1
|
Wujiamaiti Z, Kizaibek M, Bahetijian D, Li Y, Gui Y, Abula A. Urtica cannabina L. water extract exhibits anti-inflammatory activity by regulating inflammatory cytokines: In vitro and in vivo evidence. J Ethnopharmacol 2024; 318:116907. [PMID: 37453626 DOI: 10.1016/j.jep.2023.116907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Urtica cannabina L. (U. cannabina) is a medicinal plant used in traditional Chinese and Kazakh medicine for treatment of various ailments such as rheumatoid arthritis, rheumatic pain, high blood pressure, and snake bites. However, very few studies have focused on the anti-inflammatory effects of U. cannabina and the mechanisms underlying these effects. AIM OF THE STUDY This study to investigate the in vitro and in vivo anti-inflammatory effect of U. cannabina, the underlying mechanisms, and its phytochemical profile. MATERIALS AND METHODS We investigated the anti-inflammatory effects of the U. cannabina water extract on lipopolysaccharide-stimulated RAW264.7 macrophages and paw edema in rats and analyzed its chemical components using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). RESULTS U. cannabina water extract effectively inhibited the secretion of multiple inflammatory factors, and its corresponding mRNA expression in LPS-induced RAW264.7 cells (p < 0.05). Tincture of U. cannabina water extract significantly reduced carrageenan-induced rat paw edema and levels of inflammatory factors (p < 0.05). A total of 31 compounds, which mainly include organic acids, were tentatively identified based on the comparison of their mass spectrum profiles with those recorded in a mass spectra database. CONCLUSIONS The results of this study elucidated the anti-inflammatory effect of U. cannabina water extract in vitro and in vivo and showed that the extract elicits the anti-inflammatory effects by regulating the activity of inflammatory cytokines. The results prove that U. cannabina is a valuable source of active compounds with anti-inflammatory activity.
Collapse
Affiliation(s)
| | - Murat Kizaibek
- Traditional Kazakh Medicine Research Institute of Ili Kazakh Autonomous Prefecture, Yining, 835000, China; Traditional Chinese Medicine Hospital of Ili Kazakh Autonomous Prefecture, Yining, 835000, China.
| | - Didaer Bahetijian
- Traditional Kazakh Medicine Research Institute of Ili Kazakh Autonomous Prefecture, Yining, 835000, China; Traditional Chinese Medicine Hospital of Ili Kazakh Autonomous Prefecture, Yining, 835000, China.
| | - Yanan Li
- School of Chemistry and Environmental Science, Yili Normal University, Yining, 835000, China.
| | - Yingying Gui
- Xinjiang Enze Chinese Medicine Yinpian Co. Ltd., Yining, 835000, China.
| | - Ajiranmu Abula
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
2
|
Hvarchanova N, Stoeva S, Radeva-Ilieva M, Zhelev I, Georgieva M, Dzhenkov D, Georgiev KD. Cardio- and nephroprotective effects of fractions isolated from Lycium barbarum (goji berry) in models of cardio- and nephrotoxicity in rats. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2155571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Nadezhda Hvarchanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| | - Stanila Stoeva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| | - Maya Radeva-Ilieva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| | - Iliya Zhelev
- Department of Biology, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| | - Marieta Georgieva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| | - Deyan Dzhenkov
- Department of General and Clinical Pathology, Forensic Medicine and Deontology, Division of General and Clinical Pathology, Faculty of Medicine, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| | - Kaloyan D. Georgiev
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna “Prof. Dr. Paraskev Stoyanov”, Varna, Bulgaria
| |
Collapse
|
3
|
Guo W, Huang D, Li S. Lycopene alleviates oxidative stress-induced cell injury in human vascular endothelial cells by encouraging the SIRT1/Nrf2/HO-1 pathway. Clin Exp Hypertens 2023; 45:2205051. [PMID: 37120838 DOI: 10.1080/10641963.2023.2205051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND OBJECTIVE Epidemiological research have displayed that dietary intake rich in lycopene, an antioxidant, is negatively correlated with the risk of cardiovascular disease (CVD). This study aimed to investigate whether the intervention with different concentrations of lycopene could attenuate H2O2-induced oxidative stress injury in human vascular endothelial cells (VECs). METHODS The human VECs HMEC-1 and ECV-304 were incubated with a final concentration of 300 µmol/L H2O2, followed by they were incubated with lycopene at doses of 0.5, 1, or 2 µm. Subsequently, cell proliferation, cytotoxicity, cell adhesion, reactive oxygen species (ROS) contents, adhesion molecule expression, oxidative stress levels, pro-inflammatory factor production, the apoptosis protein levels, and the silent information regulator-1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway protein levels were tested by CCK-8 kit, lactate dehydrogenase (LDH) kit, immunofluorescence labeling, cell surface enzyme immunoassays (EIA), enzyme-linked immunosorbent assay (ELISA), as well as Western blot assays, respectively. RESULTS Under H2O2 stimulation, HMEC-1 and ECV-304 cell proliferation and the SIRT1/Nrf2/HO-1 pathway protein expression were significantly reduced, whereas cytotoxicity, apoptosis, cell adhesion molecule expression, pro-inflammatory and oxidative stress factors production were apparently encouraged, which were partially countered by lycopene intervention in a dose-dependent manner. CONCLUSION Lycopene alleviates H2O2-induced oxidative damage in human VECs by reducing intracellular ROS levels, inflammatory factor production, cell adhesiveness, and apoptosis rate under oxidative stress conditions through activation of the SIRT1/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Wenhai Guo
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Danping Huang
- The First Clinical Medicine School, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Shaodong Li
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| |
Collapse
|
4
|
Li M, Lei P, Shuang S, Dong C, Zhang L. Recent advances in fluorescent probes for dual-detecting ONOO - and analytes. Spectrochim Acta A Mol Biomol Spectrosc 2023; 303:123179. [PMID: 37542874 DOI: 10.1016/j.saa.2023.123179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/07/2023]
Abstract
Although peroxynitrite (ONOO-) plays an essential role in cellular redox homeostasis, its excess ONOO- will affect the normal physiological function of cells. Therefore, real-time monitoring of changes in local ONOO- will contribute to further revealing the biological functions. Reliable and accurate detection of biogenic ONOO- will definitely benefit for disentangling its complex functions in living systems. In the past few years, more fluorescent probes have been developed to help understand and reveal cellular ONOO- changes. However, there has been no comprehensive and critical review of multifunctional fluorescent probes for cellular ONOO- and other analytes. To highlight the recent advances, this review first summarized the recent progress of multifunctional fluorescent probes since 2018, focusing on molecular structures, response mechanisms, optical properties, and biological imaging in the detection and imaging of cellular ONOO- and analytes. We classified and discussed in detail the limitations of existing multifunctional probes, and proposed new ideas to overcome these limitations. Finally, the challenges and future development trends of ONOO- fluorescence probes were discussed. We hoped this review will provide new research directions for developing of multifunctional fluorescent probes and contribute to the early diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Minglu Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Peng Lei
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering & Institute of Environmental Science, Shanxi University, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Tongji Shanxi Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China.
| |
Collapse
|
5
|
Li B, Zhang J, Ma N, Li W, You G, Chen G, Zhao L, Wang Q, Zhou H. PEG-conjugated bovine haemoglobin enhances efficiency of chemotherapeutic agent doxorubicin with alleviating DOX-induced splenocardiac toxicity in the breast cancer. Artif Cells Nanomed Biotechnol 2023; 51:120-130. [PMID: 36905212 DOI: 10.1080/21691401.2023.2176865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic agent widely used for cancer treatment. However, hypoxia in tumour tissue and obvious adverse effects particularly cardiotoxicity restricts the clinical usage of DOX. Our study is based on the co-administration of haemoglobin-based oxygen carriers (HBOCs) and DOX in a breast cancer model to investigate HBOCs' ability to enhance chemotherapeutic effectiveness and its capabilities to alleviate the side effects induced by DOX. In an in-vitro study, the results suggested the cytotoxicity of DOX was significantly improved when combined with HBOCs in a hypoxic environment, and produced more γ-H2AX indicating higher DNA damage than free DOX did. Compared with administration of free DOX, combined therapy exhibited a stronger tumour suppressive effect in an in-vivo study. Further mechanism studies showed that the expression of various proteins such as hypoxia-inducible factor-1α (HIF-1α), CD31, CD34, and vascular endothelial growth factor (VEGF) in tumour tissues was also significantly reduced in the combined treatment group. In addition, HBOCs can significantly reduce the splenocardiac toxicity induced by DOX, according to the results of the haematoxylin and eosin (H&E) staining and histological investigation. This study suggested that PEG-conjugated bovine haemoglobin may not only reduce the hypoxia in tumours and increase the efficiency of chemotherapeutic agent DOX, but also alleviate the irreversible heart toxicity caused by DOX-inducted splenocardiac dysregulation.
Collapse
Affiliation(s)
- Bingting Li
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China
| | - Jun Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China.,The Western Theater General Hospital, Chengdu, P. R. China
| | - Ning Ma
- Clinical Laboratory of Beijing Huairou Hospital, Beijing, P. R. China
| | - Weidan Li
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China
| | - Gan Chen
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China
| | - Lian Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China
| | - Quan Wang
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China
| |
Collapse
|
6
|
Gambacorta N, Gasperi V, Guzzo T, Di Leva FS, Ciriaco F, Sánchez C, Tullio V, Rozzi D, Marinelli L, Topai A, Nicolotti O, Maccarrone M. Exploring the 1,3-benzoxazine chemotype for cannabinoid receptor 2 as a promising anti-cancer therapeutic. Eur J Med Chem 2023; 259:115647. [PMID: 37478557 DOI: 10.1016/j.ejmech.2023.115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
The discovery of selective agonists of cannabinoid receptor 2 (CB2) is strongly pursued to successfully tuning endocannabinoid signaling for therapeutic purposes. However, the design of selective CB2 agonists is still challenging because of the high homology with the cannabinoid receptor 1 (CB1) and for the yet unclear molecular basis of the agonist/antagonist switch. Here, the 1,3-benzoxazine scaffold is presented as a versatile chemotype for the design of CB2 agonists from which 25 derivatives were synthesized. Among these, compound 7b5 (CB2 EC50 = 110 nM, CB1 EC50 > 10 μM) demonstrated to impair proliferation of triple negative breast cancer BT549 cells and to attenuate the release of pro-inflammatory cytokines in a CB2-dependent manner. Furthermore, 7b5 abrogated the activation of extracellular signal-regulated kinase (ERK) 1/2, a key pro-inflammatory and oncogenic enzyme. Finally, molecular dynamics studies suggested a new rationale for the in vitro measured selectivity and for the observed agonist behavior.
Collapse
Affiliation(s)
- Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Valeria Gasperi
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Tatiana Guzzo
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via Della Ricerca Scientifica Snc, 00133, Rome, Italy
| | | | - Fulvio Ciriaco
- Department of Chemistry, University of the Studies of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Cristina Sánchez
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, C/ José Antonio Nováis, 12, 28040, Madrid, Spain
| | - Valentina Tullio
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00133, Rome, Italy
| | - Diego Rozzi
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via Della Ricerca Scientifica Snc, 00133, Rome, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy
| | - Alessandra Topai
- C4T S.r.l Colosseum Combinatorial Chemistry Centre for Technology, Via Della Ricerca Scientifica Snc, 00133, Rome, Italy.
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of the Studies of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy; European Center for Brain Research/Santa Lucia Foundation IRCCS, Via Del Fosso di Fiorano 64, 00143, Rome, Italy.
| |
Collapse
|
7
|
Wang W, Wang SK, Wang Q, Zhang Z, Li B, Zhou ZD, Zhang JF, Lin C, Chen TX, Jin Z, Tang YZ. Diclofenac and eugenol hybrid with enhanced anti-inflammatory activity through activating HO-1 and inhibiting NF-κB pathway in vitro and in vivo. Eur J Med Chem 2023; 259:115669. [PMID: 37517204 DOI: 10.1016/j.ejmech.2023.115669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
A series of diclofenac hybrid molecules were synthesized and evaluated for their NO-inhibitory ability in LPS-induced RAW 264.7 macrophage cells. Among them, compound 1 showed the highest NO-inhibitory ability (approximately 66%) and no significant cytotoxicity. Compound 1 exhibited superior NF-κB-inhibitory ability compared to diclofenac through the activation of Nrf2/HO-1 signaling pathway in RAW 264.7. 20 mg/kg compound 1 resulted in remarkable colitis improvement in dextran sulfate sodium (DSS)-induced mice model by up-regulating HO-1 and down-regulating phosphorylation level of NF-κB p65. Moreover, 50 mg/kg dose of compound 1 showed a lower ulcerogenic potential compared to diclofenac in rats. The diclofenac-eugenol hybrid (compound 1) may serve as a novel anti-inflammatory agent based on its role in inhibiting the NF-κB signaling pathway and activating HO-1 expression with no toxicity in vitro and in vivo.
Collapse
Affiliation(s)
- Wei Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shou-Kai Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Bo Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zi-Dan Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jian-Feng Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Chao Lin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Ting-Xiao Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - You-Zhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
8
|
Wang X, Zhang H, Liu Y, Xu Y, Yang B, Li H, Chen L. An overview on synthetic and biological activities of cannabidiol (CBD) and its derivatives. Bioorg Chem 2023; 140:106810. [PMID: 37659147 DOI: 10.1016/j.bioorg.2023.106810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
(-)-Cannabidiol is a class of non-psychoactive plant cannabinoids derived from cannabis plants. Currently, Epidiolex (Cannabidiol) has been approved by the FDA for the treatment of two rare and severe forms of epilepsy related diseases, namely Lennox-Gastaut syndrome (LGS) and Dravet (DS). In addition, Cannabidiol and its structural analogues have received increasing attention due to their potential therapeutic effects such as neuroprotection, anti-epilepsy, anti-inflammation, anti-anxiety, and anti-cancer. Based on literature review, no comprehensive reviews on the synthesis of Cannabidiol and its derivatives have been found in recent years. Therefore, this article summarizes the published synthesis methods of Cannabidiol and the synthesis routes of Cannabidiol derivatives, and introduces the biological activities of some Cannabidiol analogues that have been studied extensively and have significant activities.
Collapse
Affiliation(s)
- Xiuli Wang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanbang Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Heilongjiang 150006, China.
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
9
|
Berg BB, Linhares AFS, Martins DM, Rachid MA, Cau SBDA, Souza GGD, Carvalho JCSD, Sorgi CA, Romero TRL, Pinho V, Teixeira MM, Castor MGME. Anandamide reduces the migration of lymphocytes to the intestine by CB2 activation and reduces TNF-α in the target organs, protecting mice from graft-versus-host disease. Eur J Pharmacol 2023; 956:175932. [PMID: 37536622 DOI: 10.1016/j.ejphar.2023.175932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Graft-versus-host disease (GVHD) is a serious inflammatory illness that often occurs as a secondary complication of bone marrow transplantation. Current therapies have limited effectiveness and fail to achieve a balance between inflammation and the graft-versus-tumor effect. In this study, we investigate the effects of the endocannabinoid anandamide on the complex pathology of GVHD. We assess the effects of an irreversible inhibitor of fatty acid amine hydrolase or exogenous anandamide and find that they increase survival and reduce clinical signs in GVHD mice. In the intestine of GVHD mice, treatment with exogenous anandamide also leads to a reduction in the number of CD3+, CD3+CD4+, and CD3+CD8+ cells, which reduces the activation of CD3+CD4+ and CD3+CD8+ cells, as assessed by enhanced CD28 expression, a T cell co-stimulatory molecule. Exogenous AEA was also able to reduce TNF-α and increase IL-10 in the intestine of GVHD mice. In the liver, exogenous AEA reduces injury, TNF-α levels, and the number of CD3+CD8+ cells. Interestingly, anandamide reduces Mac-1α, which lowers the adhesion of transplanted cells in mesenteric veins. These effects are mimicked by JWH133-a CB2 selective agonist-and abolished by treatment with a CB2 antagonist. Furthermore, the effects caused by anandamide treatment on survival were related to the CB2 receptor, as the CB2 antagonist abolished it. This study shows the critical role of the CB2 receptor in the modulation of the inflammatory response of GVHD by treatment with anandamide, the most prominent endocannabinoid.
Collapse
Affiliation(s)
- Bárbara Betônico Berg
- Graduate Program in Biological Sciences: Physiology and Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Flávia Santos Linhares
- Graduate Program in Biological Sciences: Physiology and Pharmacology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | - Carlos Arterio Sorgi
- Chemistry Department, Faculty of Philosophy Sciences and Letters of Ribeirão Preto, São Paulo, Brazil
| | | | - Vanessa Pinho
- Morphology Department, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
10
|
Wei J, Zhang L, Wu K, Yu J, Gao F, Cheng J, Zhang T, Zhou X, Zong Y, Huang X, Jiang C. R-(+)-WIN55212-2 protects pericytes from ischemic damage and restores retinal microcirculatory patency after ischemia/reperfusion injury. Biomed Pharmacother 2023; 166:115197. [PMID: 37572634 DOI: 10.1016/j.biopha.2023.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoids are vasoactive substances that act as key regulators of arterial tone in the blood vessels supplying peripheral tissues and the central nervous system. This study aimed to investigate the potential of R-(+)-WIN55212-2 (WIN), a cannabinoid receptor 1 agonist (CB1), as a treatment for retinal ischemia/reperfusion (I/R) injury. EXPERIMENTAL APPROACH Male Wistar rats were subjected to retinal I/R injury by increasing intraocular pressure in the anterior chamber. The rats were randomly divided into four groups: normal control, I/R, vehicle (pre-treated with dimethyl sulfoxide [DMSO] via intraperitoneal injection), and experimental (pre-treated with WIN at a dose of 1 ml/kg via intraperitoneal injection). The rats were sacrificed at different time points of reperfusion (1 hour, 3 hours, 6 hours, and 1 day) after inducing retinal I/R injury, and their retinas were collected for analysis. Oxygen-glucose deprived/reperfusion (OGD/R) was performed by initially perfusing the retinas with oxygenated artificial cerebrospinal fluid (ACSF), then switching to an OGD solution to simulate ischemia, followed by another perfusion with ACSF. Pericyte contraction and the "no-reflow" phenomenon were observed using infrared differential interference contrast (IR-DIC) microscopy and immunohistochemistry. Western blot, enzyme-linked immunosorbent assay (ELISA), and nitric oxide (NO) detection were used to explore the potential mechanism. KEY RESULTS In both the OGD/R and I/R models, retinal pericytes exhibited persistent contraction even after reperfusion. The ability of WIN to regulate the tone of retinal pericytes and capillaries was specifically blocked by the BKCa inhibitor iberiotoxin (100 nM). WIN demonstrated a protective effect against retinal I/R injury by preserving blood flow in vessels containing pericytes. Pretreatment with WIN alleviated the persistent contraction and apoptosis of retinal pericytes in I/R-induced rats, accompanied by a reduction in intracellular calcium ion (Ca2+) concentration. The expression of CB1 decreased in a time-dependent manner in the I/R group. After I/R injury, endothelium-derived nitric oxide (eNOS) levels were reduced at all time points, which was successfully reversed by WIN therapy except for the 1 day group. Additionally, the downregulation of cyclic guanosine monophosphate (cGMP) and BKCa expression at 3 hours, 6 hours, and 1 day after I/R injury was restored by pretreatment of WIN. CONCLUSIONS & IMPLICATIONS WIN exerted its protective effects on retinal I/R injury by inhibiting the contraction and apoptosis of pericytes through the CB1-eNOS-cGMP-BKCa signaling pathway, thus ameliorated the occlusion of retinal capillaries.
Collapse
Affiliation(s)
- Jiaojiao Wei
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Lili Zhang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Kaicheng Wu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Jian Yu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Fengjuan Gao
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Jingyi Cheng
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Ting Zhang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| | - Xujiao Zhou
- Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China.
| | - Yuan Zong
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China.
| | - Xiaojing Huang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, People's Republic of China.
| | - Chunhui Jiang
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Fudan University, Shanghai 200031, People's Republic of China; Eye and ENT Hospital, State Key laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200031, People's Republic of China; Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai 200031, People's Republic of China
| |
Collapse
|
11
|
Asejeje FO, Akinola KD, Abiola MA. Sodium benzoate exacerbates hepatic oxidative stress and inflammation in lipopolysaccharide-induced liver injury in rats. Immunopharmacol Immunotoxicol 2023; 45:558-564. [PMID: 36927185 DOI: 10.1080/08923973.2023.2191818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Liver damage is a global health concern associated with a high mortality rate. Sodium benzoate (SB) is a widely used preservative in the food industry with a wide range of applications. However, there's a lack of scientific reports on its effect on lipopolysaccharide-induced hepatic dysfunction. OBJECTIVE The present study investigated the influence of SB on lipopolysaccharide (LPS)-induced liver injury. MATERIALS AND METHODS Twenty-eight rats were randomly allocated into four groups: control (received distilled water), SB (received 600 mg/kg), LPS (received 0.25 mg/kg), and LPS + SB (received LPS, 0.25 mg/kg, and SB, 600 mg/kg). SB was administered orally for 14 days while LPS was administered intraperitoneally for 7 days. RESULTS Administration of SB to rats with hepatocyte injury exacerbated liver damage with a significant increase in the activities of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). We also observed that SB aggravated LPS-mediated hepatic oxidative stress occasioned by a marked decrease in antioxidant status with a concomitant increase in lipid peroxidation. Furthermore, LPS - mediated increase in inflammatory biomarkers as well as histological deterioration in the liver was exacerbated following the administration of SB to rats. CONCLUSION Taken together, the study provides experimental evidence that SB exacerbates hepatic oxidative stress and inflammation in LPS-mediated liver injury.
Collapse
Affiliation(s)
- Folake Olubukola Asejeje
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Khalid Damilare Akinola
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Michael Abayomi Abiola
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
12
|
Fletcher E, Miserlis D, Sorokolet K, Wilburn D, Bradley C, Papoutsi E, Wilkinson T, Ring A, Ferrer L, Haynatzki G, Smith RS, Bohannon WT, Koutakis P. Diet-induced obesity augments ischemic myopathy and functional decline in a murine model of peripheral artery disease. Transl Res 2023; 260:17-31. [PMID: 37220835 DOI: 10.1016/j.trsl.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
Peripheral artery disease (PAD) causes an ischemic myopathy contributing to patient disability and mortality. Most preclinical models to date use young, healthy rodents with limited translatability to human disease. Although PAD incidence increases with age, and obesity is a common comorbidity, the pathophysiologic association between these risk factors and PAD myopathy is unknown. Using our murine model of PAD, we sought to elucidate the combined effect of age, diet-induced obesity and chronic hindlimb ischemia (HLI) on (1) mobility, (2) muscle contractility, and markers of muscle (3) mitochondrial content and function, (4) oxidative stress and inflammation, (5) proteolysis, and (6) cytoskeletal damage and fibrosis. Following 16-weeks of high-fat, high-sucrose, or low-fat, low-sucrose feeding, HLI was induced in 18-month-old C57BL/6J mice via the surgical ligation of the left femoral artery at 2 locations. Animals were euthanized 4-weeks post-ligation. Results indicate mice with and without obesity shared certain myopathic changes in response to chronic HLI, including impaired muscle contractility, altered mitochondrial electron transport chain complex content and function, and compromised antioxidant defense mechanisms. However, the extent of mitochondrial dysfunction and oxidative stress was significantly greater in obese ischemic muscle compared to non-obese ischemic muscle. Moreover, functional impediments, such as delayed post-surgical recovery of limb function and reduced 6-minute walking distance, as well as accelerated intramuscular protein breakdown, inflammation, cytoskeletal damage, and fibrosis were only evident in mice with obesity. As these features are consistent with human PAD myopathy, our model could be a valuable tool to test new therapeutics.
Collapse
Affiliation(s)
- Emma Fletcher
- Department of Biology, Baylor University, Waco, Texas
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | | | - Dylan Wilburn
- Department of Health, Human Performance and Recreation, Baylor University, Waco, Texas
| | | | | | | | - Andrew Ring
- Department of Biology, Baylor University, Waco, Texas
| | - Lucas Ferrer
- Department of Surgery, University of Texas at Austin Dell Medical School, Austin, Texas
| | - Gleb Haynatzki
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Robert S Smith
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | - William T Bohannon
- Department of Surgery, Baylor Scott & White Medical Center, Temple, Texas
| | | |
Collapse
|
13
|
Lin Y, Li JJ, He L, Li QR, Long QD, Zhang X, Zeng Z. A new modified pterocarpan glycoside from Sophora flavescens. Nat Prod Res 2023; 37:3374-3379. [PMID: 35583301 DOI: 10.1080/14786419.2022.2075861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Sophora flavescens is a widely used traditional Chinese herbal medicine. In this work, a new pterocarpan glycoside, kurarinol C (1) together with six known compounds, sophoracarpan A (2), trifohrhizin-6'-monoacetate (3), trifohrhizin (4), maackiain (5), (6S,6aS,11aR)-6α-methoxy-pterocarpin (6), L-maackiain (7) were isolated from the roots of S. flavescens. Among them, compounds 2 and 6 were discovered from S. flavescens for the first time. Their chemical structures were elucidated on the basis of extensive NMR and MS analyses. Furthermore, the antioxidant activities of these compounds were evaluated by the ABTS and DPPH free radical scavenging assay. Three compounds (5, 6, 7) exhibited stronger antioxidant capacity against the ABTS enzyme at 20 µg/mL (scavenging rates > 55%).
Collapse
Affiliation(s)
- Yan Lin
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Jing-Jing Li
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Lei He
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Qi-Rui Li
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Qing-De Long
- Engineering Center of Cellular Immunotherapy of Guizhou Province, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guiyang, China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical
|
|