1
|
Deshmukh N, Talkal R, Lakshmi B. In silico screening of potential inhibitors from Cordyceps species against SARS-CoV-2 main protease. J Biomol Struct Dyn 2024; 42:4395-4411. [PMID: 37325819 DOI: 10.1080/07391102.2023.2225110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a result of a retroviral infection of SARS-CoV-2. Due to its virulence and high infection rate, it is a matter of serious concern and a global health emergency. Currently available COVID-19 vaccines approved by regulatory bodies around the world have been shown to provide significant protection against COVID-19. But no vaccine is 100% effective at preventing infection, also they have varying efficacy rates and different side effects. However, the main protease (Mpro) of SARS-CoV-2 has been identified as a key drug target due to its essential role in viral infection and its minimal similarity with human proteases. Cordyceps mushrooms have been found to have various therapeutic properties that could effectively combat SARS-CoV-2, including improve lung functioning, anti-viral, immunomodulators, anti-infectious, and anti-inflammatory. The present study aims to screen and evaluate the inhibitory potential of the bioactive molecules from the Cordyceps species against the Mpro of SARS-CoV-2. The bioactive molecules were screened based on their docking score, molecular interactions in the binding pocket, ADME properties, toxicity, carcinogenicity, and mutagenicity. Among all the molecules that were tested, cordycepic acid was the most effective and promising candidate, with a binding affinity of -8.10 kcal/mol against Mpro. The molecular dynamics (MD) simulation and free binding energy calculations revealed that the cordycepic acid-Mpro complex was highly stable and showed fewer conformational fluctuations. These findings need to be investigated further through in-vitro and in-vivo studies for additional validation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Niketan Deshmukh
- L J School of Applied Sciences, L J University, Ahmedabad, India
| | - Reshma Talkal
- Gujarat Biotechnology Research Centre, Gandhinagar, India
| | - Bhaskaran Lakshmi
- Department of Biotechnology, Kadi Sarva Vishwavidyalaya, Gandhinagar, India
| |
Collapse
|
2
|
Kim MS, Kong D, Han M, Roh K, Koo H, Lee S, Kang KS. Canine amniotic membrane-derived mesenchymal stem cells ameliorate atopic dermatitis through regeneration and immunomodulation. Vet Res Commun 2023; 47:2055-2070. [PMID: 37421548 DOI: 10.1007/s11259-023-10155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Mesenchymal stem cells (MSCs) are a promising tool for treating immune disorders. However, the immunomodulatory effects of canine MSCs compared with other commercialized biologics for treating immune disorders have not been well studied. In this study we investigated the characteristics and immunomodulatory effects of canine amnion membrane (cAM)-MSCs. We examined gene expression of immune modulation and T lymphocytes from activated canine peripheral blood mononuclear cell (PBMC) proliferation. As a result, we confirmed that cAM-MSCs upregulated immune modulation genes (TGF-β1, IDO1 and PTGES2) and suppressed the proliferation capacity of T cells. Moreover, we confirmed the therapeutic effect of cAM-MSCs compared with oclacitinib (OCL), the most commonly used Janus kinase (JAK) inhibitor, as a treatment for canine atopic dermatitis (AD) using a mouse AD model. As a result, we confirmed that cAM-MSCs with PBS treatment groups (passage 4, 6 and 8) compared with PBS only (PBS) though scores of dermatologic signs, tissue pathologic changes and inflammatory cytokines were significantly reduced. In particular, cAM-MSCs were more effective than OCL in the recovery of wound dysfunction, regulation of mast cell activity and expression level of immune modulation protein. Interestingly, subcutaneous injection of cAM-MSCs induced weight recovery, but oral administration of oclacitinib induced weight loss as a side effect. In conclusion, this study suggests that cAM-MSCs can be developed as a safe canine treatment for atopic dermatitis without side effects through effective regeneration and immunomodulation.
Collapse
Affiliation(s)
- Min Soo Kim
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dasom Kong
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myounghee Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyounghwan Roh
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd, Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Hojun Koo
- Smile Veterinary Clinic, Jungbu-daero, Cheoin-gu, yongin-si, Gyeonggi-do, 1510, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd, Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Li W, Zou C. NXNL2 Promotes Colon Cancer Proliferation and Metastasis by Regulating AKT Pathway. Appl Biochem Biotechnol 2023; 195:7685-7696. [PMID: 37084033 DOI: 10.1007/s12010-023-04513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
This study aimed to explore the role of nucleoredoxin-like 2 (NXNL2) in colon cancer (CC). The GEPIA and UALCAN databases were analyzed to explore genes involved in the prognosis of CC patients. DLD1 cells were treated with the DNA methylation inhibitor 5-azacitidine to validate the above findings. The methyltransferase DNMT (DNA methylation) was further knocked down by shRNA, then the expression of NXNL2 was assessed by qPCR. The role of NXNL2 on cell proliferation and metastasis was examined using corresponding assays. NXNL2 was found to exhibit the greatest impact on the prognosis of CC patients. High NXNL2 correlated with poor survival outcomes of CC. The expression of NXNL2 was regulated by DNA methylation. NXNL2 promoted CC cell proliferation and metastasis. Also, NXNL2 promoted the AKT pathway activity. In conclusion, NXNL2 could affect the cancer cell proliferation and metastasis, and has a poor survival prognosis in CC.
Collapse
Affiliation(s)
- Wenqin Li
- Department of Gastroenterology, the Second Clinical Medical college, Yangtze University, No. 60 Jingzhong Road, Jingzhou, 434020, Hubei, China
| | - Chuanxin Zou
- Department of Gastroenterology, the Second Clinical Medical college, Yangtze University, No. 60 Jingzhong Road, Jingzhou, 434020, Hubei, China.
| |
Collapse
|
4
|
Hong Y, Wang J, Sun W, Zhang L, Xu X, Zhang K. Gallic acid improves the metformin effects on diabetic kidney disease in mice. Ren Fail 2023; 45:2183726. [PMID: 37723077 PMCID: PMC9987773 DOI: 10.1080/0886022x.2023.2183726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
OBJECTIVES Metformin is an antidiabetic agent that is used as the first-line treatment of type 2 diabetes mellitus. Gallic acid is a type of phenolic acid that has been shown to be a potential drug candidate to treat diabetic kidney disease, an important complication of diabetes. We aimed to test whether a combination of gallic acid and metformin can exert synergetic effect on diabetic kidney disease in diabetic mice model. METHODS Streptozotocin (65 mg/kg) intraperitoneal injection was used to induce diabetic kidney disease in mice. The diabetic mice were treated with saline (Vehicle), gallic acid (GA) (30 mg/kg), metformin (MET) (200 mg/kg), or the combination of gallic acid (30 mg/kg) and metformin (200 mg/kg) (GA + MET). RESULTS Our results demonstrated that compared to the untreated diabetic mice, all three strategies (GA, MET, and GA + MET) exhibited various effects on improving renal morphology and functions, reducing oxidative stress in kidney tissues, and restoring AMP-activated protein kinase (AMPK)/silent mating type information regulation 2 homolog 1 (SIRT1) signaling in kidney tissues of diabetic mice. Notably, the combination strategy (GA + MET) provided the most potent renal protection effects than any single strategies (GA or MET). CONCLUSION Our results support the hypothesis that gallic acid might serve as a potential supplement to metformin to enhance the therapeutical effect of metformin.
Collapse
Affiliation(s)
- Yan Hong
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Jidong Wang
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Wenjuan Sun
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Lai Zhang
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Xuefang Xu
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Kaiyue Zhang
- Department of Nephrology, Jiangnan University Medical Center (JUMC), Wuxi, China
- Department of Nephrology, Wuxi No. 2 People’s Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| |
Collapse
|
5
|
Wang Y, Li G, Lv J, Zhou Y, Ma H. Vitamin E reduces inflammation and improves cognitive disorder and vascular endothelial functions in patients with leukoaraiosis. Int J Neurosci 2023; 133:1346-1354. [PMID: 35645223 DOI: 10.1080/00207454.2022.2079505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/11/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Leukoaraiosis (LA) is a disease manifested by demyelination and gliosis in white matter, mainly caused by cerebrovascular diseases. LA is closely related to the expression level of inflammatory factors, oxidative stress, and vascular endothelial dysfunction in patients. Vitamin E may play antioxidant and anti-inflammatory roles in various diseases. We aimed to explore the effects of vitamin E on the patients with LA. METHODS A total of 160 patients with LA were recruited in this research. Matrix metalloproteinase-9 (MMP-9), MMP-2, C-reactive protein (CRP), complement 3 (C3), C4, nitric oxide (NO), and endothelin (ET) levels were evaluated by ELISA. The Mini-Mental State Examination (MMSE) was used for cognitive impairment assessment. Superoxide dismutase (SOD) and malondialdehyde (MDA) concentrations were analyzed by commercial kits. RESULTS The levels of CRP, C3, and C4 significantly decreased in the serum of LA patients after the administration of vitamin E. The levels of MMP-2 and MPP-9 showed a significant decrease in the administered group. Vitamin E significantly inhibited the expression of MDA, while significantly upregulated the expression of SOD. Significant increase in NO production and significant downregulation of ET expression occurred in vitamin E groups. MMSE score was significantly increased by vitamin E. CONCLUSION In conclusion, vitamin E showed effects on the alleviation of inflammatory response, oxidative stress, endothelial damage, and cognitive dysfunction. Thus, vitamin E could be a potential drug for the clinical treatment of LA patients.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Guoce Li
- Department of MRI, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Jianping Lv
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Yingwen Zhou
- Department of MRI, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Hongxia Ma
- Department of Nursing, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
6
|
Yang Q, Sun Y, Qiu B, Zhao H. FBXW7 Enhances Cisplatin-Induced Apoptosis in Oral Cancer Cell Lines. Int Dent J 2023; 73:620-627. [PMID: 36481094 PMCID: PMC10509406 DOI: 10.1016/j.identj.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND About one-third of patients with oral squamous cell carcinoma (OSCC) have a risk of occurrence and chemoresistance, making survival rates abysmal. We aim to evaluate the role of F-box/WD repeat-containing protein 7 (FBXW7) to further develop efficient treatment of chemoresistant OSCC. METHODS FBXW7 overexpression was induced in human OSCC cell lines including SCC9 and CAL27 by a lentiviral vector, Lv-FBXW7 or lv-NC (noncoding control), and overexpression efficiency was assessed using quantitative real-time polymerase chain reaction (qRT-PCR) and western blot of FBXW7. Cell viability was measured using MTT assay. The effects of FBXW7 overexpression on cell migration and invasion was evaluated by the colony formation assay and Matrigel assay. Apoptosis of cells with lv-FBXW7 transfection was measured by qRT-PCR and western blot analyses of BAX, BAK, MCL1, and BCL2 expression. Growth rate and cisplatin sensitivity of CAL27 xenografts with or without FBXW7 overexpression was monitored. Ki-67 and PCMA levels-which are biomarkers of intratumoural apoptosis-BAX, MCL1, Beclin1, and LC3I&II-which are autophagy biomarkers-were assessed. RESULTS Transfection of lv-FBXW7 in SCC9 and CAL27 cells resulted in increased sensitivity to cisplatin treatment, as evidenced by slower cell proliferation, lower colony formation and invasion, higher apoptosis, and autophagy compared to those transfected with lv-NC. Mice with CAL27 xenografts overexpressing FBXW7 also demonstrated slower tumour growth and upregulation in Ki067 and PCNA. Tumours also showed higher apoptosis and autophagy activities. CONCLUSIONS FBXW7 overexpression was herein shown to effectively sensitise OSCC cells to cisplatin treatment in vitro and in vivo.
Collapse
Affiliation(s)
- Qi Yang
- Dental Clinic, Cangzhou Central Hospital, Cangzhou, Hebei, China.
| | - Yang Sun
- Dental Clinic, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Bo Qiu
- Dental Clinic, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Huanhuan Zhao
- Dental Clinic, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
7
|
Li G, Liao G, Xie J, Liu B, Li X, Qiu M. Overexpression of SMAD7 improves the function of EGFR-targeted human CAR-T cells against non-small-cell lung cancer. Respirology 2023; 28:869-880. [PMID: 37376985 DOI: 10.1111/resp.14541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Recent advancements in immunotherapy led to the development of Chimeric antigen receptor (CAR) T-cell therapy. CAR-T cell therapy in non-small cell lung cancer (NSCLC) is hindered by overexpression of transforming growth factor (TGFβ) in the cancer cells that have a negative regulatory role on T-cells activity. This study characterized CAR-T with overexpression of mothers against decapentaplegic homologue 7 (SMAD), a negative regulator of TGFβ downstream signalling. METHODS We have generated three types of CAR-T: epidermal growth factor receptor (EGFR)-CAR-T, EGFR-dominant-negative TGFbeta receptor 2 (DNR)-CAR-T, and EGFR-SMAD7-CAR-T by transducing human T-cells with the lentivirus constructs. We characterized the proliferation, expression of proinflammatory cytokines, activation profile, and lysis capacity in co-cultures with A549 lung carcinoma cells with and without TGFβ neutralizing antibodies. We also tested the therapeutic potential of EGFR-SMAD7-CAR-T in the A549 cells tumour-bearing mice model. RESULTS Both EGFR-DNR-CAR-T and EGFR-SMAD7-CAR-T demonstrated a higher proliferation rate and lysis capacity to A549 than traditional EGFR-CAR-T. Neutralization of TGFβ by the antibodies resulted in increased performance of EGFR-CAR-T. In vivo, both EGFR-DNR-CAR-T and EGFR-SMAD7-CAR-T resulted in complete tumour resorption by day 20, whereas conventional CAR-T only has a partial effect. CONCLUSION We demonstrated the high efficacy and resistance to negative TGFβ regulation of EGFR-SMAD7-CAR-T comparable with EGFR-DNR-CAR-T and without the systemic effect of TGFβ inhibition.
Collapse
Affiliation(s)
- Guoping Li
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guoliang Liao
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jinbao Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xu Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Minglian Qiu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Solouki A, Zare Mehrjerdi M, Azimi R, Aliniaeifard S. Improving basil (Ocimum basilicum L.) essential oil yield following down-regulation of photosynthetic functionality by short-term application of abiotic elicitors. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
9
|
Cheng-yuan W, Jian-gang D. Research progress on the prevention and treatment of hyperuricemia by medicinal and edible plants and its bioactive components. Front Nutr 2023; 10:1186161. [PMID: 37377486 PMCID: PMC10291132 DOI: 10.3389/fnut.2023.1186161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Hyperuricemia is another common metabolic disease, which is considered to be closely related to the development of many chronic diseases, in addition to the "three highs." Currently, although drugs show positive therapeutic effects, they have been shown to produce side effects that can damage the body. There is growing evidence that medicinal and edible plants and their bioactive components have a significant effect on hyperuricemia. In this paper, we review common medicinal and edible plants with uric acid-lowering effects and summarize the uric acid-lowering mechanisms of different bioactive components. Specifically, the bioactive components are divided into five categories: flavonoids, phenolic acids, alkaloids, polysaccharides, and saponins. These active substances exhibit positive uric acid-lowering effects by inhibiting uric acid production, promoting uric acid excretion, and improving inflammation. Overall, this review examines the potential role of medicinal and edible plants and their bioactive components as a means of combating hyperuricemia, with the hope of providing some reference value for the treatment of hyperuricemia.
Collapse
|
10
|
Liang R, Zhang H, Xie L, Sun A, Wang J, Chen J. Application of medical-nurse integration health education in aged patients undergoing percutaneous vertebroplasty. Medicine (Baltimore) 2023; 102:e33879. [PMID: 37335677 DOI: 10.1097/md.0000000000033879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
This study was designed to explore the effect of medical-nurse integration health education in aged patients undergoing percutaneous vertebroplasty. A total of 72 aged patients with osteoporotic vertebral compression fractures, who obtained percutaneous vertebroplasty from June 2019 to May 2022 were selected in this study. Patients were divided into control group (n = 36) and experimental group (n = 36) according to the time of hospitalization. The patients in control group received routine health education, while the patients in the experimental group received medical-nurse integration health education. We evaluated participants on 4 key aspects, their understanding of relevant knowledge, compliance with functional exercise, residual lower back pain rate, and satisfaction with the health education received. Our study found that patients in the experimental group had a significantly higher mastery rate of health education knowledge compared to those in the control group (88.89% vs 50.00%, P < .001). Additionally, compliance with the functional exercise program was higher in the experimental group, with over 80% of patients fully compliant, compared to only about 44.4% in the control group (P = .001). The average Japanese Orthopaedic Association score of the observation group 1 week after operation was higher than that of the control group (P < .05). Moreover, most patients in the experimental group were very satisfied with the medical-nurse integration health education, while most patients in the control group were only satisfied (P < .001). For aged patients with osteoporotic vertebral compression fractures treated by percutaneous vertebroplasty, medical-nurse integration health education could be an effective method to improve the ability of patients to obtain relevant education, enhance the compliance of patients for functional exercise and increase patient satisfaction to the education, and reduce residual low back pain in patients.
Collapse
Affiliation(s)
- Ruirui Liang
- School of Nursing, Anhui Medical University, Feicui Road, Hefei, Anhui, China
- Geriatrics Department, the Second People's Hospital of Hefei, Guangde Road, Hefei, Anhui, China
| | - Huimin Zhang
- Interventional Vascular Pain Department, The Second People's Hospital of Hefei, Guangde Road, Hefei, Anhui, China
| | - Lunfang Xie
- School of Nursing, Anhui Medical University, Feicui Road, Hefei, Anhui, China
| | - Aihua Sun
- Geriatrics Department, the Second People's Hospital of Hefei, Guangde Road, Hefei, Anhui, China
| | - Jing Wang
- Geriatrics Department, the Second People's Hospital of Hefei, Guangde Road, Hefei, Anhui, China
| | - Jun Chen
- Interventional Vascular Pain Department, The Second People's Hospital of Hefei, Guangde Road, Hefei, Anhui, China
| |
Collapse
|
11
|
You HP, Xu CJ, Zhang LH, Chen ZY, Liu WF, Wang HG, He HF, Zhang LC. Taselisib moderates neuropathic pain through PI3K/AKT signaling pathway in a rat model of chronic constriction injury. Brain Res Bull 2023; 199:110671. [PMID: 37210013 DOI: 10.1016/j.brainresbull.2023.110671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Neuropathic pain is a chronic condition commonly caused by inflammation-induced disturbances or lesions of somatosensory functions in the nervous system. The aim of this study was to investigate the effects and mechanisms of Taselisib on chronic constriction injury (CCI)-induced neuropathic pain in rats. METHODS The rats were divided into four groups: sham group, sham + Taselisib (10mg/kg orally once a day) group, CCI group, and CCI + Taselisib (10mg/kg orally once a day) group. Pain behavioral tests, recorded by measuring paw withdrawal threshold (PWT) and thermal withdrawal latency (TWL), were conducted on days 0, 3, 7, 14, and 21 after surgery. After testing, the animals were euthanized and spinal dorsal horns were collected. Pro-inflammatory cytokines were quantified using ELISA and qRT-PCR. PI3K/pAKT signaling was assessed using Western blot and immunofluorescence. RESULTS PWT and TWL were significantly reduced after CCI surgery, but were successfully increased by Taselisib treatment. Taselisib treatment notably suppressed the upregulation of pro-inflammatory cytokines, including IL-6, IL-1β, and TNF-⍺. Taselisib treatment significantly reduced the elevated phosphorylation of AKT and PI3K induced by CCI. CONCLUSION Taselisib can alleviate neuropathic pain by inhibiting the pro-inflammatory response, potentially through the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Hai-Ping You
- Department of Anesthesiology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou 350001, Fujian, China; Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China.
| | - Chong-Jun Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China.
| | - Li-Hong Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China
| | - Zhi-Yuan Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China
| | - Wei-Feng Liu
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China.
| | - Hong-Geng Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China.
| | - He-Fan He
- Department of Anesthesiology, the Second Affiliated Hospital of Fujian Medical University, No.34 Zhong Shan North Road, Licheng District, Quanzhou 362000, Fujian, China.
| | - Liang-Cheng Zhang
- Department of Anesthesiology, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Gulou District, Fuzhou 350001, Fujian, China.
| |
Collapse
|
12
|
Cunha MR, Catta-Preta CMC, Takarada JE, Moreira GA, Massirer KB, Couñago RM. A novel BRET-based assay to investigate binding and residence times of unmodified ligands to the human lysosomal ion channel TRPML1 in intact cells. J Biol Chem 2023:104807. [PMID: 37172730 DOI: 10.1016/j.jbc.2023.104807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/17/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Here we report a Bioluminescence Resonance Energy Transfer (BRET) assay as a novel way to investigate the binding of unlabeled ligands to the human Transient Receptor Potential Mucolipin 1 (hTRPML1), a lysosomal ion channel involved in several genetic diseases and cancer progression. This novel BRET assay can be used to determine equilibrium and kinetic binding parameters of unlabeled compounds to hTRPML1 using intact human-derived cells, thus complementing the information obtained using functional assays based on ion channel activation. We expect this new BRET assay to expedite the identification and optimization of cell-permeable ligands that interact with hTRPML1 within the physiologically-relevant environment of lysosomes.
Collapse
Affiliation(s)
- Micael R Cunha
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil.
| | - Carolina M C Catta-Preta
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Current address: Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jéssica E Takarada
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Gabriela A Moreira
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Katlin B Massirer
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil.
| | - Rafael M Couñago
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States.
| |
Collapse
|
13
|
Qiu B, Sun Y, Nie W, Yang Q, Guo X. FBXW7 promotes autophagy and inhibits proliferation of oral squamous cell carcinoma. Immun Inflamm Dis 2023; 11:e845. [PMID: 37249289 PMCID: PMC10187000 DOI: 10.1002/iid3.845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND F-box and WD repeat domain containing 7 (FBXW7) is a critical tumor suppressor. The expression of FBXW7 is decreased in oral squamous cell carcinoma (OSCC) tissues and shows diagnosis value. We aimed to investigate the influence of FBXW7 overexpression on OSCC cell proliferation and autophagy. METHODS In Balb/c nude mice, CAL27 xenograft tumor model was established. Western blot was employed to evaluate protein level. Messenger RNA level was analyzed by quantitative reverse transcription-polymerase chain reaction. Colony formation assay and MTT assay were employed to evaluate cell proliferation. RESULTS FBXW7 expression was decreased in OSCC cell lines. FBXW7 inhibited cell proliferation of SCC9 and CAL27. FBXW7 increased Autophagy related 7 (Atg7), Beclin1 (BECN1), B-cell lymphoma 2 (BCL2) -associated X (BAX), BCL2 antagonist killer (BAK), and microtubule-associated protein 1 light chain 3 (LC3) levels and decreased MCL1 and BCL2 levels in CAL27 cells. FBXW7 decreased tumor volume and weight in CAL27 xenograft tumor model. FBXW7 increased BECN1, Atg7, and LC3 levels in CAL27 xenograft tumor model. CONCLUSION In conclusion, decreased expression of FBXW7 is confirmed in diverse OSCC cell lines. The enhanced FBXW7 expression inhibits cancer cell proliferation and promotes autophagy in both OSCC cells and xenograft tumor model.
Collapse
Affiliation(s)
- Bo Qiu
- Dental ClinicCangzhou Central HospitalCangzhouHebeiChina
| | - Yang Sun
- Dental ClinicCangzhou Central HospitalCangzhouHebeiChina
| | - Wei Nie
- Dental DepartmentCangzhou People's HospitalCangzhouHebeiChina
| | - Qi Yang
- Dental ClinicCangzhou Central HospitalCangzhouHebeiChina
| | - Xiangjun Guo
- Dental ClinicCangzhou Central HospitalCangzhouHebeiChina
| |
Collapse
|
14
|
Cortés-Llanos B, Rauti R, Ayuso-Sacido Á, Pérez L, Ballerini L. Impact of Magnetite Nanowires on In Vitro Hippocampal Neural Networks. Biomolecules 2023; 13:biom13050783. [PMID: 37238653 DOI: 10.3390/biom13050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Nanomaterials design, synthesis, and characterization are ever-expanding approaches toward developing biodevices or neural interfaces to treat neurological diseases. The ability of nanomaterials features to tune neuronal networks' morphology or functionality is still under study. In this work, we unveil how interfacing mammalian brain cultured neurons and iron oxide nanowires' (NWs) orientation affect neuronal and glial densities and network activity. Iron oxide NWs were synthesized by electrodeposition, fixing the diameter to 100 nm and the length to 1 µm. Scanning electron microscopy, Raman, and contact angle measurements were performed to characterize the NWs' morphology, chemical composition, and hydrophilicity. Hippocampal cultures were seeded on NWs devices, and after 14 days, the cell morphology was studied by immunocytochemistry and confocal microscopy. Live calcium imaging was performed to study neuronal activity. Using random nanowires (R-NWs), higher neuronal and glial cell densities were obtained compared with the control and vertical nanowires (V-NWs), while using V-NWs, more stellate glial cells were found. R-NWs produced a reduction in neuronal activity, while V-NWs increased the neuronal network activity, possibly due to a higher neuronal maturity and a lower number of GABAergic neurons, respectively. These results highlight the potential of NWs manipulations to design ad hoc regenerative interfaces.
Collapse
Affiliation(s)
- Belén Cortés-Llanos
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Rossana Rauti
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
- Deparment of Biomolecular Sciences, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy
| | - Ángel Ayuso-Sacido
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Experimental Science and Faculty of Medicine, University of Francisco de Vitoria, 28223 Madrid, Spain
| | - Lucas Pérez
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
| | - Laura Ballerini
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
| |
Collapse
|
15
|
Le L, Shan H, Lin Y, Xia W, Ma X, Jiang C, Shi Z, Xu Y. The ubiquitination of RIPK2 is mediated by Peli3 and negatively regulates the onset of infectious osteomyelitis. Jpn J Infect Dis 2023. [PMID: 37121674 DOI: 10.7883/yoken.jjid.2022.622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Osteomyelitis is the infection and destruction of bone. Until now, there is no universal protocol for its treatment. Receptor-interacting serine/threonine-protein kinase 2 (RIPK2) was implicated in the development of osteomyelitis. However, its detailed mechanism remains unknown. 6-8 weeks old wild-type or Pellino E3 Ubiquitin Protein Ligase Family Member 3 (Peli3) deficiency mice were injected with S. aureus to induce osteomyelitis. RAW264.7 cells or bone marrow-derived macrophages (BMDMs) isolated from mice, were treated with lipopolysaccharides (LPS). Knocking down Peli3 in RAW264.7 cells increased the expressions of inflammatory cytokines after the stimulation of LPS, including interleukin-1β, interleukin-6 and tumor necrosis factor-α. Inflammation was also activated in S. aureus-induced Peli3 deficiency mice. Moreover, Peli3 deficiency mice also displayed more severe symptoms of osteomyelitis in S. aureus-infected mice. Moreover, Peli3 targeted and degraded RIPK2 through K48-linked ubiquitination. Peli3 negatively modulates osteomyelitis by degrading RIPK2. Our data further expand current understanding of RIPK2 on osteomyelitis, which suggests that RIPK2 might serve as novel therapeutic target for treating osteomyelitis.
Collapse
Affiliation(s)
- Lixiang Le
- Departments of Orthopedist, the Second Affiliated Hospital of Soochow University, China
| | - Haojie Shan
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Yiwei Lin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Wenyang Xia
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Xin Ma
- Departments of Orthopedist, the Second Affiliated Hospital of Soochow University, China
| | - Chaolai Jiang
- Departments of Orthopedist, the Second Affiliated Hospital of Soochow University, China
| | - Zhongmin Shi
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, China
| | - Youjia Xu
- Departments of Orthopedist, the Second Affiliated Hospital of Soochow University, China
| |
Collapse
|
16
|
Guo R, Wang J, Tang W, Xiao D. Rnf144b alleviates the inflammatory responses and cardiac dysfunction in sepsis. ESC Heart Fail 2023. [PMID: 37088470 PMCID: PMC10375149 DOI: 10.1002/ehf2.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/10/2023] [Accepted: 04/02/2023] [Indexed: 04/25/2023] Open
Abstract
AIMS Sepsis is an inflammatory disease with high mortality and morbidity. Inflammation plays an essential role in sepsis, and suppressing inflammation has been shown to ameliorate sepsis. Rnf144b is an ubiquitin E3 ligation with anti-inflammation activities. Its precise roles in sepsis remain unknown. Here, we explored the function of Rnf144b in sepsis. METHODS AND RESULTS We generated conditional knockout mice with Rnf144b deficiency in the myeloid cells. We monitored the Rnf144b expression in peripheral blood mononuclear cells from healthy donor and patients with sepsis, and in lipopolysaccharides (LPS)-treated bone marrow-derived macrophages (BMDMs). The cytokine expression between wild-type BMDMs and Rnf144b-deficient BMDMs after LPS and CpG treatments was compared. The survival rate and cardiac function were monitored. The activation of TANK binding kinase 1 and nuclear factor kappa-B was examined by Western blot and real-time PCR. Up-regulated expression of Rnf144b was observed in peripheral blood mononuclear cells from patients with sepsis. LPS induced the expression of Rnf144b in BMDMs. Rnf144b-deficient BMDMs produced more inflammatory cytokines after LPS or CpG stimulation. Septic mice with Rnf144b deficiency in myeloid cells had higher mortality and exacerbated cardiac dysfunction. Rnf144b interacted with TANK binding kinase 1 and Rnf144b deficiency resulted in impaired activation of TBK1 but enhanced activation of nuclear factor kappa-B. CONCLUSIONS Rnf144b prevents inflammatory responses and cardiac dysfunction in sepsis.
Collapse
Affiliation(s)
- Rennan Guo
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Jingjing Wang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Wen Tang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| | - Dong Xiao
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region, 830001, China
| |
Collapse
|
17
|
Ben Ammar R. Potential Effects of Geraniol on Cancer and Inflammation-Related Diseases: A Review of the Recent Research Findings. Molecules 2023; 28:molecules28093669. [PMID: 37175079 PMCID: PMC10180430 DOI: 10.3390/molecules28093669] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Geraniol (GNL), a natural monoterpene, is found in many essential oils of fruits, vegetables, and herbs, including lavender, citronella, lemongrass, and other medicinal and aromatic plants. GNL is commonly used by the cosmetic and food industries and has shown a wide spectrum of pharmacological activities including anti-inflammatory, anticancer, antimicrobial, antioxidant, and neuroprotective activities. It represents a potential anti-inflammatory agent and a promising cancer chemopreventive agent, as it has been found to be effective against a broad range of cancers, including colon, prostate, breast, lung, skin, kidney, liver, and pancreatic cancer. Moreover, GNL scavenges free radicals and preserves the activity of antioxidant enzymes. In addition, GNL induces apoptosis and cell cycle arrest, modulates multiple molecular targets, including p53 and STAT3, activates caspases, and modulates inflammation via transcriptional regulation. In the present study, different modes of action are described for GNL's activity against cancer and inflammatory diseases. This compound protects various antioxidant enzymes, such as catalase, glutathione-S-transferase, and glutathione peroxidase. Experiments using allergic encephalomyelitis, diabetes, asthma, and carcinogenesis models showed that GNL treatment had beneficial effects with low toxicity. GNL has been shown to be effective in animal models and tumor cell lines, but there have not been any clinical studies carried out for it. The aim of the present review is to provide updated data on the potential effects of GNL on cancer and inflammation, and to enhance our understanding of molecular targets, involved pathways, and the possible use of GNL for clinical studies and therapeutic purposes in the treatment of cancer and inflammation-related diseases.
Collapse
Affiliation(s)
- Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
18
|
Li H, Yu Z, Niu Z, Cheng Y, Wei Z, Cai Y, Ma F, Hu L, Zhu J, Zhang W. A neuroprotective role of Ufmylation through Atg9 in the aging brain of Drosophila. Cell Mol Life Sci 2023; 80:129. [PMID: 37086384 PMCID: PMC11073442 DOI: 10.1007/s00018-023-04778-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Ufmylation is a recently identified small ubiquitin-like modification, whose biological function and relevant cellular targets are poorly understood. Here we present evidence of a neuroprotective role for Ufmylation involving Autophagy-related gene 9 (Atg9) during Drosophila aging. The Ufm1 system ensures the health of aged neurons via Atg9 by coordinating autophagy and mTORC1, and maintaining mitochondrial homeostasis and JNK (c-Jun N-terminal kinase) activity. Neuron-specific expression of Atg9 suppresses the age-associated movement defect and lethality caused by loss of Ufmylation. Furthermore, Atg9 is identified as a conserved target of Ufm1 conjugation mediated by Ddrgk1, a critical regulator of Ufmylation. Mammalian Ddrgk1 was shown to be indispensable for the stability of endogenous Atg9A protein in mouse embryonic fibroblast (MEF) cells. Taken together, our findings might have important implications for neurodegenerative diseases in mammals.
Collapse
Affiliation(s)
- Huifang Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenghong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hosptial of Medical School, Nanjing University, Nanjing, 210002, China
| | - Zikang Niu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yun Cheng
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Zhenhao Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Ma
- College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Lanxin Hu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiejie Zhu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
Gąssowska-Dobrowolska M, Czapski GA, Cieślik M, Zajdel K, Frontczak-Baniewicz M, Babiec L, Adamczyk A. Microtubule Cytoskeletal Network Alterations in a Transgenic Model of Tuberous Sclerosis Complex: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2023; 24:7303. [PMID: 37108467 PMCID: PMC10138344 DOI: 10.3390/ijms24087303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic multisystem disorder caused by loss-of-function mutations in the tumour suppressors TSC1/TSC2, both of which are negative regulators of the mammalian target of rapamycin (mTOR) kinase. Importantly, mTOR hyperactivity seems to be linked with the pathobiology of autism spectrum disorders (ASD). Recent studies suggest the potential involvement of microtubule (MT) network dysfunction in the neuropathology of "mTORopathies", including ASD. Cytoskeletal reorganization could be responsible for neuroplasticity disturbances in ASD individuals. Thus, the aim of this work was to study the effect of Tsc2 haploinsufficiency on the cytoskeletal pathology and disturbances in the proteostasis of the key cytoskeletal proteins in the brain of a TSC mouse model of ASD. Western-blot analysis indicated significant brain-structure-dependent abnormalities in the microtubule-associated protein Tau (MAP-Tau), and reduced MAP1B and neurofilament light (NF-L) protein level in 2-month-old male B6;129S4-Tsc2tm1Djk/J mice. Alongside, pathological irregularities in the ultrastructure of both MT and neurofilament (NFL) networks as well as swelling of the nerve endings were demonstrated. These changes in the level of key cytoskeletal proteins in the brain of the autistic-like TSC mice suggest the possible molecular mechanisms responsible for neuroplasticity alterations in the ASD brain.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Karolina Zajdel
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
20
|
Li H, Li X, Kong Y, Sun W. Ubiquitin-specific protease 34 in macrophages limits CD8 T cell-mediated onset of vitiligo in mice. Immunobiology 2023; 228:152383. [PMID: 37043976 DOI: 10.1016/j.imbio.2023.152383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
As an autoimmune disorder, vitiligo is characterized by depigmented skin macules. CD8+T cells and macrophages enrichment promote the onset of vitiligo, while the role of macrophages to CD8+T is not well deciphered. To develop a mouse model of vitiligo with prominent epidermal depigmentation, Krt14-Kitl* transgenic mice containing an elevated number of melanocytes in the epidermis with membrane-bound Kit ligand (Kitl*) were adoptively transferred with premelanosome protein (PMEL) CD8+ T cells. On the other hand, Krt14-Kitl* mice were mated with ubiquitin-specific protease 34 (USP34)MKO mice to decipher the role of USP34 in vitiligo. Vitiligo scores and PMEL CD8+ T cell enrichment were detected with flow cytometry. Human peripheral blood mononuclear cells (PBMCs) or mice bone marrow-derived macrophages (BMDMs) were incubated with lipopolysaccharide (LPS), CpG, or co-incubated with KU-55933, an ataxia telangiectasia-mutated (ATM) inhibitor. Chemokine (C-C motif) ligand 2 (CCL2), Ccl5, and interleukin (Il)-12α expression was assayed with real-time PCR, and p-IKKα/β was assayed with Western blots. USP34 was up-regulated in the PBMCs of vitiligo patients and LPS-stimulated BMDMs. USP34 deficiency did not affect the differentiation of CD11b+F4/80+ macrophages in the bone marrow. Immunoprecipitation demonstrated the interaction between USP34 and ATM. USP34 deficiency or KU-55933 administration promoted the induction of Ccl2, Ccl5, Il12α, and p-IKKα/β in LPS or CpG stimulated BMDMs; KU-55933 administration could not affect the expression of the above molecules in USP34 deficient BMDMs. It further revealed that USP34 deficiency promoted the development of vitiligo with increased PMEL CD8+ T cell enrichment, which was not affected by KU-55933 administration. USP34 deficiency in macrophages promotes the onset of vitiligo with increased PMEL CD8+ T cell enrichment, and USP34/ATM complex can be considered as a therapy target.
Collapse
Affiliation(s)
- He Li
- Department of Dermatology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an 223300, Jiangsu, China
| | - Xiaoqing Li
- Department of Dermatology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an 223300, Jiangsu, China
| | - Yinghui Kong
- Department of Dermatology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an 223300, Jiangsu, China
| | - Weiguo Sun
- Department of Dermatology, the Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an 223300, Jiangsu, China.
| |
Collapse
|
21
|
Wang M, Yu X, Li B, Gao C, Chen Y, Zhang X, Li W, Yang L, Fan Z. miR-211-5p targeting MMP9 regulates the expressions of AQP4 in traumatic brain injury. Acta Neurol Belg 2023:10.1007/s13760-023-02205-1. [PMID: 37020131 DOI: 10.1007/s13760-023-02205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/30/2023] [Indexed: 04/07/2023]
Abstract
OBJECTIVE The abnormal expression of matrix metalloproteinase 9 (MMP9) and Aquaporin 4 (AQP4) closely associates with the traumatic brain injury (TBI) development. METHODS Here, we investigated the relationship between miR-211-5p and MMP9/AQP4 axis in TBI patients and astrocyte cells. Demographics, clinical features, and cerebrospinal fluid (CSF) samples were collected from traumatic brain injury (TBI) patients (n = 96) and controls (n = 30) for pathological and gene expression analyses. Luciferase activity assay and gene expression analyses were performed to dissect the regulatory mechanism of miR-211-5p on MMP9/AQP4 in human astrocyte cells. RESULTS miR-211-5p mRNA was significantly decreased in the CSF of TBI patients, which positively correlated with the expression of both MMP9 and AQP4. miR-211-5p could target MMP9 directly in SVG P12 cells. Overexpression of miR-211-5p decreased the expression of MMP9, on the contrary, knockdown miR-211-5p through inhibitors increased the expression of both MMP9 and AQP4. CONCLUSION miR-211-5p inhibits the MMP9/AQP4 axis in human astrocyte cells, which represents a promising approach for the TBI treatment.
Collapse
Affiliation(s)
- Meng Wang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xin Yu
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Bin Li
- Department of Neurosurgery, North China Oilfield General Hospital, Renqiu, 062552, Hebei, China
| | - Chensong Gao
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yan Chen
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xiaoyang Zhang
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China
| | - Wenling Li
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Lijun Yang
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| | - Zhenzeng Fan
- Department of Neurosurgery, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
22
|
Wan H, Chen H, Zhang M, Feng T, Wang Y. Cerebral microbleeds is associated with dementia in Parkinson's disease. Acta Neurol Belg 2023; 123:407-413. [PMID: 35672560 DOI: 10.1007/s13760-022-01918-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
INTRODUCTION Emerging evidence suggests that cerebral small vessel disease (CSVD) may worsen cognitive functions in Parkinson's disease (PD). However, the effect of microbleeds on cognitive function in patients with PD remains unknown. This study explored the association between the presence, number and location of microbleeds with dementia in PD patients. METHODS This cross-sectional study included 431 patients with PD from Beijing Tiantan Hospital from May 2016 to August 2019. Cognition assessments (MMSE, MoCA) were performed for these patients. MRI imaging sequences were obtained and reviewed independently by two well-trained readers who were blind to all clinical data. Spearman's correlation analysis and logistic regression model analysis were further used for the assessments. RESULTS An association between cerebral microbleeds with cognitive ability and dementia in PD patients was revealed. A significance was observed between the total number of microbleeds and two widely used scores of cognitive assessments (Spearman R = - 0.120 to MMSE with a p = 0.016, and - 0.117 to MoCA with a p = 0.020). In detail, infratentorial microbleeds were associated with the level of cognition in PD patients (Spearman R = - 0.099 to MMSE with a p = 0.049, and - 0.116 to MoCA with a p = 0.021). Furthermore, logistic regression analysis results also confirmed such correlations between the number of microbleeds and cognitive ability after adjusting for age, cholesterol level, Hamilton Anxiety Scale, Hamilton Depression Scale, and white matter hyperintensity Fazekas score (OR 3.28, p = 0.035, 95% CI 1.090-9.892). CONCLUSIONS The occurrence of microbleeds, especially in the infratentorial locations, may worsen the cognitive function of PD patients and result in dementia. Management of cerebral vascular disease could be beneficial to patients with PD.
Collapse
Affiliation(s)
- Huijuan Wan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- Advanced Innovation Center for Human Brain Projection, Capital Medical University, Beijing, China
- Department of Neurology, First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Huimin Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Meimei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
- Advanced Innovation Center for Human Brain Projection, Capital Medical University, Beijing, China
| | - Tao Feng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
- Advanced Innovation Center for Human Brain Projection, Capital Medical University, Beijing, China.
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
- Advanced Innovation Center for Human Brain Projection, Capital Medical University, Beijing, China.
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.
| |
Collapse
|
23
|
Espín-Sánchez D, Ramos-Aristimbay ML, Sánchez-Vaca AS, Jaramillo-Guapisaca K, Vizueta-Rubio C, Chico-Terán F, Cerda-Mejía L, García MD. Identificación de inhibidores de las enzimas RdRp y Mpro del virus SARS-CoV-2 mediante homología estructural. BIONATURA 2023. [DOI: 10.21931/rb/2023.08.01.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
El COVID-19 ha generado un enorme impacto en la salud pública mundial debido a las altas tasas de contagio y mortalidad asociadas al virus SARS-CoV-2 causante de la enfermedad. Hasta la fecha, la Organización Mundial de la Salud (OMS) ha aprobado el uso de 10 vacunas aparentemente seguras y eficaces. Sin embargo, todavía existen limitaciones importantes para su administración en países en vías de desarrollo y localidades remotas, y la preocupación por la aparición de variantes del virus que puedan evadir la inmunidad adquirida mediante la vacunación se mantiene latente. Además de la prevención de la infección, son necesarios agentes terapéuticos efectivos para tratar a los pacientes diagnosticados con COVID-19. Bajo este contexto, el presente estudio tuvo como objetivo realizar un cribado virtual basado en la estructura de las enzimas proteasa (Mpro) y ARN polimerasa ARN-dependiente (RdRp) del SARS-CoV-2. Para este propósito se ensayaron inhibidores de proteínas homólogas pertenecientes a diferentes virus. El alineamiento múltiple de secuencias de estas enzimas permitió reconocer la presencia de una alta conservación de estas enzimas entre especies, especialmente de las regiones que comprenden los sitios de unión a inhibidores. Por lo tanto, se deduce que es posible emplear un enfoque de redireccionamiento de los inhibidores que fueron diseñados para tratar otras enfermedades virales. Experimentos de acoplamiento molecular permitieron identificar que los inhibidores RTP (afinidad de unión = -7.3 kcal/mol) y V3D (afinidad de unión = -8.0 kcal/mol) son excelentes inhibidores de RdRp y Mpro, respectivamente. Estos resultados sugieren que dichas moléculas son virtualmente capaces de unirse e inhibir la actividad de RdRp y Mpro y por lo tanto constituyen potenciales fármacos para combatir el SARS-CoV-2.
Palabras clave: SARS-CoV-2, COVID-19, inhibidores, RdRp, Mpro.
Collapse
Affiliation(s)
- Daysi Espín-Sánchez
- Carrera de Ingeniería Bioquímica, Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato
| | - María L. Ramos-Aristimbay
- Carrera de Ingeniería Bioquímica, Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato
| | - Andrés S. Sánchez-Vaca
- Carrera de Ingeniería Bioquímica, Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato
| | - Karen Jaramillo-Guapisaca
- Carrera de Ingeniería Bioquímica, Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato
| | - Carolina Vizueta-Rubio
- Carrera de Ingeniería Bioquímica, Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato
| | - Fernanda Chico-Terán
- Carrera de Biotecnología, Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato
| | - Liliana Cerda-Mejía
- Carrera de Alimentos, Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato
| | - Mario D. García
- Carrera de Ingeniería Bioquímica, Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato ; Carrera de Biotecnología, Facultad de Ciencia e Ingeniería en Alimentos y Biotecnología Universidad Técnica de Ambato
| |
Collapse
|
24
|
Calugi L, Sautariello G, Lenci E, Mattei ML, Coppa C, Cini N, Contini A, Trabocchi A. Identification of a short ACE2-derived stapled peptide targeting the SARS-CoV-2 spike protein. Eur J Med Chem 2023; 249:115118. [PMID: 36682293 PMCID: PMC9842534 DOI: 10.1016/j.ejmech.2023.115118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
The design and synthesis of a series of peptide derivatives based on a short ACE2 α-helix 1 epitope and subsequent [i - i+4] stapling of the secondary structure resulted in the identification of a 9-mer peptide capable to compete with recombinant ACE2 towards Spike RBD in the micromolar range. Specifically, SARS-CoV-2 Spike inhibitor screening based on colorimetric ELISA assay and structural studies by circular dichroism showed the ring-closing metathesis cyclization being capable to stabilize the helical structure of the 9-mer 34HEAEDLFYQ42 epitope better than the triazole stapling via click chemistry. MD simulations showed the stapled peptide being able not only to bind the Spike RBD, sterically interfering with ACE2, but also showing higher affinity to the target as compared to parent epitope.
Collapse
Affiliation(s)
- Lorenzo Calugi
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| | - Giulia Sautariello
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| | - Elena Lenci
- Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy
| | - Mauro Leucio Mattei
- General Laboratory, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Crescenzo Coppa
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milan, Italy
| | - Nicoletta Cini
- General Laboratory, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Alessandro Contini
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133, Milan, Italy
| | - Andrea Trabocchi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
25
|
Khan MM, Serajuddin M, Bharadwaj M. Potential plasma microRNAs signature miR-190b-5p, miR-215-5p and miR-527 as non-invasive biomarkers for prostate cancer. Biomarkers 2023; 28:227-237. [PMID: 36644827 DOI: 10.1080/1354750x.2022.2163694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BackgroundProstate cancer (PCa) is the most prevalent (20%) pathological cancer among males globally. MicroRNAs (miRNAs) are short (19-22 nucleotide), conserved, noncoding molecules that regulate post-transcriptional processes either by repressing or degrading mRNA or by translation inhibition binding to complementary sites on mRNA. The goal of this study was to find out whether differentially expressed microRNA (DEM) could be used as a potential marker in the prognosis and diagnosis of PCa.MethodologyThe miRNAs profiling was done both from plasma and tissue samples of the same PCa patient (n = 3) by real-time quantitative PCR (qRT-PCR) and compared with BPH (benign prostatic hyperplasia) patients (n = 3) as controls and further validation of selected miRNAs.ResultsWe found 55 significant overexpressed DEMs, 44 significant underexpressed DEMs in plasma and 6 significant overexpressed DEMs, 27 significant underexpressed DEMs in tissue compared between PCa and BPH. Furthermore, there were eight miRNAs namely miR-190b, miR-215, miR-300, miR-329, miR-504, miR-525-3p, miR-527, miR-548a-3p found to be significantly differentially expressed in plasma and tissue samples via profiling, however only three showed concordant expression. After validation, miR-190b-5p were shown to be significantly downexpressed with fold changes of 0.4177 (p value - 0.0072) and 0.7264 (p value - 0.0143) in plasma and tissue samples, respectively. The expression of miR-215-5p was shown to be significantly overexpressed with fold change of 1.820 (p - 0.0016) and 1.476 (p - 0.0407) in plasma and tissue samples, respectively. Furthermore, miR-527 was shown to be significantly downexpressed with fold changes of 0.6018 (p - 0.0095) and 0.6917 (p - 0.0155) in plasma and tissue samples, respectively.ConclusionAccording to our findings, plasma miR-190b-5p, miR-215-5p, miR-527 levels alteration is consistently linked with PCa tissue. For establishing significant miRNAs as biomarkers, additional research of a larger population is needed.
Collapse
Affiliation(s)
- Mohd Mabood Khan
- Division of Molecular Genetics & Biochemistry, National Institute of Cancer Prevention & Research (ICMR-NICPR), Noida, India.,Department of Zoology, University of Lucknow, Lucknow, India
| | | | - Mausumi Bharadwaj
- Division of Molecular Genetics & Biochemistry, National Institute of Cancer Prevention & Research (ICMR-NICPR), Noida, India
| |
Collapse
|
26
|
Wang J, Men Y, Wang Z. Polydatin Alleviates Chronic Stress-Induced Depressive and Anxiety-like Behaviors in a Mouse Model. ACS Chem Neurosci 2023; 14:977-987. [PMID: 36802487 DOI: 10.1021/acschemneuro.2c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
We aimed to investigate whether polydatin could suppress stress-induced depression- and anxiety-like behaviors in a mouse model. Mice were divided into the control group, chronic unpredictable mild stress (CUMS) exposure group, and CUMS mice treated with polydatin group. Following CUMS exposure and polydatin treatment, mice were subjected to behavioral assays to assess depressive-like and anxiety-like behaviors. Synaptic function was determined by the levels of brain-derived neurotrophic factor (BDNF), postsynaptic density protein 95 (PSD95), and synaptophysin (SYN) in the hippocampus and cultured hippocampal neurons. The number and length of dendrites were assessed in cultured hippocampal neurons. Finally, we investigated the effect of polydatin on CUMS-induced inflammation and oxidative stress in the hippocampus by measuring inflammatory cytokine levels, oxidative stress markers such as reactive oxygen species, glutathione peroxidase, catalase, and superoxide dismutase, as well as components of the Nrf2 signaling pathway. Polydatin alleviated CUMS-induced depressive-like behaviors in forced swimming, tail suspension and sucrose preference tests, and anxiety-like behaviors in marble-burying and elevated plus maze tests. Polydatin increased the number and length of dendrites of cultured hippocampal neurons from mice exposed to CUMS and alleviated CUMS-induced synaptic deficits by restoring BDNF, PSD95, and SYN levels in vivo and in vitro. Importantly, polydatin inhibited CUMS-induced hippocampal inflammation and oxidative stress and suppressed the activation of NFκB and Nrf2 pathways. Our study suggests that polydatin may be an effective drug for the treatment of affective disorders through inhibiting neuroinflammation and oxidative stress. Our current findings warrant further study to investigate the potential clinical application of polydatin.
Collapse
Affiliation(s)
- Jianping Wang
- Department of Neurology, Cangzhou Central Hospital, Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Yujiao Men
- Department of Neurology, Cangzhou Central Hospital, Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Zeyu Wang
- Department of Neurology, Cangzhou Central Hospital, Xinhua West Road, Cangzhou 061000, Hebei, China
| |
Collapse
|
27
|
Liu Y, Sheng M, Jia L, Zhu M, Yu W. Protective effects of cordycepin pretreatment against liver ischemia/reperfusion injury in mice. Immun Inflamm Dis 2023; 11:e792. [PMID: 36988254 PMCID: PMC10013135 DOI: 10.1002/iid3.792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION Cordycepin has been reported to exhibit hepatic protective and anti-inflammatory properties. Here, we investigated the role of cordycepin in ischemia/reperfusion (IR)-induced liver injury in a mouse model. METHODS Mice were pretreated with cordycepin by gavage for 3 weeks, followed by the establishment of the IR modeling. Liver injury, Suzuki's histological grading, hepatic apoptosis, and inflammatory responses were evaluated by biochemical and pathological analysis. RESULTS It was found that Cordycepin pretreatment at 50 mg/kg for 3 weeks attenuated IR-induced liver injury, as reflected by the significant decrease of the levels of aspartate aminotransferase, alanine transaminase, lactate dehydrogenase, and low-density lipoprotein. Cordycepin pretreatment also reduced histopathological changes, attenuated hepatocyte apoptosis, inflammatory responses in the livers of IR mice. Mechanically, toll-like receptor 4/nuclear factor kappa-B signaling in liver tissues was inhibited by Cordycepin pretreatment. CONCLUSIONS In conclusion, Cordycepin pretreatment protects IR-induced liver injury, which demonstrates its potential for the treatment of IR in the liver.
Collapse
Affiliation(s)
- Yunxia Liu
- Department of AnesthesiologyTianjin First Central HospitalTianjinChina
| | - Mingwei Sheng
- Department of AnesthesiologyTianjin First Central HospitalTianjinChina
| | - Lili Jia
- Department of AnesthesiologyTianjin First Central HospitalTianjinChina
| | - Min Zhu
- Department of AnesthesiologyTianjin First Central HospitalTianjinChina
| | - Wenli Yu
- Department of AnesthesiologyTianjin First Central HospitalTianjinChina
| |
Collapse
|
28
|
Xu T, Zhang W, Chai L, Liu C, Zhang S, Xu T. Methyltransferase-like 3-induced N6-methyladenosine upregulation promotes oral squamous cell carcinoma by through p38. Oral Dis 2023; 29:639-648. [PMID: 34479400 DOI: 10.1111/odi.14016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/07/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC), a main type of squamous cell cancer, is associated with considerable morbidity and mortality. Recent reports suggested methyltransferase-like 3 (METTL3)-mediated N6-methyladenosine (m6A) modification to be an essential regulator in the fate determination of stem cells. However, the functional significance of METTL3 in OSCC remains largely unknown. METHODS METTL3 expression was examined in OSCC patient samples, followed by correlation analysis against clinical tumor features. Functional assays, such as assessment of surface marker expression, colony forming, BrdU incorporation, tumor xenograft assay, and m6A dot blot, were conducted to study the impact of METTL3 knockdown (KD) in OSCC cells. RESULTS High METTL3 expression was positively correlated with more severe clinical features of OSCC tumors. METTL3 KD caused impairment of stem-like capacities in OSCC cells, such as tumorigenicity in vivo and colony-forming ability in vitro. Furthermore, METTL3-KD and cycloleucine, a methylation inhibitor, decreased m6A levels and down-regulated p38 expression in OSCC cells. On the contrary, the impaired cell proliferation capacity of OSCC cells after METTL3-KD was restored by exogenous expression of p38. CONCLUSION Our findings identified m6A methyltransferase METTL3 as a key element in the regulation of tumorigenesis in OSCC.
Collapse
Affiliation(s)
- Ting Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenbo Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Li Chai
- Hospital of JIER Machine-Tool Group Co., Ltd, Jinan, China
| | - Chao Liu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Shizhou Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Tong Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
29
|
Rahman S, Ullah S, Shinwari ZK, Ali M. Bats-associated beta-coronavirus detection and characterization: First report from Pakistan. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 108:105399. [PMID: 36584905 PMCID: PMC9793958 DOI: 10.1016/j.meegid.2022.105399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Bats remains as reservoirs for highly contagious and pathogenic viral families including the Coronaviridae, Filoviridae, Paramyxoviruses, and Rhabdoviridae. Spill over of viral species (SARS-CoV, MERS-CoV & SARS-CoV2) from bats (as a possible potential reservoirs) have recently caused worst outbreaks. Early detection of viral species of pandemic potential in bats is of great importance. We detected beta coronaviruses in the studied bats population (positive samples from Rousettus leschenaultia) and performed the evolutionary analysis, amino acid sequence alignment, and analysed the 3-Dimentional protein structure. We detected the coronaviruses for the first time in bats from Pakistan. Our analysis based on RdRp partial gene sequencing suggest that the studied viral strains are closely related to MERS-CoV-like viruses as they exhibit close structure similarities (with few substitutions) and also observed a substitution in highly conserved SDD in the palm subdomain of motif C to ADD, when compared with earlier reported viral strains. It could be concluded from our study that coronaviruses are circulating among the bat's population in Pakistan. Based on the current findings, we suggest large scale screening procedures of bat virome across the country to detect potential pathogenic viral species.
Collapse
Affiliation(s)
- Sidra Rahman
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sana Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, Oman.
| | | | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
30
|
Lin B, Zhang X. Vitamin E Supplement Protects Against Gestational Diabetes Mellitus in Mice Through nuclear factor-erythroid factor 2-related factor 2/heme oxygenase-1 Signaling Pathway. Diabetes Metab Syndr Obes 2023; 16:565-574. [PMID: 36883138 PMCID: PMC9985888 DOI: 10.2147/dmso.s397255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Background Gestational diabetes mellitus (GDM) is the most common pregnant disorder worldwide. In this study, we aimed to explore whether vitamin E (VE) treatment alone could protect against GDM in a mouse model. Methods 6-week-old C57BL/6J female mice were fed on high-fat diet for two weeks and continued with high-fat diet after pregnancy to induce GDM. The pregnant mice were orally administrated with 2.5, 25 or 250 mg/kg VE twice per day during pregnancy together with high-fat diet. Oral glucose tolerance test, insulin amounts, oxidative stress and inflammation were then measured. Results Only 250 mg/kg VE could improve glucose tolerance and insulin level in pregnant mice. VE (250 mg/kg) effectively inhibited GDM-induced hyperlipidemia, and secretion of inflammatory cytokines such as tumor necrosis factor-α and interleukin-6. VE also significantly ameliorated maternal oxidative stress at the late stage of pregnancy, and also improved reproductive outcomes, including increasing the litter size and birth weight in GDM mice. Moreover, VE also activated GDM-reduced nuclear factor-erythroid factor 2-related factor 2 (Nrf2) / heme oxygenase-1 signaling pathway in the maternal liver tissues of GDM mice. Conclusion Our data clearly demonstrated that 250 mg/kg VE twice a day during pregnancy could significantly ameliorate the symptoms of GDM by alleviating oxidative stress, inflammation, hyperglycemia, and hyperlipidemia through Nrf2/HO-1 signaling pathway in GDM mice. Thus, additional VE supplement might be beneficial to GDM.
Collapse
Affiliation(s)
- Bozhu Lin
- Gynaecology and Obstetrics Department, Longyan People’s Hospital, Longyan, People’s Republic of China
| | - Xiaorong Zhang
- Neonatal Department, Longyan People’s Hospital, Longyan, People’s Republic of China
| |
Collapse
|
31
|
Chen ZH, Wu JJ, Guo DY, Li YY, Chen MN, Zhang ZY, Yuan ZD, Zhang KW, Chen WW, Tian F, Ye JX, Li X, Yuan FL. Physiological functions of podosomes: From structure and function to therapy implications in osteoclast biology of bone resorption. Ageing Res Rev 2023; 85:101842. [PMID: 36621647 DOI: 10.1016/j.arr.2023.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
With increasing age, bone tissue undergoes significant alterations in composition, architecture, and metabolic functions, probably causing senile osteoporosis. Osteoporosis possess the vast majority of bone disease and associates with a reduction in bone mass and increased fracture risk. Bone loss is on account of the disorder in osteoblast-induced bone formation and osteoclast-induced bone resorption. As a unique bone resorptive cell type, mature bone-resorbing osteoclasts exhibit dynamic actin-based cytoskeletal structures called podosomes that participate in cell-matrix adhesions specialized in the degradation of mineralized bone matrix. Podosomes share many of the same molecular constitutions as focal adhesions, but they have a unique structural organization, with a central core abundant in F-actin and encircled by scaffolding proteins, kinases and integrins. Here, we conclude recent advancements in our knowledge of the architecture and the functions of podosomes. We also discuss the regulatory pathways in osteoclast podosomes, providing a reference for future research on the podosomes of osteoclasts and considering podosomes as a therapeutic target for inhibiting bone resorption.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Dan-Yang Guo
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Yue-Yue Li
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Meng-Nan Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zhen-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Kai-Wen Zhang
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-Wei Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Fan Tian
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Jun-Xing Ye
- Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China
| | - Xia Li
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| | - Feng-Lai Yuan
- Affiliated Hospital 3 of Nantong University, Nantong University, Jiangsu, China; Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Jiangsu, China.
| |
Collapse
|
32
|
Yao Y, Zhao Z, Zhang F, Miao N, Wang N, Xu X, Yang C. microRNA-221 rescues the loss of dopaminergic neurons in a mouse model of Parkinson's disease. Brain Behav 2023; 13:e2921. [PMID: 36795044 PMCID: PMC10013949 DOI: 10.1002/brb3.2921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/21/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common systemic neurodegenerative diseases and is related to the loss of dopaminergic neurons in the substantia nigra. Several studies verified that microRNA (miRNAs) targeting the Bim/Bax/caspase-3 signaling axis is involved in the apoptosis of dopaminergic neurons in substantia nigra. In this study, we aimed to explore the role of miR-221 in PD. METHODS To examine the function of miR-221 in vivo, we used a well-established 6-OHDA-induced PD mouse model. Then we conducted adenovirus-mediated miR-221 overexpression in the PD mice. RESULTS Our results showed that miR-221 overexpression improved motor behavior of the PD mice. We demonstrated that overexpression of miR-221 reduced the loss of dopaminergic neurons in the substantia nigra striatum by promoting their antioxidative and antiapoptosis capacities. Mechanistically, miR-221 targets Bim, thus inhibiting Bim and Bax caspase-3 mediated apoptosis signaling pathways. CONCLUSION Our findings suggest miR-221 participates in the pathological process of PD and might be a potential drug target and provide new insight into PD treatment.
Collapse
Affiliation(s)
- Yufang Yao
- Department 7 of NeurologyCangzhou Central HospitalCangzhouHebeiChina
| | - Zhiyue Zhao
- College of Mechanical and Electrical EngineeringCangzhou Normal UniversityCangzhouHebeiChina
| | - Fubo Zhang
- Department 4 of NeurologyCangzhou Central HospitalCangzhouHebeiChina
| | - Na Miao
- Department 7 of NeurologyCangzhou Central HospitalCangzhouHebeiChina
| | - Nan Wang
- Department 4 of NeurologyCangzhou Central HospitalCangzhouHebeiChina
| | - Xin Xu
- Department 1 of Traditional Chinese MedicineCangzhou Central HospitalCangzhouHebeiChina
| | - Chaoping Yang
- Department 4 of NeurologyCangzhou Central HospitalCangzhouHebeiChina
| |
Collapse
|
33
|
Ma X, Xu J, Gao N, Tian J, Song T. Dexmedetomidine attenuates myocardial ischemia-reperfusion injury via inhibiting ferroptosis by the cAMP/PKA/CREB pathway. Mol Cell Probes 2023; 68:101899. [PMID: 36775106 DOI: 10.1016/j.mcp.2023.101899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/14/2023]
Abstract
This study is to investigate the effects of dexmedetomidine on myocardial ischemia-reperfusion (I/R) injury and its molecular mechanisms. H9c2 cell injury model was constructed by the hypoxia/normoxia (H/R) conditions. Besides, cAMP response element-binding protein (CREB) overexpression and knockdown cell lines were constructed. Cell viability was determined by cell-counting kit 8. Biochemical assays were used to detect oxidative stress-related biomarkers, cell apoptosis, and ferroptosis-related markers. Our results showed that dexmedetomidine's protective effects on H/R-induced cell damage were reversed by the inhibition of protein kinase A (PKA), CREB, and extracellular signal regulated kinase 1/2 (ERK1/2). Treatment of dexmedetomidine ameliorated oxidative stress in the cardiomyocytes induced by H/R, whereas inhibition of PKA, CREB, or ERK1/2 reversed these protective effects. Cell death including cell necrosis, apoptosis, and ferroptosis was found in the cells under H/R insult. Interestingly, targeting CREB ameliorated ferroptosis and oxidative stress in these cells. In conclusion, dexmedetomidine attenuates myocardial I/R injury by suppressing ferroptosis through the cAMP/PKA/CREB signaling pathway.
Collapse
Affiliation(s)
- Xiaojing Ma
- Department of Anesthesiology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, Hebei, China.
| | - Jia Xu
- Department of Anesthesiology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, Hebei, China
| | - Nan Gao
- Department of Anesthesiology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, Hebei, China
| | - Jun Tian
- Second Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, Hebei, China
| | - Tieying Song
- Department of Anesthesiology, Shijiazhuang People's Hospital, Shijiazhuang, 050000, Hebei, China
| |
Collapse
|
34
|
Wang Z, Zeng S, Jing Y, Mao W, Li H. Sarm1 Regulates Circadian Rhythm Disorder in Alzheimer's Disease in Mice. J Alzheimers Dis 2023; 92:713-722. [PMID: 36776065 DOI: 10.3233/jad-221027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
BACKGROUND Sarm1 (Sterile alpha and TIR motif-containing 1) is a key protein that regulates neurodegenerative pathologies. Alzheimer's disease (AD) is highly associated with neurodegenerative lesions and biorhythmic disturbances. OBJECTIVE This study aims to decipher the role of Sarm1 in AD-induced circadian rhythm disturbances and AD progression. METHODS Open field and water maze tests were used to assess the cognitive function of mice. Thioflavin-S staining was used to assess amyloid-β (Aβ) plaque deposition in the hippocampus and cortex. Rhythmic waveform of home cage activity and temperature was recorded to evaluate circadian rhythm. Expression of clock molecules including Bmal1 and Per2 in the hippocampus were analyzed using western blot and real-time PCR. Further, HT22 cells with Sam1 knockout were treated with Aβ 31-35 treatment to initiate circadian rhythm disorder in the cellular level to assess the changes in Bmal1 and Per2. RESULTS Our data suggested that Sarm1 deficiency rescued cognitive disorder, decreased Aβ plaque deposition in the hippocampus and cortex, inhibited astrocyte activation, improved circadian rhythm, altered clock molecule expression in the cortex and hippocampus in APP/PS1 mice. CONCLUSION Sarm1 attenuates circadian rhythm disturbances and reduces AD progression. These data support the potential use of Sarm1 as a therapeutic target to improve circadian rhythm to impede AD progression.
Collapse
Affiliation(s)
- Zebin Wang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China.,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Shan Zeng
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China.,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan Jing
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China.,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Wenjuan Mao
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China.,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hongyan Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China.,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease Region, Tianshan District, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
35
|
Luo Y, Liu G, Hou P. Synergism Effect of Dendrobine on Cisplatin in Treatment of H1299 by Modulating the Balance of Treg/Th17. Anticancer Agents Med Chem 2023; 23:105-112. [PMID: 35619309 DOI: 10.2174/1871520622666220520093837] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) accounts for about 80% of lung cancers. Cisplatin is a broad-spectrum anti-cancer drug and is often used in combination with other drugs. Research suggests that dendrobine, a pyrrolizidine derivative alkaloid, exhibits antitumor activity in various cancers. This study explores the effect of dendrobine combined with cisplatin on NSCLC and its underlying molecular mechanism. METHODS The effects of dendrobine combined with cisplatin on tumor progression were evaluated by xenograft model (in vivo) and clonogenic survival assay (in vitro) using H1299 cell line. Annexin V staining was used for detecting apoptotic cells. The population of T cells, B cells and other subpopulations in the peripheral blood was determined by flow cytometry. RESULTS Dendrobine combined with cisplatin prolonged the survival of mice implanted with H1299 cells and reduced tumor volume compared with single drug application. However, dendrobine exhibited no effect on H1299 cells in clonal survival assays with or without cisplatin treatment and did not promote cisplatin-induced apoptosis in vitro. Importantly, dendrobine suppressed the regulatory T cells (Treg cells) and enhanced the T helper 17 cells (Th17 cells). Treatment of dendrobine significantly reduced Foxp3, and increased the level of IL-17 in serum. CONCLUSION Dendrobine displayed a synergistic effect with cisplatin to exert anti-tumor effect in vivo, which might be achieved by modulating the balance of Treg/Th17 cells rather than regulating cell apoptosis.
Collapse
Affiliation(s)
- Yang Luo
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| | - Gaohua Liu
- Department of Oncology, Fujian Medical University Union Hospital, 350001, Fujian, China
| | - Peifeng Hou
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou 350001, Fujian, China
| |
Collapse
|
36
|
Wu K, Peng X, Li Y, Chen M, Liu Y, Liu D, Jiang L, He Y, Peng J, Cao X. Design, synthesis, and evaluation of 1H-benzo[d]imidazole-4-carboxamide PARP-1 inhibitors using different saturated nitrogen-contained heterocycle as linker group. Chem Biol Drug Des 2023; 101:1335-1347. [PMID: 36752693 DOI: 10.1111/cbdd.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors have been successfully applied in the clinical treatment of various cancer. Side effects and drug resistant cases were reported, and more effective PARP-1 inhibitors were required. However, studies on the AD site of PARP-1 inhibitors are currently incomplete. Therefore, to synthesize more potential candidate PARP-1 inhibitors and disclose some AD site SAR of the PARP-1 inhibitors, herein, a series of 2-phenyl-benzimidazole-4-carboxamide derivatives using different saturated nitrogen-contained heterocycles as linker group (6a-6t) have been designed, synthesized, and evaluated PARP-1 inhibitory activity and proliferation inhibitory against BRCA-1 mutant MDA-MB-436 cell line in vitro. The results showed 6b (IC50 = 8.65 nM) exhibited the most PARP-1 enzyme inhibitory activity comparable with Veliparib (IC50 = 15.54 nM) and Olaparib (IC50 = 2.77 nM); 6m exhibited the strongest MDA-MB-436 cell anti-proliferation activity (IC50 = 25.36 ± 6.06 μM) comparable with Olaparib (IC50 = 23.89 ± 3.81 μM). The compounds 6b, 6r, and 6m could be potential candidates for effective PARP-1 inhibitors and valuable for further optimization. The analysis of activity data also showed that the holistically anti-proliferation activity of the 1,4-diazepane group was about~twofold than that of the piperazine group. Meanwhile, the terminal 3-methyl-furanyl group exhibited the most robust PARP-1 inhibitory and anti-proliferation activity. It is hoped that the results could benefitable for further optimization of PARP-1 inhibitors. Furthermore, we note that some compounds (6d,6g,6n,6p,6s) showed poor PARP-1 inhibitory (>500 nM) but relatively good anti-proliferation activity, which indicates the proliferation inhibitory mechanism against MDA-MB-436 cell line was worth investigating in-depth.
Collapse
Affiliation(s)
- Kaiyue Wu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoyu Peng
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Yang Li
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Miaojia Chen
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunfan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Dan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Lizhi Jiang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan He
- Department of Chemistry, Tsinghua University, Beijing, China.,The State Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing, China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, College of Pharmacy, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
37
|
Tranidou A, Dagklis T, Magriplis E, Apostolopoulou A, Tsakiridis I, Chroni V, Tsekitsidi E, Kalaitzopoulou I, Pazaras N, Chourdakis M. Pre-Pregnancy Adherence to Mediterranean Diet and Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study in Greece. Nutrients 2023; 15:nu15040848. [PMID: 36839206 PMCID: PMC9967881 DOI: 10.3390/nu15040848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM) is a growing epidemic affecting pregnant women and their offspring. This study aimed to identify the relationship between adherence to a Mediterranean diet (MD) before conception and the risk of GDM in a contemporary Greek pregnant cohort. A prospective cohort of pregnant women was recruited at the routine first trimester visit. Nutritional intake was evaluated using a population specific validated food frequency questionnaire (FFQ). Pre-pregnancy adherence to MD was derived using two different scoring systems, the Mediterranean diet index score (MDS), and a modified version. Adjusted odds ratios (aOR) were computed using multiple logistic regression models for each score derived. Of 743 participating women, 112 (15.1%) developed GDM. The MDS index showed that scoring 5-9 points (high adherence) was associated with a lower GDM incidence (aOR: 0.57 95% CI (0.32, 0.90), p = 0.02), while the modified MDS index showed no significant association for any level of adherence. Pre-pregnancy consumption of "meat and derivatives" and "fatty meat and processed meat" was associated with a higher risk of GDM, with both scoring systems (p = 0.008, p = 0.004, respectively). A higher adherence to a MD pre-pregnancy, especially with less meat consumption, may have a protective effect on the occurrence of GDM.
Collapse
Affiliation(s)
- Antigoni Tranidou
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Themistoklis Dagklis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
- Correspondence:
| | - Emmanuella Magriplis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Aikaterini Apostolopoulou
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Tsakiridis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Violeta Chroni
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eirini Tsekitsidi
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioustini Kalaitzopoulou
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Pazaras
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
38
|
Diessner EM, Takahashi GR, Cross TJ, Martin RW, Butts CT. Mutation Effects on Structure and Dynamics: Adaptive Evolution of the SARS-CoV-2 Main Protease. Biochemistry 2023; 62:747-758. [PMID: 36656653 PMCID: PMC9888416 DOI: 10.1021/acs.biochem.2c00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/29/2022] [Indexed: 01/20/2023]
Abstract
The main protease of SARS-CoV-2 (Mpro) plays a critical role in viral replication; although it is relatively conserved, Mpro has nevertheless evolved over the course of the COVID-19 pandemic. Here, we examine phenotypic changes in clinically observed variants of Mpro, relative to the originally reported wild-type enzyme. Using atomistic molecular dynamics simulations, we examine effects of mutation on protein structure and dynamics. In addition to basic structural properties such as variation in surface area and torsion angles, we use protein structure networks and active site networks to evaluate functionally relevant characters related to global cohesion and active site constraint. Substitution analysis shows a continuing trend toward more hydrophobic residues that are dependent on the location of the residue in primary, secondary, tertiary, and quaternary structures. Phylogenetic analysis provides additional evidence for the impact of selective pressure on mutation of Mpro. Overall, these analyses suggest evolutionary adaptation of Mpro toward more hydrophobicity and a less-constrained active site in response to the selective pressures of a novel host environment.
Collapse
Affiliation(s)
- Elizabeth M Diessner
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Gemma R Takahashi
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Thomas J Cross
- Department of Chemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Rachel W Martin
- Departments of Chemistry and Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Carter T Butts
- Departments of Sociology, Statistics, Computer Science, and EECS, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
39
|
Su W, Ju L, Hua Q, Hu J, Qian W. Values of combined C-reactive protein, procalcitonin and serum amyloid A in differential diagnosis of bacterial and non-bacterial community acquired pneumonia in children. Diagn Microbiol Infect Dis 2023; 105:115865. [PMID: 36521211 DOI: 10.1016/j.diagmicrobio.2022.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
This research aimed to explore the clinical value of C-reactive protein (CRP), procalcitonin (PCT), and serum amyloid A (SAA) in early diagnosis of bacterial pneumonia. CRP, PCT, and SAA levels of children with bacterial pneumonia, children with non-bacterial pneumonia, and healthy children were compared. The sensitivity and specificity of CRP, PCT, and SAA in the diagnosis of bacterial pneumonia in children were compared. CRP, PCT, and SAA levels were significantly lower in healthy children when compared with children with Community acquired pneumonia (CAP). ROC analyses showed that CRP, PCT, and SAA all had good accuracy in distinguishing bacterial pneumonia from non-bacterial pneumonia. The combination of CRP, PCT, and SAA further enhanced the accuracy in distinguishing bacterial pneumonia from non-bacterial pneumonia. In conclusion, the expression levels of CRP, PCT, and SAA could indicate the status of bacterial pneumonia. The combined test of CRP, PCT, and SAA had the highest diagnostic accuracy.
Collapse
Affiliation(s)
- Weiwei Su
- Department of Pediatric Cardiology, the Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Liang Ju
- Department of Pediatric Cardiology, the Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Qi Hua
- Department of Pediatric Cardiology, the Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jing Hu
- Department of Pediatric Cardiology, the Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Wei Qian
- Department of Pediatric Cardiology, the Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
40
|
Sun Y, Li N, Cai Y, Zhao X, Yang H. The polymethoxylated flavone hexamethylquercetagetin suppresses NF-κB signaling and inhibits cell survival in cervical carcinoma. Growth Factors 2023; 41:1-7. [PMID: 36371694 DOI: 10.1080/08977194.2022.2144282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nuclear factor-κB (NF-κB) contributes to the development and progression of cervical carcinoma. To construct a xenograft model, Ca Ski cells were subcutaneously inoculated into BALB/c nude mice. The relative protein expression of NF-κB p65, p-p65, IκBα, and p-IκBα were detected in hexamethylquercetagetin (HTQC) treated cervical carcinoma cells with or without tumor necrosis factor (TNF)α stimulation, or representative tumors tissues in xenograft mice. HTQC could prohibit NF-κB-derived luciferase activity in Ca Ski and C-33 A cells and inhibit the relative NF-κB p-p65 and p-IκBα expression with or without TNFα stimulation. At the same time, HTQC inhibited in vitro cell survival in a concentration-dependent manner and suppressed the tumor volume and weight in xenograft models. In summary, HTQC functions as an NF-κB inhibitor to prohibit the survival and proliferation of cervical carcinoma, which can be considered as an NF-κB target remedy in future clinical practice.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Gynecology and Obstetrics, The 980th Hospital of the Joint Logistic Support Force of PLA (Bethune International Peace Hospital), Shijiazhuang, China
| | - Nan Li
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuru Cai
- Department of Gynecology, Shijiazhuang People' Hospital, Shijiazhuang, China
| | - Xingnan Zhao
- Department of Gynecology and Obstetrics, The 980th Hospital of the Joint Logistic Support Force of PLA (Bethune International Peace Hospital), Shijiazhuang, China
| | - Hongyu Yang
- Department of Gynecology and Obstetrics, The 980th Hospital of the Joint Logistic Support Force of PLA (Bethune International Peace Hospital), Shijiazhuang, China
| |
Collapse
|
41
|
Wang X, Li Z, Sun Y. T-box transcription factor 2 mediates antitumor immune response in cutaneous squamous cell carcinoma by regulating the expression of programmed death ligand 1. Skin Res Technol 2023; 29:e13254. [PMID: 36478592 PMCID: PMC9838745 DOI: 10.1111/srt.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (CSCC) is the second largest nonmelanoma skin cancer in humans; effective treatment options for metastatic CSCC are still in short. In this study, we aimed to explore the function of T-box transcription factor 2 (TBX2) in CSCC. METHODS The expression level of TBX2 was determined in CSCC samples and cell lines. Programmed death ligand 1 (PD-L1) expression was also analyzed in human CSCC samples. Furthermore, SCC13 cells were transfected with TBX2-DN (loss of function) or normal TBX2 to check its role in regulating PD-L1. RESULTS The expression level of TBX2 was positively correlated with the stage of CSCC. CSCC tumor cell lines have significantly higher expression levels of TBX2 than normal skin cell lines, and SCC13 cells showed the highest expression. PD-L1 expressions were upregulated during the progression of CSCC, and positively correlated with TBX2. Furthermore, PD-L1 expression increased in SCC13 cells overexpressing TBX2. However, TBX2 did not regulate the activation of IFNγ signal, but mediated the expression of interferon regulatory factor 1 (IRF1) and PD-L1 in both SCC13 and PDV cells. CONCLUSION TBX2 could mediate antitumor immune response in CSCC by regulating the expression of PD-L1 through IRF1. It might be a prognostic marker in CSCC and synergistic target for PD-1 immunotherapy.
Collapse
Affiliation(s)
- Xu Wang
- Department of Dermatology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zhi Li
- Department of Dermatology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yadi Sun
- Department of Rheumatology and Immunology, the Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
42
|
Fu L, Guan LN. Long period changes of hippocampal cerebral blood flow and its correlation with anxiety-like behavior and inflammation after incomplete cerebral ischemia reperfusion in rats. Clin Hemorheol Microcirc 2023; 84:425-434. [PMID: 37334586 DOI: 10.3233/ch-231770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
OBJECTIVE This study was designed to summarize the changes of cerebral blood flow (CBF) in the bilateral hippocampal CA1 region of the hemorrhagic shock reperfusion (HSR) model of rats and their correlation with anxiety-like behavior and inflammation. METHODS Rats were randomly divided into the HSR group and the Sham group. 30 rats in each group were subdivided into 5 time points (1 w, 2 w, 4 w, 8 w, and 12 w) for examination. 3D-arterial spin labeling (3D-ASL) was performed. Long period anxiety-like behaviors were analyzed through the open field test. Histopathology was used to detect astrocytic activation in bilateral hippocampus. The concentrations of pro-inflammatory cytokines were analyzed by ELISA. RESULTS At 1, 2, 4, and 8 weeks, CBF in bilateral hippocampus CA1 area of the rats in the Sham group was significantly higher than the rats in the HSR group. The rats in the HSR group had significantly shorter total traveled distance, lower velocity, and less rearing counts than those in the Sham group at 1, 2, 4, 8, and 12 weeks after the surgery. The CBF at 1, 2, 4, 8, and 12 weeks after the surgery had positive correlation with the total traveled distance, velocity, and rearing counts in the open field test. The rats in the HSR group had significantly higher GFAP intensity and the concentrations of IL-6, IL-1β, and TNF-α than those in the Sham group at 1, 2, 4, 8, and 12 weeks after the surgery. The CBF at 1, 2, 4, 8 and 12 weeks after the surgery had significantly negative correlation with the GFAP intensity and the concentrations of IL-6, IL-1β, and TNF-α. CONCLUSION In conclusion, CBF in bilateral hippocampus CA1 area, spatial exploration ability in rats with HSR were decreased while the astrocyte activation was enhanced. During the long period after the induction of HSR, the value of CBF in bilateral hippocampus CA1 area was proved to have significant correlation with anxiety-like behaviors and astrocyte activation.
Collapse
Affiliation(s)
- Lan Fu
- Department of Computed Tomography Diagnosis, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Lin-Na Guan
- Department of Computed Tomography Diagnosis, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
43
|
Zhu B, Zhang C, Shen X, Chen C, Chen X, Lu Y, Chen Y, Guo M. Protective Effects of Resveratrol Against Adenomyosis in a Mouse Model. Dose Response 2023; 21:15593258231164055. [PMID: 36959835 PMCID: PMC10028632 DOI: 10.1177/15593258231164055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Adenomyosis is a uterine condition in which endometrial glands and stroma are commonly pathologically observed in the myometrium. In this study, we sought to determine the effect of resveratrol on the progression of adenomyosis. Adenomyosis was induced in mice given tamoxifen neonatally. All mice were subjected to body weight measurement and hotplate testing every four weeks beginning four weeks after birth. All mice with adenomyosis were randomly separated into 3 groups at 16 weeks: untreated, low-dose resveratrol (25 mg/kg), and high-dose resveratrol (50 mg/kg). After 3 weeks of treatment, final hotplate test and body weight measurement were performed, and the uterine horn blood samples were collected. Adenomyosis in mice caused body weight loss and uterine weight gain, reduced hotplate latency, and progression of endometrial fibrosis. The underlying biological process could be coupled with the overexpression of many cells' proliferation and immune-regulation-related genes. Resveratrol treatment could slow the progression of adenomyosis by enhancing hotplate latency, lowering endometrial fibrosis, and restoring cell proliferation- and immune-regulation-associated gene expression levels in endometrium and plasma. However, resveratrol treatment also reduced the body weight and uterine weight. In conclusion, Resveratrol might be a potential compound for treating patients with adenomyosis.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
| | - Chenhui Zhang
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Shen
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
| | - Cong Chen
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
| | - Xuanyu Chen
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
| | - Yiyi Lu
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
| | - Yumei Chen
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
- Yumei Chen, Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical Institute
of Wenzhou Medical University, No. 299, Guan Road, Louqiao Street, Ouhai
District, Wenzhou 325000, China.
| | - Min Guo
- Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical
Institute of Wenzhou Medical University, Wenzhou, China
- Yumei Chen, Department of Obstetrics and
Gynecology of Wenzhou People’s Hospital, The Third Affiliated Clinical Institute
of Wenzhou Medical University, No. 299, Guan Road, Louqiao Street, Ouhai
District, Wenzhou 325000, China.
| |
Collapse
|
44
|
Chen H, Jiang Y, Li X. Adriamycin-loaded exosome with anti-CD20 aptamers selectively suppresses human CD20+ melanoma stem cells. Skin Res Technol 2023; 29:e13259. [PMID: 36704890 PMCID: PMC9838758 DOI: 10.1111/srt.13259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/02/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Targeting CD20+ melanoma cancer stem cells (CSCs) subset is essential for treating melanoma. Anti-CD20 aptamer-modified exosomes (ACEXO) loaded with Adriamycin could be a therapeutic strategy for targeting CSCs. MATERIALS AND METHODS Exosomes loaded with Adriamycin were modified with anti-CD20 aptamer and characterized by size and molecular markers using transmission electron microscope and dynamic light scattering. The uptake of ACEXO into CD20+ cells was checked, and its cytotoxicities in CD20+ melanoma cells, HEK 293T, and 3T3 cells were evaluated. At the same time, the in vivo distribution of ACEXO in the tumor-bearing mice model was determined. RESULTS The particle size of the exosome is about 80-100 nm. Western blot analysis showed that they expressed the characteristic exosome markers: CD9 and CD63. Quantitative analysis of the mean fluorescence intensity after 4 h incubation showed that ACEXO significantly improved Adriamycin uptake. Notably, the ACEXO killed only CD20+ melanoma cells. In addition, they exhibited good biocompatibility with both 293T and 3T3 cells at all doses. After intravenous injection, exosome distribution data showed that ACEXO's accumulation in the tumor is higher than anti-CD20-modified exosomes (AEXO)'s at all time points, and the accumulation increased as time prolonged. Addition of ACEXO reduces the number of tumorspheres in A375 or WM266-4 cells compared to untreated controls or AEXO-treated group. More important, while treating melanoma tumor-bearing mice, ACEXO-treated group showed the lowest tumor weight without body weight loss. CONCLUSION ACEXO loaded with Adriamycin could suppress tumor cell growth in vitro and in vivo, probably by targeting CD20+ melanoma CSCs.
Collapse
Affiliation(s)
- Hairong Chen
- Department of DermatologyThe Affiliated Qingdao Municipal Hospital of Qingdao UniversityQingdaoShandongChina
| | - Yuxia Jiang
- Department of Clinical LaboratoryThe Affiliated Qingdao Municipal Hospital of Qingdao UniversityQingdaoShandongChina
| | - Xia Li
- Department of DermatologyThe West District of Qingdao Municipal Hospital Group (Qingdao Ninth People's Hospital)QingdaoShandongChina
| |
Collapse
|
45
|
Feng Y, Cao H, Song Z, Chen L, Wang D, Gao R. Qi Ling decoction enhances abiraterone treatment via suppression of autophagy in castration resistant prostate cancer. Aging (Albany NY) 2022; 14:9942-9950. [PMID: 36541904 PMCID: PMC9831723 DOI: 10.18632/aging.204427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022]
Abstract
Abiraterone acetate has exhibited impressive results in improving progression-free survival of patients with metastatic castration-resistant prostate cancer. However, many patients may develop abiraterone resistance with a variable duration of response. Hence, identifying a remedy to overcome abiraterone resistance is critical for patients with castration-resistant prostate cancer. In this study, we aim to explore the potential of Qi Ling decoction (QLD), a traditional Chinese medicine, in attenuating abiraterone resistance in prostate cancer. Cell viability and apoptosis were respectively measured by Cell Counting Kit-8 (CCK-8) assay and flow cytometry. The protein levels were assessed by Western blotting assay. Autophagosome formation was quantified by counting LC3 puncta. We found that QLD was capable of promoting abiraterone-induced apoptosis and cell death of PC3-AbiR and DU145-AbiR cells in vitro. A combination of QLD and abiraterone yielded a better tumor inhibition effect than QLD alone and abiraterone alone. Further investigation revealed that QLD restored the abiraterone sensitivity of PC3-AbiR and DU145-AbiR cells through modulating autophagy. These findings suggest that QLD might serve as a potential remedy to enhance the therapeutical effect of abiraterone for patients with castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Yigeng Feng
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui 200032, Shanghai, China
| | - Hongwen Cao
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui 200032, Shanghai, China
| | - Zixi Song
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui 200032, Shanghai, China
| | - Lei Chen
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui 200032, Shanghai, China
| | - Dan Wang
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui 200032, Shanghai, China
| | - Renjie Gao
- Surgical Department I (Urology Department), Longhua Hospital Shanghai University of Traditional Chinese Medicine, Xuhui 200032, Shanghai, China
| |
Collapse
|
46
|
Lu T, Wu Y. Tripartite Motif Containing 26 is a Positive Predictor for Endometrial Carcinoma Patients and Regulates Cell Survival in Endometrial Carcinoma. Horm Metab Res 2022; 54:859-865. [PMID: 36108622 DOI: 10.1055/a-1926-7364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functioning as an E3 ubiquitin ligase, tripartite motif containing 26 (TRIM26) can regulate the tumor behavior and the relevant inflammatory immune response. Endometrial carcinoma is a major gynecological malignant tumor in the world, while no relevant research has been performed. KMplot, a web-based survival analysis tool, demonstrated that TRIM26 expression was positively correlated with the overall survival in gynecological tumors, such as ovarian, cervical, and endometrial cancer. The relatively low expression of TRIM26 was also found in endometrial cancer tissues and endometrial cancer cell lines. In the online Gene Expression Profiling Interactive Analysis (GEPIA) platform, TRIM26 was positively correlated with the pre-apoptosis genes of p53, BIM, BID, BAX, and BAK, and negatively correlated with the anti-apoptosis gene of BCLW. To further explore the function of TRIM26 in endometrial carcinoma, Ishikawa and KLE cells were infected with PLVX-TRIM26-derived lentivirus. TRIM26 overexpression suppressed the growth of endometrial cells, with downregulated p-AKT and upregulated BIM and BID expression. PLVX-TRIM26 overexpressed Ishikawa cells were injected subcutaneously into the side flanks of male BALB/C nude mice to construct a TRIM26-overexpression xenograft model. TRIM26 overexpression suppressed the growth of endometrial cancer as indicated by downregulated tumor volume and tumor weight with downregulated p-AKT expression. TRIM26 could regulate AKT pathway and apoptosis process to inhibit the growth of endometrial carcinoma, which can be utilized as a survival predictor.
Collapse
Affiliation(s)
- Tanmin Lu
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital, Liaocheng City, China
| | - Yu Wu
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital, Liaocheng City, China
| |
Collapse
|
47
|
Singh R, Bhardwaj VK, Purohit R. Inhibition of nonstructural protein 15 of SARS-CoV-2 by golden spice: A computational insight. Cell Biochem Funct 2022; 40:926-934. [PMID: 36203381 PMCID: PMC9874790 DOI: 10.1002/cbf.3753] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 01/27/2023]
Abstract
The quick widespread of the coronavirus and speedy upsurge in the tally of cases demand the fast development of effective drugs. The uridine-directed endoribonuclease activity of nonstructural protein 15 (Nsp15) of the coronavirus is responsible for the invasion of the host immune system. Therefore, developing potential inhibitors against Nsp15 is a promising strategy. In this concern, the in silico approach can play a significant role, as it is fast and cost-effective in comparison to the trial and error approaches of experimental investigations. In this study, six turmeric derivatives (curcuminoids) were chosen for in silico analysis. The molecular interactions, pharmacokinetics, and drug-likeness of all the curcuminoids were measured. Further, the stability of Nsp15-curcuminoids complexes was appraised by employing molecular dynamics (MD) simulations and MM-PBSA approaches. All the molecules were affirmed to have strong interactions and pharmacokinetic profile. The MD simulations data stated that the Nsp15-curcuminoids complexes were stable during simulations. All the curcuminoids showed stable and high binding affinity, and these curcuminoids could be admitted as potential modulators for Nsp15 inhibition.
Collapse
Affiliation(s)
- Rahul Singh
- Structural Bioinformatics Lab, CSIR‐Institute of Himalayan Bioresource Technology (CSIR‐IHBT)The Himalayan Centre for High‐throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT)PalampurIndia,Biotechnology divisionCSIR‐IHBTPalampurIndia,Academy of Scientific & Innovative Research (AcSIR)GhaziabadIndia
| | - Vijay K. Bhardwaj
- Structural Bioinformatics Lab, CSIR‐Institute of Himalayan Bioresource Technology (CSIR‐IHBT)The Himalayan Centre for High‐throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT)PalampurIndia,Biotechnology divisionCSIR‐IHBTPalampurIndia,Academy of Scientific & Innovative Research (AcSIR)GhaziabadIndia
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR‐Institute of Himalayan Bioresource Technology (CSIR‐IHBT)The Himalayan Centre for High‐throughput Computational Biology (HiCHiCoB, A BIC Supported by DBT)PalampurIndia,Biotechnology divisionCSIR‐IHBTPalampurIndia,Academy of Scientific & Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
48
|
Piao M, Feng G. The deubiquitinating enzyme
USP37
promotes keloid fibroblasts proliferation and collagen production by regulating the
c‐Myc
expression. Int Wound J 2022; 20:1517-1524. [PMID: 36333840 PMCID: PMC10088848 DOI: 10.1111/iwj.14006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Previous research testifies that c-Myc may promote keloid fibroblast proliferation and collagen accumulation. Ubiquitin-specific peptidase 37 (USP37)-mediated deubiquitination and stabilisation of c-Myc are vital for lung cancer proliferation, while the potential role of USP37 in keloid fibroblasts is not investigated. Elevated USP37, c-Myc, and Collagen I content were detected in keloid tissue with RT-PCR or ELISA assay. USP37 over-expression plasmids or USP37 short hairpin RNAs (shRNAs) were transfected into keloid fibroblasts with Lipofectamine 3000 to decipher the role of USP37 in keloid fibroblasts. USP37 overexpression could promote the proliferation of keloid fibroblasts with increased c-Myc and Collagen I expression. On the other hand, USP37 shRNAs inhibited the proliferation of keloid fibroblasts with diminished c-Myc and Collagen I expression. It was worth noting that C-Myc overexpression promoted the proliferation of keloid fibroblasts inhibited by USP37 shRNAs with increasing Collagen I expression. All of these results demonstrate that USP37 could regulate c-Myc to promote the proliferation and collagen deposit of keloid fibroblasts, and USP37 could be targeted in future keloid therapy.
Collapse
Affiliation(s)
- Meishan Piao
- Department of dermatology the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University Wuxi China
| | - Guangdong Feng
- Department of dermatology the Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University Wuxi China
| |
Collapse
|
49
|
A-Kinase Anchoring Protein 9 Promotes Gastric Cancer Progression as a Downstream Effector of Cadherin 1. JOURNAL OF ONCOLOGY 2022; 2022:2830634. [PMID: 36317124 PMCID: PMC9617730 DOI: 10.1155/2022/2830634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022]
Abstract
Background Genetic studies identified a dozen of frequently mutated genes in gastric cancer, such as cadherin 1 (CDH1) and A-kinase anchoring protein 9 (AKAP9). Of note, genetic alterations including depletion and amplification frameshift mutations of AKAP9 have been observed in 10–15% of gastric cancer patients. However, it is unknown of the expression and role of AKAP9 in gastric cancer. This study is aimed to characterize the expression and function of AKAP9 in gastric cancer. Methods Using qRT-PCR, we analyzed the mRNA levels of AKAP9 in gastric cancer patient samples. We investigated the role of AKAP9 in gastric cancer by performing cell proliferation assay, transwell assay, and mouse xenograft assay. Results AKAP9 was upregulated in gastric cancer patients. Overexpression of AKAP9 promoted cell proliferation, migration, and gastric tumor growth. Loss of CDH1 elevated AKAP9 mRNA and protein levels. Conclusion Our study demonstrates that AKAP9 functions as an oncoprotein to promote gastric cancer cell proliferation, migration, and tumor growth. Moreover, we reveal a possible molecular link showing that AKAP9 is a critical effector downstream of CDH1 in gastric cancer.
Collapse
|
50
|
Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM, Alturaif RK, Brahimi S, Aljameel SS, Al Ghamdi K. Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22207856. [PMID: 36298206 PMCID: PMC9609137 DOI: 10.3390/s22207856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 05/17/2023]
Abstract
Multiple Sclerosis (MS) is a disease that impacts the central nervous system (CNS), which can lead to brain, spinal cord, and optic nerve problems. A total of 2.8 million are estimated to suffer from MS. Globally, a new case of MS is reported every five minutes. In this review, we discuss the proposed approaches to diagnosing MS using machine learning (ML) published between 2011 and 2022. Numerous models have been developed using different types of data, including magnetic resonance imaging (MRI) and clinical data. We identified the methods that achieved the best results in diagnosing MS. The most implemented approaches are SVM, RF, and CNN. Moreover, we discussed the challenges and opportunities in MS diagnosis to improve AI systems to enable researchers and practitioners to enhance their approaches and improve the automated diagnosis of MS. The challenges faced by automated MS diagnosis include difficulty distinguishing the disease from other diseases showing similar symptoms, protecting the confidentiality of the patients' data, achieving reliable ML models that are also easily understood by non-experts, and the difficulty of collecting a large reliable dataset. Moreover, we discussed several opportunities in the field such as the implementation of secure platforms, employing better AI solutions, developing better disease prognosis systems, combining more than one data type for better MS prediction and using OCT data for diagnosis, utilizing larger, multi-center datasets to improve the reliability of the developed models, and commercialization.
Collapse
Affiliation(s)
- Nida Aslam
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence:
| | - Irfan Ullah Khan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Asma Bashamakh
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Fatima A. Alghool
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Menna Aboulnour
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Noorah M. Alsuwayan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rawa’a K. Alturaif
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Samiha Brahimi
- Department of Computer Information Systems, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sumayh S. Aljameel
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Kholoud Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|