1
|
|
Yan Q, Yang L, Ma Q, Xie Q, Dai H, Fu Y, Zhao Y. Two new α-pyrone derivatives from sponge-derived fungus Curvularia sp. ZYX-Z-4. Phytochem Lett 2023;55:6-11. [DOI: 10.1016/j.phytol.2023.03.005] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/18/2023]
|
2
|
|
Tyler SEB, Tyler LDK. Pathways to healing: Plants with therapeutic potential for neurodegenerative diseases. IBRO Neurosci Rep 2023;14:210-34. [PMID: 36880056 DOI: 10.1016/j.ibneur.2023.01.006] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/12/2023] Open
Abstract
Some of the greatest challenges in medicine are the neurodegenerative diseases (NDs), which remain without a cure and mostly progress to death. A companion study employed a toolkit methodology to document 2001 plant species with ethnomedicinal uses for alleviating pathologies relevant to NDs, focusing on its relevance to Alzheimer's disease (AD). This study aimed to find plants with therapeutic bioactivities for a range of NDs. 1339 of the 2001 plant species were found to have a bioactivity from the literature of therapeutic relevance to NDs such as Parkinson's disease, Huntington's disease, AD, motor neurone diseases, multiple sclerosis, prion diseases, Neimann-Pick disease, glaucoma, Friedreich's ataxia and Batten disease. 43 types of bioactivities were found, such as reducing protein misfolding, neuroinflammation, oxidative stress and cell death, and promoting neurogenesis, mitochondrial biogenesis, autophagy, longevity, and anti-microbial activity. Ethno-led plant selection was more effective than random selection of plant species. Our findings indicate that ethnomedicinal plants provide a large resource of ND therapeutic potential. The extensive range of bioactivities validate the usefulness of the toolkit methodology in the mining of this data. We found that a number of the documented plants are able to modulate molecular mechanisms underlying various key ND pathologies, revealing a promising and even profound capacity to halt and reverse the processes of neurodegeneration.
Collapse
|
3
|
|
Abdel-Rasoul AA, Saleh NA, Hosny EN, El-Gizawy MM, Ibrahim EA. Cardamom oil ameliorates behavioral and neuropathological disorders in a rat model of depression induced by reserpine. J Ethnopharmacol 2023;308:116254. [PMID: 36781058 DOI: 10.1016/j.jep.2023.116254] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Depression is a public health problem. Despite the availability of treatment options, its prevalence is increasing. A high rate of treatment failure is often reported, along with considerable side effects associated with synthetic antidepressants. Therefore, developing effective and safe antidepressants from traditional herbs or natural products as an alternative strategy is warranted to avoid side effects and increase drug efficacy. In traditional medicine, cardamom has traditionally been used to treat conditions like asthma, tooth and gum infections, cataracts, nausea, diarrhea, and even depression and anxiety as well as some problems with the heart, kidneys, and digestive system. AIM OF THE STUDY The current study aimed to evaluate the antidepressant activity of cardamom oil in a rat model of depression induced by reserpine and compare it with the activity of the antidepressant drug fluoxetine. MATERIALS AND METHODS Depression-like symptoms were induced in male rats by daily i. p. injection of reserpine (0.2 mg/kg/d for 15 d followed by 0.1 mg/kg/d for 21 d to maintain the depressive state), and the rats were treated with cardamom oil (oral dose = 200 mg/kg/d) for 21 d along with the maintenance dose of reserpine. We performed behavioral tests (forced swimming test and open-field test) and evaluated biochemical markers of depression. RESULTS Our findings revealed that cardamom oil attenuated depression-like symptoms in reserpine-injected rats by improving the behavioral changes measured by the forced swimming test and the locomotor activities measured by the open-field test. In reserpine-injected rats, cardamom oil exerted antidepressant-like effects by modulating lower levels of brain monoamine neurotransmitters (serotonin, norepinephrine, and dopamine), GSH, and higher oxido-nitrosative stress parameters (malondialdehyde and nitric oxide). Moreover, cardamom oil alleviated depression-like behaviors by lowering monoamine oxidase activity and raising the activities of Na+/K+-ATPase and acetylcholinesterase and levels of a brain-derived neurotrophic factor in the cortex and hippocampus. CONCLUSION We recommend the use of cardamom oil as a safe and reliable treatment or an adjuvant for preventing depression-like symptoms in patients suffering from depression.
Collapse
|
4
|
|
Sharma A, Kaur I, Dheer D, Nagpal M, Kumar P, Venkatesh DN, Puri V, Singh I. A propitious role of marine sourced polysaccharides: Drug delivery and biomedical applications. Carbohydr Polym 2023;308:120448. [PMID: 36813329 DOI: 10.1016/j.carbpol.2022.120448] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/14/2022]
Abstract
Numerous compounds, with extensive applications in biomedical and biotechnological fields, are present in the oceans, which serve as a prime renewable source of natural substances, further promoting the development of novel medical systems and devices. Polysaccharides are present in the marine ecosystem in abundance, promoting minimal extraction costs, in addition to their solubility in extraction media, and an aqueous solvent, along with their interactions with biological compounds. Certain algae-derived polysaccharides include fucoidan, alginate, and carrageenan, while animal-derived polysaccharides comprise hyaluronan, chitosan and many others. Furthermore, these compounds can be modified to facilitate their processing into multiple shapes and sizes, as well as exhibit response dependence to external conditions like temperature and pH. All these properties have promoted the use of these biomaterials as raw materials for the development of drug delivery carrier systems (hydrogels, particles, capsules). The present review enlightens marine polysaccharides providing its sources, structures, biological properties, and its biomedical applications. In addition to this, their role as nanomaterials is also portrayed by the authors, along with the methods employed to develop them and associated biological and physicochemical properties designed to develop suitable drug delivery systems.
Collapse
|
5
|
|
Gasparek M, Steel H, Papachristodoulou A. Deciphering mechanisms of production of natural compounds using inducer-producer microbial consortia. Biotechnol Adv 2023;64:108117. [PMID: 36813010 DOI: 10.1016/j.biotechadv.2023.108117] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/22/2023]
Abstract
Living organisms produce a wide range of metabolites. Because of their potential antibacterial, antifungal, antiviral, or cytostatic properties, such natural molecules are of high interest to the pharmaceutical industry. In nature, these metabolites are often synthesized via secondary metabolic biosynthetic gene clusters that are silent under the typical culturing conditions. Among different techniques used to activate these silent gene clusters, co-culturing of "producer" species with specific "inducer" microbes is a particularly appealing approach due to its simplicity. Although several "inducer-producer" microbial consortia have been reported in the literature and hundreds of different secondary metabolites with attractive biopharmaceutical properties have been described as a result of co-cultivating inducer-producer consortia, less attention has been devoted to the understanding of the mechanisms and possible means of induction for production of secondary metabolites in co-cultures. This lack of understanding of fundamental biological functions and inter-species interactions significantly limits the diversity and yield of valuable compounds using biological engineering tools. In this review, we summarize and categorize the known physiological mechanisms of production of secondary metabolites in inducer-producer consortia, and then discuss approaches that could be exploited to optimize the discovery and production of secondary metabolites.
Collapse
|
6
|
|
Lavanya P, Davis G DJ. Chemo-structural diversity of anti-obesity compound database. J Mol Graph Model 2023;120:108414. [PMID: 36702059 DOI: 10.1016/j.jmgm.2023.108414] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/20/2023]
Abstract
Nature plays a major role in the development of new drugs which helps in preventing and treating human diseases. Anti-obesity compound database (AOCD) contains comprehensive information on all published small molecules from natural sources with anti-obesity potential targeting pancreatic lipase (PL), appetite suppressant (AS) and adipogenesis (AD). Presently the database contains 349 compounds isolated from 307 plants, 26 marine and 16 microbial sources. Users can query the AOCD database (https://aocd.swmd.co.in/) in several ways. The database was divided into three datasets (PL, AS and AD) to perform chemoinformatic analysis using Platform for Unified Molecular Analysis (PUMA), which were analyzed based on molecular descriptors, scaffold diversity and structural fingerprint diversity. Chemoinformatics study inferred the PL dataset has the highest diversity of compounds based on the Euclidean distance on molecular properties, scaffold diversity and pairwise similarity on fingerprint diversity. This study would hasten the process of anti-obesity drug discovery.
Collapse
|
7
|
|
Pardon M, Chapel S, de Witte P, Cabooter D. Optimizing transfer and dilution processes when using active solvent modulation in on-line two-dimensional liquid chromatography. Anal Chim Acta 2023;1252:341040. [PMID: 36935135 DOI: 10.1016/j.aca.2023.341040] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/06/2023]
Abstract
Two-dimensional liquid chromatography (2D-LC) is becoming increasingly popular for the analysis of complex samples, which is partly due to the recent introduction of commercial 2D-LC systems. To deal with the mobile phase incompatibility between highly orthogonal retention mechanisms, such as hydrophilic interaction liquid chromatography (HILIC) and reversed-phase LC (RPLC), several strategies have been introduced over the years. One of these strategies is active solvent modulation (ASM), a valve-based approach allowing the on-line dilution of the effluent eluting from the first dimension before transfer to the second dimension. This strategy has gained a lot of attention and holds great potential, however, no clear guidelines are currently in place for its use. Therefore, this study aims to investigate how the ASM process can be optimized when using highly incompatible LC combinations, such as HILIC and RPLC, in a simplified selective comprehensive 2D-LC set-up (sHILIC x RPLC) to suggest guidelines for future users. Using a representative sample, the dilution factor (DF), the duration of the ASM phase, the filling percentage of the sample loops, and their unloading configuration are investigated and optimized. It is observed that a DF of 10 with an optimal ASM phase duration, a sample loop filling of maximum 25%, and an unloading configuration in backflush mode, result in the best peak shapes, intensities, and recoveries for early eluting compounds, while keeping the total analysis time minimal. Based on these results, some general recommendations are made that could also be applied in other 2D-LC modes, such as comprehensive 2D-LC (LC x LC), heart-cutting 2D-LC (LC-LC), and other chromatographic combinations with mobile phase incompatibility issues.
Collapse
|
8
|
|
Cortés-Fernández I, Sureda A, Adrover M, Caprioli G, Maggi F, Gil-Vives L, Capó X. Antioxidant and anti-inflammatory potential of rhizome aqueous extract of sea holly (Eryngium maritimum L.) on Jurkat cells. J Ethnopharmacol 2023;305:116120. [PMID: 36610674 DOI: 10.1016/j.jep.2022.116120] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 01/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Eryngium is known for producing a wide range of bioactive compounds with proved medicinal properties. In the last years, research has focused on E. maritimum, with previous studies reporting anticancer, antimicrobial, antioxidant, and anti-inflammatory activities. Ethnobotanical literature suggests that it has been traditionally used to treat a wide range of illnesses, having antitussive, diuretic and aphrodisiac properties. Being rhizome one of the most bioactive organs, much of the available references from traditional uses suggest that it has been specifically used to treat renal diseases. In this sense, inflammation and oxidative processes play a major role in kidney dysfunctions, which could be associated to the mechanism of action of the plant extracts. AIM OF THE STUDY The main aim of the study was to investigate the effects of E. maritimum rhizome extract on the antioxidant and inflammatory response in human immune cells. MATERIAL AND METHODS Rhizome extracts were obtained from plants growing in Mallorca (Balearic Islands), and its composition was determined using HPLC-DAD, highlighting simple phenolic compounds such as trans-ferulic acid, catechin, chlorogenic acid, epicatechin and rosmarinic acid as the major constituents. Total antioxidant capacity was determined using the FRAP assay. Jurkat cells were cultured to analyse cytotoxicity by cell viability assay. In parallel, cells were stimulated with phytohemagglutinin and treated with different extract concentrations. Gene and protein expression, as well as nitrite and cytokine levels were evaluated as indicators of metabolic responses. RESULTS The plant extract showed a high diversity of pharmacologically bioactive compounds with potential therapeutic uses. The extract presented null cytotoxicity and exerted antioxidant and anti-inflammatory effects on Jurkat cells by inducing an antioxidant response and reducing cytokine and nitric oxide release and the expression of pro-inflammatory genes. CONCLUSION The present findings suggest that E. maritimum is a promising phytotherapeutic species because of its strong antioxidant and anti-inflammatory potential, which could explain some of its traditional uses.
Collapse
|
9
|
|
Hagen EH, Blackwell AD, Lightner AD, Sullivan RJ. Homo medicus: The transition to meat eating increased pathogen pressure and the use of pharmacological plants in Homo. Am J Biol Anthropol 2023;180:589-617. [PMID: 36815505 DOI: 10.1002/ajpa.24718] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/24/2023]
Abstract
The human lineage transitioned to a more carnivorous niche 2.6 mya and evolved a large body size and slower life history, which likely increased zoonotic pathogen pressure. Evidence for this increase includes increased zoonotic infections in modern hunter-gatherers and bushmeat hunters, exceptionally low stomach pH compared to other primates, and divergence in immune-related genes. These all point to change, and probably intensification, in the infectious disease environment of Homo compared to earlier hominins and other apes. At the same time, the brain, an organ in which immune responses are constrained, began to triple in size. We propose that the combination of increased zoonotic pathogen pressure and the challenges of defending a large brain and body from pathogens in a long-lived mammal, selected for intensification of the plant-based self-medication strategies already in place in apes and other primates. In support, there is evidence of medicinal plant use by hominins in the middle Paleolithic, and all cultures today have sophisticated, plant-based medical systems, add spices to food, and regularly consume psychoactive plant substances that are harmful to helminths and other pathogens. We propose that the computational challenges of discovering effective plant-based treatments, the consequent ability to consume more energy-rich animal foods, and the reduced reliance on energetically-costly immune responses helped select for increased cognitive abilities and unique exchange relationships in Homo. In the story of human evolution, which has long emphasized hunting skills, medical skills had an equal role to play.
Collapse
|
10
|
|
Zhu W, Wang M, Jin L, Yang B, Bai B, Mutsinze RN, Zuo W, Chattipakorn N, Huh JY, Liang G, Wang Y. Licochalcone A protects against LPS-induced inflammation and acute lung injury by directly binding with myeloid differentiation factor 2 (MD2). Br J Pharmacol 2023;180:1114-31. [PMID: 36480410 DOI: 10.1111/bph.15999] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a challenging clinical syndrome that leads to various respiratory sequelae and even high mortality in patients with severe disease. The novel pharmacological strategies and therapeutic drugs are urgently needed. Natural products have played a fundamental role and provided an abundant pool in drug discovery. EXPERIMENTAL APPROACH A compound library containing 160 natural products was used to screen potential anti-inflammatory compounds. Mice with LPS-induced ALI was then used to verify the preventive and therapeutic effects of the selected compounds. KEY RESULTS Licochalcone A was discovered from the anti-inflammatory screening of natural products in macrophages. A qPCR array validated the inflammation-regulatory effects of licochalcone A and indicated that the potential targets of licochalcone A may be the upstream proteins in LPS pro-inflammatory signalling. Further studies showed that licochalcone A directly binds to myeloid differentiation factor 2 (MD2), an assistant protein of toll-like receptor 4 (TLR4), to block both LPS-induced TRIF- and MYD88-dependent pathways. LEU61 and PHE151 in MD2 protein are the two key residues that contribute to the binding of MD2 to licochalcone A. In vivo, licochalcone A treatment alleviated ALI in LPS-challenged mice through significantly reducing immunocyte infiltration, suppressing activation of TLR4 pathway and inflammatory cytokine induction. CONCLUSION AND IMPLICATIONS In summary, our study identified MD2 as a direct target of licochalcone A for its anti-inflammatory activity and suggested that licochalcone A might serve as a novel MD2 inhibitor and a potential drug for developing ALI/ARDS therapy.
Collapse
|
11
|
|
Lee JI, Choi JH, Kwon TW, Jo HS, Kim DG, Ko SG, Song GJ, Cho IH. Neuroprotective effects of bornyl acetate on experimental autoimmune encephalomyelitis via anti-inflammatory effects and maintaining blood-brain-barrier integrity. Phytomedicine 2023;112:154569. [PMID: 36842217 DOI: 10.1016/j.phymed.2022.154569] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 11/29/2022]
Abstract
BACKGROUND Bornyl acetate (BA), a chemical component of essential oil in the Pinus family, has yet to be actively studies in terms of its therapeutic effect on numerous diseases, including autoimmune diseases. PURPOSE This study aimed to investigate the pharmacological effects and molecular mechanisms of BA on myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) mice in an animal model of multiple sclerosis (MS), a representative autoimmune disease in central nervous system. METHODS BA (100, 200, or 400 mg/kg) was orally treated to EAE mice once daily for 30 days after immunization for the behavioral test and for the 16th-18th days for the histopathological and molecular analyses, from the onset stage (8th day) of EAE symptoms. RESULTS BA mitigated behavioral dysfunction (motor disability) and demyelination in the spinal cord that were associated with the down-regulation of representative pro-inflammatory cytokines (interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha), enzymes (cyclooxygenase-2 and inducible nitric oxide synthase), and chemokines (monocyte chemotactic protein-1, macrophage inflammatory protein-1 alpha, and regulated on activation), and decreased infiltration of microglia (CD11b+/CD45+(low)) and macrophages (CD11b+/CD45+(high)). The anti-inflammatory effect of BA was related to the inhibition of mitogen-activated protein kinases and nuclear factor-kappa B pathways. BA also reduced the recruitment/infiltration rates of CD4+ T, Th1, and Th17 cells into the spinal cords of EAE mice, which was related to reduced blood-spinal cord barrier (BSCB) disruption. CONCLUSION These findings strongly suggest that BA may alleviate EAE due to its anti-inflammatory and BSCB protective activities. This indicates that BA is a potential therapeutic agent for treating autoimmune demyelinating diseases including MS.
Collapse
|
12
|
|
Lyu P, Li S, Han Y, Shen S, Feng Z, Hao P, Li Z, Lin L. Affinity-based protein profiling-driven discovery of myricanol as a Nampt activator. Bioorg Chem 2023;133:106435. [PMID: 36841049 DOI: 10.1016/j.bioorg.2023.106435] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/21/2023]
Abstract
Herein, we synthesized an affinity-based probe of myricanol (pMY) with a photo-affinity cross-linker to initiate a bioconjugation reaction, which was applied for target identification in live C2C12 myotubes. Pull-down of biotinylated pMY coupled with mass spectroscopy and Western blotting revealed that pMY can bind with nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme in the nicotinamide adenine dinucleotide salvage pathway. Cellular thermal shift assay, drug affinity responsive target stability assay and recombinant protein labeling further validated the direct interaction between myricanol and Nampt. Myricanol did not affect the protein expression of Nampt, but enhanced its activity. Knock-down of Nampt totally abolished the promoting effect of myricanol on insulin-stimulated glucose uptake in C2C12 myotubes. Taken together, myricanol sensitizes insulin action in myotubes through binding with and activating Nampt.
Collapse
|
13
|
|
Hernández-Díazcouder A, Díaz-Godínez C, Carrero JC. Extracellular vesicles in COVID-19 prognosis, treatment, and vaccination: an update. Appl Microbiol Biotechnol 2023;107:2131-41. [PMID: 36917275 DOI: 10.1007/s00253-023-12468-6] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/16/2023]
Abstract
The lethality of the COVID 19 pandemic became the trigger for one of the most meteoric races on record in the search for strategies of disease control. Those include development of rapid and sensitive diagnostic methods, therapies to treat severe cases, and development of anti-SARS-CoV-2 vaccines, the latter responsible for the current relative control of the disease. However, the commercially available vaccines are still far from conferring protection against acquiring the infection, so the development of more efficient vaccines that can cut the transmission of the variants of concerns that currently predominate and those that will emerge is a prevailing need. On the other hand, considering that COVID 19 is here to stay, the development of new diagnosis and treatment strategies is also desirable. In this sense, there has recently been a great interest in taking advantage of the benefits offered by extracellular vesicles (EVs), membrane structures of nanoscale size that carry information between cells participating in this manner in many physiological homeostatic and pathological processes. The interest has been focused on the fact that EVs are relatively easy to obtain and manipulate, allowing the design of natural nanocarriers that deliver molecules of interest, as well as the information about the pathogens, which can be exploited for the aforementioned purposes. Studies have shown that infection with SARS-CoV-2 induces the release of EVs from different sources, including platelets, and that their increase in blood, as well as some of their markers, could be used as a prognosis of disease severity. Likewise, EVs from different sources are being used as the ideal carriers for delivering active molecules and drugs to treat the disease, as well as vaccine antigens. In this review, we describe the progress that has been made in these three years of pandemic regarding the use of EVs for diagnosis, treatment, and vaccination against SARS-CoV-2 infection. KEY POINTS: • Covid-19 still requires more effective and specific treatments and vaccines. • The use of extracellular vesicles is emerging as an option with multiple advantages. • Association of EVs with COVID 19 and engineered EVs for its control are presented.
Collapse
|
14
|
|
Brinkhaus HO, Rajan K, Schaub J, Zielesny A, Steinbeck C. Open data and algorithms for open science in AI-driven molecular informatics. Curr Opin Struct Biol 2023;79:102542. [PMID: 36805192 DOI: 10.1016/j.sbi.2023.102542] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/19/2023]
Abstract
Recent years have seen a sharp increase in the development of deep learning and artificial intelligence-based molecular informatics. There has been a growing interest in applying deep learning to several subfields, including the digital transformation of synthetic chemistry, extraction of chemical information from the scientific literature, and AI in natural product-based drug discovery. The application of AI to molecular informatics is still constrained by the fact that most of the data used for training and testing deep learning models are not available as FAIR and open data. As open science practices continue to grow in popularity, initiatives which support FAIR and open data as well as open-source software have emerged. It is becoming increasingly important for researchers in the field of molecular informatics to embrace open science and to submit data and software in open repositories. With the advent of open-source deep learning frameworks and cloud computing platforms, academic researchers are now able to deploy and test their own deep learning models with ease. With the development of new and faster hardware for deep learning and the increasing number of initiatives towards digital research data management infrastructures, as well as a culture promoting open data, open source, and open science, AI-driven molecular informatics will continue to grow. This review examines the current state of open data and open algorithms in molecular informatics, as well as ways in which they could be improved in future.
Collapse
|
15
|
|
Lin P, Tian C, Peng XP, Lou HX, Li G. Metabolic profiling for the discovery of two rare fusidane-type heterodimers from the fungal endophyte Acremonium pilosum F47. Steroids 2023;192:109188. [PMID: 36738818 DOI: 10.1016/j.steroids.2023.109188] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/05/2023]
Abstract
In our process of studying fusidane-type antibiotics, metabolomics-guided chemical investigation on the endophytic Acremonium pilosum F47 led to the isolation of two unique heterodimers, acremonidiols B and C (1 and 2) consisting of a fusidane-type triterpenoid motif and a steroid unit. Four biosynthetically related known natural products including fusidic acid (FA, 3), as well as ergosterol derivatives (4-6) were also obtained. Their structures were determined by the analyses of ESI-HRMS and NMR data. Compounds 1 and 2, as hybrid molecules comprising the fusidane triterpenoid and steroid, are rare in nature. Compared with the clinically used antibiotic FA (3), new compounds 1 and 2 showed no obvious antibiotic activity, indicating the importance of free C-21 carboxyl group for antibacterial activity.
Collapse
|
16
|
|
Peng X, Wang Y, Zhang S, Tao Z, Dai Y, Claret FX, Elkabets M, Lin HW, Chen ZS, Kong D. Stellettin B renders glioblastoma vulnerable to poly (ADP-ribose) polymerase inhibitors via suppressing homology-directed repair. Signal Transduct Target Ther 2023;8:119. [PMID: 36944633 DOI: 10.1038/s41392-023-01324-8] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/23/2023] Open
|
17
|
|
Tripathi DK, Nagar N, Kumar V, Joshi N, Roy P, Poluri KM. Gallate Moiety of Catechin Is Essential for Inhibiting CCL2 Chemokine-Mediated Monocyte Recruitment. J Agric Food Chem 2023. [PMID: 36942659 DOI: 10.1021/acs.jafc.3c01283] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/23/2023]
Abstract
Leukocyte recruitment witnesses an orchestrated complex formation between the chemokines and their molecular partners. CCL2 chemokine that regulates monocyte trafficking is a worthwhile system from the pharmaceutical perspective. In the current study, four major catechins (EC/EGC/ECG/EGCG) were assessed for their inhibitory potential against CCL2-regulated monocyte/macrophage recruitment. Interestingly, catechins with the gallate moiety (ECG/EGCG) could only attenuate the CCL2-induced macrophage migration. These molecules specifically bound to CCL2 on a pocket comprising the N-terminal, β0-sheets, and β3-sheets, and the binding affinity of ECGC (Kd = 22 ± 4 μM) is ∼4 times higher than that of the ECG complex (Kd = 85 ± 6 μM). MD simulation analysis evidenced that the molecular specificity/stability of CCL2-catechin complexes is regulated by multiple factors, including stereospecificity, number of hydroxyl groups on the annular ring-B, the positioning of the carbonyl group, and the methylation of the galloyl ring. Further, a significant overlap on the binding surface of CCL2 for EGCG/ECG and receptor interactions as evidenced from NMR data provided the rationale for the observed inhibition of macrophage migration in response to EGCG/ECG binding. In summary, these galloylated epicatechins can be considered as potent protein-protein interaction (PPI) inhibitors that regulate CCL2-directed leukocyte recruitment for resolving inflammatory/immunomodulatory disorders.
Collapse
|
18
|
|
Du J, Lu C, Mao L, Zhu Y, Kong W, Shen S, Tang M, Bao S, Cheng H, Li G, Chen J, Li Q, He J, Li A, Qiu X, Gu Q, Chen D, Qi C, Song Y, Qian X, Wang L, Qiu Y, Liu B. PD-1 blockade plus chemoradiotherapy as preoperative therapy for patients with BRPC/LAPC: A biomolecular exploratory, phase II trial. Cell Rep Med 2023;4:100972. [PMID: 36889321 DOI: 10.1016/j.xcrm.2023.100972] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/09/2023] Open
Abstract
This is a phase II study of PD-1 blockade plus chemoradiotherapy as preoperative therapy for patients with locally advanced or borderline resectable pancreatic cancer (LAPC or BRPC, respectively). Twenty-nine patients are enrolled in the study. The objective response rate (ORR) is 60%, and the R0 resection rate is 90% (9/10). The 12-month progression-free survival (PFS) rate and 12-month overall survival (OS) rate are 64% and 72%, respectively. Grade 3 or higher adverse events are anemia (8%), thrombocytopenia (8%), and jaundice (8%). Circulating tumor DNA analysis reveals that patients with a >50% decline in maximal somatic variant allelic frequency (maxVAF) between the first clinical evaluation and baseline have a longer survival outcome and a higher response rate and surgical rate than those who are not. PD-1 blockade plus chemoradiotherapy as preoperative therapy displays promising antitumor activity, and multiomics potential predictive biomarkers are identified and warrant further verification.
Collapse
|
19
|
|
Maimaitiming M, Lv L, Zhang X, Xia S, Li X, Wang P, Liu Z, Wang C. Semi-Synthesis and Biological Evaluation of 25(R)-26-Acetoxy-3β,5α-Dihydroxycholest-6-One. Mar Drugs 2023;21:191. [DOI: 10.3390/md21030191] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/22/2023] Open
Abstract
Previously, we identified a series of steroids (1–6) that showed potent anti-virus activities against respiratory syncytial virus (RSV), with IC50 values ranging from 3.23 to 0.19 µM. In this work, we first semi-synthesized and characterized the single isomer of 5, 25(R)-26-acetoxy-3β,5α-dihydroxycholest-6-one, named as (25R)-5, in seven steps from a commercially available compound diosgenin (7), with a total yield of 2.8%. Unfortunately, compound (25R)-5 and the intermediates only showed slight inhibitions against RSV replication at the concentration of 10 µM, but they possessed potent cytotoxicity activities against human bladder cancer 5637 (HTB-9) and hepatic cancer HepG2, with IC50 values ranging from 3.0 to 15.5 µM without any impression of normal liver cell proliferation at 20 µM. Among them, the target compound (25R)-5 possessed cytotoxicity activities against 5637 (HTB-9) and HepG2 with IC50 values of 4.8 µM and 15.5 µM, respectively. Further studies indicated that compound (25R)-5 inhibited cancer cell proliferation through inducing early and late-stage apoptosis. Collectively, we have semi-synthesized, characterized and biologically evaluated the 25R-isomer of compound 5; the biological results suggested that compound (25R)-5 could be a good lead for further anti-cancer studies, especially for anti-human liver cancer.
Collapse
|
20
|
|
Hocine S, Duchamp E, Mishra A, Fourquez JM, Hanessian S. Synthesis of Aza-Bridged Perhydroazulene Chimeras of Tropanes and Hederacine A. J Org Chem 2023. [PMID: 36940388 DOI: 10.1021/acs.joc.3c00169] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/22/2023]
Abstract
We report the synthesis of two novel azaperhydroazulene tropane-hederacine chimeras A and B, which contain an 8-azabicyclo[3.2.1]octane ring and a 7-azabicyclo[4.1.1]octane ring, respectively. The synthesis of both chimeras was achieved by epoxide ring opening and was governed by the stereochemistry of the hydroxy-epoxide unit. Finally, a density functional theory study was conducted to explain the regioselectivity of the cyclization and the importance of the stereochemistry of the hydroxyl group.
Collapse
|
21
|
|
Amin A, Lone A, Farooq F, Wani UM, Kawoosa F, Qadri RA. Identification of novel inhibitors of tetranectin-plasminogen interaction to suppress breast cancer invasion: an integrated computational and cell-based investigation. J Biomol Struct Dyn 2023;:1-10. [PMID: 36927470 DOI: 10.1080/07391102.2023.2187228] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/18/2023]
Abstract
Tetranectin-plasminogen interaction plays a defining role in extracellular matrix degradation, enabling tumor cell invasion and metastasis. This interaction occurs via the carbohydrate recognition domain (CRD) and Kringle 4 domain of tetranectin and plasminogen, respectively, leading to activation of the plasminogen-cascade that triggers the proteolytic processes. Thus targeting this interaction represents an important strategy to suppress tumor cell migration and invasion. In this direction, we attempted to target the CRD of tetranectin to inhibit its interaction with the Kringle-4 domain of plasminogen using natural bioactive compounds. A cheminformatics pipeline for drug designing and screening was utilized to obtain lead compound(s) that exhibit conformationally and energetically viable CRD binding. Out of 206 compounds screened, diosgenin and scytonemin displayed the most favorable interactions with CRD. Short-term molecular dynamics simulations of 20 ns were employed to further study the conformational stability of both compounds with tetranectin CRD which reflected at the increased stability of diosgenin in the CRD binding pocket compared to scytonemin. Finally, an extended molecular dynamic simulation of 100 ns affirmed the robust and stable interaction of diosgenin with CRD. Furthermore, diosgenin was observed to exert a pronounced anti-proliferative effect on high tetranectin-expressing MDA-MB-231 breast cancer cells. The inhibitory effect of diosgenin on the tetranectin-plasminogen interaction was corroborated by the reduced migration and invasiveness of MDA-MB-231 cells under diosgenin treatment. Overall the study presents an alternate and safer approach to impede breast cancer metastasis and delineates the novel anti-metastatic activity of diosgenin.Communicated by Ramaswamy H. Sarma.
Collapse
|
22
|
|
Bhunjun CS, Phukhamsakda C, Hyde KD, Mckenzie EHC, Saxena RK, Li Q. Do all fungi have ancestors with endophytic lifestyles? FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00516-5] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/18/2023]
|
23
|
|
Shala AL, Arduino I, Salihu MB, Denora N. Quercetin and Its Nano-Formulations for Brain Tumor Therapy—Current Developments and Future Perspectives for Paediatric Studies. Pharmaceutics 2023;15:963. [DOI: 10.3390/pharmaceutics15030963] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/19/2023] Open
Abstract
The development of efficient treatments for tumors affecting the central nervous system (CNS) remains an open challenge. Particularly, gliomas are the most malignant and lethal form of brain tumors in adults, causing death in patients just over 6 months after diagnosis without treatment. The current treatment protocol consists of surgery, followed using synthetic drugs and radiation. However, the efficacy of these protocols is associated with side effects, poor prognosis and with a median survival of fewer than two years. Recently, many studies were focused on applying plant-derived products to manage various diseases, including brain cancers. Quercetin is a bioactive compound derived from various fruits and vegetables (asparagus, apples, berries, cherries, onions and red leaf lettuce). Numerous in vivo and in vitro studies highlighted that quercetin through multitargeted molecular mechanisms (apoptosis, necrosis, anti-proliferative activity and suppression of tumor invasion and migration) effectively reduces the progression of tumor cells. This review aims to summarize current developments and recent advances of quercetin’s anticancer potential in brain tumors. Since all reported studies demonstrating the anti-cancer potential of quercetin were conducted using adult models, it is suggested to expand further research in the field of paediatrics. This could offer new perspectives on brain cancer treatment for paediatric patients.
Collapse
|
24
|
|
Du Y, Wang Y, Chen L, Li Q, Cheng Y. Anti-depressant-like effects of rannasangpei and its active ingredient crocin-1 on chronic unpredictable mild stress mice. Front Pharmacol 2023;14. [DOI: 10.3389/fphar.2023.1143286] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/18/2023] Open
Abstract
Major depressive disorder is one of the most common neuropsychiatric diseases and it is a global public health problem that leads to disabilities. Currently, there is a growing need to explore novel strategy to cure major depressive disorder due to the limitation of available treatments. Rannasangpei (RSNP) is a traditional Tibetan medicine which acts as a therapeutic agent in various acute or chronic diseases, including cardiovascular diseases and neurodegenerative diseases. Crocin-1 a coloring ingredient of saffron which exhibited anti-oxidative and anti-inflammatory properties. Here, we aimed to illustrate whether RSNP and its active ingredient crocin-1 rescue depressive-like phenotypes in chronic unpredictable mild stress (CUMS) induced mouse model of depression. Our results showed that peripheral administration of RSNP or crocin-1 ameliorated the depressive-like behaviors in CUMS-treated mice, as demonstrated by the forced swimming test and tail suspension test. Furthermore, RSNP or crocin-1 treatment reduced oxidative stress in the peripheral blood and hippocampus of the CUMS-treated mice. Additionally, the dysregulated immune system response, as demonstrated by the increased expression of the pro-inflammatory factors (tumor necrosis factor-α and interleukin-6) and the decreased expression of the anti-inflammatory factor-interleukin-10 in the prefrontal cortex and/or hippocampus of CUMS-treated mice, were at least partially restored by RSNP or crocin-1 treatment. RSNP or crocin-1 also restored apoptotic protein marker (Bcl-2 and Bax) levels in the prefrontal cortex and hippocampus of the CUMS-treated mice. Moreover, our data indicated that RSNP or crocin-1 increased astrocyte number and brain-derived neurotrophic factor levels in the hippocampus of CUMS-treated mice after RSNP or crocin-1 administration. Taken together, our study for the first time revealed an anti-depressant effect of RSNP and its active ingredient crocin-1 in a mouse model of depression, with involvement of oxidative stress, inflammatory response and apoptotic pathway.
Collapse
|
25
|
|
Nuthakki VK, Choudhary S, Reddy CN, Bhatt S, Jamwal A, Jotshi A, Raghuvanshi R, Sharma A, Thakur S, Jadhav HR, Bharate SS, Nandi U, Kumar A, Bharate SB. Design, Synthesis, and Pharmacological Evaluation of Embelin-Aryl/alkyl Amine Hybrids as Orally Bioavailable Blood-Brain Barrier Permeable Multitargeted Agents with Therapeutic Potential in Alzheimer's Disease: Discovery of SB-1448. ACS Chem Neurosci 2023;14:1193-219. [PMID: 36812360 DOI: 10.1021/acschemneuro.3c00030] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/24/2023] Open
Abstract
The complex and multifaceted nature of Alzheimer's disease has brought about a pressing demand to develop ligands targeting multiple pathways to combat its outrageous prevalence. Embelin is a major secondary metabolite of Embelia ribes Burm f., one of the oldest herbs in Indian traditional medicine. It is a micromolar inhibitor of cholinesterases (ChEs) and β-site amyloid precursor protein cleaving enzyme 1 (BACE-1) with poor absorption, distribution, metabolism, and excretion (ADME) properties. Herein, we synthesize a series of embelin-aryl/alkyl amine hybrids to improve its physicochemical properties and therapeutic potency against targeted enzymes. The most active derivative, 9j (SB-1448), inhibits human acetylcholinesterase (hAChE), human butyrylcholinesterase (hBChE), and human BACE-1 (hBACE-1) with IC50 values of 0.15, 1.6, and 0.6 μM, respectively. It inhibits both ChEs noncompetitively with ki values of 0.21 and 1.3 μM, respectively. It is orally bioavailable, crosses blood-brain barrier (BBB), inhibits Aβ self-aggregation, possesses good ADME properties, and protects neuronal cells from scopolamine-induced cell death. The oral administration of 9j at 30 mg/kg attenuates the scopolamine-induced cognitive impairments in C57BL/6J mice.
Collapse
|
26
|
|
Tasleem M, Hussein WM, El-sayed AAA, Alrehaily A. Providencia alcalifaciens—Assisted Bioremediation of Chromium-Contaminated Groundwater: A Computational Study. Water (Basel) 2023;15:1142. [DOI: 10.3390/w15061142] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/18/2023] Open
Abstract
In Saudi Arabia, seawater desalination is the primary source of acquiring freshwater, and groundwater contains a high concentration of toxic heavy metals. Chromium (Cr) is one of the heavy metals that is widely distributed in the environment, particularly in the groundwater of Madinah. Diverse techniques are employed to eliminate the toxicity of heavy metals from the environment, but, lately, the focus has shifted to biological remediation systems, due to their higher removal efficiencies, lower costs, and more ecologically benign characteristics than the conventional methods. Providencia bacteria engage in a variety of adsorption processes to interact with heavy metals. In this study, we aim to investigate the role of potential active site residues in the bioengineering of chromate reductase (ChrR) from Providencia alcalifaciens to reduce the Cr to a lesser toxic form by employing robust computational approaches. This study highlights Cr bioremediation by providing high-quality homology-modeled structures of wild type and mutants and key residues of ChrR for bioengineering to reduce the Cr toxicity in the environment. Glu79 is found to be a key residue for Cr binding. The mutant models of Arg82Cys, Gln126Trp, and Glu144Trp are observed to establish more metallic interactions within the binding pocket of ChrR. In addition, the wild type ChrR (P. alcalifaciens) has been found to be unstable. However, the mutations stabilized the structure by preserving the metallic contacts between the critical amino acid residues of the identified motifs and the Cr(VI). Therefore, the mutants discovered in the study can be taken into account for protein engineering to create reliable and effective enzymes to convert Cr(VI) into a lesser toxic form.
Collapse
|
27
|
|
Kolhe RC, Chaudhari RY. DEVELOPMENT AND EVALUATION OF ANTIDIABETIC POLYHERBAL TABLET USING MEDICINAL PLANTS OF TRADITIONAL USE. Int J Curr Pharm Sci 2023. [DOI: 10.22159/ijcpr.2023v15i2.2095] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/22/2023]
Abstract
The aim of the present study is to develop and evaluate polyherbal tablet prepared for the management of diabetes with enhanced disintegration time. The polyherbal extract prepared using methanolic extract of selected traditionally used medicinal plants such as Adenanthera pavonina, Kigelia africana, Parkia biglandulosa and Syzygium jambose (1:1:1:2) was evaluated in alloxan monohydrate induced diabetic rat model. The polyherbal tablets were prepared by wet granulation method with excipients microcrystalline cellulose; dicalcium phosphate dehydrate and sodium starch glycolate. After preformulation studies, tablets were evaluated by using weight variation, hardness, friability and disintegration time. The diabetic rats treated with polyherbal extract were compared with the diabetic control rats group. Positive results were obtained in the observed parameters, thus favoring the use of the plants. Pre-formulation study revealed that all the evaluated parameters were found to be within acceptable limits. The weight variation of the formulated tablets was 1.43 % RSD. The disintegration time of the formulations was found to be 9.50 min. The tablets also underwent accelerated stability over the period of three months. No marked changes were observed in all the parameters evaluated during three months of accelerated stability study. Laboratory-scale preparation of polyherbal tablet can lead to new powerful and stable oral dosage formulations for diabetes mellitus and lighten the synergistic area of action of herbs.
Collapse
|
28
|
|
Sadeer NB, El Kalamouni C, Khalid A, Abdalla AN, Zengin G, Khoa Bao LV, Mahomoodally MF. Secondary metabolites as potential drug candidates against Zika virus, an emerging looming human threat: Current landscape, molecular mechanism and challenges ahead. J Infect Public Health 2023;16:754-70. [PMID: 36958171 DOI: 10.1016/j.jiph.2023.03.008] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/17/2023] Open
Abstract
Nature has given us yet another wild card in the form of Zika virus (ZIKV). It was found in 1947, but has only recently become an important public health risk, predominantly to pregnant women and their unborn offspring. Currently, no specific therapeutic agent exists for ZIKV and treatment is mainly supportive. Natural products (NPs) can serve as a major source of potent antiviral drugs. To create this review, a comprehensive search was conducted from different databases (PubMed, ScienceDirect, Google scholar). A statistical analysis on the number of publications related to NPs and ZIKV was conducted to analyse the trend in research covering the period 1980-2020. From the data collated in this review, a number of NPs have been found to be inhibitive towards different stages of the ZIKV lifecycle in in vitro studies. For instance, baicalin, (-)-epigallocatechin gallate, curcumin, nanchangmycin, gossypol, cephaeline, emetine, resveratrol, berberine, amongst others, can prevent viral entry by attacking ZIKV E protein. Compounds luteolin, myricetin, astragalin, rutin, (-)-epigallocatechin gallate, carnosine, pedalitin, amongst others, inhibited NS2B-NS3 protease activity which consequently hamper replication. Interestingly, a few NPs had the ability to arrest both viral entry and replication, namely baicalin, (-)-epigallocatechin gallate, curcumin, cephaeline, emetine, and resveratrol. To the best of our knowledge, we obtained only one in vivo study conducted on emetine and results showed that it decreased the levels of circulating ZIKV by approximately 10-fold. Our understanding on NPs exhibiting anti-ZIKV effects in in vivo testing as well as clinical trials is limited. Our trend analysis showed that interest in searching for a cure or prevention against Zika in NPs is negligible and there are no publications yet covering the clinical evaluation. NPs with anti-ZIKV property can a winning strategy in controlling the bio-burden of an epidemic or pandemic. We therefore opine that in the future, more research should be devoted to ZIKV. This review attempts to provide baseline data and roadmap to pursuit detailed investigations for developing potent and novel therapeutic agents to prevent and cure ZIKV infection.
Collapse
|
29
|
|
Hassan AHE, Mahmoud K, Phan TN, Shaldam MA, Lee CH, Kim YJ, Cho SB, Bayoumi WA, El-Sayed SM, Choi Y, Moon S, No JH, Lee YS. Bestatin analogs-4-quinolinone hybrids as antileishmanial hits: Design, repurposing rational, synthesis, in vitro and in silico studies. Eur J Med Chem 2023;250:115211. [PMID: 36827952 DOI: 10.1016/j.ejmech.2023.115211] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/16/2023]
Abstract
Amongst different forms of leishmaniasis, visceral leishmaniasis caused by L. donovani is highly mortal. Identification of new hit compounds might afford new starting points to develop novel therapeutics. In this lieu, a rationally designed small library of bestatin analogs-4-quinolone hybrids were prepared and evaluated. Analysis of SAR unveiled distinct profiles for hybrids type 1 and type 2, which might arise from their different molecular targets. Amongst type 1 bestatin analog-4-quinolone hybrids, hybrid 1e was identified as potential hit inhibiting growth of L. donovani promastigotes by 91 and 53% at 50 and 25 μM concentrations, respectively. Meanwhile, hybrid 2j was identified amongst type 2 bestatin analog-4-quinolone hybrids as potential hit compound inhibiting growth of L. donovani promastigotes by 50 and 38% at 50 and 25 μM concentrations, respectively. Preliminary safety evaluation of the promising hit compounds showed that they are 50-100 folds safer against human derived monocytic THP-1 cells relative to the drug erufosine. In silico study was conducted to predict the possible binding of hybrid 1e with methionine aminopeptidases 1 and 2 of L. donovani. Molecular dynamic simulations verified the predicted binding modes and provide more in depth understanding of the impact of hybrid 1e on LdMetAP-1 and LdMetAP-2.
Collapse
|
30
|
|
Bakanas I, Tang JC, Sarpong R. Skeletal diversification by C-C cleavage to access bicyclic frameworks from a common tricyclooctane intermediate. Chem Commun (Camb) 2023. [PMID: 36916206 DOI: 10.1039/d3cc00945a] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023]
Abstract
Herein, the diversification of tricyclo[3.2.1.03,6]octane scaffolds to afford diverse bicyclic scaffolds is described. The strained tricyclooctanes are prepared in two steps featuring a blue light-mediated [2+2] cycloaddition. Strategies for the cleavage of this scaffold were then explored resulting in the selective syntheses of the bicyclo[3.1.1]heptane, bicyclo[3.2.1]octane, and bicyclo[3.2.0]heptane cores. These findings may guide future studies of C-C cleavage reactions in strained carbon frameworks and their application in complex molecule synthesis.
Collapse
|
31
|
|
Chattaraj B, Khanal P, Nandi A, Das A, Sharma A, Mitra S, Dey YN. Network pharmacology and molecular modelling study of Enhydra fluctuans for the prediction of the molecular mechanisms involved in the amelioration of nephrolithiasis. J Biomol Struct Dyn 2023;:1-11. [PMID: 36914227 DOI: 10.1080/07391102.2023.2189476] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/15/2023]
Abstract
In view of the ethno medicinal use of Enhydra fluctuans for the treatment of kidney stones; the present study aimed to elucidate the molecular mechanisms involved in the amelioration of nephrolithiasis through a network pharmacology approach. The phytoconstituents were queried in DIGEP-Pred to identify the regulated proteins. The modulated proteins were then enriched in the STRING to predict the protein-protein interactions and the probably regulated pathways were traced in the Kyoto Encyclopedia of Genes and Genomes. Further, the network was constructed using Cytoscape ver 3.5.1. Results showed that β-carotene was found to be regulating maximum targets i.e. 26. In addition, 63 proteins were triggered by the components in which the vitamin D receptor was targeted by the maximum phytoconstituents i.e. 16. The enrichment analysis identified the regulation of 67 pathways in which fluid shear stress and atherosclerosis-associated pathways (KEGG entry hsa05418) regulated ten genes. Further, protein kinase C-α was traced in 23 different pathways. In addition, the majority of the regulated genes were identified from the extracellular space via the modulation of 43 genes. Also, nuclear receptor activity had the maximum molecular function via the regulation of 7 genes. Likewise, the response to organic substance was predicted to trigger the top genes i.e. 43. In contrast, Stigmasterol, Baicalein-7-o-glucoside, and Kauran-16-ol were found to have a high affinity to bind with the VDR receptor confirmed by the molecular modelling and the dynamics. Hence, the study elucidated the probable molecular mechanisms of E. fluctuans in managing nephrolithiasis and identified the lead molecules, their targets, and possible pathways.Communicated by Ramaswamy H. Sarma.
Collapse
|
32
|
|
Giuliani C, Moretti RM, Bottoni M, Santagostini L, Fico G, Montagnani Marelli M. The Leaf Essential Oil of Myrtus communis subsp. tarentina (L.) Nyman: From Phytochemical Characterization to Cytotoxic and Antimigratory Activity in Human Prostate Cancer Cells. Plants (Basel) 2023;12:1293. [DOI: 10.3390/plants12061293] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/14/2023]
Abstract
The aim of this study was to investigate the chemical profile and the cytotoxic activity in two castration-resistant prostate cancer (CRPC) cell lines of the leaf essential oil in Myrtus communis subsp. tarentina (L.) Nyman (EO MT), which was cultivated at the Ghirardi Botanical Garden (Toscolano Maderno, Brescia, Italy). The leaves were air-dried and extracted by hydrodistillation with a Clevenger-type apparatus, and the EO profile was characterized by GC/MS. For the cytotoxic activity investigation, we analyzed the cell viability by MTT assay, and the apoptosis induction by Annexin V/propidium iodide assay/Western blot analysis of cleaved caspase 3 and cleaved PARP proteins. Moreover, the cellular migration was analyzed by Boyden’s chamber assay and the distribution of actin cytoskeleton filaments by immunofluorescence. We identified 29 total compounds; the main compound classes were oxygenated monoterpenes, monoterpene hydrocarbons, and sesquiterpenes. The main constituents were α-pinene, α-humulene, α-terpineol, durohydroquinon, linalool, geranyl acetate, and β-caryophyllene. We found that EO MT was able to reduce cellular viability, activating an apoptotic process, and to decrease the migratory capacity of CRPC cells. These results suggest that it might be interesting to further investigate the effects of single compounds present in EO MT for their possible use in prostate cancer treatment.
Collapse
|
33
|
|
Xu H, Zhang W, Zhou Y, Yue Z, Yan T, Zhang Y, Liu Y, Hong Y, Liu S, Zhu F, Tao L. Systematic Description of the Content Variation of Natural Products (NPs): To Prompt the Yield of High-Value NPs and the Discovery of New Therapeutics. J Chem Inf Model 2023;63:1615-25. [PMID: 36795011 DOI: 10.1021/acs.jcim.2c01459] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/17/2023]
Abstract
Natural products (NPs) have long been associated with human production and play a key role in the survival of species. Significant variations in NP content may severely affect the "return on investment" of NP-based industries and render ecological systems vulnerable. Thus, it is crucial to construct a platform that relates variations in NP content to their corresponding mechanisms. In this study, a publicly accessible online platform, NPcVar (http://npcvar.idrblab.net/), was developed, which systematically described the variations of NP contents and their corresponding mechanisms. The platform comprises 2201 NPs and 694 biological resources, including plants, bacteria, and fungi, curated using 126 diverse factors with 26,425 records. Each record contains information about the species, NP, and factors involved, as well as NP content data, parts of the plant that produce NPs, the location of the experiment, and reference information. All factors were manually curated and categorized into 42 classes which belong to four mechanisms (molecular regulation, species factor, environmental condition, and combined factor). Additionally, the cross-links of species and NP to well-established databases and the visualization of NP content under various experimental conditions were provided. In conclusion, NPcVar is a valuable resource for understanding the relationship between species, factors, and NP contents and is anticipated to serve as a promising tool for improving the yield of high-value NPs and facilitating the development of new therapeutics.
Collapse
|
34
|
|
Chao X, Zhang Y, Zheng C, Huang Q, Lu J, Pulver EM, Houthuijzen J, Hutten S, Luo R, He J, Sun P. Metastasis of breast cancer to bones alters the tumor immune microenvironment. Eur J Med Res 2023;28:119. [PMID: 36915210 DOI: 10.1186/s40001-023-01083-w] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Bone is one of the most frequent sites for breast cancer metastasis. Breast cancer bone metastasis (BCBM) leads to skeletal morbidities including pain, fractures, and spinal compression, all of which severely impact quality of life. Immunotherapy is a promising therapy for patients with advanced cancer, but whether it may provide benefit to metastatic bone cancer is currently unknown. Thus, a better understanding of the immune landscape of bone-disseminated breast cancers may reveal new therapeutic strategies. In this study, we use histopathological analysis to investigate changes within the immune microenvironment of primary breast cancer and paired BCBM. METHODS Sixty-three patients with BCBM, including 31 with paired primary and bone metastatic lesions, were included in our study. The percentage of stroma and stromal tumor-infiltrating lymphocytes (TILs) was evaluated by histopathological analysis. The quantification of stromal TILs (CD4 + and CD8 +), macrophages (CD68 + and HLA-DR +), programmed cell death protein 1 (PD-1), and programmed cell death protein ligand 1 (PD-L1) was evaluated through immunohistochemical (IHC) staining. Statistical analysis was performed with paired t test, Wilcoxon test, spearman correlation test, and univariate and multivariate cox regression. RESULTS Median survival after BCBM pathological diagnosis was 20.5 months (range: 3-95 months). Of the immune parameters measured, none correlated with survival after bone metastasis was diagnosed. Compared to the primary site, bone metastases exhibited more tumor stroma (mean: 58.5% vs 28.87%, p < 0.001) and less TILs (mean: 8.45% vs 14.03%, p = 0.042), as determined by H&E analysis. The quantification of primary vs metastatic tissue area with CD4 + (23.95/mm2 vs 51.69/mm2, p = 0.027 and with CD8 + (18.15/mm2 vs 58.95/mm2, p = 0.004) TILs similarly followed this trend and was reduced in number for bone metastases. The number of CD68 + and HLA-DR + macrophages showed no significant difference between primary sites and bone metastases. PD-1 expression was present in 68.25% of the bone metastasis, while PD-L1 expression was only present in 7.94% of the bone metastasis. CONCLUSIONS Our findings suggest that compared to the primary breast cancer site, bone metastases harbor a less active immune microenvironment. Despite this relatively dampened immune landscape, expression of PD-1 and PD-L1 in the bone metastasis indicates a potential benefit from immune checkpoint inhibitors for some BCBM cases.
Collapse
|
35
|
|
Kumari S, Kumar P. Design and Computational Analysis of an MMP9 Inhibitor in Hypoxia-Induced Glioblastoma Multiforme. ACS Omega 2023. [DOI: 10.1021/acsomega.3c00441] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Indexed: 03/16/2023] Open
|
36
|
|
Arrais A, Bona E, Todeschini V, Caramaschi A, Massa N, Roncoli M, Minervi A, Perin E, Gianotti V. Thymus vulgaris Essential Oil in Beta-Cyclodextrin for Solid-State Pharmaceutical Applications. Pharmaceutics 2023;15:914. [DOI: 10.3390/pharmaceutics15030914] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/16/2023] Open
Abstract
Antimicrobial resistance related to the misuse of antibiotics is a well-known current topic. Their excessive use in several fields has led to enormous selective pressure on pathogenic and commensal bacteria, driving the evolution of antimicrobial resistance genes with severe impacts on human health. Among all the possible strategies, a viable one could be the development of medical features that employ essential oils (EOs), complex natural mixtures extracted from different plant organs, rich in organic compounds showing, among others, antiseptic properties. In this work, green extracted essential oil of Thymus vulgaris was included in cyclic oligosaccharides cyclodextrins (CD) and prepared in the form of tablets. This essential oil has been shown to have a strong transversal efficacy both as an antifungal and as an antibacterial agent. Its inclusion allows its effective use because an extension of the exposure time to the active compounds is obtained and, therefore, a more marked efficacy, especially against biofilm-producing microorganisms such as P. aeruginosa and S. aureus, was registered. The efficacy of the tablet against candidiasis opens their possible use as a chewable tablet against oral candidiasis and as a vaginal tablet against vaginal candidiasis. Moreover, the registered wide efficacy is even more positive since the proposed approach can be defined as effective, safe, and green. In fact, the natural mixture of the essential oil is produced by the steam current method; therefore, the manufacturer employs substances that are not harmful, with very low production and management costs.
Collapse
|
37
|
|
Alfurayhi R, Huang L, Brandt K. Pathways Affected by Falcarinol-Type Polyacetylenes and Implications for Their Anti-Inflammatory Function and Potential in Cancer Chemoprevention. Foods 2023;12:1192. [DOI: 10.3390/foods12061192] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/14/2023] Open
Abstract
Polyacetylene phytochemicals are emerging as potentially responsible for the chemoprotective effects of consuming apiaceous vegetables. There is some evidence suggesting that polyacetylenes (PAs) impact carcinogenesis by influencing a wide variety of signalling pathways, which are important in regulating inflammation, apoptosis, cell cycle regulation, etc. Studies have shown a correlation between human dietary intake of PA-rich vegetables with a reduced risk of inflammation and cancer. PA supplementation can influence cell growth, gene expression and immunological responses, and has been shown to reduce the tumour number in rat and mouse models. Cancer chemoprevention by dietary PAs involves several mechanisms, including effects on inflammatory cytokines, the NF-κB pathway, antioxidant response elements, unfolded protein response (UPR) pathway, growth factor signalling, cell cycle progression and apoptosis. This review summarises the published research on falcarinol-type PA compounds and their mechanisms of action regarding cancer chemoprevention and also identifies some gaps in our current understanding of the health benefits of these PAs.
Collapse
|
38
|
|
Alghuthaymi MA, Patil S, Rajkuberan C, Krishnan M, Krishnan U, Abd-elsalam KA. Polianthes tuberosa-Mediated Silver Nanoparticles from Flower Extractand Assessment of Their Antibacterial and Anticancer Potential: An In Vitro Approach. Plants (Basel) 2023;12:1261. [DOI: 10.3390/plants12061261] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023]
Abstract
Plant-mediated metallic nanoparticles have beenreported for a diversified range of applications in biological sciences. In the present study, we propose the Polianthes tuberosa flower as a reducing and stabilizing agent for the synthesis of silver nanoparticles (PTAgNPs). The PTAgNPs were exclusively characterized using UV–Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy, zeta potential, and transmission electron microscopy (TEM) studies. In a biological assay, we investigated the antibacterial and anticancer activity of silver nanoparticles in the A431 cell line. The PTAgNPs demonstrated a dose-dependent activity in E. coli and S. aureus, suggesting the bactericidal nature of AgNPs. The PTAgNPs exhibited dose-dependent toxicity in the A431 cell line, with an IC50 of 54.56 µg/mL arresting cell growth at the S phase, as revealed by flow cytometry analysis. The COMET assay revealed 39.9% and 18.15 severities of DNA damage and tail length in the treated cell line, respectively. Fluorescence staining studies indicate that PTAgNPs cause reactive oxygen species (ROS) and trigger apoptosis. This research demonstrates that synthesized silver nanoparticles have a significant effect on inhibiting the growth of melanoma cells and other forms of skin cancer. The results show that these particles can cause apoptosis or cell death in malignant tumor cells. This suggests that they could be used to treat skin cancers without harming normal tissues.
Collapse
|
39
|
|
Lenin B, Ramasubramanyan S, Vetrivel U, Chitipothu S. Virtual screening and multilevel precision-based prioritisation of natural inhibitors targeting the ATPase domain of human DNA topoisomerase II alpha. J Biomol Struct Dyn 2023;:1-19. [PMID: 36898858 DOI: 10.1080/07391102.2023.2187234] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023]
Abstract
Human DNA topoisomerase II alpha (hTopIIα) is a classic chemotherapeutic drug target. The existing hTopIIα poisons cause numerous side effects such as the development of cardiotoxicity, secondary malignancies, and multidrug resistance. The use of catalytic inhibitors targeting the ATP-binding cavity of the enzyme is considered a safer alternative due to the less deleterious mechanism of action. Hence, in this study, we carried out high throughput structure-based virtual screening of the NPASS natural product database against the ATPase domain of hTopIIα and identified the five best ligand hits. This was followed by comprehensive validation through molecular dynamics simulations, binding free energy calculation and ADMET analysis. On stringent multilevel prioritization, we identified promising natural product catalytic inhibitors that showed high binding affinity and stability within the ligand-binding cavity and may serve as ideal hits for anticancer drug development.Communicated by Ramaswamy H. Sarma.
Collapse
|
40
|
|
Lin X, Chen D, Chu X, Luo L, Liu Z, Chen J. Oxypalmatine regulates proliferation and apoptosis of breast cancer cells by inhibiting PI3K/AKT signaling and its efficacy against breast cancer organoids. Phytomedicine 2023;114:154752. [PMID: 36948141 DOI: 10.1016/j.phymed.2023.154752] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023]
Abstract
BACKGROUND Breast cancer (BC) is known as the most common cancer in women. Discovering novel and effective drugs is a priority for the treatment of BC. Oxypalmatine (OPT) is a natural protoberberine-type alkaloid isolated from Phellodendron amurense Rupr. (Rutaceae) with potential anti-cancer activity. PURPOSE This investigation aimed to elucidate the biological role and potential mechanisms of OPT in BC cells, and intended to assess the therapeutic potential of OPT in BC patient-derived organoid models. METHODS CCK-8 and EdU assays, and flow cytometry were used to test the activity of OPT against BC cells. In addition, patient-derived organoid models were constructed to assess the therapeutic efficiency of OPT in BC. Besides, network pharmacological analysis and RNA sequencing analysis were performed to predict the underlying anti-BC mechanism of OPT. Moreover, Western blot analysis was applied to test the expression of genes modulated by OPT. RESULTS OPT attenuated the proliferation and DNA replication, and induced apoptosis in multiple BC cells. Interestingly, OPT also exerted a cytotoxic effect on BC organoids characterized as luminal A, HER2-overexpressing, and triple-negative subtypes, indicating that OPT was a potential broad-spectrum anticancer drug. Network pharmacological analysis suggested that OPT might affect signals contributing to BC progression, including PI3K/AKT, MAPK, and VEGFA-VEGFR2 signaling pathways. Moreover, bioinformatics analysis of data from our RNA sequencing suggested that PI3K/AKT was a downstream pathway of OPT in BC. Finally, OPT was shown to inactivate PI3K/AKT signaling pathway in BC cells by Western blot analysis. CONCLUSIONS Collectively, our study demonstrated that OPT suppressed proliferation and induced apoptosis through mitigating the PI3K/AKT signaling pathway in BC cells. Moreover, our work first adopted BC organoid models to confirm OPT as an effective and promising drug, laying a foundation for the potential use of OPT in BC treatment.
Collapse
|
41
|
|
Geng R, Tang H, You T, Xu X, Li S, Li Z, Liu Y, Qiu W, Zhou N, Li N, Ge Y, Guo F, Sun Y, Wang Y, Li T, Bai C. Peripheral CD8+CD28+ T lymphocytes predict the efficacy and safety of PD-1/PD-L1 inhibitors in cancer patients. Front Immunol 2023;14. [DOI: 10.3389/fimmu.2023.1125876] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023] Open
Abstract
BackgroundProgrammed cell death protein-1/programmed cell death ligand-1 (PD-1/PD-L1) inhibitors works by reactivating immune cells. Considering the accessibility of noninvasive liquid biopsies, it is advisable to employ peripheral blood lymphocyte subsets to predict immunotherapy outcomes.MethodsWe retrospectively enrolled 87 patients with available baseline circulating lymphocyte subset data who received first-line PD-1/PD-L1 inhibitors at Peking Union Medical College Hospital between May 2018 and April 2022. Immune cell counts were determined by flow cytometry.ResultsPatients who responded to PD-1/PD-L1 inhibitors had significantly higher circulating CD8+CD28+ T-cell counts (median [range] count: 236 [30-536] versus 138 [36-460]/μL, p < 0.001). Using 190/μL as the cutoff value, the sensitivity and specificity of CD8+CD28+ T cells for predicting immunotherapy response were 0.689 and 0.714, respectively. Furthermore, the median progression-free survival (PFS, not reached versus 8.7 months, p < 0.001) and overall survival (OS, not reached versus 16.2 months, p < 0.001) were significantly longer in the patients with higher CD8+CD28+ T-cell counts. However, the CD8+CD28+ T-cell level was also associated with the incidence of grade 3-4 immune-related adverse events (irAEs). The sensitivity and specificity of CD8+CD28+ T cells for predicting irAEs of grade 3-4 were 0.846 and 0.667, respectively, at the threshold of CD8+CD28+ T cells ≥ 309/μL.ConclusionsHigh circulating CD8+CD28+ T-cell levels is a potential biomarker for immunotherapy response and better prognosis, while excessive CD8+CD28+ T cells (≥ 309/μL) may also indicate the emergence of severe irAEs.
Collapse
|
42
|
|
Hernández Á, Díez P, García PA, Pérez-andrés M, Veselinova A, Jambrina PG, San Feliciano A, Díez D, Fuentes M, Castro MÁ. Improving Properties of Podophyllic Aldehyde-Derived Cyclolignans: Design, Synthesis and Evaluation of Novel Lignohydroquinones, Dual-Selective Hybrids against Colorectal Cancer Cells. Pharmaceutics 2023;15:886. [DOI: 10.3390/pharmaceutics15030886] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023] Open
Abstract
New lignohydroquinone conjugates (L-HQs) were designed and synthesized using the hybridization strategy, and evaluated as cytotoxics against several cancer cell lines. The L-HQs were obtained from the natural product podophyllotoxin and some semisynthetic terpenylnaphthohydroquinones, prepared from natural terpenoids. Both entities of the conjugates were connected through different aliphatic or aromatic linkers. Among the evaluated hybrids, the L-HQ with the aromatic spacer clearly displayed the in vitro dual cytotoxic effect derived from each starting component, retaining the selectivity and showing a high cytotoxicity at short (24 h) and long (72 h) incubation times (4.12 and 0.0450 µM, respectively) against colorectal cancer cells. In addition, the cell cycle blockade observed by flow cytometry studies, molecular dynamics, and tubulin interaction studies demonstrated the interest of this kind of hybrids, which docked adequately into the colchicine binding site of tubulin despite their large size. These results prove the validity of the hybridization strategy and encourage further research on non-lactonic cyclolignans.
Collapse
|
43
|
|
Hassan AHE, Phan TN, Moon S, Lee CH, Kim YJ, Cho SB, El-Sayed SM, Choi Y, No JH, Lee YS. Design, synthesis, and repurposing of O(6)-aminoalkyl-sulfuretin analogs towards discovery of potential lead compounds as antileishmanial agents. Eur J Med Chem 2023;251:115256. [PMID: 36944273 DOI: 10.1016/j.ejmech.2023.115256] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023]
Abstract
Up to date, there are still significantly unmet clinical needs for treatment of the fatal visceral leishmaniasis; a neglected tropical disease. Herein, a recently reported antileishmanial hit sulfuretin analog suffering from a low potency and a problematic aqueous solubility that hindered further development was used as a starting point. A mitigation rational via incorporation of O6-aminoalkyl moiety suggest structures analogous to literature-known compounds as cholinesterase inhibitors. Consequently, preparation and repurposing of a library of these compounds unveiled their potential activity against the parasite Leishmania donovani promastigotes. Further evaluation against intracellular form of the parasite and host cells suggested compounds 2a, 2c, and 2o derived from sulfuretin analogs bearing 2'-methoxy or 2',5'-dimethoxy substituents at ring-B as promising lead compounds with potential activity and acceptable safety window relative to the standard edelfosine. In silico simulation predicted plausible binding modes of these compounds to L. donovani fumarate reductase. Together this work presents compound 2o as a potential lead compound for further development.
Collapse
|
44
|
|
Keeler AM, D'Ambrosio HK, Ganley JG, Derbyshire ER. Characterization of Unexpected Self-Acylation Activity of Acyl Carrier Proteins in a Modular Type I Apicomplexan Polyketide Synthase. ACS Chem Biol 2023. [PMID: 36893402 DOI: 10.1021/acschembio.2c00783] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023]
Abstract
Natural products play critical roles as antibiotics, anticancer therapeutics, and biofuels. Polyketides are a distinct natural product class of structurally diverse secondary metabolites that are synthesized by polyketide synthases (PKSs). The biosynthetic gene clusters that encode PKSs have been found across nearly all realms of life, but those from eukaryotic organisms are relatively understudied. A type I PKS from the eukaryotic apicomplexan parasite Toxoplasma gondii,TgPKS2, was recently discovered through genome mining, and the functional acyltransferase (AT) domains were found to be selective for malonyl-CoA substrates. To further characterize TgPKS2, we resolved assembly gaps within the gene cluster, which confirmed that the encoded protein consists of three distinct modules. We subsequently isolated and biochemically characterized the four acyl carrier protein (ACP) domains within this megaenzyme. We observed self-acylation─or substrate acylation without an AT domain─for three of the four TgPKS2 ACP domains with CoA substrates. Furthermore, CoA substrate specificity and kinetic parameters were determined for all four unique ACPs. TgACP2-4 were active with a wide scope of CoA substrates, while TgACP1 from the loading module was found to be inactive for self-acylation. Previously, self-acylation has only been observed in type II systems, which are enzymes that act in-trans with one another, and this represents the first report of this activity in a modular type I PKS whose domains function in-cis. Site-directed mutagenesis of specific TgPKS2 ACP3 acidic residues near the phosphopantetheinyl arm demonstrated that they influence self-acylation activity and substrate specificity, possibly by influencing substrate coordination or phosphopantetheinyl arm activation. Further, the lack of TgPKS2 ACP self-acylation with acetoacetyl-CoA, which is utilized by previously characterized type II PKS systems, suggests that the substrate carboxyl group may be critical for TgPKS2 ACP self-acylation. The unexpected properties observed from T. gondii PKS ACP domains highlight their distinction from well-characterized microbial and fungal systems. This work expands our understanding of ACP self-acylation beyond type II systems and helps pave the way for future studies on biosynthetic enzymes from eukaryotes.
Collapse
|
45
|
|
Baghban N, Ullah M, Nabipour I. The current trend of exosome in epithelial ovarian cancer studies: A bibliometric review. Front Pharmacol 2023;14. [DOI: 10.3389/fphar.2023.1082066] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023] Open
Abstract
Background: Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer. About 90% of ovary tumors are epithelial. The current treatment for EOC involves surgical debulking of the tumors followed by a combination of chemotherapy. While most patients achieve complete remission, many EOCs will recur and develop chemoresistance. The cancer cells can adapt to several stress stimuli, becoming resistant. Therefore, new ways to fight resistant cells during the disease are being studied. Recently, exosomes, which reflect cell behavior in normal and pathological conditions such as epithelial ovarian cancer, are of academic interest as new biomarkers for diagnosis and therapy. Consequently, the current study aimed to investigate the research output of exosomes in EOC.Method: A bibliometric method was used for analyzing publications on exosome and epithelial ovarian cancer from the beginning to 15 October 2022 by searching keywords in Scopus, PubMed and Google scholar. Annual scientific publications, authors, citations, journals, co-authorships, and keywords co-occurrence were analyzed and plotted using Microsoft Office Excel and VOS viewer. 39 original journal articles and 3 reviews have been published since 2015 up to 15 October 2022.Results: The findings showed that China is the top country in research output, international collaborations, organization, author, and sponsorship. The top journals were the Journal of Ovarian Research, Oncotarget, and Tumor Biology, all in the United States. The top institution was Shanghai Jiao Tong University in China. The top author was Xipeng Wang. Co-occurrence analysis showed that academics’ interest is toward:1) 1) Exosomes as prognostic biomarkers of EOC as well as their role in the proliferation and migration of cells. 2) The role of exosomes in metastasis through different mechanisms; 3) The role of exosomes in epithelial-mesenchymal transition of ovarian cancer cells; 4) The diagnostic role of EVs in EOC; and 5) Conferring chemoresistance in EOC through the exosomal transfer of miRNAs.Conclusion: Research on the exosome and EOC has an increasing trend, and China is much more involved than other countries in research, financial support, and international cooperation. These findings could aid researcher in understanding novel ideas and subjects interested by sponsors in this field.
Collapse
|
46
|
|
Fang X, Liao H, Fan X, Wang Y, Wang H, Zhang G, Fang W, Li Y, Li Y. Incorporation of viridicatin alkaloid-like scaffolds into DNA-encoded chemical libraries. Org Biomol Chem 2023;21:2162-6. [PMID: 36799438 DOI: 10.1039/d2ob02278h] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 02/11/2023]
Abstract
Viridicatin alkaloids as natural products have attracted great interest due to their unique core scaffold. To fully exploit their potential application in DNA-encoded chemical libraries that would facilitate drug discovery, we here describe an efficient on-DNA synthesis of viridicatin alkaloid-like scaffolds from isatins and DNA-tagged aldehydes. Promoted by benzenesulfonyl hydrazide, this reaction provided the corresponding DNA-conjugated viridicatin alkaloid-like products in moderate-to-excellent conversion yields, and DNA compatibility validated by enzymatic ligation and qPCR evaluation exhibited the feasible utility of this methodology in DEL synthesis. Cross substrate scope study, together with subsequent on-DNA chemical diversification, further showed the competence of this approach in focused natural product-like encoded library construction.
Collapse
|
47
|
|
Fonseca S, Amaral MN, Reis CP, Custódio L. Marine Natural Products as Innovative Cosmetic Ingredients. Mar Drugs 2023;21:170. [DOI: 10.3390/md21030170] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023] Open
Abstract
Over the course of the last 20 years, numerous studies have identified the benefits of an array of marine natural ingredients for cosmetic purposes, as they present unique characteristics not found in terrestrial organisms. Consequently, several marine-based ingredients and bioactive compounds are under development, used or considered for skin care and cosmetics. Despite the multitude of cosmetics based on marine sources, only a small proportion of their full potential has been exploited. Many cosmetic industries have turned their attention to the sea to obtain innovative marine-derived compounds for cosmetics, but further research is needed to determine and elucidate the benefits. This review gathers information on the main biological targets for cosmetic ingredients, different classes of marine natural products of interest for cosmetic applications, and the organisms from which such products can be sourced. Although organisms from different phyla present different and varied bioactivities, the algae phylum seems to be the most promising for cosmetic applications, presenting compounds of many classes. In fact, some of these compounds present higher bioactivities than their commercialized counterparts, demonstrating the potential presented by marine-derived compounds for cosmetic applications (i.e., Mycosporine-like amino acids and terpenoids’ antioxidant activity). This review also summarizes the major challenges and opportunities faced by marine-derived cosmetic ingredients to successfully reach the market. As a future perspective, we consider that fruitful cooperation among academics and cosmetic industries could lead to a more sustainable market through responsible sourcing of ingredients, implementing ecological manufacturing processes, and experimenting with inventive recycling and reuse programs.
Collapse
|
48
|
|
Mengarda AC, Silva TC, Silva AS, Roquini DB, Fernandes JPS, de Moraes J. Toward anthelmintic drug candidates for toxocariasis: Challenges and recent developments. Eur J Med Chem 2023;251:115268. [PMID: 36921525 DOI: 10.1016/j.ejmech.2023.115268] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/18/2023]
Abstract
Infections caused by parasitic helminths rank among the most prevalent infections of humans and animals. Toxocariasis, caused by nematodes of the genus Toxocara, is one of the most widespread and economically important zoonotic parasitic infections that humans share with dogs and cats. Despite the completion of the Toxocara canis draft genome project, which has been an important step towards advancing the understanding of this parasite and the search for drug targets, the treatment of toxocariasis has been dependent on a limited set of drugs, necessitating the search for novel anthelmintic agents, specially against Toxocara larvae in tissues. Given that research, development, and innovation are crucial to finding appropriate solutions in the fight against helminthiasis, this paper reviews the progress made in the discovery of anthelmintic drug candidates for toxocariasis. The main compounds reported in the recent years regards on analogues of albendazole, reactive quinone derivatives and natural produts and its analogues. Nanoparticles and formulations were also reviewed. The in vitro and/or in vivo anthelmintic properties of such alternatives are herein discussed as well as the opportunities and challenges for treatment of human toxocariasis. The performed review clarify that the scarcity of validated molecular targets and limited chemical space explored are the main bottlenecks for advancing in the field of anti-Toxocara agents.
Collapse
|
49
|
|
Tammam MA, Gamal El-Din MI, Abood A, El-Demerdash A. Recent advances in the discovery, biosynthesis, and therapeutic potential of isocoumarins derived from fungi: a comprehensive update. RSC Adv 2023;13:8049-89. [PMID: 36909763 DOI: 10.1039/d2ra08245d] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/12/2023] Open
Abstract
Microorganisms still remain the main hotspots in the global drug discovery avenue. In particular, fungi are highly prolific producers of vast structurally diverse specialized secondary metabolites, which have displayed a myriad of biomedical potentials. Intriguingly, isocoumarins is one distinctive class of fungal natural products polyketides, which demonstrated numerous remarkable biological and pharmacological activities. This review article provides a comprehensive state-of-the-art over the period 2000-2022 about the discovery, isolation, classifications, and therapeutic potentials of isocoumarins exclusively reported from fungi. Indeed, a comprehensive list of 351 structurally diverse isocoumarins were documented and classified according to their fungal sources [16 order/28 family/55 genera] where they have been originally discovered along with their reported pharmacological activities wherever applicable. Also, recent insights around their proposed and experimentally proven biosynthetic pathways are also briefly discussed.
Collapse
|
50
|
|
Le Loarer A, Marcellin-gros R, Dufossé L, Bignon J, Frédérich M, Ledoux A, Queiroz EF, Wolfender J, Gauvin-bialecki A, Fouillaud M. Prioritization of Microorganisms Isolated from the Indian Ocean Sponge Scopalina hapalia Based on Metabolomic Diversity and Biological Activity for the Discovery of Natural Products. Microorganisms 2023;11:697. [DOI: 10.3390/microorganisms11030697] [Cited by in Crossref: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Indexed: 03/11/2023] Open
Abstract
Despite considerable advances in medicine and technology, humanity still faces many deadly diseases such as cancer and malaria. In order to find appropriate treatments, the discovery of new bioactive substances is essential. Therefore, research is now turning to less frequently explored habitats with exceptional biodiversity such as the marine environment. Many studies have demonstrated the therapeutic potential of bioactive compounds from marine macro- and microorganisms. In this study, nine microbial strains isolated from an Indian Ocean sponge, Scopalina hapalia, were screened for their chemical potential. The isolates belong to different phyla, some of which are already known for their production of secondary metabolites, such as the actinobacteria. This article aims at describing the selection method used to identify the most promising microorganisms in the field of active metabolites production. The method is based on the combination of their biological and chemical screening, coupled with the use of bioinformatic tools. The dereplication of microbial extracts and the creation of a molecular network revealed the presence of known bioactive molecules such as staurosporin, erythromycin and chaetoglobosins. Molecular network exploration indicated the possible presence of novel compounds in clusters of interest. The biological activities targeted in the study were cytotoxicity against the HCT-116 and MDA-MB-231 cell lines and antiplasmodial activity against Plasmodium falciparum 3D7. Chaetomium globosum SH-123 and Salinispora arenicola SH-78 strains actually showed remarkable cytotoxic and antiplasmodial activities, while Micromonospora fluostatini SH-82 demonstrated promising antiplasmodial effects. The ranking of the microorganisms as a result of the different screening steps allowed the selection of a promising strain, Micromonospora fluostatini SH-82, as a premium candidate for the discovery of new drugs.
Collapse
|