451
|
Pharmacokinetics and Pharmacological Activities of Berberine in Diabetes Mellitus Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9987097. [PMID: 34471420 PMCID: PMC8405293 DOI: 10.1155/2021/9987097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has good clinical application prospects in diabetes treatment. In addition, TCM is less toxic and/or has fewer side effects and provides various therapeutic effects. Berberine (BBR) is isolated as the main component in many TCM kinds (e.g., Rhizoma Coptidis and Berberidis Cortex). Furthermore, BBR can reduce blood sugar and blood fat, alleviate inflammation, and improve the state of patients. Based on the recent study results of BBR in diabetes treatment, the BBR pharmacokinetics and mechanism on diabetes are mainly studied, and the specific molecular mechanism of related experimental BBR is systematically summarized and analyzed. Clinical studies have proved that BBR has a good therapeutic effect on diabetes, suggesting that BBR may be a promising drug candidate for diabetes. More detailed BBR mechanisms and pathways of BBR need to be studied further in depth, which will help understand the BBR pharmacology in diabetes treatment.
Collapse
|
452
|
Karimi MR, Karimi AH, Abolmaali S, Sadeghi M, Schmitz U. Prospects and challenges of cancer systems medicine: from genes to disease networks. Brief Bioinform 2021; 23:6361045. [PMID: 34471925 PMCID: PMC8769701 DOI: 10.1093/bib/bbab343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022] Open
Abstract
It is becoming evident that holistic perspectives toward cancer are crucial in deciphering the overwhelming complexity of tumors. Single-layer analysis of genome-wide data has greatly contributed to our understanding of cellular systems and their perturbations. However, fundamental gaps in our knowledge persist and hamper the design of effective interventions. It is becoming more apparent than ever, that cancer should not only be viewed as a disease of the genome but as a disease of the cellular system. Integrative multilayer approaches are emerging as vigorous assets in our endeavors to achieve systemic views on cancer biology. Herein, we provide a comprehensive review of the approaches, methods and technologies that can serve to achieve systemic perspectives of cancer. We start with genome-wide single-layer approaches of omics analyses of cellular systems and move on to multilayer integrative approaches in which in-depth descriptions of proteogenomics and network-based data analysis are provided. Proteogenomics is a remarkable example of how the integration of multiple levels of information can reduce our blind spots and increase the accuracy and reliability of our interpretations and network-based data analysis is a major approach for data interpretation and a robust scaffold for data integration and modeling. Overall, this review aims to increase cross-field awareness of the approaches and challenges regarding the omics-based study of cancer and to facilitate the necessary shift toward holistic approaches.
Collapse
Affiliation(s)
| | | | | | - Mehdi Sadeghi
- Department of Cell & Molecular Biology, Semnan University, Semnan, Iran
| | - Ulf Schmitz
- Department of Molecular & Cell Biology, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
453
|
Harper KL, Mottram TJ, Whitehouse A. Insights into the Evolving Roles of Circular RNAs in Cancer. Cancers (Basel) 2021; 13:4180. [PMID: 34439334 PMCID: PMC8391132 DOI: 10.3390/cancers13164180] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The majority of RNAs transcribed from the human genome have no coding capacity and are termed non-coding RNAs (ncRNAs). It is now widely accepted that ncRNAs play key roles in cell regulation and disease. Circular RNAs (circRNAs) are a form of ncRNA, characterised by a closed loop structure with roles as competing endogenous RNAs (ceRNAs), protein interactors and transcriptional regulators. Functioning as key cellular regulators, dysregulated circRNAs have a significant impact on disease progression, particularly in cancer. Evidence is emerging of specific circRNAs having oncogenic or tumour suppressive properties. The multifaceted nature of circRNA function may additionally have merit as a novel therapeutic target, either in treatment or as a novel biomarker, due to their cell-and disease-state specific expression and long-term stability. This review aims to summarise current findings on how circRNAs are dysregulated in cancer, the effects this has on disease progression, and how circRNAs may be targeted or utilised as future potential therapeutic options.
Collapse
Affiliation(s)
| | | | - Adrian Whitehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (K.L.H.); (T.J.M.)
| |
Collapse
|
454
|
Potential of olive oil and its phenolic compounds as therapeutic intervention against colorectal cancer: a comprehensive review. Br J Nutr 2021; 128:1257-1273. [PMID: 34338174 DOI: 10.1017/s0007114521002919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of death across the world and incidence rate of CRC increasing alarmingly each passing year. Diet, genomic anomalies, inflammation and deregulated signalling pathways are among the major causes of CRC. Because of numerous side effects of CRC therapies available now, researchers all over the world looking for alternative treatment/preventive strategy with lesser/no side effects. Olive oil which is part of Mediterranean diet contains numerous phenolic compounds that fight against free radicals and inflammation and also well-known for protective role against CRC. The current review focused on the recent evidences where olive oil and its phenolic compounds such as hydroxytyrosol, oleuropein and oleocanthal showed activities against CRC as well to analyse the cellular and molecular signalling mechanism through which these compounds act on. These compounds shown to combat CRC by reducing proliferation, migration, invasion and angiogenesis through regulation of numerous signalling pathways including MAPK pathway, PI3K-Akt pathway and Wnt/β-catenin pathway and at the same time, induce apoptosis in different CRC model. However, further research is an absolute necessity to establish these compounds as nutritional supplements and develop therapeutic strategy in CRC.
Collapse
|
455
|
Xu C, Song Y, Wang Z, Jiang J, Piao Y, Li L, Jin S, Li L, Zhu L, Yan G. Pterostilbene suppresses oxidative stress and allergic airway inflammation through AMPK/Sirt1 and Nrf2/HO-1 pathways. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1406-1417. [PMID: 34342160 PMCID: PMC8589405 DOI: 10.1002/iid3.490] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022]
Abstract
Introduction Pterostilbene (Pts) may be used for allergic asthma treatment. The AMPK/Sirt1 and Nrf2/HO‐1 pathways are potential targets for asthma treatement. However, the relationship between Pts and AMPK/Sirt1 and Nrf2/HO‐1 pathways in asthma is unclear. Herein, we aim to explore the pharmacological effects of Pts on oxidative stress and allergic inflammatory response as well as the mechanism involving AMPK/Sirt1 and Nrf2/HO‐1 pathways. Methods Asthma model was established in mice with ovalbumin (OVA). The model mice were treated by different concentrations of Pts. Lung pathological changes were observed through histological staining. In vitro, lipopolysaccharide (LPS)‐stimulated 16HBE cells were treated with Pts. The siAMPKα2, siSirt1 and siNrf2 knockdown, and treatment with compound C, EX‐527 or ML385 were also performed in 16HBE cells. Enzyme‐linked immunosorbent assay was used to detect interleukin‐4 (IL‐4), IL‐13, IL‐5, total and OVA specific immunoglobulin E (IgE), and interferon γ (IFN‐γ). Pneumonography was used to measure the airway hyperreactivity (AHR). Superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) levels were also detected. Immunohistochemistry, Western blot and immunofluorescence were used to measure protein levels. Results Pts significantly attenuated lung inflammatory cell infiltration and goblet cell proliferation. Meanwhile, Pts treatment could reduce IL‐4, IL‐13, IL‐5, and IgE (total and OVA specific) levels in the asthma model mice. However, IFN‐γ in bronchoalveolar lavage fluid was elevated. In addition, Pts reduced AHR. We also found that Pts treatment promoted serum SOD and CAT, and reduced MDA. In vitro results showed that Pts treatment promoted iNOS, TNF‐α, COX‐2, IL‐1β, and IL‐6 expressions in 16HBE cells, prolonged G0/G1 phase of the cell cycle, and resulted in a shortened G2M phase. Moreover, we found that Pts promoted the phosphorylation of AMPK in 16HBE, and meanwhile inhibited the increase of ROS induced by LPS. Additionally, Pts treatment inhibited p‐AMPK, Sirt1, Nrf2 and HO‐1, which in turn leads to the alleviation of AMPK/Sirt1 and Nrf2/HO‐1 pathways. Conclusion Pts alleviated oxidative stress and allergic airway inflammation via regulation of AMPK/Sirt1and Nrf2/HO‐1 signaling pathways.
Collapse
Affiliation(s)
- Chang Xu
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin, China.,Department of Anatomy Histology and Embryology, Yanbian University Medical College, Yanji, Jilin, China
| | - Yilan Song
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin, China.,Department of Anatomy Histology and Embryology, Yanbian University Medical College, Yanji, Jilin, China
| | - Zhiguang Wang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin, China.,Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Jingzhi Jiang
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin, China.,Department of Anatomy Histology and Embryology, Yanbian University Medical College, Yanji, Jilin, China
| | - Yihua Piao
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin, China.,Department of Intensive Care Unit, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Li Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin, China.,Department of Anatomy Histology and Embryology, Yanbian University Medical College, Yanji, Jilin, China
| | - Shan Jin
- Department of Dermatology, Yanbian University Hospital, Yanji, Jilin, China
| | - Liangchang Li
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin, China.,Department of Anatomy Histology and Embryology, Yanbian University Medical College, Yanji, Jilin, China
| | - Lianhua Zhu
- Department of Dermatology, Yanbian University Hospital, Yanji, Jilin, China
| | - Guanghai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, Jilin, China.,Department of Anatomy Histology and Embryology, Yanbian University Medical College, Yanji, Jilin, China
| |
Collapse
|
456
|
Obaroakpo JU, Nan W, Hao L, Liu L, Zhang S, Lu J, Pang X, Lv J. The hyperglycemic regulatory effect of sprouted quinoa yoghurt in high-fat-diet and streptozotocin-induced type 2 diabetic mice via glucose and lipid homeostasis. Food Funct 2021; 11:8354-8368. [PMID: 32930693 DOI: 10.1039/d0fo01575j] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recently, we have proposed that quinoa yoghurt (QY) has the anti-diabetic properties based on an in vitro study. Here, its antidiabetic activity was further validated by investigating its hypoglycemic and hypolipidemic influence in high fat diet/streptozotocin-induced type 2 diabetes mellitus (T2DM) mice. The results showed that QY increased the body weights of and reduced the fasting blood glucose levels in T2DM mice. QY significantly (p < 0.05) reduced the serum levels of total cholesterol, triglyceride and LDL-C, while it increased the HDL-C level. In addition, the hepatic glycogen content, and superoxide dismutase, catalase, and glutathione peroxidase activities were significantly (p < 0.05) increased, while lipid peroxidation was remarkably reduced. Sprouted QY had the highest influence on serum oxidation when compared with non-germinated QY. The level of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) were significantly (p < 0.05) decreased, while the level of anti-inflammatory cytokine IL-10 was increased. Histopathological studies showed that QY protected the tissue structure of the liver of T2DM mice. Immunohistochemistry showed that QY increased AKT-2 and AMPK-α2 expressions, while it suppressed p85. The qRT-PCR analysis indicated that QY exerted its hypoglycemic and anti-hyperlipidemic effects through the AKT/AMPK/PI3K signaling pathway. Germination significantly (p < 0.05) influenced the glucose and lipid homeostasis in T2DM mice in such a way that sprouted QY showed the highest hypoglycemic and cholesterol-lowering effects when compared with non-germinated QY.
Collapse
Affiliation(s)
- Joy Ujiroghene Obaroakpo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China. and Department of Food Science and Technology, Auchi Polytechnic, Auchi, Edo State, Nigeria
| | - Wenlong Nan
- China Animal Health and Epidemiology Center, Qingdao 266032, China
| | - Liyu Hao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China.
| | - Lu Liu
- Beijing Nutrition Resources Institute, Beijing 100069, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China.
| | - Jing Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China.
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China.
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China.
| |
Collapse
|
457
|
Kim N, Gim JA, Lee BJ, Choi BI, Park SB, Yoon HS, Kang SH, Kim SH, Joo MK, Park JJ, Kim C, Kim HK. RNA-sequencing identification and validation of genes differentially expressed in high-risk adenoma, advanced colorectal cancer, and normal controls. Funct Integr Genomics 2021; 21:513-521. [PMID: 34273035 DOI: 10.1007/s10142-021-00795-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
Distinct gene expression patterns that occur during the adenoma-carcinoma sequence need to be determined to analyze the underlying mechanism in each step of colorectal cancer progression. Elucidation of biomarkers for colorectal polyps that harbor malignancy potential is important for prevention of colorectal cancer. Here, we use RNA sequencing to determine gene expression profile in patients with high-risk adenoma treated with endoscopic submucosal dissection by comparing with gene expression in patients with advanced colorectal cancer and normal controls. We collected 70 samples, which consisted of 27 colorectal polyps, 24 cancer tissues, and 19 normal colorectal mucosa. RNA sequencing was performed on an Illumina platform to select differentially expressed genes (DEGs) between colorectal polyps and cancer, polyps and controls, and cancer and normal controls. The Kyoto Gene and Genome Encyclopedia (KEGG) and gene ontology (GO) analysis, gene-concept network, GSEA, and a decision tree were used to evaluate the DEGs. We selected the most highly expressed genes in high-risk polyps and validated their expression using real-time PCR and immunohistochemistry. Compared to patients with colorectal cancer, 82 upregulated and 24 downregulated genes were detected in high-risk adenoma. In comparison with normal controls, 33 upregulated and 79 downregulated genes were found in high-risk adenoma. In total, six genes were retrieved as the highest and second highest expressed in advanced polyps and cancers among the three groups. Among the six genes, ANAX3 and CD44 expression in real-time PCR for validation was in good accordance with RNA sequencing. We identified differential expression of mRNAs among high-risk adenoma, advanced colorectal cancer, and normal controls, including that of CD44 and ANXA3, suggesting that this cluster of genes as a marker of high-risk colorectal adenoma.
Collapse
Affiliation(s)
- Namjoo Kim
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jeong-An Gim
- Medical Science Research Center, College of Medicine, Korea University Guro Hospital Seoul, Seoul, Republic of Korea
| | - Beom Jae Lee
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea.
| | - Byung Il Choi
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Seung Bin Park
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Hee Sook Yoon
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Sang Hee Kang
- Department of Surgery, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Seung Han Kim
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Moon Kyung Joo
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Jong-Jae Park
- Department of Gastroenterology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Chungyeul Kim
- Department of Pathology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Han-Kyeom Kim
- Department of Pathology, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
458
|
Yang S, Li D, Yu Z, Li Y, Wu M. Multi-Pharmacology of Berberine in Atherosclerosis and Metabolic Diseases: Potential Contribution of Gut Microbiota. Front Pharmacol 2021; 12:709629. [PMID: 34305616 PMCID: PMC8299362 DOI: 10.3389/fphar.2021.709629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis (AS), especially atherosclerotic cardiovascular diseases (ASCVDs), and metabolic diseases (such as diabetes, obesity, dyslipidemia, and nonalcoholic fatty liver disease) are major public health issues worldwide that seriously threaten human health. Exploring effective natural product-based drugs is a promising strategy for the treatment of AS and metabolic diseases. Berberine (BBR), an important isoquinoline alkaloid found in various medicinal plants, has been shown to have multiple pharmacological effects and therapeutic applications. In view of its low bioavailability, increasing evidence indicates that the gut microbiota may serve as a target for the multifunctional effects of BBR. Under the pathological conditions of AS and metabolic diseases, BBR improves intestinal barrier function and reduces inflammation induced by gut microbiota-derived lipopolysaccharide (LPS). Moreover, BBR reverses or induces structural and compositional alterations in the gut microbiota and regulates gut microbe-dependent metabolites as well as related downstream pathways; this improves glucose and lipid metabolism and energy homeostasis. These findings at least partly explain the effect of BBR on AS and metabolic diseases. In this review, we elaborate on the research progress of BBR and its mechanisms of action in the treatment of AS and metabolic diseases from the perspective of gut microbiota, to reveal the potential contribution of gut microbiota to the multifunctional biological effects of BBR.
Collapse
Affiliation(s)
- Shengjie Yang
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongliang Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujuan Li
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’an men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
459
|
Kartikasari AER, Huertas CS, Mitchell A, Plebanski M. Tumor-Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis. Front Oncol 2021; 11:692142. [PMID: 34307156 PMCID: PMC8294036 DOI: 10.3389/fonc.2021.692142] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation generated by the tumor microenvironment is known to drive cancer initiation, proliferation, progression, metastasis, and therapeutic resistance. The tumor microenvironment promotes the secretion of diverse cytokines, in different types and stages of cancers. These cytokines may inhibit tumor development but alternatively may contribute to chronic inflammation that supports tumor growth in both autocrine and paracrine manners and have been linked to poor cancer outcomes. Such distinct sets of cytokines from the tumor microenvironment can be detected in the circulation and are thus potentially useful as biomarkers to detect cancers, predict disease outcomes and manage therapeutic choices. Indeed, analyses of circulating cytokines in combination with cancer-specific biomarkers have been proposed to simplify and improve cancer detection and prognosis, especially from minimally-invasive liquid biopsies, such as blood. Additionally, the cytokine signaling signatures of the peripheral immune cells, even from patients with localized tumors, are recently found altered in cancer, and may also prove applicable as cancer biomarkers. Here we review cytokines induced by the tumor microenvironment, their roles in various stages of cancer development, and their potential use in diagnostics and prognostics. We further discuss the established and emerging diagnostic approaches that can be used to detect cancers from liquid biopsies, and additionally the technological advancement required for their use in clinical settings.
Collapse
Affiliation(s)
- Apriliana E. R. Kartikasari
- Translational Immunology and Nanotechnology Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Cesar S. Huertas
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
460
|
Li C, Zhou W, Li M, Shu X, Zhang L, Ji G. Salvia-Nelumbinis naturalis extract protects mice against MCD diet-induced steatohepatitis via activation of colonic FXR-FGF15 pathway. Biomed Pharmacother 2021; 139:111587. [PMID: 33865013 DOI: 10.1016/j.biopha.2021.111587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022] Open
Abstract
Salvia-Nelumbinis naturalis (SNN) formula is a traditional Chinese medicine prescription, and has been confirmed to be effective in treating non-alcoholic steatohepatitis (NASH), but the underlying mechanisms are still unknown. Here we showed that 4-week SNN administration alleviated methionine-choline-deficiency (MCD) diet-induced hepatic steatosis and inflammation as well as serum levels of alanine transaminase (ALT) increase in C57BL/6 mice. Fecal 16S rDNA sequencing indicated that SNN altered the structure of gut microbiota and partially reversed the gut dysbiosis. Simultaneously, we analyzed the fecal BA profile using liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-TQMS) -based metabolomics, and found that SNN modulated fecal BA profile, predominantly increased the microbiomes related BA species (e.g. nordeoxycholic acid) which in turn, activated farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signaling pathway in the colon but not the ileum. The activation of intestinal FXR-FGF15 signaling was accompanied by increase of liver protein kinase B (PKB/Akt) phosphorylation, and decrease of p-65 subunit of NF-κB phosphorylation, resulting in less liver CD68 positive macrophages, and inflammatory cytokine IL-1β and TNF-α expression. Our results established the link between SNN treatment, gut microbiota, BA profile and NASH, which might shed light into the mechanisms behind the beneficial effects of SNN on NASH, thus provide evidence for the clinical application of SNN.
Collapse
Affiliation(s)
- Chunlin Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Meng Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiangbing Shu
- Department of Geratology, Baoshan Branch of Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
461
|
Chen B, Zhu Y, Chen J, Feng Y, Xu Y. Activation of TC10-Like Transcription by Lysine Demethylase KDM4B in Colorectal Cancer Cells. Front Cell Dev Biol 2021; 9:617549. [PMID: 34249900 PMCID: PMC8260841 DOI: 10.3389/fcell.2021.617549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Malignant colorectal cancers (CRCs) are characterized by enhanced migration and invasion thus acquiring the ability to metastasize. We have previously shown that the small GTPase TC10-like (TCL) contributes to aggressive migration and invasion in malignant CRC cells. TCL expression is differentially expressed in CRC cells and can be upregulated by hypoxia although the underlying epigenetic mechanism is not fully appreciated. Here, we report that differential TCL expression in CRC cells appeared to be associated with histone H3K9 methylation. RNAi screening revealed that the lysine demethylase KDM4B was essential for TCL transcription in CRC cells. KDM4B interacted with and was recruited by the sequence-specific transcription factor ETS-related gene 1 (ERG1) to the TCL promoter to activate transcription. Mechanistically, KDM4B mediated H3K9 demethylase facilitated the assembly of pre-initiation complex (PIC) on the TCL promoter. KDM4B knockdown attenuated migration and invasion of CRC cells. Importantly, KDM4B expression was upregulated in human CRC specimens of advanced stages compared to those of lower grades and associated with poor prognosis. Together, these data uncover a novel epigenetic mechanism underlying malignant transformation of CRC cells and suggest that KDM4B may be considered as a therapeutic target in CRC intervention.
Collapse
Affiliation(s)
- Baoyu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Junliang Chen
- Department of Pathophysiology, Wuxi Medical School, Jiangnan University, Wuxi, China
| | - Yifei Feng
- Department of Colorectal Surgery, The First Hospital Affiliated With Nanjing Medical University, Nanjing, China.,Department of General Surgery, The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
462
|
Guo Q, Tang Y, Li Y, Xu Z, Zhang D, Liu J, Wang X, Xia W, Xu S. Perinatal High-Salt Diet Induces Gut Microbiota Dysbiosis, Bile Acid Homeostasis Disbalance, and NAFLD in Weanling Mice Offspring. Nutrients 2021; 13:nu13072135. [PMID: 34206629 PMCID: PMC8308454 DOI: 10.3390/nu13072135] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 01/14/2023] Open
Abstract
A perinatal high-salt (HS) diet was reported to elevate plasma triglycerides. This study aimed to investigate the hypothesis that a perinatal HS diet predisposed offspring to non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of abnormal lipid metabolism, and the possible mechanism. Female C57BL/6 mice were fed a control diet (0.5% NaCl) or HS diet (4% NaCl) during pregnancy and lactation and their offspring were sacrificed at weaning. The perinatal HS diet induced greater variation in fecal microbial beta-diversity (β-diversity) and increased bacteria abundance of Proteobacteria and Bacteroides. The gut microbiota dysbiosis promoted bile acid homeostasis disbalance, characterized by the accumulation of lithocholic acid (LCA) and deoxycholic acid (DCA) in feces. These alterations disturbed gut barrier by increasing the expression of tight junction protein (Tjp) and occludin (Ocln), and increased systemic lipopolysaccharide (LPS) levels and hepatic inflammatory cytokine secretion (TNF-α and IL-6) in the liver. The perinatal HS diet also inhibited hepatic expression of hepatic FXR signaling (CYP7A1 and FXR), thus triggering increased hepatic expression of pro-inflammatory cytokines (TNF-α and IL-6) and hepatic lipid metabolism-associated genes (SREBP-1c, FAS, ACC), leading to unique characteristics of NAFLD. In conclusion, a perinatal HS diet induced NAFLD in weanling mice offspring; the possible mechanism was related to increased bacteria abundance of Proteobacteria and Bacteroides, increased levels of LCA and DCA in feces, and increased expressions of hepatic FXR signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei Xia
- Correspondence: ; Tel.: +86-27-83693417
| | | |
Collapse
|
463
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
464
|
Lyu Y, Lin L, Xie Y, Li D, Xiao M, Zhang Y, Cheung SCK, Shaw PC, Yang X, Chan PKS, Kong APS, Zuo Z. Blood-Glucose-Lowering Effect of Coptidis Rhizoma Extracts From Different Origins via Gut Microbiota Modulation in db/db Mice. Front Pharmacol 2021; 12:684358. [PMID: 34211397 PMCID: PMC8239385 DOI: 10.3389/fphar.2021.684358] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/27/2021] [Indexed: 01/14/2023] Open
Abstract
Background:Coptidis rhizoma extracts (CREs) have been used widely for their anti-diabetic and anti-microbial activities, and berberine/jatrorrhizine/coptisine/palmatine are the primary bioactive components. Although guidelines have adopted content analyses of these components as a quality control method for CREs, it is difficult to differentiate the CREs from different sources using this method because of the lack of indications for their related pharmacological activities. Purpose: To explore the effect of CREs (CREA/CREB/CREC) with different compositions of major components on the gut microbiota and blood glucose levels in db/db mice. Methods: Degradation of berberine/jatrorrhizine/coptisine/palmatine from CREA/CREB/CREC in rat/mouse intestinal contents and their impact on nine common gastrointestinal bacteria were investigated. In addition, the effects of oral administration of CREA/CREB/CREC for 2 weeks on the gut microbiota and blood glucose levels in db/db mice were monitored via insulin/glucose tolerance test (ITT/GTT), insulin concentration, homeostatic model assessment of insulin resistance and fecal 16S rRNA sequencing. Results and Conclusion: The total amount of berberine/jatrorrhizine/coptisine/palmatine was highest in CREA. Clostridium perfringens was strongly inhibited by all three CREs, with CREA demonstrating the most significant inhibitory effects on minimum inhibitory concentration, time-kill kinetics, and ATP production. In db/db mice, CREA resulted in the most significant decrease in ITT/GTT and depicted different changes in the microbiota from CREB/CREC. Thus, CREs with different compositions of berberine/jatrorrhizine/coptisine/palmatine differed in terms of time-kill kinetics and ATP production assays on C. perfringens. CREA revealed the potent bacterial inhibitory effects and glucose-lowering activity.
Collapse
Affiliation(s)
- Yuanfeng Lyu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Lin Lin
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Yuning Xie
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Dan Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Min Xiao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Stanley Chun Kai Cheung
- School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Pang Chui Shaw
- School of Life Sciences and Li Dak Sum Yip Yio Chin R&D Centre for Chinese Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Xiao Yang
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Paul Kay Sheung Chan
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Alice Pik Shan Kong
- Division of Endocrinology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
465
|
Exploration of the Key Proteins in the Normal-Adenoma-Carcinoma Sequence of Colorectal Cancer Evolution Using In-Depth Quantitative Proteomics. JOURNAL OF ONCOLOGY 2021; 2021:5570058. [PMID: 34194496 PMCID: PMC8214504 DOI: 10.1155/2021/5570058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/30/2022]
Abstract
Purpose In most cases, the carcinogenesis of colorectal cancer (CRC) follows the normal-adenoma-carcinoma (N-A-C) sequence. In this study, we aimed to identify the key proteins in the N-A-C sequence. Methods Differentially expressed proteins (DEPs) in normal, adenoma, and carcinoma tissues were identified using the Tandem Mass Tag- (TMT-) based quantitative proteomics approach. The landscape of proteomic variation in the N-A-C sequence was explored using gene set enrichment analysis (GSEA) and Proteomaps. Key proteins in the N-A-C sequence were identified, verified, and validated based on our proteomic data, external proteomic data, and external transcriptomic data in the ProteomeXchange, CPTAC, GEO, and TCGA databases. The prognostic value of the key proteins in our database was evaluated by univariate and multivariate Cox regression analysis. The effects of the key proteins on adenoma organoids and colorectal cancer cells were explored in functional studies. Results Based on our proteomic profiles, we identified 1,294 DEPs between the carcinoma (CG) and normal (NG) groups, 919 DEPs between the adenoma group (AG) and NG, and 1,030 DEPs between the CG and AG. Ribosome- and spliceosome-related pathways were mainly enriched in the N-A process. Extracellular matrix- and epithelial-mesenchymal transition- (EMT-) related pathways were mainly enriched in the A-C process. RRP12 and SERPINH1 were identified, verified, and validated as candidate key proteins in the N-A and A-C processes, respectively. Furthermore, RRP12 and SERPINH1 knockdown impeded the viability and proliferation of adenoma organoids. SERPINH1 was validated as a risk factor for disease-free survival (DFS) based on the TCGA and our database, whereas RRP12 did not show prognostic value. SERPINH1 knockdown was accompanied by EMT-related protein variation, increased apoptosis, and reduced proliferation, invasion, and migration of CRC cells in vitro. Conclusions RRP12 and SERPINH1 may play an important role in the N-A and A-C processes, respectively. Furthermore, SERPINH1 showed favorable prognostic value for DFS in CRC patients. We speculate that SERPINH1 might promote not only the A-C process but also the development of CRC.
Collapse
|
466
|
Singh MP, Rai S, Singh NK, Srivastava S. Transcriptomic landscape of early age onset of colorectal cancer identifies novel genes and pathways in Indian CRC patients. Sci Rep 2021; 11:11765. [PMID: 34083590 PMCID: PMC8175339 DOI: 10.1038/s41598-021-91154-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Past decades of the current millennium have witnessed an unprecedented rise in Early age Onset of Colo Rectal Cancer (EOCRC) cases in India as well as across the globe. Unfortunately, EOCRCs are diagnosed at a more advanced stage of cancer. Moreover, the aetiology of EOCRC is not fully explored and still remains obscure. This study is aimed towards the identification of genes and pathways implicated in the EOCRC. In the present study, we performed high throughput RNA sequencing of colorectal tumor tissues for four EOCRC (median age 43.5 years) samples with adjacent mucosa and performed subsequent bioinformatics analysis to identify novel deregulated pathways and genes. Our integrated analysis identifies 17 hub genes (INSR, TNS1, IL1RAP, CD22, FCRLA, CXCL3, HGF, MS4A1, CD79B, CXCR2, IL1A, PTPN11, IRS1, IL1B, MET, TCL1A, and IL1R1). Pathway analysis of identified genes revealed that they were involved in the MAPK signaling pathway, hematopoietic cell lineage, cytokine-cytokine receptor pathway and PI3K-Akt signaling pathway. Survival and stage plot analysis identified four genes CXCL3, IL1B, MET and TNS1 genes (p = 0.015, 0.038, 0.049 and 0.011 respectively), significantly associated with overall survival. Further, differential expression of TNS1 and MET were confirmed on the validation cohort of the 5 EOCRCs (median age < 50 years and sporadic origin). This is the first approach to find early age onset biomarkers in Indian CRC patients. Among these TNS1 and MET are novel for EOCRC and may serve as potential biomarkers and novel therapeutic targets in future.
Collapse
Affiliation(s)
- Manish Pratap Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Sandhya Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Nand K Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Sameer Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India.
| |
Collapse
|
467
|
Quantitative Profiling of Oxylipin Reveals the Mechanism of Pien-Tze-Huang on Alcoholic Liver Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9931542. [PMID: 34158817 PMCID: PMC8187045 DOI: 10.1155/2021/9931542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/13/2022]
Abstract
Alcoholic liver disease (ALD) is a liver disease caused by long-term alcohol consumption. ROS-mediated oxidative stress is the leading cause of ALD. Pien-Tze-Huang (PZH), a traditional formula, is famous in China. This study was designed to evaluate the effects and explore the potential mechanisms of PZH in ALD. Forty mice were randomly divided into five groups: control group (normal diet + vehicle), model group (ethanol diet + vehicle), PZH-L group (ethanol diet + PZH (0.125 g/kg)), PZH-M group (ethanol diet + PZH (0.25 g/kg)), and PZH-H group (ethanol diet + PZH (0.5 g/kg)). The mice were sacrificed, and their liver and blood samples were preserved. Liver steatosis, triglyceride (TG), total cholesterol, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels were assayed. Malondialdehyde (MDA), glutathione peroxidase (GSH-PX), and total superoxide dismutase were identified using commercial kits. Oxylipins were profiled, and the data were analyzed. The AMPK/ACC/CPT1A pathway was identified using real-time polymerase chain reaction and western blotting. The PZH-H intervention significantly alleviated hepatic steatosis and injury and reduced the levels of liver TG and serum ALT and AST. In addition, MDA levels were markedly reduced, and GSH-PX activity significantly increased after PZH-H intervention. Finally, PZH-H increased the levels of 17-HETE, 15-HEPE, 9-HOTrE, 13-HOTrE, and 5,6-dihydroxy-8Z,11Z,14Z,17Z-eicosatetraenoic acid, and reduced PGE2 levels. PZH-H intervention also promoted the phosphorylation of AMPK and ACC, and the expression of CPT1A. In conclusion, PZH reduced oxidative stress and alleviated hepatic steatosis and injury. The mechanism was correlated with the oxylipin metabolites/AMPK/ACC/CPT1A axis.
Collapse
|
468
|
Missing links - epigenetic regulators of the pancreatic cancer-associated inflammation. Clin Sci (Lond) 2021; 135:1289-1293. [PMID: 34047338 DOI: 10.1042/cs20210181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features a hostile tumor microenvironment (TME) that renders it remarkably resistant to most therapeutic interventions. Consequently, survival remains among the poorest compared with other gastrointestinal cancers. Concerted efforts are underway to decipher the complex PDAC TME, break down barriers to efficacious therapies and identify novel treatment strategies. In the recent Clinical Science, Li and colleagues identify the long noncoding RNA KLHDC7B-DT as a crucial epigenetic regulator of IL-6 transcription in PDAC and illustrate its potent influences on the pancreatic TME. In this commentary, we introduce epigenetics in pancreatic cancer and put the findings by Li et al. in context with current knowledge.
Collapse
|
469
|
Sharma S, Wadhwa K, Choudhary M, Budhwar V. Ethnopharmacological perspectives of glucokinase activators in the treatment of diabetes mellitus. Nat Prod Res 2021; 36:2962-2976. [PMID: 34044681 DOI: 10.1080/14786419.2021.1931187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traditional medicinal plants have wide-reaching utilisation in the treatment of diabetes especially in developing countries where medical resources are meagre. Traditionally used anti-diabetic plants act by numerous mechanisms, however, only a few of them act through activation of the glucokinase enzyme. Glucokinase is a key regulatory enzyme in glucose metabolism thereby controls glucose homeostasis and insulin secretion. The present review significantly analyses the knowledge about various plant-based glucokinase activators including numerous phytochemicals which modulate the activity and gene expression of glucokinase and would provide data support and perspective regarding future research in the discovery and development of different plant-derived glucokinase activators.
Collapse
Affiliation(s)
- Sachin Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Karan Wadhwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Manjusha Choudhary
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vikas Budhwar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
470
|
Zúñiga-Muñoz A, García-Niño WR, Carbó R, Navarrete-López LÁ, Buelna-Chontal M. The regulation of protein acetylation influences the redox homeostasis to protect the heart. Life Sci 2021; 277:119599. [PMID: 33989666 DOI: 10.1016/j.lfs.2021.119599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
The cellular damage caused by redox imbalance is involved in the pathogenesis of many cardiovascular diseases. Besides, redox imbalance is related to the alteration of protein acetylation processes, causing not only chromatin remodeling but also disturbances in so many processes where protein acetylation is involved, such as metabolism and signal transduction. The modulation of acetylases and deacetylases enzymes aids in maintaining the redox homeostasis, avoiding the deleterious cellular effects associated with the dysregulation of protein acetylation. Of note, regulation of protein acetylation has shown protective effects to ameliorate cardiovascular diseases. For instance, HDAC inhibition has been related to inducing cardiac protective effects and it is an interesting approach to the management of cardiovascular diseases. On the other hand, the upregulation of SIRT protein activity has also been implicated in the relief of cardiovascular diseases. This review focuses on the major protein acetylation modulators described, involving pharmacological and bioactive compounds targeting deacetylase and acetylase enzymes contributing to heart protection through redox homeostasis.
Collapse
Affiliation(s)
- Alejandra Zúñiga-Muñoz
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Wylly-Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Roxana Carbó
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Luis-Ángel Navarrete-López
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Mabel Buelna-Chontal
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico.
| |
Collapse
|
471
|
Sousa A, Ribeiro D, Fernandes E, Freitas M. The Effect of Chalcones on the Main Sources of Reactive Species Production: Possible Therapeutic Implications in Diabetes Mellitus. Curr Med Chem 2021; 28:1625-1669. [PMID: 32448100 DOI: 10.2174/0929867327666200525010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) is characterized by hyperglycaemia, resulting from defects in insulin secretion, insulin action or both. There are several factors such as hyperlipidemia and oxidative stress (OS), namely the production of reactive oxygen/nitrogen species (ROS/RNS), that actively contribute to the development and worsening of DM. Chalcones, also termed as benzalacetophenone or benzylidene acetophenone, present a 1,3-diaryl-2-propen-1-one scaffold that has been shown to be highly promising in the development of new antioxidant compounds. Considering the potential interest of antioxidant therapy, the present review scrutinizes the role of the main sources of ROS/RNS production during DM. The modulatory effect of chalcones against nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, xanthine oxidase, mitochondrial respiratory chain and nitric oxide synthase, is also thoroughly discussed, establishing, whenever possible, a structure-activity relationship (SAR). From the SAR analysis, it can be stated that the presence of catechol groups, hydroxyl and methoxyl substituents in the chalcones scaffold improves their modulatory activity against the main sources of ROS/RNS production in DM.
Collapse
Affiliation(s)
- Adelaide Sousa
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical, Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical, Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical, Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical, Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
472
|
Wang T, Huang S, Wu C, Wang N, Zhang R, Wang M, Mao D. Intestinal Microbiota and Liver Diseases: Insights into Therapeutic Use of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6682581. [PMID: 33976705 PMCID: PMC8087485 DOI: 10.1155/2021/6682581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
Liver disease is a leading cause of global morbidity and mortality, for which inflammation, alcohol use, lipid metabolic disorders, disturbance to bile acid metabolism, and endotoxins are common risk factors. Traditional Chinese Medicine (TCM) with its "holistic approach" is widely used throughout the world as a complementary, alternative therapy, due to its clinical efficacy and reduced side effects compared with conventional medicines. However, due to a lack of reliable scientific evidence, the role of TCM in the prevention and treatment of liver disease remains unclear. Over recent years, with the rapid development of high-throughput sequencing, 16S rRNA detection, and bioinformatics methodology, it has been gradually recognized that the regulation of intestinal microbiota by TCM can play a substantial role in the treatment of liver disease. To better understand how TCM regulates the intestinal microbiota and suppresses liver disease, we have reviewed and analyzed the results of existing studies and summarized the relationship and risk factors between intestinal microbiota and liver disease. The present review summarizes the related mechanisms by which TCM affects the composition and metabolites of the intestinal microbiome.
Collapse
Affiliation(s)
- Tingshuai Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
- School of Chinese Medicine, Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan, China
| | - Shaodong Huang
- Department of Gastroenterology, Guangxi Orthopedics and Traumatology Hospital, Nanning 530023, Guangxi, China
| | - Cong Wu
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Na Wang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Rongzhen Zhang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Minggang Wang
- Department of Scientific Research, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| | - Dewen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, China
| |
Collapse
|
473
|
Abstract
Cancer accounted for 16% of all death worldwide in 2018. Significant progress has been made in understanding tumor occurrence, progression, diagnosis, treatment, and prognosis at the molecular level. However, genomics changes cannot truly reflect the state of protein activity in the body due to the poor correlation between genes and proteins. Quantitative proteomics, capable of quantifying the relatively different protein abundance in cancer patients, has been increasingly adopted in cancer research. Quantitative proteomics has great application potentials, including cancer diagnosis, personalized therapeutic drug selection, real-time therapeutic effects and toxicity evaluation, prognosis and drug resistance evaluation, and new therapeutic target discovery. In this review, the development, testing samples, and detection methods of quantitative proteomics are introduced. The biomarkers identified by quantitative proteomics for clinical diagnosis, prognosis, and drug resistance are reviewed. The challenges and prospects of quantitative proteomics for personalized medicine are also discussed.
Collapse
|
474
|
Zhao H, He M, Zhang M, Sun Q, Zeng S, Chen L, Yang H, Liu M, Ren S, Meng X, Xu H. Colorectal Cancer, Gut Microbiota and Traditional Chinese Medicine: A Systematic Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:805-828. [PMID: 33827382 DOI: 10.1142/s0192415x21500385] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Based on the study and research on the pathogenesis of colorectal cancer, the types and functions of gut microbiota, and its role in guiding and regulating the occurrence and development of diseases, we have explored the mechanism of traditional Chinese medicine in the treatment of colorectal cancer by regulating the gut microbiota. Genetic variation, abnormal responses of innate and adaptive immunity, mucosal barrier dysfunction, imbalance of intestinal microbial colonization, personal and environmental risk factors are the main pathogenesis of colorectal cancer. The gut microbiota mainly includes Sclerotium (including Clostridium, Enterococcus, Lactobacillus and Ruminococcus) and Bacteroides (including Bacteroides and Prevotella), which have biological antagonism, nutrition for the organism, metabolic abilities, immune stimulation, and ability to shape cancer genes functions to body. The gut microbiota can be related to the health of the host. Current studies have shown that Chinese herbal compound, single medicinal materials, and monomer components can treat colorectal cancer by regulating the gut microbiota, such as Xiaoyaosan can increase the abundance of Bacteroides, Lactobacillus, and Proteus and decrease the abundance of Desulfovibrio and Rickerella. Therefore, studying the regulation and mechanism of gut microbiota on colorectal cancer is of great benefit to disease treatment.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
475
|
Shi Y, Su W, Zhang L, Shi C, Zhou J, Wang P, Wang H, Shi X, Wei S, Wang Q, Auwerx J, Schoonjans K, Yu Y, Pan R, Zhou H, Lu L. TGR5 Regulates Macrophage Inflammation in Nonalcoholic Steatohepatitis by Modulating NLRP3 Inflammasome Activation. Front Immunol 2021; 11:609060. [PMID: 33692776 PMCID: PMC7937818 DOI: 10.3389/fimmu.2020.609060] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a chronic liver disease associated with dysregulation of liver metabolism and inflammation. G-protein coupled bile acid receptor 1 (TGR5) is a cell surface receptor that is involved in multiple metabolic pathways. However, the functions of TGR5 in regulating macrophage innate immune activation in NASH remain unclear. Here, we found that TGR5 expression was decreased in liver tissues from humans and mice with NASH. Compared to wild type (WT) mice, TGR5-knockout (TGR5-/-) mice exhibited exacerbated liver damage, increased levels of proinflammatory factors, and enhanced M1 macrophage polarization. Moreover, TGR5 deficiency facilitated M1 macrophage polarization by promoting NLRP3 inflammasome activation and caspase-1 cleavage. Taken together, our findings revealed that TGR5 signaling attenuated liver steatosis and inflammation and inhibited NLRP3-mediated M1 macrophage polarization in NASH.
Collapse
Affiliation(s)
- Yong Shi
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Wantong Su
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Chengyu Shi
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Jinren Zhou
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Peng Wang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoli Shi
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Song Wei
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Qi Wang
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Johan Auwerx
- Metabolic Signaling, School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Kristina Schoonjans
- Metabolic Signaling, School of Life Sciences, Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Yue Yu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Rui Pan
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
| | - Haoming Zhou
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital (Jiangsu Cancer Hospital), Nanjing Medical University, Nanjing, China
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University & Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
476
|
Gegen Qinlian Decoction Ameliorates Nonalcoholic Fatty Liver Disease in Rats via Oxidative Stress, Inflammation, and the NLRP3 Signal Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6659445. [PMID: 33643422 PMCID: PMC7902151 DOI: 10.1155/2021/6659445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022]
Abstract
Gegen Qinlian Decoction (GQD), a classic Chinese herbal formula, has been widely used in Chinese clinic for centuries and is well defined in treating nonalcoholic fatty liver disease (NAFLD). However, the mechanism action of GQD on NAFLD is still rarely evaluated. The present study aims to investigate the effect of GQD on treatment of NAFLD in rats and to further explore the underlying mechanism. The rat NAFLD model established by high-fat-diet feeding was used in the research. Our results exhibited the liver lesions and steatosis was significantly alleviated in NAFLD rats treated with GQD via Oil Red O and H&E staining. Body weight and liver index in GQD groups were reduced significantly (P < 0.05). Moreover, the biochemical analyzer test results showed that GQD significantly decreased blood lipid levels total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and liver injury indicators alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP), while it increased the level of high-density lipoprotein cholesterol (HDL-C) (P < 0.05). The levels of interferon-β (IFN-β), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) after the GQD treatment were significantly lower, and then interleukin-2 (IL-2), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) levels were lifted significantly (P < 0.05). Further, GQD blocked the expression of NLRP3, ASC, caspase-1 mRNA, and proteins in the liver tissues significantly (P < 0.05). These findings indicated that GQD can ameliorate the hepatic steatosis and injury of NAFLD. Its possible mechanism involves the modulation of inflammatory cytokines and antioxidative stress and the inhibition of NLRP3 signal axis activation. The results support that GQD may be a promising candidate in the treatment of NAFLD.
Collapse
|
477
|
Khaledi F, Ghasemi S. A review on epigenetic effects of environmental factors causing and inhibiting cancer. Curr Mol Med 2021; 22:8-24. [PMID: 33573554 DOI: 10.2174/1566524021666210211112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic modifications refer to reversible changes in gene expression. Epigenetic changes include DNA methylation, histone modification, and non-coding RNAs that are collectively called epigenome. Various epigenetic effects account for the main impacts of environment and lifestyle on multifactorial diseases such as cancers. The environment's impacts on cancers act as double-edged swords. While some of them are involved in cancer development, some others contribute to preventing it. In this review article, the keywords 'cancer', 'epigenetic', 'lifestyle', 'carcinogen', ' cancer inhibitors" and related words were searched to finding a link between environmental factors and epigenetic mechanisms influencing cancer in ISI, PUBMED, SCOPUS, and Google Scholar databases. Based on the literature environmental factors that are effective in cancer development or cancer prevention in this review will be divided into physical, chemical, biological, and lifestyle types. Different types of epigenetic mechanisms known for each of these agents will be addressed in this review. Unregulated changes in epigenome play roles in tumorigenicity and cancer development. The action mechanism and genes targeted which are related to the signaling pathway for epigenetic alterations determine whether environmental agents are carcinogenic or prevent cancer. Having knowledge about the effective factors and related mechanisms such as epigenetic on cancer can help to prevent and better cancers treatment.
Collapse
Affiliation(s)
- Fatemeh Khaledi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| |
Collapse
|
478
|
Zhang Y, Zhou J, Liu J, Li S, Zhou S, Zhang C, Wang Y, Shi J, Liu J, Wu Q. RNA-Seq analysis of the protection by Dendrobium nobile alkaloids against carbon tetrachloride hepatotoxicity in mice. Biomed Pharmacother 2021; 137:111307. [PMID: 33561648 DOI: 10.1016/j.biopha.2021.111307] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/30/2020] [Accepted: 12/26/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Dendrobium nobile is a genuine Chinese medicine. Dendrobium nobile Lindl. alkaloids (DNLA) protects against CCl4-induced acute liver injury. This study used RNA-Seq to explore the mechanisms. METHODS Mice were pretreated with DNLA (10 and 20 mg/kg, po) for 7 days, and subsequently intoxicated with CCl4 (20 μL/kg, ip for 24 h). Liver RNA was extracted and subjected to RNA-Seq. The bioinformatics, including PCA, GO, KEGG, two-dimensional clustering, Ingenuity Pathways Analysis (IPA), and Illumina BaseSpace Correlation Engine (BSCE) were used to analyze the data. qPCR was performed on selected genes to verify RNA-Seq results. RESULTS DNLA protection against CCl4 hepatotoxicity was confirmed by histopathology. PCA revealed the distinct gene expression patterns between the different treatment groups. GO showed that CCl4 induced the activation, adhesion and proliferation of immune cells. KEGG showed CCl4 induced oxidative stress, diseases and compromised adaptive responses. CCl4 induced differentially expressed genes (DEGs) were identified by DESeq2 with Padj < 0.05 and 2D-clustered with other groups. DNLA reverted CCl4-induced DEGs in a dose-dependent manner. qPCR analysis of S100 g, Sprr1, CCL3/7, Saa2/3, IL1rn, Cox7a2 and Rad15 confirmed RNA-Seq results. IPA showed that CCl4 treatment altered some signaling and metabolic pathways, which were ameliorated or returned to normal following DNLA treatment. The CCl4-activated mitochondrial oxidative phosphorylation was illustrated as an example. IPA Upstream Regulator Analysis further revealed the activated or inhibited molecules and chemicals that are responsible for CCl4-induced DEGs, and DNLA attenuated these changes. BSCE analysis verified that CCl4-induced DEGs were highly correlated with the GEO database of CCl4 hepatotoxicity in rodents, and DNLA dose-dependently attenuated such correlation. CONCLUSION RNA-Seq revealed CCl4-induced DEGs, disruption of canonical pathways, activation or inhibition of upstream regulators, which are highly correlated with database for CCl4 hepatotoxicity. All these changes were attenuated or returned to normal by DNLA, demonstrating the mechanisms for DNLA to protect against CCl4 hepatotoxicity.
Collapse
Affiliation(s)
- Ya Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jinxin Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jiajia Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Shujun Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Chengchen Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
479
|
Long F, Lin Z, Li L, Ma M, Lu Z, Jing L, Li X, Lin C. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol Cancer 2021; 20:26. [PMID: 33536039 PMCID: PMC7856739 DOI: 10.1186/s12943-021-01318-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a common hereditary tumor that is often fatal. Its pathogenesis involves multiple genes, including circular RNAs (circRNAs). Notably, circRNAs constitute a new class of noncoding RNAs (ncRNAs) with a covalently closed loop structure and have been characterized as stable, conserved molecules that are abundantly expressed in tissue/development-specific patterns in eukaryotes. Based on accumulating evidence, circRNAs are aberrantly expressed in CRC tissues, cells, exosomes, and blood from patients with CRC. Moreover, numerous circRNAs have been identified as either oncogenes or tumor suppressors that mediate tumorigenesis, metastasis and chemoradiation resistance in CRC. Although the regulatory mechanisms of circRNA biogenesis and functions remain fairly elusive, interesting results have been obtained in studies investigating CRC. In particular, the expression of circRNAs in CRC is comprehensively modulated by multiple factors, such as splicing factors, transcription factors, specific enzymes and cis-acting elements. More importantly, circRNAs exert pivotal effects on CRC through various mechanisms, including acting as miRNA sponges or decoys, interacting with RNA binding proteins, and even translating functional peptides. Finally, circRNAs may serve as promising diagnostic and prognostic biomarkers and potential therapeutic targets in the clinical practice of CRC. In this review, we discuss the dysregulation, functions and clinical significance of circRNAs in CRC and further discuss the molecular mechanisms by which circRNAs exert their functions and how their expression is regulated. Based on this review, we hope to reveal the functions of circRNAs in the initiation and progression of cancer and highlight the future perspectives on strategies targeting circRNAs in cancer research.
Collapse
Affiliation(s)
- Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Zhi Lin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Liang Li
- Class 25 Grade 2016, The Five-Year Program in Clinical Medicine, School of Medicine, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Zhixing Lu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Liang Jing
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China.
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China.
- School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
480
|
Caramujo-Balseiro S, Faro C, Carvalho L. Metabolic pathways in sporadic colorectal carcinogenesis: A new proposal. Med Hypotheses 2021; 148:110512. [PMID: 33548761 DOI: 10.1016/j.mehy.2021.110512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Given the reports made about geographical differences in Colorectal Cancer (CRC) occurrence, suggesting a link between dietary habits, genes and cancer risk, we hypothesise that there are four fundamental metabolic pathways involved in diet-genes interactions, directly implicated in colorectal carcinogenesis: folate metabolism; lipid metabolism; oxidative stress response; and inflammatory response. Supporting this hypothesis are the evidence given by the significant associations between several diet-genes polymorphisms and CRC, namely: MTHFR, MTR, MTRR and TS (involved in folate metabolism); NPY, APOA1, APOB, APOC3, APOE, CETP, LPL and PON1 (involved in lipid metabolism); MNSOD, SOD3, CAT, GSTP1, GSTT1 and GSTM1 (involved in oxidative stress response); and IL-1, IL-6, TNF-α, and TGF-β (involved in inflammatory response). We also highlight the association between some foods/nutrients/nutraceuticals that are important in CRC prevention or treatment and the four metabolic pathways proposed, and the recent results of genome-wide association studies, both assisting our hypothesis. Finally, we propose a new line of investigation with larger studies, using accurate dietary biomarkers and investigating the four metabolic pathways genes simultaneously. This line of investigation will be essential to understand the full complexity of the association between nature and nurture in CRC and perhaps in other types of cancers. Only with this in-depth knowledge will it be possible to make personalised nutrition recommendations for disease prevention and management.
Collapse
Affiliation(s)
- Sandra Caramujo-Balseiro
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine - University of Coimbra, Coimbra, Portugal; Department of Life Sciences - University of Coimbra, Coimbra, Portugal.
| | - Carlos Faro
- Department of Life Sciences - University of Coimbra, Coimbra, Portugal; UC Biotech, Cantanhede, Portugal
| | - Lina Carvalho
- Institute of Anatomical and Molecular Pathology, Faculty of Medicine - University of Coimbra, Coimbra, Portugal
| |
Collapse
|
481
|
Ma L, Yu Y, Liu H, Sun W, Lin Z, Liu C, Miao L. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair. Sci Rep 2021; 11:1027. [PMID: 33441759 PMCID: PMC7806735 DOI: 10.1038/s41598-020-79734-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
The repair of skeletal defects in maxillofacial region remains an intractable problem, the rising technology of bone tissue engineering provides a new strategy to solve it. Scaffolds, a crucial element of tissue engineering, must have favorable biocompatibility as well as osteoinductivity. In this study, we prepared berberine/polycaprolactone/collagen (BBR/PCL/COL) scaffolds with different concentrations of berberine (BBR) (25, 50, 75 and 100 μg/mL) through electrospinning. The influence of dosage on scaffold morphology, cell behavior and in vivo bone defect repair were systematically studied. The results indicated that scaffolds could release BBR stably for up to 27 days. Experiments in vitro showed that BBR/PCL/COL scaffolds had appropriate biocompatibility in the concentration of 25-75 μg/mL, and 50 and 75 μg/mL scaffolds could significantly promote osteogenic differentiation of dental pulp stem cells. Scaffold with 50 μg/mL BBR was implanted into the critical bone defect of rats to evaluate the ability of bone repair in vivo. It was found that BBR/PCL/COL scaffold performed more favorable than polycaprolactone/collagen (PCL/COL) scaffold. Overall, our study is the first to evaluate the capability of in vivo bone repair of BBR/PCL/COL electrospun scaffold. The results indicate that BBR/PCL/COL scaffold has prospective potential for tissue engineering applications in bone regeneration therapy.
Collapse
Affiliation(s)
- Lan Ma
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Yijun Yu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Hanxiao Liu
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Weibin Sun
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China
| | - Zitong Lin
- Department of Dentomaxillofacial Radiology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Chao Liu
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Leiying Miao
- Department of Cariology and Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
482
|
Wu X, Liu D, Wang S, Liu J. Circ_0007444 Inhibits the Progression of Ovarian Cancer via Mediating the miR-570-3p/PTEN Axis. Onco Targets Ther 2021; 14:97-110. [PMID: 33442269 PMCID: PMC7800700 DOI: 10.2147/ott.s266186] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/11/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Some circular RNAs have been found to be effective therapeutic targets for OC. However, the biological function of circ_0007444 in OC is still unknown. Thus, this study investigated the role of circ_0007444 in OC progression. Methods circ_0007444 expression was monitored in 87 OC patients and OC cells by quantitative real-time polymerase chain reaction. An in vitro study was performed to research the biological function of circ_0007444, including cell counting kit-8 assay, flow cytometry, wound healing assay, and transwell experiment. Luciferase reporter gene assay and RNA immunoprecipitation assay were used to reveal the interaction between circ_0007444, miR-570-3p, and PTEN. PTEN protein expression was determined by Western blot. In vivo study was performed using nude mice. Ki67, PTEN expression, and apoptosis in xenograft tumors was respectively researched by immunohistochemistry and Tunel assay. Results circ_0007444 was down-regulated in 87 OC patients, which was related to advanced tumor stage and grade, large tumor size, and low 60-month percent survival (P<0.05 or P<0.01). circ_0007444 inhibited proliferation, migration, and invasion, and promoted apoptosis of OC cells (P<0.01). circ_0007444 promoted PTEN expression via sponging miR-570-3p. miR-570-3p up-regulation and PTEN down-regulation reversed the inhibitory effect of circ_0007444 on OC cells malignant phenotype (P<0.01). circ_0007444 inhibited OC growth in vivo. In xenograft tumor, circ_0007444 decreased Ki67 expression but increased PTEN expression and apoptosis. Conclusion circ_0007444 is a tumor suppressor in OC, which inhibits OC progression by mediating the miR-570-3p/PTEN. circ_0007444 can be a potential candidate for targeted therapy of OC.
Collapse
Affiliation(s)
- Xinyu Wu
- Department of Laboratory Medicine, The Affiliated Maternity and Child Health Care Hospital, Xuzhou Medical University, Xuzhou 221009, People's Republic of China
| | - Daoyan Liu
- Department of Laboratory Medicine, The Affiliated Maternity and Child Health Care Hospital, Xuzhou Medical University, Xuzhou 221009, People's Republic of China
| | - Shuzhen Wang
- Department of Laboratory Medicine, The Affiliated Maternity and Child Health Care Hospital, Xuzhou Medical University, Xuzhou 221009, People's Republic of China
| | - Jie Liu
- Department of Laboratory Medicine, The Affiliated Maternity and Child Health Care Hospital, Xuzhou Medical University, Xuzhou 221009, People's Republic of China
| |
Collapse
|
483
|
Saul D, Kosinsky RL. Epigenetics of Aging and Aging-Associated Diseases. Int J Mol Sci 2021; 22:ijms22010401. [PMID: 33401659 PMCID: PMC7794926 DOI: 10.3390/ijms22010401] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/19/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
Aging represents the multifactorial decline in physiological function of every living organism. Over the past decades, several hallmarks of aging have been defined, including epigenetic deregulation. Indeed, multiple epigenetic events were found altered across different species during aging. Epigenetic changes directly contributing to aging and aging-related diseases include the accumulation of histone variants, changes in chromatin accessibility, loss of histones and heterochromatin, aberrant histone modifications, and deregulated expression/activity of miRNAs. As a consequence, cellular processes are affected, which results in the development or progression of several human pathologies, including cancer, diabetes, osteoporosis, and neurodegenerative disorders. In this review, we focus on epigenetic mechanisms underlying aging-related processes in various species and describe how these deregulations contribute to human diseases.
Collapse
Affiliation(s)
- Dominik Saul
- Kogod Center on Aging and Division of Endocrinology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA;
- Department of Trauma, Orthopedics and Reconstructive Surgery, Georg-August-University of Goettingen, 37075 Goettingen, Germany
| | - Robyn Laura Kosinsky
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-293-2386
| |
Collapse
|
484
|
Ladurner A, Schwarz PF, Dirsch VM. Natural products as modulators of retinoic acid receptor-related orphan receptors (RORs). Nat Prod Rep 2021; 38:757-781. [PMID: 33118578 DOI: 10.1039/d0np00047g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 1994 to 2020 Retinoic acid receptor-related orphan receptors (RORs) belong to a subfamily of the nuclear receptor superfamily and possess prominent roles in circadian rhythm, metabolism, inflammation, and cancer. They have been subject of research for over two decades and represent attractive but challenging drug targets. Natural products were among the first identified ligands of RORs and continue to be of interest to this day. This review focuses on ligands and indirect modulators of RORs from natural sources and explores their roles in a therapeutic context.
Collapse
Affiliation(s)
- Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Patrik F Schwarz
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| | - Verena M Dirsch
- Department of Pharmacognosy, University of Vienna, Vienna, Austria.
| |
Collapse
|
485
|
Ma YS, Yang XL, Xin R, Liu JB, Fu D. Power and promise of exosomes as clinical biomarkers and therapeutic vectors for liquid biopsy and cancer control. Biochim Biophys Acta Rev Cancer 2020; 1875:188497. [PMID: 33370570 DOI: 10.1016/j.bbcan.2020.188497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Exosomes, microvesicles derived from the nuclear endosome and plasma membrane, can be released into the extracellular environment to act as mediators between the cell membrane and cytoplasmic proteins, lipids, or RNA. Exosomes are considered effective carriers of intercellular signals in prokaryotes and eukaryotes, because of their ability to efficiently transfer proteins, lipids, and nucleic acids between cellular compartments. Since the 2007 discovery that exosomes carry bioactive substances, exosomes have been intensively researched. In various physiological and pathological processes, exosomes play important biological roles by specifically combining with receptor cells and transmitting information. Their stable biological characteristics, diversity of contents, non-invasiveness path for introducing signaling molecules, and ability for rapid detection make exosomes a promising clinical diagnostic marker for potentially many pathological conditions, including cancers. Exosomes are not only considered biomarkers and prognostic disease factors, but also have potential as gene carriers and drug delivery vectors, and have important clinical significance and application potential in the fields of cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Department of Pancreatic and Hepatobiliary Surgery, Cancer Hospital, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong 226631, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
486
|
Anti-Stem Cell Property of Pterostilbene in Gastrointestinal Cancer Cells. Int J Mol Sci 2020; 21:ijms21249347. [PMID: 33302440 PMCID: PMC7762551 DOI: 10.3390/ijms21249347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/06/2020] [Indexed: 12/17/2022] Open
Abstract
Pterostilbene (PTE) is a natural sterbenoid contained in blueberries that has an antioxidant effect. In contrast, PTE also generates oxidative stress in cancer cells and provides an antitumor effect. Here, we examined the potential mechanism of this contrasting effect of PTE using three gastrointestinal cancer cell lines, namely CT26, HT29, and MKN74. PTE showed a dose-dependent inhibition of cell proliferation, sphere-forming ability, and stem cell marker expression in all three cell lines. Furthermore, the cells treated with PTE showed an increase in mitochondrial membrane potential and an increase in mitochondrial oxidative stress and lipid peroxide. Upon concurrent treatment with vitamin E, N-acetyl-L-cysteine, and PTE, the PTE-induced mitochondrial oxidative stress and growth inhibition were suppressed. These findings indicate that PTE induces oxidative stress in cancer cells, suppresses stemness, and inhibits proliferation. These antitumor effects of PTE are considered to be useful in cancer treatment.
Collapse
|
487
|
Wang Y, Chen Y, Zhang X, Lu Y, Chen H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104248] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
488
|
Tian C, Chen K, Gong W, Yoshimura T, Huang J, Wang JM. The G-Protein Coupled Formyl Peptide Receptors and Their Role in the Progression of Digestive Tract Cancer. Technol Cancer Res Treat 2020; 19:1533033820973280. [PMID: 33251986 PMCID: PMC7705772 DOI: 10.1177/1533033820973280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a causative factor of many cancers, although it
originally acts as a protective host response to the loss of tissue homeostasis.
Many inflammatory conditions predispose susceptible cells, most of which are of
epithelial origin, to neoplastic transformation. There is a close correlation
between digestive tract (DT) cancer and chronic inflammation, such as esophageal
adenocarcinoma associated with Barrett’s esophagus, helicobacter
pylori infection as the cause of stomach cancer, hepatitis leading
to liver cirrhosis and subsequent cancer, and colon cancer linking to
inflammatory bowel diseases and schistosomiasis. A prominent
feature of malignant transformation of DT tract epithelial cells is their
adoption of somatic gene mutations resulting in abnormal expression of proteins
that endow the cells with unlimited proliferation as well as increased motility
and invasive capabilities. Many of these events are mediated by Gi-protein
coupled chemoattractant receptors (GPCRs) including formyl peptide receptors
(FPRs in human, Fprs in mice). In this article, we review the current
understanding of FPRs (Fprs) and their function in DT cancer types as well as
their potential as therapeutic targets.
Collapse
Affiliation(s)
- Cuimeng Tian
- Department of Radiation Oncology, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China.,Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Keqiang Chen
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| | - Wanghua Gong
- Basic Research Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jiaqiang Huang
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA.,Laboratory of Cancer Basic Research, Beijing Tuberculosis and Thoracic Tumor Research Institute/Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Ji Ming Wang
- Laboratory of Cancer ImmunoMetabolism, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, USA
| |
Collapse
|
489
|
Kim SM, Imm JY. The Effect of Chrysin-Loaded Phytosomes on Insulin Resistance and Blood Sugar Control in Type 2 Diabetic db/db Mice. Molecules 2020; 25:molecules25235503. [PMID: 33255372 PMCID: PMC7727825 DOI: 10.3390/molecules25235503] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Although a variety of beneficial health effects of natural flavonoids, including chrysin, has been suggested, poor solubility and bioavailability limit their practical use. As a promising delivery system, chrysin-loaded phytosomes (CPs) were prepared using egg phospholipid (EPL) at a 1:3 molar ratio and its antidiabetic effects were assessed in db/db diabetic mice. Male C57BLKS/J-db/db mice were fed a normal diet (control), chrysin diet (100 mg chrysin/kg), CP diet (100 mg chrysin equivalent/kg), metformin diet (200 mg/kg) or EPL diet (vehicle, the same amount of EPL used for CP preparation) for 9 weeks. Administration of CP significantly decreased fasting blood glucose and insulin levels in db/db mice compared with the control. An oral glucose tolerance test and homeostatic model assessment for insulin resistance were significantly improved in the CP group (p < 0.05). CP treatment suppressed gluconeogenesis via downregulation of phosphoenolpyruvate carboxykinase while it promoted glucose uptake in the skeletal muscle and liver of db/db mice (p < 0.05). The CP-mediated improved glucose utilization in the muscle was confirmed by upregulation of glucose transporter type 4, hexokinase2 and peroxisome proliferator-activated receptor γ during treatment (p < 0.05). The CP-induced promotion of GLUT4 plasma translocation was confirmed in the skeletal muscle of db/db mice (p < 0.05). Based on the results, CP showed greater antidiabetic performance compared to the control by ameliorating insulin resistance in db/db mice and phytosome can be used as an effective antidiabetic agent.
Collapse
|
490
|
Bailly C. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties. Eur J Pharmacol 2020; 891:173735. [PMID: 33220271 DOI: 10.1016/j.ejphar.2020.173735] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022]
Abstract
The rhizome of the plant Atractylodes macrocephala Koidz is the major constituent of the Traditional Chinese Medicine Baizhu, frequently used to treat gastro-intestinal diseases. Many traditional medicine prescriptions based on Baizhu and the similar preparation Cangzhu are used in China, Korea and Japan as Qi-booster. These preparations contain atractylenolides, a small group of sesquiterpenoids endowed with antioxidant and anti-inflammatory properties. Atractylenolides I, II and III also display significant anticancer properties, reviewed here. The capacity of AT-I/II/IIII to inhibit cell proliferation and to induce cancer cell death have been analyzed, together with their effects of angiogenesis, metastasis, cell differentiation and stemness. The immune-modulatory properties of ATs are discussed. AT-I has been tested clinically for the treatment of cancer-induced cachexia with encouraging results. ATs, alone or combined with cytotoxic drugs, could be useful to treat cancers or to reduce side effects of radio and chemotherapy. Several signaling pathways have been implicated in their multi-targeted mechanisms of action, in particular those involving the central regulators TLR4, NFκB and Nrf2. A drug-induced reduction of inflammatory cytokines production (TNFα, IL-6) also characterizes these molecules which are generally weakly cytotoxic and well tolerated in vivo. Inhibition of Janus kinases (notably JAK2 and JAK3 targeted by AT-I and AT-III, respectively) has been postulated. Information about their metabolism and toxicity are limited but the long-established traditional use of the Atractylodes and the diversity of anticancer effects reported with AT-I and AT-III should encourage further studies with these molecules and structurally related natural products.
Collapse
|
491
|
Zhang J, Wang J, Fang H, Yu H, Zhao Y, Shen J, Zhou C, Jin Y. Pterostilbene inhibits deoxynivalenol-induced oxidative stress and inflammatory response in bovine mammary epithelial cells. Toxicon 2020; 189:10-18. [PMID: 33181164 DOI: 10.1016/j.toxicon.2020.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Accepted: 11/08/2020] [Indexed: 12/16/2022]
Abstract
More and more studies have showed that tricothecene mycotoxin, deoxynivalenol (DON) caused cytotoxicity in mammary alveolar cells-large T antigen cells (MAC-T). Therefore, research on reducing the cytotoxicity of DON has gradually attracted attention. In this study, we aim to explore the potential of pterostilbene (PTE) to protect MAC-T cells from DON-induced oxidative stress and inflammatory response. MAC-T cells were treated with 0.25 μg/mL DON or 2.0504 μg/mL PTE or 0.25 μg/mL DON and 2.0504 μg/mL PTE together, incubated for 9 h. PTE effectively improved cell viability, cell proliferation and total antioxidant capacity (T-AOC), reduced reactive oxygen species (ROS) production and malondialdehyde (MDA), and improved glutathione (GSH) depletion. Moreover, PTE effectively regulated the mRNA levels of nuclear factor erythroid-2-related factor 2 (Nrf2), kelch-like ech-associated protein 1 (Keap1), superoxide dismutase 1 (SOD1) and superoxide dismutase 2 (SOD2). PTE significantly inhibited nuclear factor kappa-B P65 (NF-κB P65), nuclear factor kappa-B P50 (NF-κB P50), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), interleukin-6 (IL-6) and monocyte chemotactic protein 1 (MCP-1) mRNA levels in DON-induced MAC-T cells. PTE also significantly reduced inducible nitric oxide synthase (iNOS) and nitric oxide (NO) levels in DON-induced MAC-T cells. Additionally, ELISA revealed that PTE inhibited the expression of tumor necrosis factor-α (TNF-α) and IL-6 proteins produced in DON-induced MAC-T cells. These findings together provided strong evidence to support that PTE can effectively alleviate the damage to cells caused by DON, and it may be used as an effective anti-inflammatory and antioxidant to prevent the damage of mycotoxins to the animal body.
Collapse
Affiliation(s)
- Jing Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, 130062, China
| | - JunMei Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - HengTong Fang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Yun Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - JingLin Shen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - ChangHai Zhou
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - YongCheng Jin
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
492
|
Nutrition in Cancer Therapy in the Elderly-An Epigenetic Connection? Nutrients 2020; 12:nu12113366. [PMID: 33139626 PMCID: PMC7692262 DOI: 10.3390/nu12113366] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
The continuous increase in life expectancy results in a steady increase of cancer risk, which consequently increases the population of older adults with cancer. Older adults have their age-related nutritional needs and often suffer from comorbidities that may affect cancer therapy. They frequently are malnourished and present advanced-stage cancer. Therefore, this group of patients requires a special multidisciplinary approach to optimize their therapy and increase quality of life impaired by aging, cancer, and the side effects of therapy. Evaluation strategies, taking advantage of comprehensive geriatric assessment tools, including the comprehensive geriatric assessment (CGA), can help individualize treatment. As epigenetics, an emerging element of the regulation of gene expression, is involved in both aging and cancer and the epigenetic profile can be modulated by the diet, it seems to be a candidate to assist with planning a nutritional intervention in elderly populations with cancer. In this review, we present problems associated with the diet and nutrition in the elderly undergoing active cancer therapy and provide some information on epigenetic aspects of aging and cancer transformation. Nutritional interventions modulating the epigenetic profile, including caloric restriction and basal diet with modifications (elimination diet, supplementary diet) are discussed as the ways to improve the efficacy of cancer therapy and maintain the quality of life of older adults with cancer.
Collapse
|
493
|
Yang M, Wang Y, Patel G, Xue Q, Singor Njateng GS, Cai S, Cheng G, Kai G. In vitro and in vivo anti-inflammatory effects of different extracts from Epigynum auritum through down-regulation of NF-κB and MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113105. [PMID: 32590114 DOI: 10.1016/j.jep.2020.113105] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epigynum auritum has been historically used as a "dai" or traditional medicine for the treatment of inflammation, swelling and severe pain during injury; these may reduce risk of disease and lead to healthier aging. Apart from this, Epigynum auritum extract was also used in arhritis treatment which is also a type of inflammation. Previous phytochemical studies of E. auritum revealed that steroids are main characteristic components with a number of biological activities (especially immunosuppressive and anti-inflammatory activity) Nevertheless, the underlying mechanism of the E. auritum on inflammatory diseases is still unresolved. AIM OF THE STUDY This study aimed to comparatively investigate the anti-inflammatory potential of different fractions from the extract of E. auritum (EAE), with their possible active ingredients to reveal the underlying mechanism. MATERIALS AND METHODS The EAE was fractionated by column chromatography with macroporous resin D101 which yielded six fractions. The potential anti-inflammatory properties of different fractions of EAE were evaluated in in vitro and in vivo model. The lipopolysaccharide (LPS)-induced RAW264.7 macrophages cells were used for in vitro studies however two typical acute inflammation murine models (xylene-induced ear edema and carrageenan-induced paw edema) were used for anti-inflammatory studies. The important molecular mechanisms related to inflammation were also analyzed by ELISA, western blotting and immunofluorescence. UHPLC-MS/MS was used to analyze the chemical composition of 100% EAE fraction. RESULTS Different EAE fractions (especially the Fr. 100% of MeOH:H2O) significantly reduced the productions of NO, ROS, TNF-α, and IL-6 by LPS-induced RAW264.7 macrophages and increased the expression of IL-10. The expression levels of iNOS and COX-2 enzymes were significantly down-regulated by 100% EAE fraction. Furthermore, 100% EAE fraction inhibited the phosphorylation of the ERK1/2, JNK, and p38 MAPK, and reduced the nuclear translocation of NF-κB which prevents its activation by blocking the phosphorylation and degradation of inhibitor protein of IκBα. In addition two inflammatory animal models; xylene-induced ear edema and carrageenan-stimulated paw edema were also developed with significantly ameliorated inflammatory cytokines. The treatment of these inflammatory models with 100% EAE fraction (Fr. 100%) suppressed the expressions of elevated inflammatory cytokines. Besides the UHPLC-HRMS/MS analysis was also carried out in which the androstane analogues were found to be as a main chemical components. CONCLUSION Different fractions (especially Fr. 100%) exert inhibitory effect on inflammation by regulating the release of inflammatory mediators through the NF-κB and MAPK signaling pathways. The androstane and its derivatives might be performing an important role in the observed anti-inflammatory activity. Therefore, Fr. 100% of EAE could be applied as a potential drug candidate for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Meilian Yang
- The Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yudan Wang
- The Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China; Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University, Kunming, 650500, People's Republic of China
| | - Gopal Patel
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Guy Sedar Singor Njateng
- Department of Biochemistry, Faculty of Science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Shengbao Cai
- The Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Guiguang Cheng
- The Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| | - Guoyin Kai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
| |
Collapse
|
494
|
Bu L, Dai O, Zhou F, Liu F, Chen JF, Peng C, Xiong L. Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother 2020; 132:110855. [PMID: 33059257 DOI: 10.1016/j.biopha.2020.110855] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Ischemic diseases, such as ischemic heart diseases and ischemic stroke, are the leading cause of death worldwide. Angiogenic therapy is a wide-ranging approach to fighting ischemic diseases. However, compared with anti-angiogenesis therapy for tumors, less attention has been paid to therapeutic angiogenesis. Recently, Traditional Chinese medicine (TCM) has garnered increasing interest for its definite curative effect and low toxicity. A growing number of studies have reported that TCM formulas, extracts, and compounds from herbal medicines exert pro-angiogenic activity, which has been confirmed in a few clinical trials. For comprehensive analysis of relevant literature, global and local databases including PubMed, Web of Science, and China National Knowledge Infrastructure were searched using keywords such as "angiogenesis," "neovascularization," "traditional Chinese medicine," "formula," "extract," and "compound." Articles were chosen that are closely and directly related to pro-angiogenesis. This review summarizes the pro-angiogenic activity and the mechanism of TCM formulas, extracts, and compounds; it delivers an in-depth understanding of the relationship between TCM and pro-angiogenesis and will provide new ideas for clinical practice.
Collapse
Affiliation(s)
- Lan Bu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ou Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jin-Feng Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
495
|
Li LC, Zhang ZH, Zhou WC, Chen J, Jin HQ, Fang HM, Chen Q, Jin YC, Qu J, Kan LD. Lianhua Qingwen prescription for Coronavirus disease 2019 (COVID-19) treatment: Advances and prospects. Biomed Pharmacother 2020; 130:110641. [PMID: 34321172 PMCID: PMC7437484 DOI: 10.1016/j.biopha.2020.110641] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND An outbreak of Coronavirus Disease 2019 (COVID-19) which was infected by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is still spreading and has led to unprecedented health emergency over the world. Though no specific drug has been developed so far, emerging agents have been confirmed effective or potentially beneficial to restrain it. Lianhua Qingwen (LHQW) is a commonly used Chinese medical preparation to treat viral influenza, including in the fight against SARS in 2002-2003 in China. Recent data also showed that LHQW played a vigorous role in COVID-19 treatment. PURPOSE This review will elucidate the pre-clinical and clinical evidence of LHQW in lung protection and antiviral activities, and provide timely data delivery for the exploration of effective treatment strategies in the therapy of COVID-19. STUDY DESIGN AND METHOD The research data were obtained from the academic databases (up to August 8, 2020) including Pubmed, CNKI and Web of Science, on ethnobotany and ethno medicines. The search keywords for screening the literature information were "virus", "COVID-19", or "SARS-CoV-2", and "Lianhua Qingwen". The documents were filtered and summarized for final evaluation. RESULTS The collected evidence demonstrated that LHQW exhibited benefits against COVID-19. Impressively, LHQW in conjunction with conventional treatment could significantly improve COVID-19 patients as a synergetic strategy. The mechanisms were mainly involved the antiviral activity, and regulation of inflammation response as well as immune function. CONCLUSION Although the data were far from adequate, the latest advances had shown the benefits of LHQW in COVID-19, especially in combination with other antiviral drugs. This review provides comprehensive evidence of LHQW as a complementary strategy for treating COVID-19. Nevertheless, imperious researches should be conducted to clarify the unconfirmed effects, regulatory mechanisms and adverse reactions of LHQW in treating COVID-19 by means of well designed randomized controlled trials.
Collapse
Affiliation(s)
- Liu-Cheng Li
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Zhi-Hui Zhang
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, PR China,Shanghai TCM-Integrated Institute of Vascular Anomalies, Shanghai, 200082, PR China
| | - Wen-Cheng Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310018, PR China,Department of Pharmacy, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, 310018, PR China
| | - Jie Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Hua-Qian Jin
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Hong-Mei Fang
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Qin Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Ye-Cheng Jin
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China.
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, Nanjing, 210023, PR China.
| | - Lian-Di Kan
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China.
| |
Collapse
|
496
|
Kangtaizhi Granule Alleviated Nonalcoholic Fatty Liver Disease in High-Fat Diet-Fed Rats and HepG2 Cells via AMPK/mTOR Signaling Pathway. J Immunol Res 2020; 2020:3413186. [PMID: 32884949 PMCID: PMC7455821 DOI: 10.1155/2020/3413186] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022] Open
Abstract
Kangtaizhi granule (KTZG) is a Chinese medicine compound prescription and has been proven to be effective in nonalcoholic fatty liver disease (NAFLD) treatment clinically. However, the underlying mechanisms under this efficacy are rather elusive. In the present study, network pharmacology and HPLC analysis were performed to identify the chemicals of KTZG and related target pathways for NAFLD treatment. Network pharmacology screened 42 compounds and 79 related targets related to NAFLD; HPLC analysis also confirmed six compounds in KTZG. Further experiments were also performed. In an in vivo study, SD rats were randomly divided into five groups: control (rats fed with normal diet), NAFLD (rats fed with high-fat diet), and KTZG 0.75, 1.5, and 3 groups (NAFLD rats treated with KTZG 0.75, 1.5, and 3 g/kg, respectively). Serum lipids were biochemically determined; hepatic steatosis and lipid accumulation were evaluated with HE and oil red O staining. In an in vitro study, HepG2 cells were incubated with 1 mM FFA to induce lipid accumulation with or without KTZG treatment. MTT assay, intracellular TG level, oil red O staining, and glucose uptake in cells were detected. Western blotting and immunohistochemical and immunofluorescence staining were also performed to determine the expression of lipid-related genes PPAR-γ, SREBP-1, p-AKT, FAS, and SIRT1 and genes in the AMPK/mTOR signaling pathway. In high-fat diet-fed rats, KTZG treatment significantly improved liver organ index and serum lipid contents of TG, TC, LDL-C, HDL-C, ALT, and AST significantly; HE and oil red O staining also showed that KTZG alleviated hepatic steatosis and liver lipid accumulation. In FFA-treated HepG2 cells, KTZG treatment decreased the intracellular TG levels, lipid accumulation, and attenuated glucose uptake significantly. More importantly, lipid-related genes PPAR-γ, SREBP-1, p-AKT, FAS, and SIRT1 expressions were ameliorated with KTZG treatment in high-fat diet-fed rats and FFA-induced HepG2 cells. The p-AMPK and p-mTOR expressions in the AMPK/mTOR signaling pathway were also modified with KTZG treatment in high-fat diet-fed rats and HepG2 cells. These results indicated that KTZG effectively ameliorated lipid accumulation and hepatic steatosis to prevent NAFLD in high-fat diet-fed rats and FFA-induced HepG2 cells, and this effect was associated with the AMPK/mTOR signaling pathway. Our results suggested that KTZG might be a potential therapeutic agent for the prevention of NAFLD.
Collapse
|
497
|
Liu H, Yang P, Li X, Jia Y. Ring finger protein 180 is associated with biological behavior and prognosis in patients with non-small cell lung cancer. Oncol Lett 2020; 20:35. [PMID: 32802159 PMCID: PMC7412726 DOI: 10.3892/ol.2020.11898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
There are few studies on the role of ring finger protein (RNF)180 in non-small cell lung cancer (NSCLC). The present study investigated the expression of RNF180 in NSCLC and its associations with the clinical factors and prognosis of NSCLC. The mRNA and protein expression levels of RNF180 were detected via reverse transcription-quantitative PCR and western blotting. Methylation-specific PCR (MSP) analysis was utilized to detect the methylation of RNF180. RNF180 expression levels were analyzed via immunohistochemistry. The protein and mRNA expression levels of RNF180 were lower in NSCLC cell lines compared with in the non-tumor cell line. Immunohistochemistry revealed that 64 patients that were negative for RNF180, while MSP detection analysis demonstrated that 60 patients exhibited RNF180 promoter methylation. The methylation status of RNF180 was significantly associated with RNF180 expression level. Among all factors evaluated, logistic regression analysis indicated that only T stage was significantly associated with RNF180 expression. Cox multivariate analysis demonstrated that RNF180 expression was an independent predictor of overall survival in patients with NSCLC. Methylation in the promoter of RNF180 was shown to reduce its expression levels. In summary, low RNF180 expression levels were associated with poor biological behaviors, thus RNF180 expression level may be used as a clinical marker to predict the prognosis of patients with NSCLC.
Collapse
Affiliation(s)
- Honggen Liu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Peiying Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| |
Collapse
|
498
|
Ambrosone CB, Higgins MJ. Relationships between Breast Feeding and Breast Cancer Subtypes: Lessons Learned from Studies in Humans and in Mice. Cancer Res 2020; 80:4871-4877. [PMID: 32816853 DOI: 10.1158/0008-5472.can-20-0077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/21/2020] [Accepted: 08/06/2020] [Indexed: 12/15/2022]
Abstract
There are differential risk relationships between parity and breast cancer according to estrogen receptor (ER) status, with an increased risk of ER- disease reduced by breastfeeding. This may be particularly relevant for understanding the higher incidence of ER- tumors in Black women, who are more likely to be parous and less likely to breastfeed than other U.S. groups. Potential mechanisms for these relationships may include effects of disordered breast involution on inflammatory milieu in the breast as well as epigenetic reprogramming in the mammary gland, which can affect cell fate decisions in progenitor cell pools. In normal breast tissue, parity has been associated with hypermethylation of FOXA1, a pioneer transcription factor that promotes the luminal phenotype in luminal progenitors, while repressing the basal phenotype. In breast tumors, relationships between FOXA1 methylation and parity were strongest among women who did not breastfeed. Here, we summarize the epidemiologic literature regarding parity, breastfeeding, and breast cancer subtypes, and review potential mechanisms whereby these factors may influence breast carcinogenesis, with a focus on effects on progenitor cell pools in the mammary gland.
Collapse
Affiliation(s)
- Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York.
| | - Michael J Higgins
- Department of Cellular and Molecular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| |
Collapse
|
499
|
Li Q, Li M, Li F, Zhou W, Dang Y, Zhang L, Ji G. Qiang-Gan formula extract improves non-alcoholic steatohepatitis via regulating bile acid metabolism and gut microbiota in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112896. [PMID: 32325178 DOI: 10.1016/j.jep.2020.112896] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qiang-Gan formula is a traditional Chinese medicine formula, which has been widely used in treating liver diseases in China. AIM OF THE STUDY To investigate the effect of Qiang-Gan formula extract (QGE) on non-alcoholic steatohepatitis (NASH) and its underlying possible mechanisms. MATERIALS AND METHODS The high-performance liquid chromatography finger-print method was used for the quality control of chemical components in QGE. Methionine- and choline-deficient diet-induced NASH mice were administrated with QGE via gavage for four weeks. Phenotypic parameters including liver histological change as well as serum levels of alanine transaminase (ALT), aspartate transaminase (AST) were detected. Bile acid profile in the serum, liver and fecal samples was analyzed by gas chromatography-mass spectrometer technique, and fecal microbiota was detected by 16S rDNA sequencing. Expression of liver G protein-coupled bile acid receptor 1 (TGR5), farnesiod X receptor (FXR), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) as well as molecules in nuclear factor kappa B (NF-κB) pathway was assayed by immunohistochemistry staining, RT-qPCR, or Western blot, respectively. RESULTS QGE alleviated liver inflammation, reduced serum ALT and AST levels and liver TNF-α and IL-1β expression in NASH mice. It also decreased liver and serum BA concentration and increased fecal lithocholicacid (LCA) production in this animal model. QGE altered the structure of gut microbiota, predominantly increased LCA-producing bacteria Bacteroides and Clostridium in NASH mice. In addition, the expression of liver TGR5 but not FXR was increased, and the molecules in NF-κB pathway were decreased in QGE-treated NASH mice. CONCLUSIONS QGE was effective in preventing NASH, possibly by regulation of gut microbiota-mediated LCA production, promotion of TGR5 expression and suppression of the NF-κB activation.
Collapse
Affiliation(s)
- Qiong Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Meng Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Fenghua Li
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
500
|
Berberine ameliorates rats model of combined Alzheimer's disease and type 2 diabetes mellitus via the suppression of endoplasmic reticulum stress. 3 Biotech 2020; 10:359. [PMID: 32832321 DOI: 10.1007/s13205-020-02354-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/22/2020] [Indexed: 12/30/2022] Open
Abstract
This study is aimed to investigate the protective effect against type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) of Berberine (BBR), and the underlying mechanism of action is explored. We established a rat model of combined AD and T2DM and used it to investigate the effect of BBR (150 mg/kg) on the course of these pathologies. The Morris water maze, biochemical analysis, hematoxylin-eosin staining, immunohistochemical study, immunofluorescent staining, TUNEL assay, RT-qPCR and western blot were used to reveal the effect of BBR on blood glucose, lipid changes, hippocampal injuries and cognitive impairment. The results showed that BBR could alleviate memory deficits, restore the disordered arrangement of nerve cells, the damage of neurons, improve TUNEL-positive cells and decrease the elevated levels of fasting blood glucose, triglyceride, total cholesterol and glycosylated serum protein levels in Alzheimer diabetic rats. Moreover, BBR treatment reduces the transcription of mRNAs and expression of proteins related to endoplasmic reticulum (ER) stress. These findings conclude that BBR can protect neurons by inhibiting the pathway of ER stress and thereby play an essential role in the preventive and therapeutic of AD and T2DM.
Collapse
|