1
|
Qiu X, Huang W, Liang J, Chen H, Sha W, Lyu Y, Chen K, Yang H, Zhang Q. Predicting prognosis, immune landscape, and drug targets with a novel signature for hepatocellular carcinoma. Technol Health Care 2025; 33:1367-1380. [PMID: 40331560 DOI: 10.1177/09287329241296358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
BackgroundDespite advances in therapeutics, hepatocellular carcinoma (HCC) remains one of the most malignant types of digestive tract cancers with a poor prognosis. Pyroptosis is a form of programmed cell death induced by inflammatory caspases. Recent studies have identified pyroptosis, a form of programmed cell death induced by inflammatory caspases, as playing a role in tumorigenesis and cancer progression. However, the functions and mechanisms of pyroptosis in HCC are barely explored.MethodsGene expression and clinical data were derived from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. A prognostic signature and nomogram were constructed by on differentially expressed genes and clinical data. Pathway enrichment and immune cell infiltration were further analyzed. Potential drugs to modulate the pathways were explored.ResultsIn this study, a pyroptosis-related gene signature was developed and identified to be significantly correlated with the survival of HCC patients. Additionally, a nomogram on the basis of pyroptosis-related genes was constructed with distinct prognostic values. Furthermore, the pyroptosis-related gene signature might correlate with immune-related pathways and the regulation of the immune microenvironment, and several compounds (KIN001-220, TPCA-1, LY-303511, physostigmine, vemurafenib, etc.) could potentially reverse the pathogenic gene-expression patterns.Conclusions: Our study provides evidence that pyroptosis is involved in HCC development, progression and immune microenvironment, which is promising in predicting the prognosis and developing targeted therapy.
Collapse
Affiliation(s)
- Xinqi Qiu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- Cancer Prevention Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Wentao Huang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Jun Liang
- Geriatric Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510080, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yanlin Lyu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
- Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Kequan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510080, China
| | - Hongwei Yang
- Department of Medical Ultrasound, The First affiliated hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Qingfang Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
2
|
Korleski J, Sall S, Luly KM, Johnson MK, Johnson AL, Khela H, Lal B, Taylor TC, Ashby JM, Alonso H, Li A, Zhou W, Smith-Connor K, Hughes R, Tzeng SY, Laterra J, Green JJ, Lopez-Bertoni H. Multipronged SMAD pathway targeting by lipophilic poly(β-amino ester) miR-590-3p nanomiRs inhibits mesenchymal glioblastoma growth and prolongs survival. Signal Transduct Target Ther 2025; 10:145. [PMID: 40301302 PMCID: PMC12041600 DOI: 10.1038/s41392-025-02223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/25/2025] [Accepted: 03/27/2025] [Indexed: 05/01/2025] Open
Abstract
ASBSTRACT Despite aggressive therapy, glioblastoma (GBM) recurs in almost all patients and treatment options are very limited. Despite our growing understanding of how cellular transitions associate with relapse in GBM, critical gaps remain in our ability to block these molecular changes and treat recurrent disease. In this study we combine computational biology, forward-thinking understanding of miRNA biology and cutting-edge nucleic acid delivery vehicles to advance targeted therapeutics for GBM. Computational analysis of RNA sequencing from clinical GBM specimens identified TGFβ type II receptor (TGFBR2) as a key player in the mesenchymal transition associated with worse outcome in GBM. Mechanistically, we show that elevated levels of TGFBR2 is conducive to reduced temozolomide (TMZ) sensitivity. This effect is, at least partially, induced by stem-cell driving events coordinated by the reprogramming transcription factors Oct4 and Sox2 that lead to open chromatin states. We show that blocking TGFBR2 via molecular and pharmacological approaches decreases stem cell capacity and sensitivity of clinical recurrent GBM (rGBM) isolates to TMZ in vitro. Network analysis uncovered miR-590-3p as a tumor suppressor that simultaneously inhibits multiple oncogenic nodes downstream of TGFBR2. We also developed novel biodegradable lipophilic poly(β-amino ester) nanoparticles (LiPBAEs) for in vivo microRNA (miRNAs) delivery. Following direct intra-tumoral infusion, these nanomiRs efficiently distribute through the tumors. Importantly, miR-590-3p nanomiRs inhibited the growth and extended survival of mice bearing orthotopic human rGBM xenografts, with an apparent 30% cure rate. These results show that miRNA-based targeted therapeutics provide new opportunities to treat rGBM and bypass the resistance to standard of care therapy.
Collapse
Affiliation(s)
- Jack Korleski
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Internal Medicine, Mayo Clinic Rochester, Minnesota, USA
| | - Sophie Sall
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
| | - Kathryn M Luly
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Maya K Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Biology, Johns Hopkins University, Baltimore, USA
| | - Amanda L Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Harmon Khela
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Bachchu Lal
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - T C Taylor
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Jean Micheal Ashby
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hector Alonso
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
| | - Alice Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | | | - Russell Hughes
- Single Cell & Transcriptomics Core at the Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, USA
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jordan J Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA.
- Departments of Materials Science & Engineering and Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, USA.
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA.
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, USA.
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA.
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, USA.
| |
Collapse
|
3
|
Mao X, Lan Y, Lou F, Zhang Z, Jin Q, Jia Y, Li Y. Molecular understanding of transmembrane transport of mRNA carried by graphene oxide: Effect of membrane tension. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 67:102826. [PMID: 40288623 DOI: 10.1016/j.nano.2025.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
In recent years, graphene oxide (GO) has emerged as a promising nanocarrier for targeted mRNA delivery. However, the detailed molecular mechanisms governing its transmembrane transport remain poorly understood. Here, we employ molecular simulations to systematically investigate how membrane surface tension and binding configurations influence the transmembrane behavior of GO-mRNA nanocomplexes. Our findings reveal a membrane tension-dependent entry pathway that nanocomplex entry cell from adhesion/penetration to endocytosis, suggesting a potential mechanism for tumor cell drug resistance development. Furthermore, we demonstrate distinct transmembrane dynamics process for three predominant GO-mRNA binding modes, exhibiting variations in translocation velocity, penetration depth, and resultant membrane deformation. These computational insights provide crucial theoretical guidance for engineering optimized mRNA delivery carrier, potentially advancing the biomedical application of GO-based nanoplatforms in gene therapy and precision oncology.
Collapse
Affiliation(s)
- Xinyi Mao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yun Lan
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Fangzhou Lou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhun Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qi Jin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuandi Jia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ye Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Ahmad GV, Nouri S, Mohammad Gholian A, Abdollahi E, Ghorbaninezhad F, Tahmasebi S, Eterafi M, Askari MR, Safarzadeh E. Breaking barriers: CAR-NK cell therapy breakthroughs in female-related cancers. Biomed Pharmacother 2025; 187:118071. [PMID: 40253831 DOI: 10.1016/j.biopha.2025.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Cancer stands as a leading cause of mortality globally. The main female-related malignancies are breast cancer, with 2.3 million new cases annually, and ovarian cancer, with 300,000 new cases per year worldwide. The current treatments like surgery, chemotherapy, and radiation therapy have presumably had deficiencies in sustaining long-term anti-tumor responses. Cellular immunotherapy, also referred to as adoptive cell therapy, has shown encouraging advances by employing genetically modified immune cells in fighting cancer by engineering chimeric antigen receptors (CARs) mainly on T cells and natural killer (NK) cells. Studies in NK cell therapies involve unmodified NK cells and CAR-NK cell therapies, targeting cancer cells while limiting the destruction of normal cells. CAR-NK cells represent the next generation of therapeutic immune cells that have been shown to eliminate malignancies through CAR-dependent and CAR-independent mechanisms. They also represent possible candidates for "off-the-shelf" therapies due to their advantages, including the ability to target cancer cells independently of the major histocompatibility complex, reduced risk of alloreactivity, and fewer severe toxicities compared to CAR-T cells. To date, there have been no comprehensive review studies examining the therapeutic potential of CAR-NK cell therapy specifically for female-related malignancies, such as breast and ovarian cancers. This review offers a thorough exploration of CAR-NK cell therapy in relation to these cancers and their responses to treatment.
Collapse
Affiliation(s)
- Ghorbani Vanan Ahmad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Samaneh Nouri
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Eileen Abdollahi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farid Ghorbaninezhad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Tahmasebi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Askari
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
5
|
Lei W, Liu H, Deng W, Chen W, Liang Y, Gao W, Yuan X, Guo S, Li P, Wang J, Tong X, Sun YE, Liang A, Qian W. Safety and feasibility of 4-1BB co-stimulated CD19-specific CAR-NK cell therapy in refractory/relapsed large B cell lymphoma: a phase 1 trial. NATURE CANCER 2025:10.1038/s43018-025-00940-3. [PMID: 40251398 DOI: 10.1038/s43018-025-00940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/05/2025] [Indexed: 04/20/2025]
Abstract
Chimeric antigen receptor (CAR)-modified NK (CAR-NK) cells are candidates for next-generation cancer immunotherapies. Here we generated CD19-specific CAR-NK cells with 4-1BB and CD3ζ signaling endo-domains (CD19-BBz CAR-NK) by transduction of cord blood-derived NK cells using baboon envelope pseudotyped lentiviral vectors and demonstrated their antitumor activity in preclinical B cell lymphoma models in female mice. We next conducted a phase 1 dose-escalation trial involving repetitive administration of CAR-NK cells in 8 patients with relapsed/refractory large B cell lymphoma (NCT05472558). Primary end points were safety, maximum tolerated dose, and overall response rate. Secondary end points included duration of response, overall survival, and progression-free survival. No dose-limiting toxicities occurred, and the maximum tolerated dose was not reached. No cases of cytokine release syndrome, neurotoxicity, or graft-versus-host disease were observed. Results showed an overall response rate of 62.5% at day 30, with 4 patients (50%) achieving complete response. The median progression-free survival was 9.5 months, and the median overall survival was not reached. A post hoc exploratory single-cell RNA sequencing analysis revealed molecular features of CAR-NK cells associated with therapeutic efficacy and efficacy-related immune cell interaction networks. This study met the pre-specified end points. In conclusion, CD19-BBz CAR-NK cells were feasible and therapeutically safe, capable of inducing durable response in patients with B cell lymphoma.
Collapse
Affiliation(s)
- Wen Lei
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education; Biotherapy Research Center, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Liu
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhai Deng
- Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yun Liang
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenxia Gao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Xianggui Yuan
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shanshan Guo
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, China
| | - Jinyong Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangmin Tong
- Department of Hematology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University, School of Medicine, Shanghai, China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, China.
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education; Biotherapy Research Center, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Menon AV, Song B, Chao L, Sriram D, Chansky P, Bakshi I, Ulianova J, Li W. Unraveling the future of genomics: CRISPR, single-cell omics, and the applications in cancer and immunology. Front Genome Ed 2025; 7:1565387. [PMID: 40292231 PMCID: PMC12021818 DOI: 10.3389/fgeed.2025.1565387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
The CRISPR system has transformed many research areas, including cancer and immunology, by providing a simple yet effective genome editing system. Its simplicity has facilitated large-scale experiments to assess gene functionality across diverse biological contexts, generating extensive datasets that boosted the development of computational methods and machine learning/artificial intelligence applications. Integrating CRISPR with single-cell technologies has further advanced our understanding of genome function and its role in many biological processes, providing unprecedented insights into human biology and disease mechanisms. This powerful combination has accelerated AI-driven analyses, enhancing disease diagnostics, risk prediction, and therapeutic innovations. This review provides a comprehensive overview of CRISPR-based genome editing systems, highlighting their advancements, current progress, challenges, and future opportunities, especially in cancer and immunology.
Collapse
Affiliation(s)
- A. Vipin Menon
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Bicna Song
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Lumen Chao
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| | - Diksha Sriram
- The George Washington University, Washington, DC, DC, United States
| | - Pamela Chansky
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Integrated Biomedical Sciences (IBS) Program, The George Washington University, Washington, DC, DC, United States
| | - Ishnoor Bakshi
- The George Washington University, Washington, DC, DC, United States
| | - Jane Ulianova
- Integrated Biomedical Sciences (IBS) Program, The George Washington University, Washington, DC, DC, United States
| | - Wei Li
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, DC, United States
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, DC, United States
| |
Collapse
|
7
|
Balkhi S, Zuccolotto G, Di Spirito A, Rosato A, Mortara L. CAR-NK cell therapy: promise and challenges in solid tumors. Front Immunol 2025; 16:1574742. [PMID: 40260240 PMCID: PMC12009813 DOI: 10.3389/fimmu.2025.1574742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Over the past few years, cellular immunotherapy has emerged as a promising treatment for certain hematologic cancers, with various CAR-T therapies now widely used in clinical settings. However, challenges related to the production of autologous cell products and the management of CAR-T cell toxicity highlight the need for new cell therapy options that are universal, safe, and effective. Natural killer (NK) cells, which are part of the innate immune system, offer unique advantages, including the potential for off-the-shelf therapy. A recent first-in-human trial of CD19-CAR-NK infusion in patients with relapsed/refractory lymphoid malignancies demonstrated safety and promising clinical activity. Building on these positive clinical outcomes, current research focuses on enhancing CAR-NK cell potency by increasing their in vivo persistence and addressing functional exhaustion. There is also growing interest in applying the successes seen in hematologic malignancies to solid tumors. This review discusses current trends and emerging concepts in the engineering of next-generation CAR- NK therapies. It will cover the process of constructing CAR-NK cells, potential targets for their manufacturing, and their role in various solid tumors. Additionally, it will examine the mechanisms of action and the research status of CAR-NK therapies in the treatment of solid tumors, along with their advantages, limitations, and future challenges. The insights provided may guide future investigations aimed at optimizing CAR-NK therapy for a broader range of malignancies.
Collapse
Affiliation(s)
- Sahar Balkhi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gaia Zuccolotto
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Anna Di Spirito
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
8
|
Haddadin L, Sun X. Stem Cells in Cancer: From Mechanisms to Therapeutic Strategies. Cells 2025; 14:538. [PMID: 40214491 PMCID: PMC11988674 DOI: 10.3390/cells14070538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Stem cells have emerged as a pivotal area of research in the field of oncology, offering new insights into the mechanisms of cancer initiation, progression, and resistance to therapy. This review provides a comprehensive overview of the role of stem cells in cancer, focusing on cancer stem cells (CSCs), their characteristics, and their implications for cancer therapy. We discuss the origin and identification of CSCs, their role in tumorigenesis, metastasis, and drug resistance, and the potential therapeutic strategies targeting CSCs. Additionally, we explore the use of normal stem cells in cancer therapy, focusing on their role in tissue regeneration and their use as delivery vehicles for anticancer agents. Finally, we highlight the challenges and future directions in stem cell research in cancer.
Collapse
Affiliation(s)
| | - Xueqin Sun
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
9
|
Zhou Z, Chen Y, Ba Y, Xu H, Zuo A, Liu S, Zhang Y, Weng S, Ren Y, Luo P, Cheng Q, Zuo L, Zhu S, Zhou X, Zhang C, Chen Y, Han X, Pan T, Liu Z. Revolutionising Cancer Immunotherapy: Advancements and Prospects in Non-Viral CAR-NK Cell Engineering. Cell Prolif 2025; 58:e13791. [PMID: 39731215 PMCID: PMC11969250 DOI: 10.1111/cpr.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024] Open
Abstract
The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis. Consequently, there has been a surge in the development of non-viral transfection technologies to overcome these challenges in NK cell engineering. Non-viral approaches for CAR-NK cell generation are becoming increasingly essential. Cutting-edge techniques such as trogocytosis, electroporation, lipid nanoparticle (LNP) delivery, clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) gene editing and transposons not only enhance the efficiency and safety of CAR-NK cell engineering but also open new avenues for novel therapeutic possibilities. Additionally, the infusion of technologies already successful in CAR T-cell therapy into the CAR-NK paradigm holds immense potential for further advancements. In this review, we present an overview of the potential of NK cells in cancer immunotherapies, as well as non-viral transfection technologies for engineering NK cells.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yifeng Chen
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuhao Ba
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hui Xu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Anning Zuo
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shutong Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuyuan Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuqing Ren
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Peng Luo
- The Department of OncologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Lulu Zuo
- Center of Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shanshan Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xing Zhou
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chuhan Zhang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yukang Chen
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)ShenzhenChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
10
|
Jiang H, Xi Y, Jiang Q, Dai W, Qin X, Zhang J, Jiang Z, Yang G, Chen Q. LRP5 Down-Regulation Exacerbates Inflammation and Alveolar Bone Loss in Periodontitis by Inhibiting PI3K/c-FOS Signalling. J Clin Periodontol 2025; 52:637-650. [PMID: 39837316 DOI: 10.1111/jcpe.14112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/11/2024] [Accepted: 12/15/2024] [Indexed: 01/23/2025]
Abstract
AIM To investigate the involvement of low-density lipoprotein receptor-related protein 5 (LRP5) in inflammation and alveolar bone loss in periodontitis. MATERIALS AND METHODS Gingival tissues were obtained from 10 periodontitis patients and 10 healthy individuals. Wild-type (WT) and osteoblast-specific Lrp5 conditional knock-out C57BL/6 (LRP5fl/fl;Oc-Cre) mice were used to establish a ligature-induced mouse model of periodontitis. Human periodontal ligament stem cells (hPDLSCs) were isolated and used to further verify the mechanism through which LRP5 mediates periodontitis in vitro. Micro-computed tomography, haematoxylin and eosin staining, immunohistochemistry, quantitative reverse transcription PCR, western blotting, enzyme-linked immunosorbent assay and RNA sequencing were performed to explore the role of LRP5 in periodontitis and the underlying mechanism. RESULTS LRP5 expression was down-regulated in human/mouse periodontal tissues compared to that in healthy controls. Compared to those in wild-type mice, the periodontal tissues of LRP5fl/fl;Oc-Cre mice had increased alveolar bone loss, higher proinflammatory cytokine levels, and lower osteogenesis-related factor expression. LRP5 expression was down-regulated in hPDLSCs after lipopolysaccharide treatment in vitro. LRP5 knockdown increased proinflammatory cytokine production and inhibited osteoblastogenesis by inhibiting PI3K/c-FOS signalling. CONCLUSION LRP5 down-regulation exacerbates inflammation and alveolar bone loss in periodontitis by inhibiting PI3K/c-FOS signalling, suggesting LRP5 as a potential therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Hui Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yue Xi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qifeng Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wei Dai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xiaoru Qin
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
11
|
Wu CS, Li HP, Hsieh CH, Lin YT, Yi-Feng Chang I, Chung AK, Huang Y, Ueng SH, Hsiao YC, Chien KY, Luo JD, Chen CH, Liao WC, Hung JL, Yuan SN, OuYang CN, Chiang WF, Chien CY, Chuang HC, Chu LJ, Liu H, Yang CY, Robles AI, Rodriguez H, Lin HH, Yang HY, Hsueh C, Chang KP, Yu JS, Chang YS. Integrated multi-omics analyses of oral squamous cell carcinoma reveal precision patient stratification and personalized treatment strategies. Cancer Lett 2025; 614:217482. [PMID: 39842500 DOI: 10.1016/j.canlet.2025.217482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Oral cavity squamous cell carcinoma (OSCC), a leading subtype of head and neck cancer, exhibits high global incidence and mortality rates. Despite advancements in surgery and radiochemotherapy, approximately one-third of patients experience relapse. To improve current targeted and immunotherapy strategies for recurrent OSCC, we conducted multi-omics analyses on pretreatment OSCC samples (cohorts 1 and 2, n = 137) and identified A3A and EGFR, both at the RNA and protein levels, as inversely expressed markers for patient stratification and response prediction. Survival analysis demonstrated that elevated A3A or PD-L1 expression levels correlated to improved responses to anti-PD-1 therapy in patients (cohort 3a, n = 50, IHC). In contrast, high RRAS expression (cohort 4, n = 252, qRT-PCR) was significantly associated with OSCC recurrence. Cell-based experiments revealed that RRAS was involved in radiotherapy and cisplatin resistance through the EGFR/RRAS/AKT/ERK signaling pathway. In OSCC patient-derived xenograft (PDX) mouse models, treatments with cisplatin and cetuximab (anti-EGFR) effectively reduced tumor size in EGFR-high-derived (#34) but not A3A-high-derived (#22) PDX tumors. Our study demonstrated that A3A-high tumors were immune-hot and responsive to anti-PD-1 therapy, whereas EGFR-high tumors exhibited chr.7p11.2 gains and DNA repair alterations. Additionally, RRAS-high tumors were associated with OSCC recurrence via AKT and ERK phosphorylation and demonstrate improved clinical outcomes with cetuximab therapy (cohort 3b, n = 49, IHC). This study emphasizes the significance of A3A and EGFR expression levels in OSCC patient stratification and precision therapy, suggesting the use of anti-PD-1 or anti-EGFR treatments, respectively based on these biomarkers. Furthermore, RRAS emerges as a novel prognostic marker for local recurrence.
Collapse
Affiliation(s)
- Chi-Sheng Wu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Hsin-Pai Li
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Microbiology and Immunology, Chang Gung University, Taoyuan City, 33302, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, at Linkou, Taoyuan City, 33305, Taiwan.
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, at Linkou, Taoyuan City, 33305, Taiwan; Division of Hematology-Oncology, Department of Internal Medicine, New Taipei Municipal City TuCheng Hospital, New Taipei City, Taiwan; College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Yu-Tsun Lin
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Ian Yi-Feng Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan; Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City, 33305, Taiwan
| | - An-Ko Chung
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan; School of Medicine, National Tsing-Hua University, Hsinchu, 300044, Taiwan; Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, at Linkou, Taoyuan City, 33305, Taiwan
| | - Shir-Hwa Ueng
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Kun-Yi Chien
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Ji-Dung Luo
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Bioinformatics Resource Center, The Rockefeller University, 1230 York Avenue, New York City, NY, USA, 10065
| | - Chia-Hua Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Anatomy, School of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Wei-Chao Liao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Jui-Lung Hung
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Sheng-Ning Yuan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Chun-Nan OuYang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Wei-Fan Chiang
- Department of Dentistry, Chi-Mei Medical Center, Liouying, Taiwan; School of Dentistry, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hui-Ching Chuang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan; Division of Colon and Rectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Chia-Yu Yang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan; Department of Microbiology and Immunology, Chang Gung University, Taoyuan City, 33302, Taiwan
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan; Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital at Keelung, Keelung, 20401, Taiwan
| | - Huang-Yu Yang
- College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Chuen Hsueh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Pathology, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan.
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan; Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City, 33305, Taiwan.
| | - Yu-Sun Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, 33302, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| |
Collapse
|
12
|
Jørgensen LV, Christensen EB, Barnkob MB, Barington T. The clinical landscape of CAR NK cells. Exp Hematol Oncol 2025; 14:46. [PMID: 40149002 PMCID: PMC11951618 DOI: 10.1186/s40164-025-00633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Chimeric antigen receptor (CAR) NK cell therapy has emerged as a promising alternative to CAR T cell therapy, offering significant advantages in terms of safety and versatility. Here we explore the current clinical landscape of CAR NK cells, and their application in hematologic malignancies and solid cancers, as well as their potential for treating autoimmune disorders. Our analysis draws from data collected from 120 clinical trials focused on CAR NK cells, and presents insights into the demographics and characteristics of these studies. We further outline the specific targets and diseases under investigation, along with the major cell sources, genetic modifications, combination strategies, preconditioning- and dosing regimens, and manufacturing strategies being utilized. Initial results from 16 of these clinical trials demonstrate promising efficacy of CAR NK cells, particularly in B cell malignancies, where response rates are comparable to those seen with CAR T cells but with lower rates of severe adverse effects, such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and graft-versus-host disease (GvHD). However, challenges remain in solid tumor applications, where only modest efficacy has been observed to date. Our analysis reveals that research is increasingly focused on enhancing CAR NK cell persistence, broadening their therapeutic targets, and refining manufacturing processes to improve accessibility and scalability. With recent advancements in NK cell engineering and their increased clinical applications, CAR NK cells are predicted to become an integral component of next-generation immunotherapies, not only for cancer but potentially for immune-mediated diseases as well.
Collapse
Affiliation(s)
- Lasse Vedel Jørgensen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Emil Birch Christensen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Mike Bogetofte Barnkob
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark.
| |
Collapse
|
13
|
Huang Y, Wang H. Tonic signaling in CAR-T therapy: the lever long enough to move the planet. Front Med 2025:10.1007/s11684-025-1130-x. [PMID: 40117019 DOI: 10.1007/s11684-025-1130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/16/2024] [Indexed: 03/23/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has shown remarkable efficacy in treating hematological malignancies and is expanding into other indications such as autoimmune diseases, fibrosis, aging and viral infection. However, clinical challenges persist in treating solid tumors, including physical barriers, tumor heterogeneity, poor in vivo persistence, and T-cell exhaustion, all of which hinder therapeutic efficacy. This review focuses on the critical role of tonic signaling in CAR-T therapy. Tonic signaling is a low-level constitutive signaling occurring in both natural and engineered antigen receptors without antigen stimulation. It plays a pivotal role in regulating immune cell homeostasis, exhaustion, persistence, and effector functions. The "Peak Theory" suggests an optimal level of tonic signaling for CAR-T function: while weak tonic signaling may result in poor proliferation and persistence, excessively strong signaling can cause T cell exhaustion. This review also summarizes the recent progress in mechanisms underlying the tonic signaling and strategies to fine-tune the CAR tonic signaling. By understanding and precisely modulating tonic signaling, the efficacy of CAR-T therapies can be further optimized, offering new avenues for treatment across a broader spectrum of diseases. These findings have implications beyond CAR-T cells, potentially impacting other engineered immune cell therapies such as CAR-NK and CAR-M.
Collapse
Affiliation(s)
- Yuwei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
14
|
Pan X, Zhang YWQ, Dai C, Zhang J, Zhang M, Chen X. Applications of mRNA Delivery in Cancer Immunotherapy. Int J Nanomedicine 2025; 20:3339-3361. [PMID: 40125430 PMCID: PMC11928443 DOI: 10.2147/ijn.s500520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer treatment is continually advancing, with immunotherapy gaining prominence as a standard modality that has markedly improved the management of various malignancies. Despite these advancements, the efficacy of immunotherapy remains variable, with certain cancers exhibiting limited response and patient outcomes differing considerably. Thus, enhancing the effectiveness of immunotherapy is imperative. A promising avenue is mRNA delivery, employing carriers such as liposomes, peptide nanoparticles, inorganic nanoparticles, and exosomes to introduce mRNA cargos encoding tumor antigens, immune-stimulatory, or immune-modulatory molecules into the tumor immune microenvironment (TIME). This method aims to activate the immune system to target and eradicate tumor cells. In this review, we introduce the characteristics and limitations of these carriers and summarize the application and mechanisms of currently prevalent cargos in mRNA-based tumor treatment. Additionally, given the significant clinical application of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR)-based cell therapies in solid tumors (including melanoma, non-small-cell lung cancer, head and neck squamous cell carcinoma, triple-negative breast cancer, gastric cancer) and leukemia, which have become first-line treatments, we highlight and discuss recent progress in combining mRNA delivery with ICIs, CAR-T, CAR-NK, and CAR-macrophage therapies. This combination enhances the targeting capabilities and efficacy of ICIs and CAR-cell-based therapies, while also mitigating the long-term off-target toxicities associated with conventional methods. Finally, we analyze the limitations of current mRNA delivery systems, such as nuclease-induced mRNA instability, immunogenicity risks, complex carrier production, and knowledge gaps concerning dosing and safety. Addressing these challenges is crucial for unlocking the potential of mRNA in cancer immunotherapy. Overall, exploring mRNA delivery enriches our comprehension of cancer immunotherapy and holds promise for developing personalized and effective treatment strategies, potentially enhancing the immune responses of cancer patients and extending their survival time.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yang-Wen-Qing Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Caixia Dai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Junyu Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| |
Collapse
|
15
|
Wu D, Miao H, Ma X, McCormack MP, Huang H, Liu X, Li N. Natural killer cell therapy: the key to tackle the bottleneck of cell therapies against solid tumor? Sci Bull (Beijing) 2025; 70:630-633. [PMID: 39818506 DOI: 10.1016/j.scib.2024.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Affiliation(s)
- Dawei Wu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huilei Miao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoxue Ma
- School of Life Sciences, Westlake University, Hangzhou 310030, China; Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, China; Westlake Institute for Advanced Study, Hangzhou 310030, China; iCamuno Biotherapeutics, Pty Ltd, Melbourne, 3004, Australia
| | - Matthew Paul McCormack
- iCamuno Biotherapeutics, Pty Ltd, Melbourne, 3004, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, 3004, Australia
| | - Huiyao Huang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaodong Liu
- School of Life Sciences, Westlake University, Hangzhou 310030, China; Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310030, China; Westlake Institute for Advanced Study, Hangzhou 310030, China.
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
16
|
Fatemi N, Mirbahari SN, Tierling S, Sanjabi F, Shahrivari S, AmeliMojarad M, Amelimojarad M, Mirzaei Rezaei M, Nobaveh P, Totonchi M, Nazemalhosseini Mojarad E. Emerging Frontiers in Colorectal Cancer Therapy: From Targeted Molecules to Immunomodulatory Breakthroughs and Cell-Based Approaches. Dig Dis Sci 2025; 70:919-942. [PMID: 39869166 PMCID: PMC11919954 DOI: 10.1007/s10620-024-08774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 11/20/2024] [Indexed: 01/28/2025]
Abstract
Colorectal cancer (CRC) is ranked as the second leading cause of cancer-related deaths globally, necessitating urgent advancements in therapeutic approaches. The emergence of groundbreaking therapies, including chimeric antigen receptor-T (CAR-T) cell therapies, oncolytic viruses, and immune checkpoint inhibitors, marks a transformative era in oncology. These innovative modalities, tailored to individual genetic and molecular profiles, hold the promise of significantly enhancing patient outcomes. This comprehensive review explores the latest clinical trials and advancements, encompassing targeted molecular therapies, immunomodulatory agents, and cell-based therapies. By evaluating the strengths, limitations, and potential synergies of these approaches, this research aims to reshape the treatment landscape and improve clinical outcomes for CRC patients, offering new found hope for those who have exhausted conventional options. The culmination of this work is anticipated to pave the way for transformative clinical trials, ushering in a new era of personalized and effective CRC therapy.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Nasim Mirbahari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Fatemeh Sanjabi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Shabnam Shahrivari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical, Tehran, Iran
| | - Mandana AmeliMojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Melika Amelimojarad
- Department of Biology, Faculty of Basic Science, Kharrazi University, Tehran, Iran
| | - Meygol Mirzaei Rezaei
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Parsa Nobaveh
- School of Advanced Sciences and Technology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Mehdi Totonchi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, P.O. Box 19857-17413, Tehran, Iran.
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
17
|
Park JD, Shin HE, An YS, Jang HJ, Park J, Kim SN, Park CG, Park W. Advancing Natural Killer Cell Therapy: Genetic Engineering Strategies for Enhanced Cancer Immunotherapy. Ann Lab Med 2025; 45:146-159. [PMID: 39774132 PMCID: PMC11788708 DOI: 10.3343/alm.2024.0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/06/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Natural killer (NK) cells are pivotal innate immune system components that exhibit spontaneous cytolytic activity against abnormal cells, such as infected and tumor cells. NK cells have shown significant promise in adoptive cell therapy because of their favorable safety profiles and minimal toxicity in clinical settings. Despite their advantages, the therapeutic application of unmodified NK cells faces challenges, including limited in vivo persistence, particularly in the immunosuppressive tumor microenvironment. Recent advances in genetic engineering have enhanced the therapeutic potential of NK cells by addressing these limitations and improving their therapeutic efficacy. In this review, we have described various methodologies for the genetic modification of NK cells, including viral vectors, electroporation, and nanoparticle-based approaches. The ongoing research on nanomaterialbased approaches highlights their potential to overcome current limitations in NK cell therapy, paving the way for advanced cancer therapy and improved clinical outcomes. In this review, we also emphasize the potential of engineered NK cells in cancer immunotherapy and other clinical applications, highlighting the expanding scope of NK cell-based treatments and the critical role of innovative genetic engineering techniques.
Collapse
Affiliation(s)
- Joo Dong Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Ha Eun Shin
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Manoa, Honolulu, USA
| | - Yeon Su An
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Hye Jung Jang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School Medicine, University of Hawai‘i at Manoa, Honolulu, USA
| | - Se-Na Kim
- Department of Industrial Cosmetic Science, Chungbuk National University, Cheongju, Korea
- Research and Development Center, MediArk Inc., Cheongju, Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon, Korea
- Department of Intelligent Precision Healthcare Convergence, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon, Korea
- Korea Institute of Science and Technology, Seoul, Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, Korea
- Korea Institute of Science and Technology, Seoul, Korea
- Department of MetaBioHealth, Institute for Cross-disciplinary Studies, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
18
|
Look T, Sankowski R, Bouzereau M, Fazio S, Sun M, Buck A, Binder N, Mastall M, Prisco F, Seehusen F, Frei J, Wyss C, Snijder B, Nombela Arrieta C, Weller M, Pascolo S, Weiss T. CAR T cells, CAR NK cells, and CAR macrophages exhibit distinct traits in glioma models but are similarly enhanced when combined with cytokines. Cell Rep Med 2025; 6:101931. [PMID: 39889712 PMCID: PMC11866521 DOI: 10.1016/j.xcrm.2025.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/17/2024] [Accepted: 01/03/2025] [Indexed: 02/03/2025]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a promising immunotherapy against cancer. Although there is a growing interest in other cell types, a comparison of CAR immune effector cells in challenging solid tumor contexts is lacking. Here, we compare mouse and human NKG2D-CAR-expressing T cells, natural killer (NK) cells, and macrophages against glioblastoma, the most aggressive primary brain tumor. In vitro we show that T cell cancer killing is CAR dependent, whereas intrinsic cytotoxicity overrules CAR dependence for NK cells, and CAR macrophages reduce glioma cells in co-culture assays. In orthotopic immunocompetent glioma mouse models, systemically administered CAR T cells demonstrate superior accumulation in the tumor, and each immune cell type induces distinct changes in the tumor microenvironment. An otherwise low therapeutic efficacy is significantly enhanced by co-expression of pro-inflammatory cytokines in all CAR immune effector cells, underscoring the necessity for multifaceted cell engineering strategies to overcome the immunosuppressive solid tumor microenvironment.
Collapse
Affiliation(s)
- Thomas Look
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Manon Bouzereau
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Serena Fazio
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Miaomiao Sun
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Alicia Buck
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland; Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Niklas Binder
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Maximilian Mastall
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Francesco Prisco
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Frauke Seehusen
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Julia Frei
- Department of Dermatology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Conrad Wyss
- Department of Dermatology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Cesar Nombela Arrieta
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Steve Pascolo
- Department of Dermatology, University of Zurich and University Hospital Zurich, 8091 Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, 8091 Zurich, Switzerland.
| |
Collapse
|
19
|
Dumut DC, Hajduch M, Zacharias AM, Duan Q, Frydrych I, Rozankova Z, Popper M, Garic D, Paun RA, Centorame A, Shah J, Mistrik M, Dzubak P, De Sanctis JB, Radzioch D. Diethyldithiocarbamate-copper complex ignites the tumor microenvironment through NKG2D-NKG2DL axis. Front Immunol 2025; 16:1491450. [PMID: 40013140 PMCID: PMC11860975 DOI: 10.3389/fimmu.2025.1491450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/17/2025] [Indexed: 02/28/2025] Open
Abstract
Advanced metastatic colorectal cancer (CRC) with deficient DNA mismatch repair (MMR-d), or immune-hot CRCs, show significantly improved clinical outcomes compared to MMR-proficient (MMR-p), or immune-cold CRCs. While the prior represents about 5% of all CRCs, the latter represent 95% and are characterized by low immunogenicity. This study investigates bis-diethyldithiocarbamate (CuET), a novel anticancer compound, and its impact on the colorectal cancer tumor microenvironment (TME). CuET is shown to convert immunologically inactive tumors into hotbeds of antitumor immune responses, marked by increased lymphocyte infiltration, heightened cytotoxicity of natural killer (NK) and T cells, and enhanced non-self recognition by lymphocytes. The potent anticancer cytotoxicity and in vivo safety and efficacy of CuET are established. In summary, CuET transforms the colorectal cancer TME, bolstering NK and T cell cytotoxicity and refining tumor cell recognition through non-classical activation via the NKG2D/NKG2DL axis. This study unveils a novel mechanism of action for CuET: a potent immunomodulator capable of turning cold tumors hot.
Collapse
Affiliation(s)
- Daciana C. Dumut
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Centre, Infectious Diseases in Global Health Program, Montreal, QC, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Olomouc, Czechia
| | - Amanda M. Zacharias
- Department of Biomedical & Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Qingling Duan
- Department of Biomedical & Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
- School of Computing, Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
| | - Ivo Frydrych
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - Zuzana Rozankova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Olomouc, Czechia
| | - Miroslav Popper
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Olomouc, Czechia
| | - Dusan Garic
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Radu Alexandru Paun
- The Research Institute of the McGill University Health Centre, Infectious Diseases in Global Health Program, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Amanda Centorame
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Centre, Infectious Diseases in Global Health Program, Montreal, QC, Canada
| | - Juhi Shah
- The Research Institute of the McGill University Health Centre, Infectious Diseases in Global Health Program, Montreal, QC, Canada
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Olomouc, Czechia
| | - Petr Dzubak
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Olomouc, Czechia
| | - Juan B. De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Olomouc, Czechia
| | - Danuta Radzioch
- Department of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
- The Research Institute of the McGill University Health Centre, Infectious Diseases in Global Health Program, Montreal, QC, Canada
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University Olomouc, Olomouc, Czechia
| |
Collapse
|
20
|
Koam D, Park HY, Kim DS, Kwon HJ, Lee Y, Kim K, Naito M, Kim HJ. Amphiphilic Polyaspartamide Derivatives with Cholesterol Introduction Enhanced Ex Vivo mRNA Transfection Efficiency to Natural Killer Cells. Biomacromolecules 2025; 26:1086-1097. [PMID: 39847497 DOI: 10.1021/acs.biomac.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Engineered natural killer (NK) cells eliminate cancer cells by overexpressing a chimeric antigen receptor, producing highly efficient and safe NK cell therapies. This study investigated the polyplex formulation for the fusion protein GreenLantern-natural killer group 2D (NKG2D) mRNA to evaluate its ex vivo delivery efficacy into NK cells, wherein NKG2D on the surface of NK cells recognized its counterpart NKG2D ligands on cancer cells. Amphiphilic polyaspartamide derivatives Chol-PAsp(DET/CHE) were prepared by adding cyclohexylethylamine (CHE) and diethylenetriamine (DET) in the side chains and cholesterol (Chol) at the α-terminus to enhance endosomal escapability and optimize hydrophobicity. Chol-PAsp(DET/CHE) significantly improved mRNA delivery efficacy into NK-92mi cells, explained by increased polyplex stability and improved cellular uptake of mRNA. The NKG2D-overexpressing NK-92mi cells exhibited high anticancer efficacy against human colon cancer cells without affecting the viability of fibroblasts. Therefore, Chol-PAsp(DET/CHE) could be a promising mRNA delivery carrier for the ex vivo engineering of NK cells.
Collapse
Affiliation(s)
- David Koam
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ha Yeon Park
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Dong Sun Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyeong Jin Kwon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, College of Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hyun Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
21
|
Chen Z, Ren A, Li Y, Shu J, Wu J, Huang H, Wang J, Hu Y, Mei H. mRNA-laden lipid nanoparticle-enabled humanized CD19 CAR-T-cell engineering for the eradication of leukaemic cells. Br J Haematol 2025; 206:628-643. [PMID: 39761676 PMCID: PMC11829146 DOI: 10.1111/bjh.19988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/26/2024] [Indexed: 02/16/2025]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has shown transformative potential in treating malignant tumours, with increasing global approval of CAR-T products. However, high-production costs and risks associated with viral vector-based CAR-T cells-such as insertional mutagenesis and secondary tumour formation-remain challenges. Our study introduces an innovative CAR-T engineering approach using mRNA delivered via lipid nanoparticles (LNPs), aiming to reduce costs and enhance safety while maintaining strong anti-tumour efficacy. We developed an LNP-based transfection protocol for efficient delivery of mRNA encoding full-human CAR constructs, achieving high CAR expression and significant cytotoxicity against leukaemic cells in vitro. Co-culture with Raji cells showed increased cytokine secretion and tumour cell killing by mRNA-LNP CAR-T cells. Therapeutic efficacy was further demonstrated in an NOD-scid-IL2Rγnull (NSG) mouse model with Raji engraftment, where treated mice exhibited marked tumour regression and extended survival. These findings underscore the potential of mRNA-LNPs as a non-viral, effective CAR-T engineering platform, offering a promising alternative to traditional methods that could improve CAR-T safety, efficacy and accessibility in clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Anqi Ren
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yingying Li
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jinhui Shu
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jianghua Wu
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hekuan Huang
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jingming Wang
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic DiseaseWuhanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
22
|
Tan Z, Tian L, Luo Y, Ai K, Zhang X, Yuan H, Zhou J, Ye G, Yang S, Zhong M, Li G, Wang Y. Preventing postsurgical colorectal cancer relapse: A hemostatic hydrogel loaded with METTL3 inhibitor for CAR-NK cell therapy. Bioact Mater 2025; 44:236-255. [PMID: 39497707 PMCID: PMC11532749 DOI: 10.1016/j.bioactmat.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
Colorectal cancer (CRC) recurrence post-surgery remains a major challenge. While Chimeric Antigen Receptor (CAR)-engineered natural killer (NK) cells hold immense therapeutic potential, their intratumoral infiltration ability remains limited, hampering efficacy. Building upon prior research suggesting that chemokines like C-X-C motif chemokine ligand 9 (CXCL9) and C-X-C motif chemokine ligand 10 (CXCL10) recruit CAR-NK cells, we hypothesized that tumor cell m6A methylation, regulated by Methyltransferase-like 3 (METTL3), influences chemokine secretion. This study aims to elucidate the underlying mechanisms and improve METTL3 inhibition efficiency. We designed an adhesive hemostasis hydrogel loaded with STM2457, a METTL3 inhibitor, aimed at sustained release in the acidic tumor microenvironment. In vitro, the hydrogel promoted CAR-NK cell recruitment and tumor killing via sustained METTL3 inhibition. The hydrogel's Schiff base bonds further enabled intestinal adhesion and hemostasis in an incomplete tumor resection model of CRC. Combining the hydrogel with CAR-NK cell therapy significantly reduced CRC recurrence in vivo. Overall, our study reveals the crucial role of METTL3 in CRC recurrence and proposes a promising, multimodal strategy using STM2457-loaded hydrogel and CAR-NK cells for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Zilin Tan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Liangjie Tian
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai, 200127, China
| | - Kexin Ai
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xuehua Zhang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haitao Yuan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jinfan Zhou
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Guangyao Ye
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai, 200127, China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai, 200127, China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Pujian Road 160, Shanghai, 200127, China
| | - Gaohua Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yanan Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| |
Collapse
|
23
|
Hosseinalizadeh H, Wang LS, Mirzaei H, Amoozgar Z, Tian L, Yu J. Emerging combined CAR-NK cell therapies in cancer treatment: Finding a dancing partner. Mol Ther 2025:S1525-0016(24)00895-5. [PMID: 39754357 DOI: 10.1016/j.ymthe.2024.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/21/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025] Open
Abstract
In recent decades, immunotherapy with chimeric antigen receptors (CARs) has revolutionized cancer treatment and given hope where other cancer therapies have failed. CAR-natural killer (NK) cells are NK cells that have been engineered ex vivo with a CAR on the cell membrane with high specificity for specific target antigens of tumor cells. The impressive results of several studies suggest that CAR-NK cell therapy has significant potential and successful performance in cancer treatment. Despite its effectiveness, CAR-NK cell therapy can have significant challenges when it comes to treating cancer. These challenges include tumor heterogeneity, antigen escape, an immunosuppressive tumor microenvironment, limited tissue migration from blood, exhaustion of CAR-NK cells, and inhibition by immunosuppressive checkpoint molecule signaling, etc. In CAR-T cell therapy, the use of combined approaches has shown encouraging outcomes for tumor regression and improved cancer treatment compared to single therapies. Therefore, to overcome these significant challenges in CAR-NK cells, innovative combination therapies of CAR-NK cells with other conventional therapies (e.g., chemotherapy and radiotherapy) or other immunotherapies are needed to counteract the above challenges and thereby increase the activity of CAR-NK cells. This review comprehensively discusses various cancer-treatment approaches in combination with CAR-NK cell therapy in the hope of providing valuable insights that may improve cancer treatment in the near future.
Collapse
Affiliation(s)
- Hamed Hosseinalizadeh
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lei Tian
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| | - Jianhua Yu
- Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA; Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
24
|
Agarwal D, Sharma G, Khadwal A, Toor D, Malhotra P. Advances in Vaccines, Checkpoint Blockade, and Chimeric Antigen Receptor-Based Cancer Immunotherapeutics. Crit Rev Immunol 2025; 45:65-80. [PMID: 39612278 DOI: 10.1615/critrevimmunol.2024053025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Increase in cancer cases and research driven by understanding its causes, facilitated development of novel targeted immunotherapeutic strategies to overcome nonspecific cytotoxicity associated with conventional chemotherapy and radiotherapy. These target specific immunotherapeutic regimens have been evaluated for their efficacy, including: (1) vaccines harnessing tumor specific/associated antigens, (2) checkpoint blockade therapy using monoclonal antibodies against PD1, CTLA-4 and others, and (3) adoptive cell transfer approaches viz. chimeric antigen receptor (CAR)-cell-based therapies. Here, we review recent advancements on these target specific translational immunotherapeutic strategies against cancer/s and concerned limitations.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Translational & Regenerative Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | | | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
25
|
Lam PY, Omer N, Wong JKM, Tu C, Alim L, Rossi GR, Victorova M, Tompkins H, Lin C, Mehdi AM, Choo A, Elliott MR, Coleborn E, Sun J, Mercer T, Vittorio O, Dobson LJ, McLellan AD, Brooks A, Tuong ZK, Cheetham SW, Nicholls W, Souza‐Fonseca‐Guimaraes F. Enhancement of anti-sarcoma immunity by NK cells engineered with mRNA for expression of a EphA2-targeted CAR. Clin Transl Med 2025; 15:e70140. [PMID: 39763064 PMCID: PMC11705447 DOI: 10.1002/ctm2.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Paediatric sarcomas, including rhabdomyosarcoma, Ewing sarcoma and osteosarcoma, represent a group of malignancies that significantly contribute to cancer-related morbidity and mortality in children and young adults. These cancers share common challenges, including high rates of metastasis, recurrence or treatment resistance, leading to a 5-year survival rate of approximately 20% for patients with advanced disease stages. Despite the critical need, therapeutic advancements have been limited over the past three decades. The advent of chimeric antigen receptor (CAR)-based immunotherapies offers a promising avenue for novel treatments. However, CAR-T cells have faced significant challenges and limited success in treating solid tumours due to issues such as poor tumour infiltration, immunosuppressive tumour microenvironments and off-target effects. In contrast, the adaptation of CAR technology for natural killer (NK) cells has demonstrated potential in both haematological and solid tumours, suggesting a new therapeutic strategy for paediatric sarcomas. METHODS This study developed and validated a novel CAR-NK cell therapy targeting the ephrin type-A receptor-2 (EphA2) antigen, which is highly expressed in various paediatric sarcomas. RESULTS CAR expression was successfully detected on the surface of NK cells post-electroporation, indicating successful transfection. Significantly, EphA2-specific CAR-NK cells demonstrated enhanced cytotoxic activity against several paediatric sarcoma cell lines in vitro, including those of rhabdomyosarcoma, Ewing sarcoma and osteosarcoma, compared to unmodified NK cells. Transient messenger RNA (mRNA) transfection of NK cells is a safe approach in genetic engineering, with further chemical modifications to mRNA enhancing stability of temporal EphA2-CAR expression in NK cells, thereby promoting prolonged protein expression. Additionally, in vivo EphA2-CAR-NK cells showed promising anti-cancer activity in rhabdomyosarcoma and osteosarcoma mouse models. CONCLUSIONS The study provides a foundational basis for the clinical evaluation of EphA2-targeted CAR-NK cell therapy across a spectrum of paediatric sarcomas. The enhanced anti-tumour effects observed in vitro/vivo suggests potential for improved therapeutic outcomes in hard-to-cure paediatric sarcomas. KEY POINTS Addressing unmet clinical needs in paediatric Sarcomas. Paediatric sarcomas, including rhabdomyosarcoma, Ewing sarcoma, and osteosarcoma, exhibit poor survival rates in advanced disease stages. The lack of significant therapeutic progress over the past three decades necessitates innovative treatment approaches. Advancing immunotherapy with CAR-NK cells. Natural killer (NK) cells modified with chimeric antigen receptors (CARs) represent a promising strategy to overcome the limitations of CAR-T cells, particularly in solid tumours. CAR-NK cells are associated with enhanced tumour targeting, reduced off-target effects, and improved safety profiles. EphA2 as a therapeutic target. EphA2, a receptor overexpressed in multiple paediatric sarcomas, is identified as a viable target for CAR-based immunotherapy due to its critical role in tumour progression and angiogenesis. Innovations in mRNA-based engineering. This study demonstrates the feasibility of transient mRNA transfection to engineer NK cells for CAR expression, offering a non-integrative and safer alternative to viral transduction. Enhancements in mRNA stability through chemical modifications, can further optimise protein expression. Preclinical efficacy of EphA2-CAR NK cells. EphA2-specific CAR-NK cells exhibit superior cytotoxicity against sarcoma cell lines in vitro and demonstrate significant anti-tumour activity in in vivo mouse models of rhabdomyosarcoma and osteosarcoma. Clinical translation potential. The findings establish a strong preclinical rationale for the clinical evaluation of EphA2-targeted CAR-NK therapy as a novel immunotherapeutic option for paediatric sarcomas. Future research directions: Combining EphA2-CAR NK cells with immune checkpoint inhibitors or other immunomodulatory agents could further enhance therapeutic outcomes and durability. Advanced preclinical models mimicking human tumour microenvironments are needed to refine and optimise this therapeutic approach.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Receptor, EphA2/genetics
- Humans
- Animals
- Sarcoma/therapy
- Sarcoma/immunology
- Sarcoma/genetics
- Mice
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Immunotherapy, Adoptive/methods
- Cell Line, Tumor
- Disease Models, Animal
Collapse
Affiliation(s)
- Pui Yeng Lam
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Natacha Omer
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
- Queensland Children's HospitalBrisbaneQueenslandAustralia
| | - Josh K. M. Wong
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Cui Tu
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Louisa Alim
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Gustavo R. Rossi
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Maria Victorova
- Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandSt LuciaQueenslandAustralia
- BASE FacilityUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Hannah Tompkins
- BASE FacilityUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Cheng‐Yu Lin
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Ahmed M. Mehdi
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
- Queensland Cyber Infrastructure Foundation Ltd (QCIF)Facility for Advanced BioinformaticsSt LuciaQueenslandAustralia
| | - Amos Choo
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Melissa R. Elliott
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Elaina Coleborn
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Jane Sun
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Timothy Mercer
- Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandSt LuciaQueenslandAustralia
- BASE FacilityUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Orazio Vittorio
- School of Biomedical Sciences, Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Lachlan J. Dobson
- Department of Microbiology and ImmunologyThe University of OtagoDunedinNew Zealand
| | | | - Andrew Brooks
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Zewen Kelvin Tuong
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Seth W. Cheetham
- Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandSt LuciaQueenslandAustralia
- BASE FacilityUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Wayne Nicholls
- Queensland Children's HospitalBrisbaneQueenslandAustralia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | | |
Collapse
|
26
|
Zhang X, Shi L, Xing M, Li C, Ma F, Ma Y, Ma Y. Interplay between lncRNAs and the PI3K/AKT signaling pathway in the progression of digestive system neoplasms (Review). Int J Mol Med 2025; 55:15. [PMID: 39513614 PMCID: PMC11573320 DOI: 10.3892/ijmm.2024.5456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Long non‑coding RNA (lncRNA) is a class of non‑coding RNA molecules located in the cytoplasm or nucleus, which can regulate chromosome structure and function by interacting with DNA, RNA, proteins and other molecules; binding to mRNA bases in a complementary manner, affecting the splicing, stabilization, translation and degradation of mRNA; acting as competing endogenous RNA competitively binds to microRNAs to regulate gene expression and participate in the regulation of various vital activities of the body. The PI3K/AKT signalling pathway plays a key role in numerous biological and cellular processes, such as cell proliferation, invasion, migration and angiogenesis. It has been found that the lncRNA/PI3K/AKT axis regulates the expression of cancer‑related genes and thus tumour progression. The abnormal regulation of lncRNA expression in the lncRNA/PI3K/AKT axis is clearly associated with clinicopathological features and plays an important role in regulating biological functions. In the present review, the expression and biological functions of PI3K/AKT‑related lncRNAs both in vitro and in vivo over recent years, were comprehensively summarized and analyzed. Their correlation with clinicopathological features was also evaluated, with the objective of furnishing a solid theoretical foundation for clinical diagnosis and the monitoring of efficacy in digestive system neoplasms. The present review aimed to provide a comprehensive overview of the expression and biological functions of PI3K/AKT‑related lncRNAs in digestive system neoplasms and to assess their correlation with clinicopathological features. This endeavor seeks to establish a solid theoretical foundation for the clinical diagnosis and efficacy monitoring of digestive system tumors.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Chunjing Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Fengjun Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
27
|
Miao L, Zhang J, Xu W, Qian Q, Zhang G, Yuan Q, Lv Y, Zhang H, Shen C, Wang W. Global research trends in CAR-T cell therapy for solid tumors: A comprehensive visualization and bibliometric study (2012-2023). Hum Vaccin Immunother 2024; 20:2338984. [PMID: 38698555 PMCID: PMC11073418 DOI: 10.1080/21645515.2024.2338984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
CAR-T cell therapy has emerged as a significant approach for the management of hematological malignancies. Over the past few years, the utilization of CAR-T cells in the investigation and treatment of solid tumors has gained momentum, thereby establishing itself as a prominent area of research. This descriptive study involved the retrieval of articles about CAR-T cell therapy for solid tumors from the Web of Science Core Collection (WoSCC) database. Subsequently, bibliometric analysis and knowledge map analysis were conducted on these articles. The field under consideration is currently experiencing a period of swift advancement, as evidenced by the escalating number of publications in this domain each year. The United States holds an indisputable position as the foremost leader in this particular field, with the University of Pennsylvania emerging as the most active institution. The authors with the highest citation frequency and co-citation frequency are Carl H. June and Shannon L. Maude, respectively. The research hotspots in this field mainly focus on five aspects. Additionally, 10 emerging themes were identified. This study undertakes a comprehensive, systematic, and objective analysis and exploration of the field of CAR-T cell treatment for solid tumors, utilizing bibliometric methods. The findings of this study are expected to serve as a valuable reference and enlightenment for future research endeavors in this particular domain.
Collapse
Affiliation(s)
- Lele Miao
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Juan Zhang
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, China
| | - Wei Xu
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Qian Qian
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Guochao Zhang
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Quan Yuan
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Yuetao Lv
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| | - Haiguo Zhang
- Department of Hematology, Jining NO.1 People’s Hospital, Jining, China
| | - Chaoyan Shen
- Department of Ultrasound, Jining NO.1 People’s Hospital, Jining, China
| | - Wei Wang
- Department of Thyroid and Breast Surgery, Jining NO.1 People’s Hospital, Jining, China
| |
Collapse
|
28
|
Zhu Y, Yang W, Zhuang Y, Wang F, Ge Y, Jiang J, Feng D. ELF3 Overexpression Contributes to the Malignant Transformation of HPV16 E6/E7-Immortalized Keratinocytes by Promoting CCNE2 Expression. J Microbiol Biotechnol 2024; 34:2484-2491. [PMID: 39572025 PMCID: PMC11733543 DOI: 10.4014/jmb.2408.08041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 12/31/2024]
Abstract
Current cancer burden caused by persistent infection with human papillomaviruse genotype 16 (HPV16) cannot be ignored. The related mechanisms of oncoproteins E6 and E7 from HPV16 on keratinocyte malignant transformation need to be further elucidated. GSE3292 dataset analysis revealed the upregulation of ETS transcription factor 3 (ELF3) and cyclin E2 (CCNE2). To verify whether there is an interaction between ELF3 and CCNE2, E74 like ELF3 and CCNE2 expression profiles as well as their putative binding sites were analyzed using bioinformatics. Retroviruses encoding HPV16 E6 and E7 genes were used to induce immortalization of human foreskin keratinocytes (HFKs) in vitro. Dual luciferase reporters assay was used to verify the binding of ELF3 and CCNE2. The effect of ELF3 on the immortalized cells was investigated using CCK-8 assay, cell cycle analysis and western blot. ELF3 and CCNE2 presented overexpression patterns in head and neck squamous cell carcinoma. HPV16 E6/E7-expressing HFKs showed enhanced viability, accelerated cell cycle as well as upregulated ELF3 and CCNE2. ELF3 overexpression enhanced the activity of CCNE2 promoter. ELF3 silencing reduced viability, induced cell cycle arrest and suppressed expressions of CCNE2, E6 and E7 in HPV16 E6/E7-expressing HFKs. Downregulation of ELF3 played an inhibiting role in the malignant transformation of HPV16 E6/E7-immortalized HFKs by decreasing CCNE2 expression.
Collapse
Affiliation(s)
- Yingping Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), P.R. China
| | - Wenjuan Yang
- First School of Clinical Medicine, Zhejiang Chinese Medical University, P.R. China
| | - Yulong Zhuang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), P.R. China
| | - Feifei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), P.R. China
| | - Yanlu Ge
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), P.R. China
| | - Jun Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), P.R. China
| | - Danping Feng
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang Province 310006, P.R. China
| |
Collapse
|
29
|
Bukhari I, Li M, Li G, Xu J, Zheng P, Chu X. Pinpointing the integration of artificial intelligence in liver cancer immune microenvironment. Front Immunol 2024; 15:1520398. [PMID: 39759506 PMCID: PMC11695355 DOI: 10.3389/fimmu.2024.1520398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Liver cancer remains one of the most formidable challenges in modern medicine, characterized by its high incidence and mortality rate. Emerging evidence underscores the critical roles of the immune microenvironment in tumor initiation, development, prognosis, and therapeutic responsiveness. However, the composition of the immune microenvironment of liver cancer (LC-IME) and its association with clinicopathological significance remain unelucidated. In this review, we present the recent developments related to the use of artificial intelligence (AI) for studying the immune microenvironment of liver cancer, focusing on the deciphering of complex high-throughput data. Additionally, we discussed the current challenges of data harmonization and algorithm interpretability for studying LC-IME.
Collapse
Affiliation(s)
- Ihtisham Bukhari
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengxue Li
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangyuan Li
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jixuan Xu
- Department of Gastrointestinal & Thyroid Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiufeng Chu
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Yuan Z, Han X, Xiao M, Zhu T, Xu Y, Tang Q, Lian C, Wang Z, Li J, Wang B, Li C, Xiang X, Jin R, Liu Y, Yu X, Zhang K, Li S, Ray M, Li R, Gruzdev A, Shao S, Shao F, Wang H, Lian W, Tang Y, Chen D, Lei Y, Jin X, Li Q, Long W, Huang H, DeMayo FJ, Liu J. Overexpression of ELF3 in the PTEN-deficient lung epithelium promotes lung cancer development by inhibiting ferroptosis. Cell Death Dis 2024; 15:897. [PMID: 39695109 PMCID: PMC11655876 DOI: 10.1038/s41419-024-07274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Ferroptosis has been shown to play a crucial role in preventing cancer development, but the underlying mechanisms of dysregulated genes and genetic alternations driving cancer development by regulating ferroptosis remain unclear. Here, we showed that the synergistic role of ELF3 overexpression and PTEN deficiency in driving lung cancer development was highly dependent on the regulation of ferroptosis. Human ELF3 (hELF3) overexpression in murine lung epithelial cells only caused hyperplasia with increased proliferation and ferroptosis. hELF3 overexpression and Pten genetic disruption significantly induced lung tumor development with increased proliferation and inhibited ferroptosis. Mechanistically, we found it was due to the induction of SCL7A11, a typical ferroptosis inhibitor, and ELF3 directly and positively regulated SCL7A11 in the PTEN-deficient background. Erastin-mediated inhibition of SCL7A11 induced ferroptosis in cells with ELF3 overexpression and PTEN deficiency and thus inhibited cell colony formation and tumor development. Clinically, human lung tumors showed a negative correlation between ELF3 and PTEN expression and a positive correlation between ELF3 and SCL7A11 in a subset of human lung tumors with PTEN-low expression. ELF3 and SCL7A11 expression levels were negatively associated with lung cancer patients' survival rates. In summary, ferroptosis induction can effectively attenuate lung tumor development induced by ELF3 overexpression and PTEN downregulation or loss-of-function mutations.
Collapse
Affiliation(s)
- Zengzhuang Yuan
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyan Han
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Manyu Xiao
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Taoyu Zhu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yaping Xu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Qian Tang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Chen Lian
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Junming Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Boyu Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Changhui Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xiaochen Xiang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Ruobai Jin
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Yufei Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Kehang Zhang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Songsong Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Madhumita Ray
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Rong Li
- Department of Obstetrics, Gynecology and Women' Health, University of Missouri, Columbia, MO, USA
| | - Artiom Gruzdev
- Gene Editing and Mouse Model Core, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Fangwei Shao
- Zhejiang University-University of Illinois Urbana-Champaign Institute, Zhejiang University, Haining, China
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, Zhejiang, China
- National Key Laboratory of Biobased Transportation Fuel Technology, ZJU-UIUC Institute, Zhejiang University, Hangzhou, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wang Lian
- Department of Thoracic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yong Tang
- Department of Thoracic Surgery, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Di Chen
- Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Lei
- Department of Respiratory and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical Hospital, Quzhou People's Hospital, Wenzhou, China
| | - Xuru Jin
- Department of Respiratory and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical Hospital, Quzhou People's Hospital, Wenzhou, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qinglin Li
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Huaqiong Huang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Centre for Infection Immunity and Cancer (IIC) of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, Zhejiang, China.
- Zhejiang Key Laboratory of Medical Imaging Artificial Intelligence, Haining, Zhejiang, China.
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
31
|
Yao P, Liu YG, Huang G, Hao L, Wang R. The development and application of chimeric antigen receptor natural killer (CAR-NK) cells for cancer therapy: current state, challenges and emerging therapeutic advances. Exp Hematol Oncol 2024; 13:118. [PMID: 39633491 PMCID: PMC11616395 DOI: 10.1186/s40164-024-00583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Immunotherapy has transformed the landscape of cancer treatment, with chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy emerging as a front runner in addressing some hematological malignancies. Despite its considerable efficacy, the occurrence of severe adverse effects associated with CAR-T cell therapy has limited their scope and prompted the exploration of alternative therapeutic strategies. Natural killer (NK) cells, characterized by both their innate cytotoxicity and ability to lyse target cells without the constraint of peptide specificity conferred by a major histocompatibility complex (MHC), have similarly garnered attention as a viable immunotherapy. As such, another therapeutic approach has recently emerged that seeks to combine the continued success of CAR-T cell therapy with the flexibility of NK cells. Clinical trials involving CAR-engineered NK (CAR-NK) cell therapy have exhibited promising efficacy with fewer deleterious side effects. This review aims to provide a concise overview of the cellular and molecular basis of NK cell biology, facilitating a better understanding of advancements in CAR design and manufacturing. The focus is on current approaches and strategies employed in CAR-NK cell development, exploring at both preclinical and clinical settings. We will reflect upon the achievements, advantages, and challenges intrinsic to CAR-NK cell therapy. Anticipating the maturation of CAR-NK cell therapy technology, we foresee its encouraging prospects for a broader range of cancer patients and other conditions. It is our belief that this CAR-NK progress will bring us closer to making significant strides in the treatment of refractory and recurrent cancers, as well as other immune-mediated disorders.
Collapse
Affiliation(s)
- Pin Yao
- Department of Health Management, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ya-Guang Liu
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Gang Huang
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China
| | - Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, Sanhao Street, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
32
|
Liu Y, Xiao L, Yang M, Chen X, Liu H, Wang Q, Guo M, Luo J. CAR-armored-cell therapy in solid tumor treatment. J Transl Med 2024; 22:1076. [PMID: 39609705 PMCID: PMC11603843 DOI: 10.1186/s12967-024-05903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Over the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a revolutionary immunotherapeutic approach to combat cancer. This therapy constructs a CAR on the surface of T cells through genetic engineering techniques. The CAR is formed from a combination of antibody-derived or ligand-derived domains and T-cell receptor (TCR) domains. This enables T cells to specifically bind to and activate against tumor cells. However, the efficacy of CAR-T cells in solid tumors remains inconclusive due to several challenges such as poor tumor trafficking, infiltration, and the immunosuppressive tumor microenvironment (TME). In response, CAR natural killer (CAR-NK) and CAR macrophages (CAR-M) have been developed as complementary strategies for solid tumors. CAR-NK cells do not require HLA compatibility, demonstrate reduced toxicity, and are thus seen as potential substitutes for CAR-T cells. Furthermore, CAR-M immunotherapy is also being researched and has shown phagocytic capabilities and tumor-antigen presentation. This study discusses the features, advantages, and limitations of CAR-T, CAR-NK, and CAR-M cells in the treatment of solid tumors and suggests prospective solutions for enhancing the efficacy of CAR host-cell-based immunotherapy.
Collapse
Affiliation(s)
- Yan Liu
- Navy Medical University, Shanghai, 200433, China
| | - Lin Xiao
- Navy Medical University, Shanghai, 200433, China
| | | | - Xuemei Chen
- Linyi People's Hospital, Linyi, Shandong, 276000, China
| | - Hongyue Liu
- Navy Medical University, Shanghai, 200433, China
| | - Quanxing Wang
- Navy Medical University, Shanghai, 200433, China
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China
| | - Meng Guo
- Navy Medical University, Shanghai, 200433, China.
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China.
| | - Jianhua Luo
- Navy Medical University, Shanghai, 200433, China.
- National Key Laboratory of Medical Immunology & Institute of Immunology, Naval Medical University, Shanghai, China.
| |
Collapse
|
33
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
Zhu X, Xue J, Jiang H, Xue D. CAR-NK cells for gastrointestinal cancer immunotherapy: from bench to bedside. Mol Cancer 2024; 23:237. [PMID: 39443938 PMCID: PMC11515662 DOI: 10.1186/s12943-024-02151-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Gastrointestinal (GI) cancers represent a significant health burden worldwide. Their incidence continues to increase, and their management remains a clinical challenge. Chimeric antigen receptor (CAR) natural killer (NK) cells have emerged as a promising alternative to CAR-T cells for immunotherapy of GI cancers. Notably, CAR-NK cells offer several advantages, including reduced risk of graft-versus-host disease, lower cytokine release syndrome, and the ability to target cancer cells through both CAR-dependent and natural cytotoxic mechanisms. MAIN BODY This review comprehensively discusses the development and applications of CAR-NK cells in the treatment of GI cancers. We explored various sources of NK cells, CAR design strategies, and the current state of CAR-NK cell therapy for GI cancers, highlighting recent preclinical and clinical trials. Additionally, we addressed existing challenges and propose potential strategies to enhance the efficacy and safety of CAR-NK cell therapy. CONCLUSIONS Our findings highlight the potential of CAR-NK cells to revolutionize GI cancer treatment and pave the way for future clinical applications.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Jieyun Xue
- China Medical University, Shenyang, Liaoning Province, 110000, P.R. China
| | - Hongzhou Jiang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China
| | - Dongwei Xue
- Department of Urinary Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110032, P.R. China.
| |
Collapse
|
35
|
Alekseeva NA, Boyko AA, Shevchenko MA, Grechikhina MV, Streltsova MA, Alekseeva LG, Sapozhnikov AM, Deyev SM, Kovalenko EI. Three-Dimensional Model Analysis Revealed Differential Cytotoxic Effects of the NK-92 Cell Line and Primary NK Cells on Breast and Ovarian Carcinoma Cell Lines Mediated by Variations in Receptor-Ligand Interactions and Soluble Factor Profiles. Biomedicines 2024; 12:2398. [PMID: 39457710 PMCID: PMC11504426 DOI: 10.3390/biomedicines12102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Background/objectives: The functional activity of a certain tumor determines the effectiveness of primary NK cells and NK-92 cell line-based cancer therapy; their therapeutic effectiveness against different tumors can vary. This work provides a direct simultaneous comparison of the cytotoxic effects of in vitro-activated peripheral NK (pNK) cells and NK-92 cells in spheroid models of BT-474, MCF7 and SKOV-3 carcinomas and uncovers the reasons for the differential effectiveness of NK cells against tumors. Methods: Tumor spheroids of similar size and shape, obtained from agarose molds, were incubated with NK-92 or pNK cells for 24 h. Tumor cell death was detected using flow cytometry or confocal microscopy. Cytokine production, granzyme B levels and NK cell degranulation analyses were performed, along with pNK and target-cell phenotypic characterization. Results: While NK-92 and pNK cells lysed BT-474 spheroids with comparably low efficiency, pNK cells were more capable of eliminating MCF7 and SKOV-3 spheroids than NK-92 cells were. The results of the functional and phenotypic analyses strongly support the participation of the NKG2D-NKG2DL pathway in pNK cell activation induced by the most sensitive cytotoxic attack on SKOV-3 spheroids, whereas the CX3CR1-CX3CL1 axis appears to be involved in the pNK reaction against MCF-7 spheroids. Conclusions: We provide a new approach for the preliminary identification of the most promising NK cell receptors that can alter the effectiveness of cancer therapy depending on the specific tumor type. Using this approach, NK-92 cells or pNK subsets can be selected for further accumulation and/or genetic modification to improve specificity and reactivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (N.A.A.); (M.A.S.); (M.V.G.); (M.A.S.); (L.G.A.); (A.M.S.); (S.M.D.)
| |
Collapse
|
36
|
Looi CK, Loo EM, Lim HC, Chew YL, Chin KY, Cheah SC, Goh BH, Mai CW. Revolutionizing the treatment for nasopharyngeal cancer: the impact, challenges and strategies of stem cell and genetically engineered cell therapies. Front Immunol 2024; 15:1484535. [PMID: 39450176 PMCID: PMC11499120 DOI: 10.3389/fimmu.2024.1484535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct malignancy of the nasopharynx and is consistently associated with the Epstein-Barr virus (EBV) infection. Its unique anatomical location and complex aetiology often result in advanced-stage disease at first diagnosis. While radiotherapy (RT) and chemotherapy have been the mainstays of treatment, they often fail to prevent tumour recurrence and metastasis, leading to high rates of treatment failure and mortality. Recent advancement in cell-based therapies, such as chimeric antigen receptor (CAR)-T cell therapy, have shown great promise in hematological malignancies and are now being investigated for NPC. However, challenges such as targeting specific tumour antigens, limited T cell persistence and proliferation, and managing treatment-related toxicities must be addressed. Extensive research is needed to enhance the effectiveness and safety of these therapies, paving the way for their integration into standard clinical practice for better management of NPC and a better quality of life for human health.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Ee-Mun Loo
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
- Advanced Genomics Laboratory, AGTC Genomics, Kuala Lumpur, Malaysia
| | - Heng-Chee Lim
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yik-Ling Chew
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shiau-Chuen Cheah
- Faculty of Medicine and Health Sciences, UCSI University, Port Dickson, Negeri Sembilan, Malaysia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Zhejiang, China
| | - Chun-Wai Mai
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Li X, Wang Y, Cai L, Huang S. SMAD4 enhances the cytotoxic efficacy of human NK cells against colorectal cancer cells via the m 6A reader YTHDF2. Front Immunol 2024; 15:1440308. [PMID: 39439794 PMCID: PMC11494605 DOI: 10.3389/fimmu.2024.1440308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Background Colorectal cancer (CRC) ranks as the third most prevalent malignant neoplasm in terms of both morbidity and mortality. Within the tumor microenvironment (TME) of CRC, the diminished presence and diminished cytotoxic function of natural killer (NK) cells serve as important factors driving the advancement of CRC; however, the precise regulatory mechanisms governing this phenomenon remain incompletely understood. Consequently, the identification of novel, potential anti-CRC targets associated with NK cells emerges as a pressing and paramount concern warranting immediate attention. Methods We examined the regulatory mechanism of SMAD4-mediated NK cell cytotoxicity on CRC by utilizing various experimental techniques, such as qRT-PCR, flow cytometry. Results Our findings revealed that the expression of SMAD4 is decreased in NK cells within the TME of human CRC. Furthermore, we observed that enforced upregulation of SMAD4 resulted in enhanced cytotoxicity of NK cells towards CRC cells. Furthermore, our research has revealed that YTHDF2 functions as a downstream effector of SMAD4, playing a crucial role in the control of transcription and translation of m6A-modified RNA. Moreover, our investigation demonstrated that increased expression of SMAD4 promoted the activating receptor NKG2D by elevating levels of YTHDF2. Ultimately, the SMAD4-YTHDF2 regulatory axis significantly enhanced the cytotoxicity of NK cells against human CRC cells. Conclusion Our study unveils a novel mechanism through which SMAD4 modulates the cytotoxicity of NK cells towards CRC cells, suggesting that SMAD4 may hold promise as a potential therapeutic target for NK cell therapy in CRC.
Collapse
Affiliation(s)
- Xinxin Li
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, China
| | - Yilin Wang
- Department of Psychiatry, Zigong Mental Health Center, the Zigong Affiliated Hospital of Southwest Medical University, Zigong, Sichuan, China
| | - Lei Cai
- Division of Digestive Surgery, Hospital of Digestive Diseases, Xi’an International Medical Center, Xi’an, Shaanxi, China
| | - Siyong Huang
- Department of Hematology, Xi’an International Medical Center, Xi’an, Shaanxi, China
| |
Collapse
|
38
|
Naghib SM, Ahmadi B, Mikaeeli Kangarshahi B, Mozafari MR. Chitosan-based smart stimuli-responsive nanoparticles for gene delivery and gene therapy: Recent progresses on cancer therapy. Int J Biol Macromol 2024; 278:134542. [PMID: 39137858 DOI: 10.1016/j.ijbiomac.2024.134542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Recent cancer therapy research has found that chitosan (Ch)-based nanoparticles show great potential for targeted gene delivery. Chitosan, a biocompatible and biodegradable polymer, has exceptional properties, making it an ideal carrier for therapeutic genes. These nanoparticles can respond to specific stimuli like pH, temperature, and enzymes, enabling precise delivery and regulated release of genes. In cancer therapy, these nanoparticles have proven effective in delivering genes to tumor cells, slowing tumor growth. Adjusting the nanoparticle's surface, encapsulating protective agents, and using targeting ligands have also improved gene delivery efficiency. Smart nanoparticles based on chitosan have shown promise in improving outcomes by selectively releasing genes in response to tumor conditions, enhancing targeted delivery, and reducing off-target effects. Additionally, targeting ligands on the nanoparticles' surface increases uptake and effectiveness. Although further investigation is needed to optimize the structure and composition of these nanoparticles and assess their long-term safety, these advancements pave the way for innovative gene-focused cancer therapies.
Collapse
Affiliation(s)
- Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Bahar Ahmadi
- Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
39
|
Kamal R, Awasthi A, Paul P, Mir MS, Singh SK, Dua K. Novel drug delivery systems in colorectal cancer: Advances and future prospects. Pathol Res Pract 2024; 262:155546. [PMID: 39191194 DOI: 10.1016/j.prp.2024.155546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab 142001, India; School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Priyanka Paul
- Department of Pharmaceutical Science, PCTE Group of Institute, Ludhiana, Punjab, India
| | - Mohammad Shabab Mir
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab 147301, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
40
|
Singh K, Rocco JM, Nussenblatt V. The winding road: Infectious disease considerations for CAR-T and other novel adoptive cellular therapies in the era of COVID-19. Semin Hematol 2024; 61:321-332. [PMID: 39379249 PMCID: PMC11626729 DOI: 10.1053/j.seminhematol.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 10/10/2024]
Abstract
Adoptive cellular therapies (ACT) are novel, promising treatments for life-threatening malignancies. In addition to the better known chimeric antigen receptor (CAR) T cells, ACTs include tumor infiltrating lymphocytes (TIL), cancer antigen-specific T cell receptors (TCRs), and CAR-NK (natural killer) cells. In key historic milestones, several adoptive therapies recently received FDA approvals, including 6 CAR-T products for the treatment of hematologic malignancies and the first TIL therapy for the treatment for metastatic melanoma. The rapid pace of clinical trials in the field and the discoveries they provide are ushering in a new era of cancer immunotherapy. However, the potential complications of these therapies are still not fully understood. In particular, patients receiving ACT may be at increased risk for severe infections due to immunocompromise resulting from their underlying malignancies, which are further compounded by the immune derangements that develop in the setting of cellular immunotherapy and/or the preconditioning treatment needed to enhance ACT efficacy. Moreover, these treatments are being readily implemented at a time following the height of the COVID-19 pandemic, and it remains unclear what additional risks these patients may face from SARS-CoV-2 and similar infections. Here, we examine the evidence for infectious complications with emerging adoptive therapies, and provide a focused review of the epidemiology, complications, and clinical management for COVID-19 in CAR-T recipients to understand the risk this disease may pose to recipients of other forms of ACT.
Collapse
Affiliation(s)
- Kanal Singh
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.
| | - Joseph M Rocco
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Veronique Nussenblatt
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
41
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
42
|
Meloni A, Cau R, Saba L, Positano V, De Gori C, Occhipinti M, Celi S, Bossone E, Bertacchi J, Punzo B, Mantini C, Cavaliere C, Maffei E, Cademartiri F. Photon-Counting Computed Tomography Angiography of Carotid Arteries: A Topical Narrative Review with Case Examples. Diagnostics (Basel) 2024; 14:2012. [PMID: 39335691 PMCID: PMC11431079 DOI: 10.3390/diagnostics14182012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Photon counting computed tomography (PCCT) represents a paradigm shift from conventional CT imaging, propelled by a new generation of X-ray detectors capable of counting individual photons and measuring their energy. The first part of this narrative review is focused on the technical aspects of PCCT and describes its key advancements and benefits compared to conventional CT but also its limitations. By synthesizing the existing literature, the second part of the review seeks to elucidate the potential of PCCT as a valuable tool for assessing carotid artery disease. Thanks to the enhanced spatial resolution and image quality, PCCT allows for an accurate evaluation of carotid luminal stenosis. With its ability to finely discriminate between different tissue types, PCCT allows for detailed characterization of plaque morphology and composition, which is crucial for assessing plaque vulnerability and the risk of cerebrovascular events.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| | - Riccardo Cau
- Department of Radiology, University Hospital of Cagliari, 09042 Cagliari, Italy; (R.C.); (L.S.)
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Cagliari, Italy; (R.C.); (L.S.)
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| | - Carmelo De Gori
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| | - Mariaelena Occhipinti
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Eduardo Bossone
- Department of Cardiology, Antonio Cardarelli Hospital, 80131 Naples, Italy;
| | - Jacopo Bertacchi
- Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds LS1 3EX, UK;
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (B.P.); (C.C.); (E.M.)
| | - Cesare Mantini
- Department of Radiology, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (B.P.); (C.C.); (E.M.)
| | - Erica Maffei
- Department of Radiology, Istituto di Ricerca e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (B.P.); (C.C.); (E.M.)
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (C.D.G.); (M.O.)
| |
Collapse
|
43
|
McErlean EM, McCarthy HO. Non-viral approaches in CAR-NK cell engineering: connecting natural killer cell biology and gene delivery. J Nanobiotechnology 2024; 22:552. [PMID: 39256765 PMCID: PMC11384716 DOI: 10.1186/s12951-024-02746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/02/2024] [Indexed: 09/12/2024] Open
Abstract
Natural Killer (NK) cells are exciting candidates for cancer immunotherapy with potent innate cytotoxicity and distinct advantages over T cells for Chimeric Antigen Receptor (CAR) therapy. Concerns regarding the safety, cost, and scalability of viral vectors has ignited research into non-viral alternatives for gene delivery. This review comprehensively analyses recent advancements and challenges with non-viral genetic modification of NK cells for allogeneic CAR-NK therapies. Non-viral alternatives including electroporation and multifunctional nanoparticles are interrogated with respect to CAR expression and translational responses. Crucially, the link between NK cell biology and design of drug delivery technologies are made, which is essential for development of future non-viral approaches. This review provides valuable insights into the current state of non-viral CAR-NK cell engineering, aimed at realising the full potential of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Emma M McErlean
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Helen O McCarthy
- School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- School of Chemical Sciences, Dublin City University, Collins Avenue, Dublin 9, Ireland
- Biodesign Europe, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
44
|
Karaduman A, Yılmaz C, Keten MF, Balaban İ, Saylık F, Alizade E, Zehir R. Prognostic value of nutrition for contrast-induced nephropathy in patients undergoing peripheral vascular intervention. Biomark Med 2024; 18:801-811. [PMID: 39229796 PMCID: PMC11497989 DOI: 10.1080/17520363.2024.2395248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Background: The objective was to examine the predictive value of malnutrition, assessed via the Controlling Nutritional status (CONUT) and Prognostic Nutrition Index (PNI) scores, in the development of contrast-associated acute kidney injury (CA-AKI) following peripheral vascular intervention (PVI).Methods: This retrospective cross-sectional observational study included the enrollment of 243 consecutive patients who underwent PVI. Patients were categorized into two groups based on the occurrence of CA-AKI.Results: Patients with CA-AKI had lower PNI scores and the PNI score was an independent predictor of CA-AKI development (Odds Ratio: 0.518, 95% CI: 2.295-0.908, p = 0.021). Nomogram had higher discriminative ability than both PNI and CONUT scores and discriminative abilities were similar for PNI and CONUT scores.Conclusion: Malnutrition, as identified by the CONUT and PNI, was found to be associated with a high risk of CA-AKI development following PVI.
Collapse
Affiliation(s)
- Ahmet Karaduman
- Department of Cardiology, Bitlis State Hospital, Beş Minare, Selahattin Eyyübi Street, No: 160, 13000 Center, Bitlis, Turkey
| | - Cemalettin Yılmaz
- Department of Cardiology, Mus State Hospital, Saltukgazi Neighborhood, Hospital Street, Malazgirt, Mus, 49400, Turkey
| | - Mustafa Ferhat Keten
- Department of Cardiology, Kartal Kosuyolu Research & Education Hospital, Denizer Road, Cevizli Crossroads, No: 2, Kartal, Istanbul, 34840, Turkey
| | - İsmail Balaban
- Department of Cardiology, Kartal Kosuyolu Research & Education Hospital, Denizer Road, Cevizli Crossroads, No: 2, Kartal, Istanbul, 34840, Turkey
| | - Faysal Saylık
- Department of Cardiology, Van Training & Research Hospital, Health Science University, Van, Turkey
| | - Elnur Alizade
- Department of Cardiology, Kartal Kosuyolu Research & Education Hospital, Denizer Road, Cevizli Crossroads, No: 2, Kartal, Istanbul, 34840, Turkey
| | - Regayip Zehir
- Department of Cardiology, Kartal Kosuyolu Research & Education Hospital, Denizer Road, Cevizli Crossroads, No: 2, Kartal, Istanbul, 34840, Turkey
| |
Collapse
|
45
|
Rus Bakarurraini NAA, Kamarudin AA, Jamal R, Abu N. Engineered T cells for Colorectal Cancer. Immunotherapy 2024; 16:987-998. [PMID: 39229803 PMCID: PMC11485792 DOI: 10.1080/1750743x.2024.2391733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Colorectal cancer (CRC) is a major contributor to global cancer incidence and mortality. Conventional treatments have limitations; hence, innovative approaches are imperative. Recent advancements in cancer research have led to the development of personalized targeted therapies and immunotherapies. Immunotherapy, in particular, T cell-based therapies, exhibited to be promising in enhancing cancer treatment outcomes. This review focuses on the landscape of engineered T cells as a potential option for the treatment of CRC. It highlights the approaches, challenges and current advancements in this field. As the understanding of molecular mechanisms increases, engineered T cells hold great potential in revolutionizing cancer treatment. To fully explore their safety efficacy in improving patient outcomes, further research and clinical trials are necessary.
Collapse
Affiliation(s)
| | - Ammar Akram Kamarudin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| |
Collapse
|
46
|
Wachholz GE, Akbari P, Huijbers EJM, Jalan P, van Beijnum JR, Griffioen AW. Targeting endothelial cell anergy to improve CAR T cell therapy for solid tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189155. [PMID: 39019408 DOI: 10.1016/j.bbcan.2024.189155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy presents significant results, especially for the treatment of hematologic malignancies. However, there are limitations and challenges to be overcome to achieve similar success for the treatment of solid tumors. These challenges involve selection of the target, infiltration into the tumor microenvironment and maintenance of functionality. The tumor vasculature is a major barrier for leukocytes to enter the tumor parenchyma. Due to the exposure of the vasculature to angiogenic growth factors during tumor progression, the endothelial cells become anergic to inflammatory cytokines, resulting in reduced leukocyte adhesion molecule expression. As such adhesion molecules are a prerequisite for leukocyte extravasation, endothelial cell anergy allows tumors to escape from endogenous immunity, as well as from cellular immunotherapies such as CAR T cells. Hence, overcoming endothelial cell anergy, e.g. through the administration of angiogenesis inhibitors, is believed to restore anti-tumor immunity. Concomitantly, both endogenous immune cells as well as cellular therapeutics such as CAR T cells can permeate into the tumor parenchyma. Here, we discuss how prior or concomitant treatment with an antiangiogenic drug can improve CAR T cell therapy, to become an attractive strategy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Gabriela E Wachholz
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Parvin Akbari
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Elisabeth J M Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Prachi Jalan
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
47
|
Meloni A, Maffei E, Positano V, Clemente A, De Gori C, Berti S, La Grutta L, Saba L, Bossone E, Mantini C, Cavaliere C, Punzo B, Celi S, Cademartiri F. Technical principles, benefits, challenges, and applications of photon counting computed tomography in coronary imaging: a narrative review. Cardiovasc Diagn Ther 2024; 14:698-724. [PMID: 39263472 PMCID: PMC11384460 DOI: 10.21037/cdt-24-52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/27/2024] [Indexed: 09/13/2024]
Abstract
Background and Objective The introduction of photon-counting computed tomography (PCCT) represents the most recent groundbreaking advancement in clinical computed tomography (CT). PCCT has the potential to overcome the limitations of traditional CT and to provide new quantitative imaging information. This narrative review aims to summarize the technical principles, benefits, and challenges of PCCT and to provide a concise yet comprehensive summary of the applications of PCCT in the domain of coronary imaging. Methods A review of PubMed, Scopus, and Google Scholar was performed until October 2023 by using relevant keywords. Articles in English were considered. Key Content and Findings The main advantages of PCCT over traditional CT are enhanced spatial resolution, improved signal and contrast characteristics, diminished electronic noise and image artifacts, lower radiation exposure, and multi-energy capability with enhanced material discrimination. These key characteristics have made room for improved assessment of plaque volume and severity of stenosis, more precise assessment of coronary artery calcifications, also preserved in the case of a reduced radiation dose, improved assessment of plaque composition, possibility to provide details regarding the biological processes occurring within the plaque, enhanced quality and accuracy of coronary stent imaging, and improved radiomic analyses. Conclusions PCCT can significantly impact diagnostic and clinical pathways and improve the management of patients with coronary artery diseases (CADs).
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Erica Maffei
- Department of Radiology, IRCCS SYNLAB SDN, Naples, Italy
| | - Vincenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Carmelo De Gori
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, Massa, Italy
| | - Ludovico La Grutta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties - ProMISE, University of Palermo, Palermo, Italy
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, Monserrato (CA), Italy
| | - Eduardo Bossone
- Department of Cardiology, Antonio Cardarelli Hospital, Naples, Italy
| | - Cesare Mantini
- Department of Radiology, "G. D'Annunzio" University, Chieti, Italy
| | | | - Bruna Punzo
- Department of Radiology, IRCCS SYNLAB SDN, Naples, Italy
| | - Simona Celi
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, Massa, Italy
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| |
Collapse
|
48
|
Yu B, Kang J, Lei H, Li Z, Yang H, Zhang M. Immunotherapy for colorectal cancer. Front Immunol 2024; 15:1433315. [PMID: 39238638 PMCID: PMC11375682 DOI: 10.3389/fimmu.2024.1433315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.
Collapse
Affiliation(s)
- Bing Yu
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Jian Kang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hong Lei
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Zhe Li
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Hao Yang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| | - Meng Zhang
- Department of the Colorectal Anal Surgery, The Affiliated Taian City Centeral Hospital of Qingdao University, Tai'an, Shandong, China
| |
Collapse
|
49
|
Mai Q, He B, Deng S, Zeng Q, Xu Y, Wang C, Pang Y, Zhang S, Li J, Zeng J, Huang L, Fu Y, Li C, Li T, Xu X, Zhang L. Efficacy of NKG2D CAR-T cells with IL-15/IL-15Rα signaling for treating Epstein-Barr virus-associated lymphoproliferative disorder. Exp Hematol Oncol 2024; 13:85. [PMID: 39160631 PMCID: PMC11334566 DOI: 10.1186/s40164-024-00553-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
Epstein-Barr virus (EBV) related post-transplant lymphoproliferative disorder (EBV-PTLD) is a life-threatening complication after hematopoietic stem cell transplantation (HSCT) or solid organ transplantation (SOT), for which no standard therapeutic means have been developed. Significant increase expression of natural killer group 2 member D ligands (NKG2DLs) was observed on B-lymphoblastoid cells of EBV-PTLD, indicating NKG2DLs as potential therapeutic targets for treatment of EBV-PTLD. In this study, the recombinant constructs of NKG2D CAR and IL-15/IL-15Rα-NKG2D CAR were generated with a retroviral vector and then transduced to human T cells to produce NKG2D CAR-T and IL-15/IL-15Rα-NKG2D CAR-T cells, respectively. B-lymphoblastoid cell lines (B-LCLs) and the xenografted mouse models were established to evaluate the efficacy of these CAR-T cells. IL-15/IL-15Rα-NKG2D CAR-T cells exhibited superior proliferation and antigen-specific cytotoxic effect compared to NKG2D CAR-T, as IL-15/IL-15Rα signaling promoted the expansion of less differentiated central memory T cells (TCM) and increased expression of CD107a and IFN-γ. Moreover, EBV DNA load was dramatically reduced, and 80% B-LCL cells were eliminated by IL-15/IL-15Rα-NKG2D CAR-T cells after co-culturing. In-vivo study confirmed that IL-15/IL-15Rα-NKG2D CAR-T cell therapy significantly enhanced antiviral efficacy in mice, as the serum load of EBV after IL-15/IL-15Rα-NKG2D CAR-T cell infusion was 1500 times lower than the untreated control (P < 0.001). The enhanced efficacy of IL-15/IL-15Rα-NKG2D CAR T cells was probably due to the IL-15/IL-15Rα signaling improved homing and persistence of NKG2D CAR-T cells in vivo, and increased the production of IFN-γ, Perforin, and Granulysin. In conclusion, NKG2D CAR-T cells co-expressing IL-15/IL-15Rα promoted the central memory CAR T cell proliferation and improved the homing and persistence of CAR T cells in vivo, resulting in enhanced anti-tumor and anti-viral effects in treating EBV-PTLD.
Collapse
Affiliation(s)
- Qiusui Mai
- Department of Blood Transfusion, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Bailin He
- Department of Hematology, Nanfang Hospital, Southern Medical Universit, Guangzhou, 510515, China
| | - Shikai Deng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Qing Zeng
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
| | - Yanwen Xu
- Department of Obstetrics, He Xian Memorial Affiliated Hospital of Southern Medical University, Guangzhou, 511402, China
| | - Cong Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou, 510555, China
| | - Yunyi Pang
- Department of Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Zhang
- Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China
| | - Jinfeng Li
- Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China
| | | | - Liqin Huang
- Shenzhen Blood Center, Shenzhen, 518035, China
| | - Yongshui Fu
- Guangzhou Blood Center, Guangzhou, 510095, China
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Guangzhou Bai Rui Kang (BRK) Biological Science and Technology Limited Company, Guangzhou, 510555, China.
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
- Shenzhen Bao'an District Central Blood Station, Shenzhen, 518101, China.
| | - Xiaojun Xu
- Department of Blood Transfusion, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
50
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|