: 10.1080/20008066.2023.2179278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Background: Childhood maltreatment (CM) is a common psychological stressor associated with multiple mental disorders. While CM is associated with vulnerability to depression and anxiety, little is known about the specific mechanism underlying this relationship.Objective: This study aimed to investigate the white matter (WM) of healthy adults with CM and their relationships with depression and anxiety to provide biological evidence for the development of mental disorders in subjects with childhood trauma.Methods: The CM group included 40 healthy adults with CM. The non-CM group included 40 healthy adults without CM. Diffusion tensor imaging (DTI) data were collected, and tract-based spatial statistics (TBSS) were applied to the whole brain to assess WM differences between the two groups; post-hoc fibre tractography was used to characterise the developmental differences; and mediation analysis was used to assess the relationships among the Child Trauma Questionnaire (CTQ) results, DTI indices, and depression and anxiety scores.Results: Relative to the non-CM group, the CM group revealed significantly lower fractional anisotropy (FA) in the right posterior corona radiata (PCR-R), right anterior corona radiata (ACR-R), left super corona radiata (SCR-L), anterior thalamic radiation (ATR), and right posterior limb of the internal capsule (PLIC-R). Additionally, shorter fibre bundles passed through the PCR-R, ACR-R, and ATR in the CM group compared with the non-CM group. Besides, the length of the ACR-R mediated the relationship between CM and trait anxiety.Conclusions: The alteration of white matter microstructure associated with childhood trauma in healthy adults may reflect biomarkers of childhood trauma. Besides, an alteration of WM microstructure in healthy adults with CM mediates the association between CM and trait anxiety, which may represent the vulnerability to developing mental disorders after childhood trauma experiences.
Collapse
|
4
|
|
Howlett CA, Miles S, Berryman C, Phillipou A, Moseley GL. Conflation between self-report and neurocognitive assessments of cognitive flexibility: a critical review of the Jingle Fallacy. Australian Journal of Psychology 2023; 75. [DOI: 10.1080/00049530.2023.2174684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Caitlin A. Howlett
- Innovation, Implementation & Clinical Translation (IIMPACT) in Health, University of South Australia, Kaurna Country, Adelaide, Australia
| | - Stephanie Miles
- Centre for Mental Health, Swinburne University of Technology, Melbourne, Australia
| | - Carolyn Berryman
- Innovation, Implementation & Clinical Translation (IIMPACT) in Health, University of South Australia, Kaurna Country, Adelaide, Australia
- Brain Stimulation, Imaging and Cognition Research Group, School of Medicine, The University of Adelaide, Adelaide, Australia
| | - Andrea Phillipou
- Centre for Mental Health, Swinburne University of Technology, Melbourne, Australia
- Department of Mental Health, St Vincent’s Hospital, Melbourne, Australia
- Department of Psychiatry, The University of Melbourne, Melbourne, Australia
- Department of Mental Health, Austin Health, Melbourne, Australia
| | - G. Lorimer Moseley
- Innovation, Implementation & Clinical Translation (IIMPACT) in Health, University of South Australia, Kaurna Country, Adelaide, Australia
| |
Collapse
|
5
|
|
Imbabi TA, Habashy WS, Abol-fetouh GM, Labib MM, Osman A, Elkelish A, Qurtam AA, Tantawi AA, Ahmed-farid O. Enhancing semen quality, brain neurotransmitters, and antioxidant status of rabbits under heat stress by acacia gum, vitamin C, and lycopene as dietary supplements: an in vitro and in silico study. Italian Journal of Animal Science 2023; 22:321-336. [DOI: 10.1080/1828051x.2023.2187715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
|
Hammant A, Chithiramohan T, Haunton V, Beishon L. Cognitive testing following transient ischaemic attack: A systematic review of clinical assessment tools. Cogent Psychology 2023; 10. [PMID: 37025393 DOI: 10.1080/23311908.2023.2196005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Cognitive deficits are prevalent after transient ischaemic attack (TIA) and result in loss of function, poorer quality of life and increased risks of dependency and mortality. This systematic review aimed to synthesise the available evidence on cognitive assessment in TIA patients to determine the prevalence of cognitive deficits, and the optimal tests for cognitive assessment. Medline, Embase, PsychINFO and CINAHL databases were searched for relevant articles. Articles were screened by title and abstract. Full-text analysis and quality assessment was performed using the National Institute of Health Tool. Data were extracted on study characteristics, prevalence of TIA deficits, and key study findings. Due to significant heterogeneity, meta-analysis was not possible. Twenty-five full-text articles met the review inclusion criteria. There was significant heterogeneity in terms of cognitive tests used, definitions of cognitive impairment and TIA, time points post-event, and analysis methods. The majority of studies used the Mini-Mental State Examination (MMSE) or Montreal Cognitive Assessment (MoCA) (n = 23). Prevalence of cognitive impairment ranged from 2% to 100%, depending on the time-point and cognitive domain studied. The MoCA was more sensitive than the MMSE for identifying cognitive deficits. Deficits were common in executive function, attention, and language. No studies assessed diagnostic test accuracy against a reference standard diagnosis of cognitive impairment. Recommendations on cognitive testing after TIA are hampered by significant heterogeneity between studies, as well as a lack of diagnostic test accuracy studies. Future research should focus on harmonising tools, definitions, and time-points, and validating tools specifically for the TIA population.
Collapse
Affiliation(s)
- Alexander Hammant
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | | | - Victoria Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Lucy Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
7
|
|
You TY, Dong Q, Cui M. Emerging Links between Cerebral Blood Flow Regulation and Cognitive Decline: A Role for Brain Microvascular Pericytes. Aging Dis 2023. [PMID: 37163446 DOI: 10.14336/AD.2022.1204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Cognitive impairment associated with vascular etiology has been of considerable interest in the development of dementia. Recent studies have started to uncover cerebral blood flow deficits in initiating cognitive deterioration. Brain microvascular pericytes, the only type of contractile cells in capillaries, are involved in the precise modulation of vascular hemodynamics due to their ability to regulate resistance in the capillaries. They exhibit potential in maintaining the capillary network geometry and basal vascular tone. In addition, pericytes can facilitate better blood flow supply in response to neurovascular coupling. Their dysfunction is thought to disturb cerebral blood flow causing metabolic imbalances or structural injuries, leading to consequent cognitive decline. In this review, we summarize the characteristics of microvascular pericytes in brain blood flow regulation and outline the framework of a two-hit hypothesis in cognitive decline, where we emphasize how pericytes serve as targets of cerebral blood flow dysregulation that occurs with neurological challenges, ranging from genetic factors, aging, and pathological proteins to ischemic stress.
Collapse
Affiliation(s)
- Tong-Yao You
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
8
|
|
Zhu X, Zhou Y, Zhong W, Li Y, Wang J, Chen Y, Zhang R, Sun J, Sun Y, Lou M. Higher Functional Connectivity of Ventral Attention and Visual Network to Maintain Cognitive Performance in White Matter Hyperintensity. Aging Dis 2023. [PMID: 37163435 DOI: 10.14336/AD.2022.1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Ventral attention network (VAN), associated with cognitive performance, is one of the functional networks that are most vulnerable in white matter hyperintensity (WMH). Considering the global interaction of networks for cognitive performance, we hypothesized that VAN-related between-network connectivity might play a role in maintaining cognition in patients with WMH. We included 139 participants for both cross-sectional and longitudinal analysis from CIRCLE study (ClinicalTrials.gov ID: NCT03542734) between January 2014 and January 2021. Differences of VAN-related between-network connectivity were compared between normal-cognition (NC) and cognitive-impairment (CI) groups cross-sectionally, and between cognitive-decline (CD) and cognitive non-decline (CND) groups longitudinally by using t-test. False Discovery Rate was used for multiple comparison correction. The relationship between the network connectivity and WMH was tested on linear and quadratic models. Subgroup analysis of different WMH burdens were performed to test the difference of network connectivity between NC and CI groups. Among VAN-related between-network connectivity, only VAN-Visual Network (VN) connectivity was higher both in NC (n = 106) and CND (n = 113) groups versus CI (n = 33) and CD groups (n = 26), respectively. There was an inverted U-shaped relation between periventricular WMH (PWMH) burden and VAN-VN connectivity. Normal-cognition participants had higher VAN-VN connectivity among high, but not low PWMH burden subgroups. These findings suggest that the VAN-VN connectivity plays an important role in maintaining cognitive performance in WMH patients. It may serve as a unique marker for cognitive prediction and a potential target for intervention to prevent cognitive decline in WMH patients.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wansi Zhong
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yifei Li
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Junjun Wang
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Yuping Chen
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ruoxia Zhang
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yu Sun
- Key Laboratory for Biomedical Engineering of Ministry of Education of China, Zhejiang University, Zhejiang, China
| | - Min Lou
- Department of Neurology, the Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
|
Baker MR, Lee AS, Rajadhyaksha AM. L-type calcium channels and neuropsychiatric diseases: Insights into genetic risk variant-associated genomic regulation and impact on brain development. Channels (Austin) 2023; 17:2176984. [PMID: 36803254 DOI: 10.1080/19336950.2023.2176984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Recent human genetic studies have linked a variety of genetic variants in the CACNA1C and CACNA1D genes to neuropsychiatric and neurodevelopmental disorders. This is not surprising given the work from multiple laboratories using cell and animal models that have established that Cav1.2 and Cav1.3 L-type calcium channels (LTCCs), encoded by CACNA1C and CACNA1D, respectively, play a key role in various neuronal processes that are essential for normal brain development, connectivity, and experience-dependent plasticity. Of the multiple genetic aberrations reported, genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) in CACNA1C and CACNA1D that are present within introns, in accordance with the growing body of literature establishing that large numbers of SNPs associated with complex diseases, including neuropsychiatric disorders, are present within non-coding regions. How these intronic SNPs affect gene expression has remained a question. Here, we review recent studies that are beginning to shed light on how neuropsychiatric-linked non-coding genetic variants can impact gene expression via regulation at the genomic and chromatin levels. We additionally review recent studies that are uncovering how altered calcium signaling through LTCCs impact some of the neuronal developmental processes, such as neurogenesis, neuron migration, and neuron differentiation. Together, the described changes in genomic regulation and disruptions in neurodevelopment provide possible mechanisms by which genetic variants of LTCC genes contribute to neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madelyn R. Baker
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, USA
| | - Andrew S. Lee
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, USA
| | - Anjali M. Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, USA
- CONTACT Anjali M. Rajadhyaksha Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY
| |
Collapse
|
10
|
|
Zhang P, Xiang S, Liu B, Wang X, Yang X, Ye C, Wang Z, Li Y, Zhou L, Wang C, Li H, Huang J, Peng A, Wang X, Wang D, Xiao J, Chen W, Cheng H, Mao N, Wang J, Yang L, Chen J. Randomized controlled trial of nalfurafine for refractory pruritus in hemodialysis patients. Ren Fail 2023; 45:2175590. [PMID: 36856148 DOI: 10.1080/0886022X.2023.2175590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Background: Chronic kidney disease-associated pruritus (CKD-aP) is very common and sometimes refractory to treatment in hemodialysis patients. In a trial conducted in Japan, nalfurafine, effectively reduced itching of treatment-resistant CKD-aP. Our present bridging study aimed to evaluate the efficacy and safety of nalfurafine in Chinese cohort with refractory CKD-aP.Methods: In this phase III, multicenter bridging study conducted at 22 sites in China, 141 Chinese cases with refractory CKD-aP were randomly (2:2:1) assigned to receive 5 μg, 2.5 μg of nalfurafine or a placebo orally for 14 days in a double-blind manner. The primary end point was the mean decrease in the mean visual analogue scale (VAS) from baseline.Results: A total of 141 patients were included. The primary endpoint analysis based on full analysis set (FAS), the difference of mean VAS decrease between 5 μg nalfurafine and placebo group was 11.37 mm (p = .041); the difference of mean VAS decrease between 2.5 μg and placebo group was 8.81 mm, but not statistically significantly different. Both differences were greater than 4.13 mm, which met its predefined success criterion of at least 50% efficacy of the key Japanese clinical trial. The per protocol set (PPS) analysis got similar results. The incidence of adverse drug reactions (ADRs) was 49.1% in 5μg, 38.6% in 2.5 μg and 33.3% in placebo group. The most common ADR was insomnia, seen in 21 of the 114 nalfurafine patients.Conclusions: Oral nalfurafine effectively reduced itching with few significant ADRs in Chinese hemodialysis patients with refractory pruritus.
Collapse
Affiliation(s)
- Ping Zhang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Kidney Disease Center, Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Kidney Disease Center, National Key Clinical Department of Kidney Diseases, Hangzhou, China,Institute of Nephrology, Zhejiang University, Hangzhou, China,Kidney Disease Center, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Shilong Xiang
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Kidney Disease Center, Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Kidney Disease Center, National Key Clinical Department of Kidney Diseases, Hangzhou, China,Institute of Nephrology, Zhejiang University, Hangzhou, China,Kidney Disease Center, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| | - Bicheng Liu
- Department of Nephrology, ZhongDa Hospital, Southeast University, Chongqing, China
| | - Xiaohui Wang
- Department of Nephrology, Fifth Hospital in Wuhan, Wuhan, China
| | - Xiaoping Yang
- Department of Nephrology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zunsong Wang
- Department of Nephrology, Shandong Province QianFoshan Hospital, Jinan, China
| | - Yanlin Li
- Department of Nephrology, Zhongshan Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Li Zhou
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, China
| | - Caili Wang
- Department of Nephrology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hongbo Li
- Department of Nephrology, Wuhan No.1 Hospital, Wuhan, China
| | - Jian Huang
- Department of Nephrology, Jinhua Municipal Central Hospital, Jinhua, China
| | - Ai Peng
- Department of Nephrology, Shanghai Tenth People’s Hospital, Shanghai, China
| | - Xiaoping Wang
- Department of Nephrology, The Central Hospital of Jinan, Jinan, China
| | - Deguang Wang
- Department of Nephrology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenli Chen
- Department of Nephrology, The Central Hospital of Wuhan, Wuhan, China
| | - Hong Cheng
- Department of Nephrology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Nan Mao
- Department of Nephrology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jianqin Wang
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lin Yang
- Department of Nephrology, Yichang Central People’s Hospital, Yichang, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,Kidney Disease Center, Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou, China,Kidney Disease Center, National Key Clinical Department of Kidney Diseases, Hangzhou, China,Institute of Nephrology, Zhejiang University, Hangzhou, China,Kidney Disease Center, Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China,CONTACT Jianghua Chen Kidney Disease Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
|
Gundacker A, Glat M, Wais J, Stoehrmann P, Pollak A, Pollak DD. Early-life iron deficiency persistently disrupts affective behaviour in mice. Ann Med 2023; 55:1265-77. [PMID: 37096819 DOI: 10.1080/07853890.2023.2191003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND/OBJECTIVE Iron deficiency (ID) is the most common nutrient deficiency, affecting two billion people worldwide, including about 30% of pregnant women. During gestation, the brain is particularly vulnerable to environmental insults, which can irrevocably impair critical developmental processes. Consequently, detrimental consequences of early-life ID for offspring brain structure and function have been described. Although early life ID has been associated with an increased long-term risk for several neuropsychiatric disorders, the effect on depressive disorders has remained unresolved. MATERIALS AND METHODS A mouse model of moderate foetal and neonatal ID was established by keeping pregnant dams on an iron-deficient diet throughout gestation until postnatal day 10. The ensuing significant decrease of iron content in the offspring brain, as well as the impact on maternal behaviour and offspring vocalization was determined in the first postnatal week. The consequences of early-life ID for depression- and anxiety-like behaviour in adulthood were revealed employing dedicated behavioural assays. miRNA sequencing of hippocampal tissue of offspring revealed specific miRNAs signatures accompanying the behavioural deficits of foetal and neonatal ID in the adult brain. RESULTS Mothers receiving iron-deficient food during pregnancy and lactation exhibited significantly less licking and grooming behaviour, while active pup retrieval and pup ultrasonic vocalizations were unaltered. Adult offspring with a history of foetal and neonatal ID showed an increase in depression- and anxiety-like behaviour, paralleled by a deranged miRNA expression profile in the hippocampus, specifically levels of miR200a and miR200b. CONCLUSION ID during the foetal and neonatal periods has life-long consequences for affective behaviour in mice and leaves a specific and persistent mark on the expression of miRNAs in the brain. Foetal and neonatal ID needs to be further considered as risk factor for the development of depression and anxiety disorders later in life.Key MessagesMarginal reduction of gestational alimentary iron intake decreases brain iron content of the juvenile offspring.Early-life ID is associated with increased depression- and anxiety-like behaviour in adulthood.Reduction of maternal alimentary iron intake during pregnancy is reflected in an alteration of miRNA signatures in the adult offspring brain.
Collapse
Affiliation(s)
- Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Micaela Glat
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jonathan Wais
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Peter Stoehrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnold Pollak
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
|
Hadeiy SK, Habtemariam S, Shankayi Z, Shahyad S, Sahraei H, Asghardoust Rezaei M, Bahrami F. Amelioration of pain and anxiety in sleep-deprived rats by intra-amygdala injection of cinnamaldehyde. Sleep Med X 2023; 5:100069. [DOI: 10.1016/j.sleepx.2023.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
13
|
|
Tatemoto P, Pértille F, Bernardino T, Zanella R, Guerrero-Bosagna C, Zanella AJ. An enriched maternal environment and stereotypies of sows differentially affect the neuro-epigenome of brain regions related to emotionality in their piglets. Epigenetics 2023; 18:2196656. [PMID: 37192378 DOI: 10.1080/15592294.2023.2196656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 05/18/2023] Open
Abstract
Epigenetic mechanisms are important modulators of neurodevelopmental outcomes in the offspring of animals challenged during pregnancy. Pregnant sows living in a confined environment are challenged with stress and lack of stimulation which may result in the expression of stereotypies (repetitive behaviours without an apparent function). Little attention has been devoted to the postnatal effects of maternal stereotypies in the offspring. We investigated how the environment and stereotypies of pregnant sows affected the neuro-epigenome of their piglets. We focused on the amygdala, frontal cortex, and hippocampus, brain regions related to emotionality, learning, memory, and stress response. Differentially methylated regions (DMRs) were investigated in these brain regions of male piglets born from sows kept in an enriched vs a barren environment. Within the latter group of piglets, we compared the brain methylomes of piglets born from sows expressing stereotypies vs sows not expressing stereotypies. DMRs emerged in each comparison. While the epigenome of the hippocampus and frontal cortex of piglets is mainly affected by the maternal environment, the epigenome of the amygdala is mainly affected by maternal stereotypies. The molecular pathways and mechanisms triggered in the brains of piglets by maternal environment or stereotypies are different, which is reflected on the differential gene function associated to the DMRs found in each piglets' brain region . The present study is the first to investigate the neuro-epigenomic effects of maternal enrichment in pigs' offspring and the first to investigate the neuro-epigenomic effects of maternal stereotypies in the offspring of a mammal.
Collapse
Affiliation(s)
- Patricia Tatemoto
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Fábio Pértille
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Animal Biotechnology Laboratory, Animal Science Department, University of São Paulo - Luiz de Queiroz College of Agriculture (ESALQ), Piracicaba, São Paulo, Brazil
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Thiago Bernardino
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
- Graduation Program in One Health, University of Santo Amaro, São Paulo Brazil
| | - Ricardo Zanella
- Faculty of Agronomy and Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Carlos Guerrero-Bosagna
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, Linköping, Sweden
- Physiology and Environmental Toxicology Program, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Adroaldo José Zanella
- Center for Comparative Studies in Sustainability, Health and Welfare, Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, FMVZ, University of São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
14
|
|
Liu Z, Xia Q, Ma D, Wang Z, Li L, Han M, Yin X, Ji X, Wang S, Xin T. Biomimetic nanoparticles in ischemic stroke therapy. Discov Nano 2023; 18:40. [PMID: 36969494 DOI: 10.1186/s11671-023-03824-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/07/2023] [Indexed: 05/28/2023]
Abstract
Abstract Ischemic stroke is one of the most severe neurological disorders with limited therapeutic strategies. The utilization of nanoparticle drug delivery systems is a burgeoning field and has been widely investigated. Among these, biomimetic drug delivery systems composed of biogenic membrane components and synthetic nanoparticles have been extensively highlighted in recent years. Biomimetic membrane camouflage presents an effective strategy to prolong circulation, reduce immunogenicity and enhance targeting. For one thing, biomimetic nanoparticles reserve the physical and chemical properties of intrinsic nanoparticle. For another, the biological functions of original source cells are completely inherited. Compared to conventional surface modification methods, this approach is more convenient and biocompatible. In this review, membrane-based nanoparticles derived from different donor cells were exemplified. The prospect of future biomimetic nanoparticles in ischemic stroke therapy was discussed. Graphic abstract
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Qian Xia
- Department of Endocrinology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012 China
| | - Dengzhen Ma
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Zhihai Wang
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
| | - Longji Li
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
| | - Xianyong Yin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021 China
| | - Shan Wang
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250021 China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, 250014 China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| |
Collapse
|
15
|
|
Zhang T, Liang W, Ou W, Zhang M, Cui S, Zhang S. Daphnetin alleviates neuropathic pain in chronic constrictive injury rats via regulating the NF-κB dependent CXCL1/CXCR2 signaling pathway. Pharm Biol 2023; 61:746-54. [PMID: 37177984 DOI: 10.1080/13880209.2023.2198560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
CONTEXT Daphnetin is a natural product with anti-inflammatory, antioxidant, and neuroprotective properties. Reports have found that it has a strong analgesic effect; however, its analgesic mechanism is unknown. OBJECTIVE We explored the effect and mechanism of daphnetin on neuropathic pain (NP). MATERIALS AND METHODS The rat model of NP was established by ligation of the sciatic nerve. Male Sprague-Dawley rats were divided into six groups: Control, Model, Sham, morphine (0.375 mg/kg), and daphnetin (0.0625 and 0.025 mg/kg). Rats were intrathecally injected with drugs or normal saline once daily for three days. Hyperalgesia was evaluated by mechanical withdrawal threshold (MWT) and thermal withdrawal threshold (TWT). Protein levels were detected using ELISA, immunofluorescence, and western blotting. RESULTS Compared to the Model group, daphnetin improved TWT (46.70 °C vs. 42.20 °C) and MWT (45.60 g vs. 23.60 g), reduced the expression of interleukin-1β (0.99 ng/g vs. 1.42 ng/g), interleukin-6 (0.90 ng/g vs. 1.52 ng/g), and tumor necrosis factor-α (0.93 ng/g vs. 1.52 ng/g) in the sciatic nerve. Daphnetin decreased the expression of toll-like receptor 4 (TLR4) (0.47-fold), phosphorylated inhibitor of NF-κB (p-IKBα) (0.29-fold), nuclear factor kappaB (NF-κB) (0.48-fold), glial fibrillary acidic protein (GFAP) (0.42-fold), CXC chemokine ligand type 1 (CXCL1) (0.84-fold), CXC chemokine receptor type 2 (CXCR2) (0.78-fold) in the spinal cord. DISCUSSION AND CONCLUSIONS Daphnetin alleviates NP by inhibiting inflammation and astrocyte activation in the spinal cord, providing theoretical support for the extensive clinical treatment of NP.
Collapse
Affiliation(s)
- Tianrui Zhang
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wulin Liang
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Ou
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingqian Zhang
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuang Cui
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuofeng Zhang
- Department of Pharmacology of Traditional Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
|
Cascella R, Banchelli M, Abolghasem Ghadami S, Ami D, Gagliani MC, Bigi A, Staderini T, Tampellini D, Cortese K, Cecchi C, Natalello A, Adibi H, Matteini P, Chiti F. An in situ and in vitro investigation of cytoplasmic TDP-43 inclusions reveals the absence of a clear amyloid signature. Ann Med 2023; 55:72-88. [PMID: 36495262 DOI: 10.1080/07853890.2022.2148734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Several neurodegenerative conditions are associated with a common histopathology within neurons of the central nervous system, consisting of the deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43). Such inclusions have variably been described as morphologically and molecularly ordered aggregates having amyloid properties, as filaments without the cross-β-structure and dye binding specific for amyloid, or as amorphous aggregates with no defined structure and fibrillar morphology.Aims and Methods: Here we have expressed human full-length TDP-43 in neuroblastoma x spinal cord 34 (NSC-34) cells to investigate the morphological, structural, and tinctorial properties of TDP-43 inclusions in situ. We have used last-generation amyloid diagnostic probes able to cross the cell membrane and detect amyloid in the cytoplasm and have adopted Raman and Fourier transform infrared microspectroscopies to study in situ the secondary structure of the TDP-43 protein in the inclusions. We have then used transmission electron microscopy to study the morphology of the TDP-43 inclusions.Results: The results show the absence of amyloid dye binding, the lack of an enrichment of cross-β structure in the inclusions, and of a fibrillar texture in the round inclusions. The aggregates formed in vitro from the purified protein under conditions in which it is initially native also lack all these characteristics, ruling out a clear amyloid-like signature.Conclusions: These findings indicate a low propensity of TDP-43 to form amyloid fibrils and even non-amyloid filaments, under conditions in which the protein is initially native and undergoes its typical nucleus-to-cell mislocalization. It cannot be excluded that filaments emerge on the long time scale from such inclusions, but the high propensity of the protein to form initially other types of inclusions appear to be an essential characteristic of TDP-43 proteinopathies.KEY MESSAGESCytoplasmic inclusions of TDP-43 formed in NSC-34 cells do not stain with amyloid-diagnostic dyes, are not enriched with cross-β structure, and do not show a fibrillar morphology.TDP-43 assemblies formed in vitro from pure TDP-43 do not have any hallmarks of amyloid.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Martina Banchelli
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino, Italy
| | | | - Diletta Ami
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy.,Milan Center of Neuroscience (NeuroMI), Milan, Italy
| | - Maria Cristina Gagliani
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tommaso Staderini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Davide Tampellini
- U 1195 INSERM-Université Paris-Saclay, Paris, France.,Institut Professeur Baulieu, Paris, France
| | - Katia Cortese
- Cellular Electron Microscopy Laboratory, Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Antonino Natalello
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan, Italy.,Milan Center of Neuroscience (NeuroMI), Milan, Italy
| | - Hadi Adibi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Paolo Matteini
- Institute of Applied Physics "Nello Carrara", National Research Council, Sesto Fiorentino, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
17
|
|
Heigl T, Netzer MA, Zanetti L, Ganglberger M, Fernández-Quintero ML, Koschak A. Characterization of two pathological gating-charge substitutions in Cav1.4 L-type calcium channels. Channels (Austin) 2023; 17:2192360. [PMID: 36943941 DOI: 10.1080/19336950.2023.2192360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Cav1.4 L-type calcium channels are predominantly expressed at the photoreceptor terminals and in bipolar cells, mediating neurotransmitter release. Mutations in its gene, CACNA1F, can cause congenital stationary night-blindness type 2 (CSNB2). Due to phenotypic variability in CSNB2, characterization of pathological variants is necessary to better determine pathological mechanism at the site of action. A set of known mutations affects conserved gating charges in the S4 voltage sensor, two of which have been found in male CSNB2 patients. Here, we describe two disease-causing Cav1.4 mutations with gating charge neutralization, exchanging an arginine 964 with glycine (RG) or arginine 1288 with leucine (RL). In both, charge neutralization was associated with a reduction channel expression also reflected in smaller ON gating currents. In RL channels, the strong decrease in whole-cell current densities might additionally be explained by a reduction of single-channel currents. We further identified alterations in their biophysical properties, such as a hyperpolarizing shift of the activation threshold and an increase in slope factor of activation and inactivation. Molecular dynamic simulations in RL substituted channels indicated water wires in both, resting and active, channel states, suggesting the development of omega (ω)currents as a new pathological mechanism in CSNB2. This sum of the respective channel property alterations might add to the differential symptoms in patients beside other factors, such as genomic and environmental deviations.
Collapse
Affiliation(s)
- Thomas Heigl
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| | - Michael A Netzer
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| | - Lucia Zanetti
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| | - Matthias Ganglberger
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| | - Monica L Fernández-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, Austria
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Alexandra Koschak
- University of Innsbruck, Institute of Pharmacy, Pharmacology and Toxicology, Innsbruck, Austria
| |
Collapse
|
18
|
|
Cui X, Xu Y, Zhu H, Wang L, Zhou J. Long noncoding RNA NONHSAG045500 regulates serotonin transporter to ameliorate depressive-like behavior via the cAMP-PKA-CREB signaling pathway in a model of perinatal depression. J Matern Fetal Neonatal Med 2023; 36:2183468. [PMID: 36997170 DOI: 10.1080/14767058.2023.2183468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
OBJECTIVE Perinatal depression (PND) is the most common complication of childbirth and negatively affects the mother. Long noncoding RNA (lncRNA) NONHSAG045500 inhibits the expression of 5-hydroxytryptamine (5-HT) transporter (i.e. serotonin transporter [SERT]) and produces an antidepressant effect. This study aimed to identify a link between the lncRNA NONHSAG045500 and the pathogenesis of PND. METHODS Female C57BL/6 J mice were divided into normal control group (control group, n = 15), chronic unpredictable stress (CUS) model group (PND group, n = 15), lncRNA NONHSAG045500-overexpressed group (LNC group, sublingual intravenous injection of NONHSAG045500 overexpression cells for 7 days, n = 15), and escitalopram treatment group (i.e. the selective serotonin reuptake inhibitor [SSRI] group, with escitalopram administered from the 10th day after pregnancy to the 10th day after delivery, n = 15). Control group mice were conceived normally, whereas, in the other groups, a CUS model was established before mice were conceived. Depressive-like behaviour was assessed via sucrose preference, forced swimming, and open-field tests. The expression levels of 5-HT, SERT, and cAMP-PKA-CREB pathway-related proteins in the prefrontal cortex were detected on the 10th day after delivery. RESULTS Mice in the PND group exhibited significant depressive-like behaviours compared with those in the control group, indicating that the PND model was successfully established. The expression of lncRNA NONHSAG045500 was markedly decreased in the PND group compared with that in the control group. After treatment, both LNC and SSRI groups showed a significant improvement in depression-like behaviour, and the expression of 5-HT in the prefrontal cortex was increased in these groups compared with that in the PND group. In addition, the LNC group displayed lower expression of SERT and higher expression of cAMP, PKA, and CREB when in comparison to PND group. CONCLUSION NONHSAG045500 mediates the development of PND mainly by activating the cAMP-PKA-CREB pathway, increasing the level of 5-HT, and decreasing the expression of SERT.
Collapse
Affiliation(s)
- Xuelian Cui
- Department of Psychology, Changzhou Maternity and Child Health Care Hospital, Changzhou, P.R. China
| | - Yongjuan Xu
- Department of Cervical, Changzhou Maternity and Child Health Care Hospital, Changzhou, P.R. China
| | - Haiyan Zhu
- Department of Psychology, Changzhou Maternity and Child Health Care Hospital, Changzhou, P.R. China
| | - Li Wang
- Department of Psychology, Changzhou Maternity and Child Health Care Hospital, Changzhou, P.R. China
| | - Jun Zhou
- Department of Respiratory, Changzhou Maternity and Child Health Care Hospital, Changzhou, P.R. China
| |
Collapse
|
19
|
|
Laitinen L, Nurmi M, Koivisto M, Rautava P, Polo-Kantola P. Recalling the severity of nausea and vomiting of pregnancy - a study using Pregnancy-Unique Quantification of Emesis Questionnaire. J OBSTET GYNAECOL 2023; 43:2153025. [PMID: 36495300 DOI: 10.1080/01443615.2022.2153025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accuracy of the recall of the severity of nausea and vomiting of pregnancy (NVP) with Pregnancy-Unique Quantification of Emesis (PUQE) questionnaire has been questioned. We aimed to compare PUQE scores of women recalling the worst episode of NVP of their current pregnancy in different gestational weeks (gwks). Total of 2343 pregnant women (gwks 7-40) were recruited. Four groups were formed according to the gwks at reply: ≤16 gwks (n = 554), ≤20 gwks (n = 1209), >20 gwks (n = 1134) and ≥24 gwks (n = 495). PUQE scores were similar between the groups. Consequently, consistency of PUQE scores across the groups endorses the useability of the PUQE questionnaire in retrospective assessment of the overall severity of NVP in different gwks, regardless of passing of the peak NVP symptoms.Impact statementWhat is already known on this subject? Retrospective evaluation of the severity of nausea and vomiting of pregnancy (NVP) has been argued to be disposed to recall bias. Structured Pregnancy-Unique Quantification of Emesis (PUQE) questionnaire is a validated tool for assessing the severity of NVP.What do the results of this study add? When the women recalled the most severe NVP symptoms of their current pregnancy, no differences in the PUQE scores were found despite different gestational weeks at reply. Of distinct PUQE questions, women answering in early pregnancy reported longer duration of nausea than women answering in late pregnancy, but other questions were rated similarly.What the implications are of these findings for clinical practice and/or further research? Our aim was to compare the PUQE scores between the women who filled in the PUQE questionnaire in early or in late pregnancy, instructed to recall their worst symptoms in their current pregnancy. As there were no differences between the groups in total PUQE scores, our results support the application of PUQE questionnaire to assess the severity of NVP during pregnancy not only concurrent to the peak symptoms but also retrospectively.
Collapse
Affiliation(s)
- Linda Laitinen
- Department of Obstetrics and Gynecology, Hospital Nova of Central Finland, Jyväskylä, Finland.,Department of Obstetrics and Gynecology, University of Turku, Turku, Finland
| | - Miina Nurmi
- Department of Obstetrics and Gynecology, University of Turku, Turku, Finland.,Department of Public Health, University of Turku, Turku, Finland
| | - Mari Koivisto
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Päivi Rautava
- Department of Public Health, University of Turku, Turku, Finland.,Turku Clinical Research Centre, Turku University Hospital, Turku, Finland
| | - Päivi Polo-Kantola
- Department of Obstetrics and Gynecology, University of Turku, Turku, Finland.,Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| |
Collapse
|
20
|
|
Abstract
Calcium ions (Ca2+) are the basis of a unique and potent array of cellular responses. Calmodulin (CaM) is a small but vital protein that is able to rapidly transmit information about changes in Ca2+ concentrations to its regulatory targets. CaM plays a critical role in cellular Ca2+ signaling, and interacts with a myriad of target proteins. Ca2+-dependent modulation by CaM is a major component of a diverse array of processes, ranging from gene expression in neurons to the shaping of the cardiac action potential in heart cells. Furthermore, the protein sequence of CaM is highly evolutionarily conserved, and identical CaM proteins are encoded by three independent genes (CALM1-3) in humans. Mutations within any of these three genes may lead to severe cardiac deficits including severe long QT syndrome (LQTS) and/or catecholaminergic polymorphic ventricular tachycardia (CPVT). Research into disease-associated CaM variants has identified several proteins modulated by CaM that are likely to underlie the pathogenesis of these calmodulinopathies, including the cardiac L-type Ca2+ channel (LTCC) CaV1.2, and the sarcoplasmic reticulum Ca2+ release channel, ryanodine receptor 2 (RyR2). Here, we review the research that has been done to identify calmodulinopathic CaM mutations and evaluate the mechanisms underlying their role in disease.
Collapse
Affiliation(s)
- John W. Hussey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Worawan B. Limpitikul
- Department of Medicine, Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ivy E. Dick
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
- CONTACT Ivy E. Dick School of Medicine, University of Maryland, Baltimore, MD21210
| |
Collapse
|
21
|
|
Zhao C, Zhou X, Shi X. The influence of Nav1.9 channels on intestinal hyperpathia and dysmotility. Channels (Austin) 2023; 17:2212350. [PMID: 37186898 DOI: 10.1080/19336950.2023.2212350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
The Nav1.9 channel is a voltage-gated sodium channel. It plays a vital role in the generation of pain and the formation of neuronal hyperexcitability after inflammation. It is highly expressed in small diameter neurons of dorsal root ganglions and Dogiel II neurons in enteric nervous system. The small diameter neurons in dorsal root ganglions are the primary sensory neurons of pain conduction. Nav1.9 channels also participate in regulating intestinal motility. Functional enhancements of Nav1.9 channels to a certain extent lead to hyperexcitability of small diameter dorsal root ganglion neurons. The hyperexcitability of the neurons can cause visceral hyperalgesia. Intestinofugal afferent neurons and intrinsic primary afferent neurons in enteric nervous system belong to Dogiel type II neurons. Their excitability can also be regulated by Nav1.9 channels. The hyperexcitability of intestinofugal afferent neurons abnormally activate entero-enteric inhibitory reflexes. The hyperexcitability of intrinsic primary afferent neurons disturb peristaltic waves by abnormally activating peristaltic reflexes. This review discusses the role of Nav1.9 channels in intestinal hyperpathia and dysmotility.
Collapse
Affiliation(s)
- Chenyu Zhao
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi Zhou
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
|
Bibollet H, Kramer A, Bannister RA, Hernández-Ochoa EO. Advances in Ca(V)1.1 gating: New insights into permeation and voltage-sensing mechanisms. Channels (Austin) 2023; 17:2167569. [PMID: 36642864 DOI: 10.1080/19336950.2023.2167569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The CaV1.1 voltage-gated Ca2+ channel carries L-type Ca2+ current and is the voltage-sensor for excitation-contraction (EC) coupling in skeletal muscle. Significant breakthroughs in the EC coupling field have often been close on the heels of technological advancement. In particular, CaV1.1 was the first voltage-gated Ca2+ channel to be cloned, the first ion channel to have its gating current measured and the first ion channel to have an effectively null animal model. Though these innovations have provided invaluable information regarding how CaV1.1 detects changes in membrane potential and transmits intra- and inter-molecular signals which cause opening of the channel pore and support Ca2+ release from the sarcoplasmic reticulum remain elusive. Here, we review current perspectives on this topic including the recent application of functional site-directed fluorometry.
Collapse
Affiliation(s)
- Hugo Bibollet
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Audra Kramer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roger A. Bannister
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erick O. Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- CONTACT Erick O. Hernández-Ochoa Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD21201, USA
| |
Collapse
|
23
|
|
Pinto SN, Lerner A, Phung D, Barisano G, Chou B, Xu W, Sheikh-bahaei N. Arterial Spin Labeling in Migraine: A Review of Migraine Categories and Mimics. J Cent Nerv Syst Dis 2023; 15:117957352311600. [DOI: 10.1177/11795735231160032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Migraine is a complex headache characterized by changes in functional connectivity and cerebral perfusion. The perfusion changes represent a valuable domain for targeted drug therapy. Arterial spin labeling is a noncontrast imaging technique of quantifying cerebral perfusion changes in the migraine setting. In this narrative review, we will discuss the pathophysiology of the different categories of migraine, as defined by the International Classification of Headache Disorders-3 and describe a category-based approach to delineating perfusion changes in migraine on arterial spin labeling images. We will also discuss the use of arterial spin labeling to differentiate migraine from stroke and/or seizures in the adult and pediatric populations. Our systematic approach will help improve the understanding of the complicated vascular changes that occur during migraines and identify potential areas of future research.
Collapse
Affiliation(s)
- Soniya N Pinto
- Department of Diagnostic Imaging, St Jude Children’s Research Hospital, Memphis, TN, USA
| | - Alexander Lerner
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Daniel Phung
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Giuseppe Barisano
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Brendon Chou
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Wilson Xu
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Nasim Sheikh-Bahaei
- University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
24
|
|
Wang S, Gu H, Yao Q, Yang C, Li X, Ouyang G. Task-independent auditory probes reveal changes in mental workload during simulated quadrotor UAV training. Health Inf Sci Syst 2023; 11:12. [PMID: 36910421 DOI: 10.1007/s13755-023-00213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Objective The event-related potential (ERP) methods based on laboratory control scenes have been widely used to measure the level of mental workload during operational tasks. In this study, both task difficulty and test time were considered. Auditory probes (ignored task-irrelevant background sounds) were used to explore the changes in mental workload of unmanned aerial vehicle (UAV) operators during task execution and their ERP representations. Approach 51 students participated in a 10-day training and test of simulated quadrotor UAV. During the experiment, background sound was played to induce ERP according to the requirements of oddball paradigm, and the relationship between mental workload and the amplitudes of N200 and P300 in ERP was explored. Main results Our study shows that the mental workload during operational task training is multi-dimensional, and its changes are affected by bottom-up perception and top-down cognition. The N200 component of the ERP evoked by the auditory probe corresponds to the bottom-up perceptual part; while the P300 component corresponds to the top-down cognitive part, which is positively correlated with the improvement of skill level. Significance This paper describes the relationship between ERP induced by auditory probes and mental workload from the perspective of multi-resource theory and human information processing. This suggests that the auditory probe can be used to reveal the mental workload during the training of operational tasks, which not only provides a possible reference for measuring the mental workload, but also provides a possibility for identifying the development of the operator's skill level and evaluating the training effect.
Collapse
Affiliation(s)
- Shaodi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 People's Republic of China
| | - Heng Gu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 People's Republic of China
| | - Qunli Yao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 People's Republic of China
| | - Chao Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 People's Republic of China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 People's Republic of China
| | - Gaoxiang Ouyang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 People's Republic of China
| |
Collapse
|
25
|
|
Rudy MJ, Salois G, Cubello J, Newell R, Mayer-Proschel M. Gestational iron deficiency affects the ratio between interneuron subtypes in the postnatal cerebral cortex in mice. Development 2023; 150:dev201068. [PMID: 36805633 DOI: 10.1242/dev.201068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Gestational iron deficiency (gID) is highly prevalent and associated with an increased risk of intellectual and developmental disabilities in affected individuals that are often defined by a disrupted balance of excitation and inhibition (E/I) in the brain. Using a nutritional mouse model of gID, we previously demonstrated a shift in the E/I balance towards increased inhibition in the brains of gID offspring that was refractory to postnatal iron supplementation. We thus tested whether gID affects embryonic progenitor cells that are fated towards inhibitory interneurons. We quantified relevant cell populations during embryonic inhibitory neuron specification and found an increase in the proliferation of Nkx2.1+ interneuron progenitors in the embryonic medial ganglionic eminence at E14 that was associated with increased Shh signaling in gID animals at E12. When we quantified the number of mature inhibitory interneurons that are known to originate from the MGE, we found a persistent disruption of differentiated interneuron subtypes in early adulthood. Our data identify a cellular target that links gID with a disruption of cortical interneurons which play a major role in the establishment of the E/I balance.
Collapse
Affiliation(s)
- Michael J Rudy
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Colorado Denver - Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045, USA
| | - Garrick Salois
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Janine Cubello
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Robert Newell
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Margot Mayer-Proschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
26
|
|
Zhang ZX, Zhou YJ, Gu P, Zhao W, Chen HX, Wu RY, Zhou LY, Cui QZ, Sun SK, Zhang LQ, Zhang K, Xu HJ, Chai XQ, An SJ. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate Parkinson's disease and neuronal damage through inhibition of microglia. Neural Regen Res 2023; 18:2291-300. [PMID: 37056150 DOI: 10.4103/1673-5374.368300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Microglia-mediated inflammatory responses have been shown to play a crucial role in Parkinson's disease. In addition, exosomes derived from mesenchymal stem cells have shown anti-inflammatory effects in the treatment of a variety of diseases. However, whether they can protect neurons in Parkinson's disease by inhibiting microglia-mediated inflammatory responses is not yet known. In this study, exosomes were isolated from human umbilical cord mesenchymal stem cells and injected into a 6-hydroxydopamine-induced rat model of Parkinson's disease. We found that the exosomes injected through the tail vein and lateral ventricle were absorbed by dopaminergic neurons and microglia on the affected side of the brain, where they repaired nigral-striatal dopamine system damage and inhibited microglial activation. Furthermore, in an in vitro cell model, pretreating lipopolysaccharide-stimulated BV2 cells with exosomes reduced interleukin-1β and interleukin-18 secretion, prevented the adoption of pyroptosis-associated morphology by BV2 cells, and increased the survival rate of SH-SY5Y cells. Potential targets for treatment with human umbilical cord mesenchymal stem cells and exosomes were further identified by high-throughput microRNA sequencing and protein spectrum sequencing. Our findings suggest that human umbilical cord mesenchymal stem cells and exosomes are a potential treatment for Parkinson's disease, and that their neuroprotective effects may be mediated by inhibition of excessive microglial proliferation.
Collapse
Affiliation(s)
- Zhong-Xia Zhang
- Department of Neurology, the First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Yong-Jie Zhou
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ping Gu
- Department of Neurology, the First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Wei Zhao
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Hong-Xu Chen
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ruo-Yu Wu
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Lu-Yang Zhou
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Qing-Zhuo Cui
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Shao-Kang Sun
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Lin-Qi Zhang
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ke Zhang
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Hong-Jun Xu
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Xi-Qing Chai
- Department of Neurology, the First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Sheng-Jun An
- Research Center, Hebei University of Chinese Medicine, Shijiazhuang, Hebei Province, China
| |
Collapse
|
27
|
|
Giommi F, Bauer PR, Berkovich-ohana A, Barendregt H, Brown KW, Gallagher S, Nyklíček I, Ostafin B, Raffone A, Slagter HA, Trautwein F, Vago DR. The (In)flexible self: Psychopathology, mindfulness, and neuroscience. Int J Clin Health Psychol 2023; 23:100381. [PMID: 36969914 DOI: 10.1016/j.ijchp.2023.100381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Clinical and neuroscientific evidence indicates that transdiagnostic processes contribute to the generation and maintenance of psychopathological symptoms and disorders. Rigidity (inflexibility) appears a core feature of most transdiagnostic pathological processes. Decreasing rigidity may prove important to restore and maintain mental health. One of the primary domains in which rigidity and flexibility plays a role concerns the self. We adopt the pattern theory of self (PTS) for a working definition of self. This incorporates the pluralist view on self as constituted by multiple aspects or processes, understood to constitute a self-pattern, i.e. processes organized in non-linear dynamical relations across a number of time scales. The use of mindfulness meditation in the format of Mindfulness Based Interventions (MBIs) has been developed over four decades in Clinical Psychology. MBIs are promising as evidence-based treatments, shown to be equivalent to gold-standard treatments and superior to specific active controls in several randomized controlled trials. Notably, MBIs have been shown to target transdiagnostic symptoms. Given the hypothesized central role of rigid, habitual self-patterns in psychopathology, PTS offers a useful frame to understand how mindfulness may be beneficial in decreasing inflexibility. We discuss the evidence that mindfulness can alter the psychological and behavioral expression of individual aspects of the self-pattern, as well as favour change in the self-pattern as a whole gestalt. We discuss neuroscientific research on how the phenomenology of the self (pattern) is reflected in associated cortical networks and meditation-related alterations in cortical networks. Creating a synergy between these two aspects can increase understanding of psychopathological processes and improve diagnostic and therapeutic options.
Collapse
|