451
|
Faria J, Ahmed S, Gerritsen KGF, Mihaila SM, Masereeuw R. Kidney-based in vitro models for drug-induced toxicity testing. Arch Toxicol 2019; 93:3397-3418. [PMID: 31664498 DOI: 10.1007/s00204-019-02598-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/15/2019] [Indexed: 12/18/2022]
Abstract
The kidney is frequently involved in adverse effects caused by exposure to foreign compounds, including drugs. An early prediction of those effects is crucial for allowing novel, safe drugs entering the market. Yet, in current pharmacotherapy, drug-induced nephrotoxicity accounts for up to 25% of the reported serious adverse effects, of which one-third is attributed to antimicrobials use. Adverse drug effects can be due to direct toxicity, for instance as a result of kidney-specific determinants, or indirectly by, e.g., vascular effects or crystals deposition. Currently used in vitro assays do not adequately predict in vivo observed effects, predominantly due to an inadequate preservation of the organs' microenvironment in the models applied. The kidney is highly complex, composed of a filter unit and a tubular segment, together containing over 20 different cell types. The tubular epithelium is highly polarized, and the maintenance of this polarity is critical for optimal functioning and response to environmental signals. Cell polarity is dependent on communication between cells, which includes paracrine and autocrine signals, as well as biomechanic and chemotactic processes. These processes all influence kidney cell proliferation, migration, and differentiation. For drug disposition studies, this microenvironment is essential for prediction of toxic responses. This review provides an overview of drug-induced injuries to the kidney, details on relevant and translational biomarkers, and advances in 3D cultures of human renal cells, including organoids and kidney-on-a-chip platforms.
Collapse
Affiliation(s)
- João Faria
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Sabbir Ahmed
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Karin G F Gerritsen
- Department of Nephrology and Hypertension, University Medical Center, Utrecht, The Netherlands
| | - Silvia M Mihaila
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Department of Nephrology and Hypertension, University Medical Center, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
452
|
Olivier S, Leclerc J, Grenier A, Foretz M, Tamburini J, Viollet B. AMPK Activation Promotes Tight Junction Assembly in Intestinal Epithelial Caco-2 Cells. Int J Mol Sci 2019; 20:E5171. [PMID: 31635305 PMCID: PMC6829419 DOI: 10.3390/ijms20205171] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is principally known as a major regulator of cellular energy status, but it has been recently shown to play a key structural role in cell-cell junctions. The aim of this study was to evaluate the impact of AMPK activation on the reassembly of tight junctions in intestinal epithelial Caco-2 cells. We generated Caco-2 cells invalidated for AMPK α1/α2 (AMPK dKO) by CRISPR/Cas9 technology and evaluated the effect of the direct AMPK activator 991 on the reassembly of tight junctions following a calcium switch assay. We analyzed the integrity of the epithelial barrier by measuring the trans-epithelial electrical resistance (TEER), the paracellular permeability, and quantification of zonula occludens 1 (ZO-1) deposit at plasma membrane by immunofluorescence. Here, we demonstrated that AMPK deletion induced a delay in tight junction reassembly and relocalization at the plasma membrane during calcium switch, leading to impairments in the establishment of TEER and paracellular permeability. We also showed that 991-induced AMPK activation accelerated the reassembly and reorganization of tight junctions, improved the development of TEER and paracellular permeability after calcium switch. Thus, our results show that AMPK activation ensures a better recovery of epithelial barrier function following injury.
Collapse
Affiliation(s)
- Séverine Olivier
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Jocelyne Leclerc
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Adrien Grenier
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Marc Foretz
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Jérôme Tamburini
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| | - Benoit Viollet
- Université de Paris, Institut Cochin, CNRS UMR8104, INSERM U1016, F-75014 Paris, France.
| |
Collapse
|
453
|
Sankhe R, Kinra M, Mudgal J, Arora D, Nampoothiri M. Neprilysin, the kidney brush border neutral proteinase: a possible potential target for ischemic renal injury. Toxicol Mech Methods 2019; 30:88-99. [PMID: 31532266 DOI: 10.1080/15376516.2019.1669246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neprilysin (NEP) is an endogenously induced peptidase for modulating production and degradation of various peptides in humans. It is most abundantly present in kidney and regulates the intrinsic renal homeostatic mechanism. Recently, drugs inhibiting NEP have been approved for the use in heart failure. In the context of increased prevalence of ischemia associated renal failure, NEP could be an attractive target for treating kidney failure. In the kidney, targeting NEP may possess potential benefits as well as adverse consequences. The unfavorable outcomes of NEP are mainly attributed to the degradation of the natriuretic peptides (NPs). NPs are involved in the inhibition of the renin-angiotensin-aldosterone system (RAAS) and activation of the sympathetic system contributing to the tubular and glomerular injury. In contrary, NEP exerts the beneficial effect by converting angiotensin-1 (Ang I) to angiotensin-(1-7) (Ang-(1-7)), thus activating MAS-related G-protein coupled receptor. MAS receptor antagonizes angiotensin type I receptor (AT-1R), reduces reactive oxygen species (ROS) and inflammation, thus ameliorating renal injury. However, the association of NEP with complex cascades of renal ischemia remains vague. Therefore, there is a need to evaluate the putative mechanism of NEP and its overlap with other signaling cascades in conditions of renal ischemia.
Collapse
Affiliation(s)
- Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Manas Kinra
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India.,School of Pharmacy and Pharmacology, MHIQ, QUM Network, Griffith University, Gold Coast, Australia
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
454
|
Evaluation with endothelial nitric oxide synthase (eNOS) immunoreactivity of the protective role of astaxanthin on hepatorenal injury of remote organs caused by ischaemia reperfusion of the lower extremities. GASTROENTEROLOGY REVIEW 2019; 15:161-172. [PMID: 32550950 PMCID: PMC7294969 DOI: 10.5114/pg.2019.88620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
Introduction Ischemia and following reperfusion triggers local and systemic damage with the involvement of free oxygen radicals and inflammatory mediators. Although blood flow saves extremity from necrosis,multi organ dysfunction may progress and cause death of the patient. Aim The study aims to examine the effect of astaxanthin (AST) on the prevention of remote tissue injury resulting from lower extremity ischaemia–reperfusion (I/R). To elucidate the potential hepatoprotective and renoprotective effects of AST, in addition to histopathological findings, the intrahepatic and intrarenal kinetics of endothelial nitric oxide synthase (eNOS) during I/R were determined by using the immunohistochemical method. Material and methods Twenty-eight male Wistar albino rats were divided into four groups. For the control group, only the anaesthesia procedure (2 h) was conducted without I/R. In the I/R group, 2 h of reperfusion was conducted following ischaemia under anaesthesia. For the I/R group + AST, 7 days prior to ischaemia, 125 mg/kg AST was given with gavage, and 2 h of ischaemia and 2 h of reperfusion were conducted under anaesthesia. Following necropsy, liver and kidney tissue samples were fixed in 10% buffered formalin for 48 h for histopathological and immunohistochemical investigation. Results The histological analysis revealed that severe I/R hepatorenal injury such as inflammatory cell infiltration, dilatation in sinusoids and lumen of tubuli, congestion in glomerular capillaries, degeneration in hepatocyte and epithelial cells of tubuli, and necrosis was ameliorated by AST. Immunohistochemical studies showed that the I/R-induced elevation in eNOS expression was reduced by AST treatment. Conclusions In the case of acute lower extremity I/R, AST decreased the ischaemic injury in liver and renal tissues by protecting the microcirculation and providing a cytoprotective effect with vasodilatation.
Collapse
|
455
|
Huang J, Li J, Lyu Y, Miao Q, Pu K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. NATURE MATERIALS 2019; 18:1133-1143. [PMID: 31133729 DOI: 10.1038/s41563-019-0378-4] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/16/2019] [Indexed: 05/16/2023]
Abstract
Drug-induced acute kidney injury (AKI) with a high morbidity and mortality is poorly diagnosed in hospitals and deficiently evaluated in drug discovery. Here, we report the development of molecular renal probes (MRPs) with high renal clearance efficiency for in vivo optical imaging of drug-induced AKI. MRPs specifically activate their near-infrared fluorescence or chemiluminescence signals towards the prodromal biomarkers of AKI including the superoxide anion, N-acetyl-β-D-glucosaminidase and caspase-3, enabling an example of longitudinal imaging of multiple molecular events in the kidneys of living mice. Importantly, they in situ report the sequential occurrence of oxidative stress, lysosomal damage and cellular apoptosis, which precedes clinical manifestation of AKI (decreased glomerular filtration). Such an active imaging mechanism allows MRPs to non-invasively detect the onset of cisplatin-induced AKI at least 36 h earlier than the existing imaging methods. MRPs can also act as exogenous tracers for optical urinalysis that outperforms typical clinical/preclinical assays, demonstrating their clinical promise for early diagnosis of AKI.
Collapse
Affiliation(s)
- Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yan Lyu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
456
|
Zahedi K, Barone S, Soleimani M. Polyamine Catabolism in Acute Kidney Injury. Int J Mol Sci 2019; 20:E4790. [PMID: 31561575 PMCID: PMC6801762 DOI: 10.3390/ijms20194790] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) refers to an abrupt decrease in kidney function. It affects approximately 7% of all hospitalized patients and almost 35% of intensive care patients. Mortality from acute kidney injury remains high, particularly in critically ill patients, where it can be more than 50%. The primary causes of AKI include ischemia/reperfusion (I/R), sepsis, or nephrotoxicity; however, AKI patients may present with a complicated etiology where many of the aforementioned conditions co-exist. Multiple bio-markers associated with renal damage, as well as metabolic and signal transduction pathways that are involved in the mediation of renal dysfunction have been identified as a result of the examination of models, patient samples, and clinical data of AKI of disparate etiologies. These discoveries have enhanced our ability to diagnose AKIs and to begin to elucidate the mechanisms involved in their pathogenesis. Studies in our laboratory revealed that the expression and activity of spermine/spermidine N1-acetyltransferase (SAT1), the rate-limiting enzyme in polyamine back conversion, were enhanced in kidneys of rats after I/R injury. Additional studies revealed that the expression of spermine oxidase (SMOX), another critical enzyme in polyamine catabolism, is also elevated in the kidney and other organs subjected to I/R, septic, toxic, and traumatic injuries. The maladaptive role of polyamine catabolism in the mediation of AKI and other injuries has been clearly demonstrated. This review will examine the biochemical and mechanistic basis of tissue damage brought about by enhanced polyamine degradation and discuss the potential of therapeutic interventions that target polyamine catabolic enzymes or their byproducts for the treatment of AKI.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Sharon Barone
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Manoocher Soleimani
- Departments of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
- Research Services, Veterans Affairs Medical Center, Cincinnati, OH 45220, USA.
- Center on Genetics of Transport, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
457
|
Matsushita K, Takasu S, Kuroda K, Ishii Y, Kijima A, Ogawa K, Umemura T. Mechanisms Underlying Exacerbation of Osmotic Nephrosis Caused by Pre-existing Kidney Injury. Toxicol Sci 2019; 165:420-430. [PMID: 29947792 DOI: 10.1093/toxsci/kfy151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Osmotic nephrosis, a disease caused by intravenous infusion of various fluids such as hypertonic sucrose and isotonic polysaccharide-based plasma volume expanders, exhibits specific histopathological features, including vacuolated and swollen proximal tubules, ie, "clear tubules". Pre-existing kidney injury exacerbates this condition, resulting in major clinical problems. However, the underlying mechanisms are unclear. Animal models often yield results that are directly translatable to humans. Therefore, in this study, we performed detailed histopathological analyses of the formation of clear tubules in rats treated with gentamicin or ischemia/reperfusion (IR) operation followed by dextran administration. The results showed that clear tubules may originate from regenerative tubules. Additionally, we classified regenerative tubules into 3 categories based on their development, with a particular focus on the middle and late stages. Comprehensive microarray and real-time polymerase chain reaction analyses of mRNA extracted from regenerative tubules at each stage using laser microdissection revealed that regenerative tubules in the middle stage showed an imbalance between dextran absorption and metabolism, resulting in accumulation of dextran, particularly in the cytoplasm of the tubules. Overall, our findings demonstrated that clear tubules originated from regenerated tubules and that tubules at the middle stage became clear tubules because of an imbalance during their development. This could explain why osmotic nephrosis is exacerbated in the presence of kidney lesions.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Ken Kuroda
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Aki Kijima
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan
| | - Takashi Umemura
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, 210-9501, Japan.,Laboratory of Animal Pathology, Faculty of Animal Health Technology, Yamazaki University of Animal Health Technology, 4-7-2 Minami Osawa, Hachioji, Tokyo 192-0364, Japan
| |
Collapse
|
458
|
Oxidative Stress and Renal Fibrosis: Mechanisms and Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:585-604. [PMID: 31399986 DOI: 10.1007/978-981-13-8871-2_29] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress results from the disruption of the redox system marked by a notable overproduction of reactive oxygen species. There are four major sources of reactive oxygen species, including NADPH oxidases, mitochondria, nitric oxide synthases, and xanthine oxidases. It is well known that renal abnormalities trigger the production of reactive oxygen species by diverse mechanisms under various pathologic stimuli, such as acute kidney injury, chronic kidney disease, nephrotic syndrome, and metabolic disturbances. Mutually, accumulating evidences have identified that oxidative stress plays an essential role in tubulointerstitial fibrosis by myofibroblast activation as well as in glomerulosclerosis by mesangial sclerosis, podocyte abnormality, and parietal epithelial cell injury. Given the involvement of oxidative stress in renal fibrosis, therapies targeting oxidative stress seem promising in renal fibrosis management. In this review, we sketch the updated knowledge of the mechanisms of oxidative stress generation during renal diseases, the pathogenic processes of oxidative stress elicited renal fibrosis and treatments targeting oxidative stress during tubulointerstitial fibrosis and glomerulosclerosis.
Collapse
|
459
|
Chen Y, Tang W, Yu F, Xie Y, Jaramillo L, Jang HS, Li J, Padanilam BJ, Oupický D. Determinants of preferential renal accumulation of synthetic polymers in acute kidney injury. Int J Pharm 2019; 568:118555. [PMID: 31344445 PMCID: PMC6708481 DOI: 10.1016/j.ijpharm.2019.118555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/17/2022]
Abstract
Acute kidney injury (AKI) is a major kidney disease associated with high mortality and morbidity. AKI may lead to chronic kidney disease and end-stage renal disease. Currently, the management of AKI is mainly focused on supportive treatments. Previous studies showed macromolecular delivery systems as a promising method to target AKI, but little is known about how physicochemical properties affect the renal accumulation of polymers in ischemia-reperfusion AKI. In this study, a panel of fluorescently labeled polymers with a range of molecular weights and net charge was synthesized by living radical polymerization. By testing biodistribution of the polymers in unilateral ischemia-reperfusion mouse model of AKI, the results showed that negatively charged and neutral polymers had the greatest potential for selectively accumulating in I/R kidneys. The polymers passed through glomerulus and were retained in proximal tubular cells for up to 24 h after injection. The results obtained in the unilateral model were validated in a bilateral ischemic-reperfusion model. This study demonstrates for the first time that polymers with specific physicochemical characteristics exhibit promising ability to accumulate in the injured AKI kidney, providing initial insights on their use as polymeric drug delivery systems in AKI.
Collapse
Affiliation(s)
- Yi Chen
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lee Jaramillo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
460
|
Schlader ZJ, Hostler D, Parker MD, Pryor RR, Lohr JW, Johnson BD, Chapman CL. The Potential for Renal Injury Elicited by Physical Work in the Heat. Nutrients 2019; 11:nu11092087. [PMID: 31487794 PMCID: PMC6769672 DOI: 10.3390/nu11092087] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
An epidemic of chronic kidney disease (CKD) is occurring in laborers who undertake physical work in hot conditions. Rodent data indicate that heat exposure causes kidney injury, and when this injury is regularly repeated it can elicit CKD. Studies in humans demonstrate that a single bout of exercise in the heat increases biomarkers of acute kidney injury (AKI). Elevations in AKI biomarkers in this context likely reflect an increased susceptibility of the kidneys to AKI. Data largely derived from animal models indicate that the mechanism(s) by which exercise in the heat may increase the risk of AKI is multifactorial. For instance, heat-related reductions in renal blood flow may provoke heterogenous intrarenal blood flow. This can promote localized ischemia, hypoxemia and ATP depletion in renal tubular cells, which could be exacerbated by increased sodium reabsorption. Heightened fructokinase pathway activity likely exacerbates ATP depletion occurring secondary to intrarenal fructose production and hyperuricemia. Collectively, these responses can promote inflammation and oxidative stress, thereby increasing the risk of AKI. Equivalent mechanistic evidence in humans is lacking. Such an understanding could inform the development of countermeasures to safeguard the renal health of laborers who regularly engage in physical work in hot environments.
Collapse
Affiliation(s)
- Zachary J Schlader
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA.
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN 47405, USA.
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Mark D Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Riana R Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - James W Lohr
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Blair D Johnson
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Christopher L Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
461
|
Impaired renal organic anion transport 1 (SLC22A6) and its regulation following acute myocardial infarction and reperfusion injury in rats. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2342-2355. [DOI: 10.1016/j.bbadis.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/06/2019] [Accepted: 05/19/2019] [Indexed: 01/10/2023]
|
462
|
Abstract
Acute kidney injury (AKI), a major public health problem associated with high mortality and increased risk of progression towards end-stage renal disease, is characterized by the activation of intra-renal haemostatic and inflammatory processes. Platelets, which are present in high numbers in the circulation and can rapidly release a broad spectrum of bioactive mediators, are important acute modulators of inflammation and haemostasis, as they are the first cells to arrive at sites of acute injury, where they interact with endothelial cells and leukocytes. Diminished control of platelet reactivity by endothelial cells and/or an increased release of platelet-activating mediators can lead to uncontrolled platelet activation in AKI. As increased platelet sequestration and increased expression levels of the markers P-selectin, thromboxane A2, CC-chemokine ligand 5 and platelet factor 4 on platelets have been reported in kidneys following AKI, platelet activation likely plays a part in AKI pathology. Results from animal models and some clinical studies highlight the potential of antiplatelet therapies in the preservation of renal function in the context of AKI, but as current strategies also affect other cell types and non-platelet-derived mediators, additional studies are required to further elucidate the extent of platelet contribution to the pathology of AKI and to determine the best therapeutic approach by which to specifically target related pathogenic pathways.
Collapse
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
463
|
Rempel LCT, Faustino VD, Foresto-Neto O, Fanelli C, Arias SCA, Moreira GCDS, Nascimento TF, Ávila VF, Malheiros DMAC, Câmara NOS, Fujihara CK, Zatz R. Chronic exposure to hypoxia attenuates renal injury and innate immunity activation in the remnant kidney model. Am J Physiol Renal Physiol 2019; 317:F1285-F1292. [PMID: 31461352 DOI: 10.1152/ajprenal.00367.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hypoxia is thought to influence the pathogenesis of chronic kidney disease, but direct evidence that prolonged exposure to tissue hypoxia initiates or aggravates chronic kidney disease is lacking. We tested this hypothesis by chronically exposing normal rats and rats with 5/6 nephrectomy (Nx) to hypoxia. In addition, we investigated whether such effect of hypoxia would involve activation of innate immunity. Adult male Munich-Wistar rats underwent Nx (n = 54) or sham surgery (sham; n = 52). Twenty-six sham rats and 26 Nx rats remained in normoxia, whereas 26 sham rats and 28 Nx rats were kept in a normobaric hypoxia chamber (12% O2) for 8 wk. Hypoxia was confirmed by immunohistochemistry for pimonidazole. Hypoxia was confined to the medullary area in sham + normoxia rats and spread to the cortical area in sham + hypoxia rats, without changing the peritubular capillary density. Exposure to hypoxia promoted no renal injury or elevation of the content of IL-1β or Toll-like receptor 4 in sham rats. In Nx, hypoxia also extended to the cortical area without ameliorating the peritubular capillary rarefaction but, unexpectedly, attenuated hypertension, inflammation, innate immunity activation, renal injury, and oxidative stress. The present study, in disagreement with current concepts, shows evidence that hypoxia exerts a renoprotective effect in the Nx model instead of acting as a factor of renal injury. The mechanisms for this unexpected beneficial effect are unclear and may involve NF-κB inhibition, amelioration of oxidative stress, and limitation of angiotensin II production by the renal tissue.
Collapse
Affiliation(s)
- Lisienny Campoli Tono Rempel
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Viviane Dias Faustino
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Orestes Foresto-Neto
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Camilla Fanelli
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Simone Costa Alarcon Arias
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Thalita Fabiana Nascimento
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Victor Ferreira Ávila
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Laboratory of Transplantation Immunobiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Clarice Kazue Fujihara
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
464
|
Neelam, Khatkar A, Sharma KK. Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Crit Rev Food Sci Nutr 2019; 60:2655-2675. [PMID: 31456411 DOI: 10.1080/10408398.2019.1653822] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phenylpropanoids and their derivatives are plant secondary metabolites widely present in fruits, vegetables, cereal grains, beverages, spices and herbs. They are known to have multifaceted effects which include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer activities and as well as exhibits renoprotective, neuroprotective, cardioprotective and hepatoprotective effects. Owing to their antioxidant, antimicrobial and photoprotective properties, these compounds have wide application in the food (preservation, packaging films and edible coating), pharmaceutical, cosmetic and other industries such as textile (colorant), biofuel (antioxidant additive) and sensors (sensing biologically relevant molecules). Phenylpropanoids are present in commercially available dietary supplements and skin care products. In this review, we have presented the current knowledge on the biosynthesis, occurrence, biological activities of phenylpropanoids and their derivatives, along with the mechanism of action and their potential applications in various industries.
Collapse
Affiliation(s)
- Neelam
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anurag Khatkar
- Department of Pharmaceutical sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
465
|
Proximal Tubular Development Is Impaired with Downregulation of MAPK/ERK Signaling, HIF-1 α, and Catalase by Hyperoxia Exposure in Neonatal Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9219847. [PMID: 31558952 PMCID: PMC6735195 DOI: 10.1155/2019/9219847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022]
Abstract
Supplemental oxygen therapy (hyperoxia) is a widely used treatment for alveolar hypoxia in preterm infants. Despite being closely monitored, hyperoxia exposure is believed to undermine neonatal nephrogenesis and renal function caused by elevated oxidative stress. Previous studies have mostly focused on the hyperoxia-induced impairment of glomerular development, while the long-term impact of neonatal hyperoxia on tubular development and the regulatory component involved in this process remain to be clarified. Here, we examined tubular histology and apoptosis, along with the expression profile of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling, hypoxia-inducible factor 1α (HIF-1α), and catalase, following hyperoxia exposure in neonatal rats. Hematoxylin and eosin (H&E) staining revealed the early disappearance of the nephrogenic zone, as well as dilated lumens and reduced epithelial cells, of mature proximal tubules following neonatal hyperoxia. A robust increase in tubular cell apoptosis caused by neonatal hyperoxia was found using a TUNEL assay. Moreover, neonatal hyperoxia altered renal MAPK/ERK signaling activity and downregulated the expression of HIF-1α and catalase in the proximal tubules throughout nephrogenesis from S-shaped bodies to mature proximal tubules. Cell apoptosis in the proximal tubules was positively correlated with HIF-1α expression on the 14th postnatal day. Our data indicates that proximal tubular development is impaired by neonatal hyperoxia, which is accompanied by altered MAPK/ERK signaling as well as downregulated HIF-1α and catalase. Therapeutic management that targets MAPK/ERK signaling, HIF-1α, or catalase may serve as a protective agent against hyperoxia-induced oxidative damage to neonatal proximal tubules.
Collapse
|
466
|
Palomino J, Echavarria R, Franco-Acevedo A, Moreno-Carranza B, Melo Z. Opioids Preconditioning Upon Renal Function and Ischemia-Reperfusion Injury: A Narrative Review. ACTA ACUST UNITED AC 2019; 55:medicina55090522. [PMID: 31443610 PMCID: PMC6780949 DOI: 10.3390/medicina55090522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023]
Abstract
Kidneys have an important role in regulating water volume, blood pressure, secretion of hormones and acid-base and electrolyte balance. Kidney dysfunction derived from acute injury can, under certain conditions, progress to chronic kidney disease. In the late stages of kidney disease, treatment is limited to replacement therapy: Dialysis and transplantation. After renal transplant, grafts suffer from activation of immune cells and generation of oxidant molecules. Anesthetic preconditioning has emerged as a promising strategy to ameliorate ischemia reperfusion injury. This review compiles some significant aspects of renal physiology and discusses current understanding of the effects of anesthetic preconditioning upon renal function and ischemia reperfusion injury, focusing on opioids and its properties ameliorating renal injury. According to the available evidence, opioid preconditioning appears to reduce inflammation and reactive oxygen species generation after ischemia reperfusion. Therefore, opioid preconditioning represents a promising strategy to reduce renal ischemia reperfusion injury and, its application on current clinical practice could be beneficial in events such as acute renal injury and kidney transplantation.
Collapse
Affiliation(s)
- Julio Palomino
- School of Medicine, Universidad Durango-Santander, Hermosillo 83165, Mexico
| | - Raquel Echavarria
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800 Col. Independencia, Guadalajara 44340, Jalisco, Mexico
| | | | | | - Zesergio Melo
- CONACyT-Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada #800 Col. Independencia, Guadalajara 44340, Jalisco, Mexico.
| |
Collapse
|
467
|
El-Shenawy NS, Hamza RZ, Al-Salmi FA, Al-Eisa RA. Evaluation of the Effect of Nanoparticles Zinc Oxide/Camellia sinensis Complex on the Kidney of Rats Treated with Monosodium Glutamate: Antioxidant and Histological Approaches. Curr Pharm Biotechnol 2019; 20:542-550. [DOI: 10.2174/1389201020666190522075928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/25/2018] [Accepted: 04/23/2019] [Indexed: 01/05/2023]
Abstract
Background:Zinc oxide nanoparticles (ZnO NPs) are robustly used biomedicine. Moreover, no study has been conducted to explore the consequence of green synthesis of ZnO NPs with Camellia sinensis (green tea extract, GTE) on kidneys of rats treated with monosodium glutamate (MSG).Methods:Therefore, the objective of the research was designed to explore the possible defensive effect of GTE/ZnO NPs against MSG-induced renal stress investigated at redox and histopathological points.Results:The levels of urea and creatinine increased as the effect of a high dose of MSG, in addition, the myeloperoxidase and xanthine oxidase activates were elevated significantly with the high dose of MSG. The levels of non-enzymatic antioxidants (uric acid, glutathione, and thiol) were decreased sharply in MSG-treated rats as compared to the normal group.Conclusion:The data displayed that GTE/ZnO NPs reduced the effects of MSG significantly by reduction of the level peroxidation and enhancement intracellular antioxidant. These biochemical findings were supported by histopathology evaluation, which showed minor morphological changes in the kidneys of rats.
Collapse
Affiliation(s)
- Nahla S. El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Reham Z. Hamza
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| | | | - Rasha A. Al-Eisa
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
468
|
Gameiro J, Lopes JA. Complete blood count in acute kidney injury prediction: a narrative review. Ann Intensive Care 2019; 9:87. [PMID: 31388845 PMCID: PMC6684666 DOI: 10.1186/s13613-019-0561-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) is a complex syndrome defined by a decrease in renal function. The incidence of AKI has raised in the past decades, and it is associated with negative impact in patient outcomes in the short and long term. Considering the impact of AKI on patient prognosis, research has focused on methods to assess patients at risk for developing AKI, diagnose subclinical AKI, and on prevention and treatment strategies, for which it is crucial an understanding of pathophysiology the of AKI. In this review, we discuss the use of easily available parameters found in a complete blood count to detect patients at risk for developing AKI, to provide an early diagnosis of AKI, and to predict associated patient outcomes.
Collapse
Affiliation(s)
- Joana Gameiro
- Division of Nephrology and Renal Transplantation, Department of Medicine, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035, Lisbon, Portugal.
| | - José António Lopes
- Division of Nephrology and Renal Transplantation, Department of Medicine, Centro Hospitalar Lisboa Norte, EPE, Av. Prof. Egas Moniz, 1649-035, Lisbon, Portugal
| |
Collapse
|
469
|
Baek JH. The Impact of Versatile Macrophage Functions on Acute Kidney Injury and Its Outcomes. Front Physiol 2019; 10:1016. [PMID: 31447703 PMCID: PMC6691123 DOI: 10.3389/fphys.2019.01016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) is a common and devastating clinical condition with a high morbidity and mortality rate and is associated with a rapid decline of kidney function mostly resulting from the injury of proximal tubules. AKI is typically accompanied by inflammation and immune activation and involves macrophages (Mϕ) from the beginning: The inflamed kidney recruits “classically” activated (M1) Mϕ, which are initially poised to destroy potential pathogens, exacerbating inflammation. Of note, they soon turn into “alternatively” activated (M2) Mϕ and promote immunosuppression and tissue regeneration. Based on their roles in kidney recovery, there is a growing interest to use M2 Mϕ and Mϕ-modulating agents therapeutically against AKI. However, it is pertinent to note that the clinical translation of Mϕ-based therapies needs to be critically reviewed and questioned since Mϕ are functionally plastic with versatile roles in AKI and some Mϕ functions are detrimental to the kidney during AKI. In this review, we discuss the current state of knowledge on the biology of different Mϕ subtypes during AKI and, especially, on their role in AKI and assess the impact of versatile Mϕ functions on AKI based on the findings from translational AKI studies.
Collapse
Affiliation(s)
- Jea-Hyun Baek
- Research & Early Development, Biogen Inc., Cambridge, MA, United States
| |
Collapse
|
470
|
Molecular Interactions Between Reactive Oxygen Species and Autophagy in Kidney Disease. Int J Mol Sci 2019; 20:ijms20153791. [PMID: 31382550 PMCID: PMC6696055 DOI: 10.3390/ijms20153791] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Reactive oxygen species (ROS) are highly reactive signaling molecules that maintain redox homeostasis in mammalian cells. Dysregulation of redox homeostasis under pathological conditions results in excessive generation of ROS, culminating in oxidative stress and the associated oxidative damage of cellular components. ROS and oxidative stress play a vital role in the pathogenesis of acute kidney injury and chronic kidney disease, and it is well documented that increased oxidative stress in patients enhances the progression of renal diseases. Oxidative stress activates autophagy, which facilitates cellular adaptation and diminishes oxidative damage by degrading and recycling intracellular oxidized and damaged macromolecules and dysfunctional organelles. In this review, we report the current understanding of the molecular regulation of autophagy in response to oxidative stress in general and in the pathogenesis of kidney diseases. We summarize how the molecular interactions between ROS and autophagy involve ROS-mediated activation of autophagy and autophagy-mediated reduction of oxidative stress. In particular, we describe how ROS impact various signaling pathways of autophagy, including mTORC1-ULK1, AMPK-mTORC1-ULK1, and Keap1-Nrf2-p62, as well as selective autophagy including mitophagy and pexophagy. Precise elucidation of the molecular mechanisms of interactions between ROS and autophagy in the pathogenesis of renal diseases may identify novel targets for development of drugs for preventing renal injury.
Collapse
|
471
|
Jansen MPB, Huisman A, Claessen N, Florquin S, Roelofs JJTH. Experimental thrombocytopenia does not affect acute kidney injury 24 hours after renal ischemia reperfusion in mice. Platelets 2019; 31:383-391. [PMID: 31364433 DOI: 10.1080/09537104.2019.1646899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The pathophysiology of renal ischemia/reperfusion (I/R) injury is characterized by excessive activation of inflammation and coagulation processes followed by abnormal renal tissue repair, resulting in renal injury and function loss. Platelets are important actors in these processes, however to what extent platelets contribute to the pathophysiology of renal I/R injury still needs to be elucidated. In the current study, we treated wild-type mice with a platelet depleting antibody, which caused thrombocytopenia. We then investigated the role of platelets during the pathophysiology of renal I/R by subjecting control wild-type mice with normal platelet counts and thrombocytopenic wild-type mice to renal I/R injury. Our results showed that in the early phase of renal I/R injury, thrombocytopenia 24 hours after ischemia reperfusion does not influence renal injury, neutrophil infiltration and accumulation of inflammatory chemokines (e.g. keratinocyte chemoattractant, monocyte chemoattractant protein 1, tumor necrosis factor alpha). In the recovery and regeneration phase of I/R injury, respectively 5 and 10 days post-ischemia, thrombocytopenia did also not affect the accumulation of intra-renal neutrophils and macrophages, renal injury, and renal fibrosis. Together, these results imply that lowering platelet counts do not impact the pathogenesis of I/R injury in mice.
Collapse
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Andras Huisman
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Nike Claessen
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
472
|
Propofol can suppress renal ischemia-reperfusion injury through the activation of PI3K/AKT/mTOR signal pathway. Gene 2019; 708:14-20. [DOI: 10.1016/j.gene.2019.05.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 05/04/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022]
|
473
|
Gonsalez SR, Cortês AL, Silva RCD, Lowe J, Prieto MC, Silva Lara LD. Acute kidney injury overview: From basic findings to new prevention and therapy strategies. Pharmacol Ther 2019; 200:1-12. [PMID: 30959059 PMCID: PMC10134404 DOI: 10.1016/j.pharmthera.2019.04.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/27/2019] [Indexed: 01/24/2023]
Abstract
Acute kidney injury (AKI) is defined as a decrease in kidney function within hours, which encompasses both injury and impairment of renal function. AKI is not considered a pathological condition of single organ failure, but a syndrome in which the kidney plays an active role in the progression of multi-organ dysfunction. The incidence rate of AKI is increasing and becoming a common (8-16% of hospital admissions) and serious disease (four-fold increased hospital mortality) affecting public health costs worldwide. AKI also affects the young and previously healthy individuals affected by infectious diseases in Latin America. Because of the multifactorial pathophysiological mechanisms, there is no effective pharmacological therapy that prevents the evolution or reverses the injury once established; therefore, renal replacement therapy is the only current alternative available for renal patients. The awareness of an accurate and prompt recognition of AKI underlying the various clinical phenotypes is an urgent need for more effective therapeutic interventions to diminish mortality and socio-economic impacts of AKI. The use of biomarkers as an indicator of the initial stage of the disease is critical and the cornerstone to fulfill the gaps in the field. This review discusses emerging strategies from basic science toward the anticipation of features, treatment of AKI, and new treatments using pharmacological and stem cell therapies. We will also highlight bioartificial kidney studies, addressing the limitations of the development of this innovative technology.
Collapse
Affiliation(s)
- Sabrina Ribeiro Gonsalez
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil
| | - Aline Leal Cortês
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil
| | - Raquel Costa da Silva
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil
| | - Jennifer Lowe
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, sala I2-035, Rio de Janeiro, RJ 21941-902, Brazil
| | - Minolfa C Prieto
- Department of Physiology & Tulane Renal and Hypertension Center of Excellence, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Lucienne da Silva Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco J, sala 26, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
474
|
Perez-Meseguer J, Torres-González L, Gutiérrez-González JA, Alarcón-Galván G, Zapata-Chavira H, Waksman-de Torres N, Moreno-Peña DP, Muñoz-Espinosa LE, Cordero-Pérez P. Anti-inflammatory and nephroprotective activity of Juglans mollis against renal ischemia-reperfusion damage in a Wistar rat model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:186. [PMID: 31349827 PMCID: PMC6660964 DOI: 10.1186/s12906-019-2604-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Oxidative stress and the inflammatory process are involved in ischemia-reperfusion (I/R) injury. Juglans mollis has been reported as having antioxidant activity, which could attenuate the damage caused by I/R. We evaluated whether a methanolic extract of Juglans mollis (JM) exhibits nephroprotective activity in a Wistar rat model of I/R injury. METHODS Four groups of six rats were used: Sham, I/R, JM, and JM + I/R. Two groups were dosed with JM (300 mg/kg) for 7 days before I/R. I/R injury was induced by clamping the renal hilums for 45 min and then reperfusing the kidneys for 15 h. Blood samples were taken to evaluate the levels of alanine aminotransferase (ALT), blood urea nitrogen, creatinine, superoxide dismutase (SOD), malondialdehyde (MDA), interleukin 1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α). RESULTS The levels of creatinine, ALT, MDA, IL-1β, IL-6, and TNF-α were lower in JM + I/R than in I/R rats, whereas SOD level only was higher in JM + I/R than in Sham rats. No biochemical or histological damage was observed in JM rats compared with Sham rats; however, less histological damage was observed in JM + I/R rats compared with I/R rats. CONCLUSIONS To our knowledge, this is the first report of nephroprotective activity of J. mollis against damage induced by I/R. This activity may be related to decreased levels of proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and modulation of oxidative stress markers (SOD and MDA) observed in the present study.
Collapse
Affiliation(s)
- Jonathan Perez-Meseguer
- Department of Analytical Chemistry, Universidad Autónoma de Nuevo León School of Medicine, Av Dr. Aguirre Pequeño and Madero S/N, Mitras Centro, C.P 64460 Monterrey, Nuevo León Mexico
| | - Liliana Torres-González
- Department of Analytical Chemistry, Universidad Autónoma de Nuevo León School of Medicine, Av Dr. Aguirre Pequeño and Madero S/N, Mitras Centro, C.P 64460 Monterrey, Nuevo León Mexico
- Department of Internal Medicine, Universidad Autónoma de Nuevo León, “Dr. José E. González” University Hospital Liver Unit, Av. Gonzalitos 235, Mitras Centro, C.P. 64460 Monterrey, Nuevo León Mexico
| | - Jorge Aurelio Gutiérrez-González
- Department of Internal Medicine, Universidad Autónoma de Nuevo León, “Dr. José E. González” University Hospital Liver Unit, Av. Gonzalitos 235, Mitras Centro, C.P. 64460 Monterrey, Nuevo León Mexico
| | - Gabriela Alarcón-Galván
- Basic Science Department, Universidad de Monterrey, School of Medicine, UDEM, Av. Ignacio Morones Prieto 4500, C.P 66238 San Pedro Garza García, Nuevo León Mexico
| | - Homero Zapata-Chavira
- Universidad Autónoma de Nuevo León, “Dr. José E. González” University Hospital Transplant Service, Av. Gonzalitos 235, Mitras Centro, C.P. 64460 Monterrey, Nuevo León Mexico
| | - Noemi Waksman-de Torres
- Department of Analytical Chemistry, Universidad Autónoma de Nuevo León School of Medicine, Av Dr. Aguirre Pequeño and Madero S/N, Mitras Centro, C.P 64460 Monterrey, Nuevo León Mexico
| | - Diana Patricia Moreno-Peña
- Department of Internal Medicine, Universidad Autónoma de Nuevo León, “Dr. José E. González” University Hospital Liver Unit, Av. Gonzalitos 235, Mitras Centro, C.P. 64460 Monterrey, Nuevo León Mexico
| | - Linda Elsa Muñoz-Espinosa
- Department of Internal Medicine, Universidad Autónoma de Nuevo León, “Dr. José E. González” University Hospital Liver Unit, Av. Gonzalitos 235, Mitras Centro, C.P. 64460 Monterrey, Nuevo León Mexico
| | - Paula Cordero-Pérez
- Department of Internal Medicine, Universidad Autónoma de Nuevo León, “Dr. José E. González” University Hospital Liver Unit, Av. Gonzalitos 235, Mitras Centro, C.P. 64460 Monterrey, Nuevo León Mexico
| |
Collapse
|
475
|
Mohammadi M, Najafi H, Mohamadi Yarijani Z, Vaezi G, Hojati V. Protective effect of piperine in ischemia-reperfusion induced acute kidney injury through inhibition of inflammation and oxidative stress. J Tradit Complement Med 2019; 10:570-576. [PMID: 33134133 PMCID: PMC7588331 DOI: 10.1016/j.jtcme.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 11/21/2022] Open
Abstract
Background and aim Renal ischemia-reperfusion is associated with inflammation and oxidative stress. As a major compound in black pepper, piperine has anti-inflammatory and anti-oxidative properties. In present study, the protective effects of oral administration of piperine in renal ischemia-reperfusion (IR) induced acute kidney injuries (AKI) were investigated. Experimental procedure Male Wistar rats received piperine (10 or 20 mg/kg.bw) or vehicle for 10 days. The artery and vein of both kidneys were then clamped for 30 min, followed by a 24-h reperfusion period. Concentrations of creatinine and urea-nitrogen in descending aorta blood were measured, and malondialdehyde (MDA) and ferric reducing/antioxidant power (FRAP) levels were measured in kidney tissue to evaluate the oxidative stress. Inflammation was evaluated by measuring the TNF-α and ICAM-1 mRNA expression levels in renal cortical tissue using Real Time PCR method and counting leukocytes infiltration to interstitium. Further measured were tissue damages in H & E stained sections. Results Renal IR reduced FRAP, while increasing the plasma concentrations of creatinine and urea-nitrogen, tissue MDA level, TNF-α and ICAM-1 mRNA expressions, leukocyte infiltration and histopathologic injuries. Piperine administration significantly reduced the plasma concentrations of creatinine and urea-nitrogen, expression of pro-inflammatory factors, oxidative stress and renal histopathologic injuries. It is to be noted that 20 mg/kg dose was more effective. Conclusion Our results suggest piperine protects the kidney against ischemia-reperfusion induced acute kidney injuries by its anti-inflammatory and anti-oxidative properties. Renal ischemia-reperfusion increased the inflammation and oxidative stress parameters. Ischemia-reperfusion increased histopathological damages and functional parameters. Piperine pretreatment significantly reduced the inflammation and oxidative stress. Piperine administration ameliorated renal function and histopathologic damages.
Collapse
Key Words
- AKI, Acute kidney injury
- Acute kidney injury
- FRAP, Ferric reducing antioxidant power
- GFR, Glomerular filtration rate
- ICAM-1, Intercellular adhesion molecule-1
- IL-1, Interleukin-1
- IL-6, Interleukin-6
- IR, Ischemia-reperfusion
- Inflammation
- Ischemia-reperfusion
- MDA, Malondialdehyde
- NF-κB, Nuclear factor-κB
- NO, Nitric oxide
- Oxidative stress
- PBS, Phosphate buffer saline
- Piperine
- ROS, Reactive oxygen species
- TNF-α, Tumor necrosis factor-α
- TPTZ, Tripyridyl-s-triazine
- eNOS, Endothelial nitric oxide synthase
- iNOS, Inducible nitric oxide synthase
- qRT-PCR, quantitative real-time PCR
Collapse
Affiliation(s)
- Maryam Mohammadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeynab Mohamadi Yarijani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamhasan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
476
|
Bai T, Yang K, Qin C, Xu T, Yu X, Zhang J. Cryptotanshinone ameliorates renal ischaemia–reperfusion injury by inhibiting apoptosis and inflammatory response. Basic Clin Pharmacol Toxicol 2019; 125:420-429. [PMID: 31219678 DOI: 10.1111/bcpt.13275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Tao Bai
- Department of Urology Renmin Hospital of Wuhan University Wuhan China
| | - Kang Yang
- Department of Urology Renmin Hospital of Wuhan University Wuhan China
| | - Cong Qin
- Department of Urology Renmin Hospital of Wuhan University Wuhan China
| | - Tao Xu
- Department of Urology Renmin Hospital of Wuhan University Wuhan China
| | - Xi Yu
- Department of Urology Renmin Hospital of Wuhan University Wuhan China
| | - Jie Zhang
- Department of Urology Renmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
477
|
Lu M, Wang P, Qiao Y, Jiang C, Ge Y, Flickinger B, Malhotra DK, Dworkin LD, Liu Z, Gong R. GSK3β-mediated Keap1-independent regulation of Nrf2 antioxidant response: A molecular rheostat of acute kidney injury to chronic kidney disease transition. Redox Biol 2019; 26:101275. [PMID: 31349118 PMCID: PMC6669347 DOI: 10.1016/j.redox.2019.101275] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/05/2019] [Accepted: 07/16/2019] [Indexed: 01/07/2023] Open
Abstract
Transition of acute kidney injury (AKI) to chronic kidney disease (CKD) represents an important cause of kidney failure. However, how AKI is transformed into CKD remains elusive. Following folic acid injury, mice developed AKI with ensuing CKD transition, featured by variable degrees of interstitial fibrosis and tubular cell atrophy and growth arrest. This lingering injury of renal tubules was associated with sustained oxidative stress that was concomitant with an impaired Nrf2 antioxidant defense, marked by mitigated Nrf2 nuclear accumulation and blunted induction of its target antioxidant enzymes, like heme oxygenase (HO)-1. Activation of the canonical Keap1/Nrf2 signaling, nevertheless, seems intact during CKD transition because Nrf2 in injured tubules remained activated and elevated in cytoplasm. Moreover, oxidative thiol modification and activation of Keap1, the cytoplasmic repressor of Nrf2, was barely associated with CKD transition. In contrast, glycogen synthase kinase (GSK)3β, a key modulator of the Keap1-independent Nrf2 regulation, was persistently overexpressed and hyperactive in injured tubules. Likewise, in patients who developed CKD following AKI due to diverse etiologies, like volume depletion and exposure to radiocontrast agents or aristolochic acid, sustained GSK3β overexpression was evident in renal tubules and coincided with oxidative damages, impaired Nrf2 nuclear accumulation and mitigated induction of antioxidant gene expression. Mechanistically, the Nrf2 response against oxidative insult was sabotaged in renal tubular cells expressing a constitutively active mutant of GSK3β, but reinforced by ectopic expression of dominant negative GSK3β in a Keap1-independent manner. In vivo in folic acid-injured mice, targeting GSK3β in renal tubules via conditional knockout or by weekly microdose lithium treatment reinstated Nrf2 antioxidant response in the kidney and hindered AKI to CKD transition. Ergo, our findings suggest that GSK3β-mediated Keap1-independent regulation of Nrf2 may serve as an actionable therapeutic target for modifying the long-term sequelae of AKI. AKI to CKD transition involves sustained GSK3β overactivation and impaired Nrf2 response in injured renal tubules. Microdose lithium rectifies GSK3β overactivity in the kidney, reinstates Nrf2 response and hinders AKI to CKD transition. GSK3β-mediated Keap1-independent regulation of Nrf2 is a novel therapeutic target for modifying long-term sequelae of AKI.
Collapse
Affiliation(s)
- Minglei Lu
- Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China; Division of Kidney Disease and Hypertension, Brown University School of Medicine, Providence, RI, 02903, United States; Division of Nephrology, University of Toledo College of Medicine, Toledo, OH, 43614, United States
| | - Pei Wang
- Division of Kidney Disease and Hypertension, Brown University School of Medicine, Providence, RI, 02903, United States
| | - Yingjin Qiao
- Division of Kidney Disease and Hypertension, Brown University School of Medicine, Providence, RI, 02903, United States
| | - Chunming Jiang
- Division of Kidney Disease and Hypertension, Brown University School of Medicine, Providence, RI, 02903, United States
| | - Yan Ge
- Division of Kidney Disease and Hypertension, Brown University School of Medicine, Providence, RI, 02903, United States; Division of Nephrology, University of Toledo College of Medicine, Toledo, OH, 43614, United States
| | | | - Deepak K Malhotra
- Division of Nephrology, University of Toledo College of Medicine, Toledo, OH, 43614, United States
| | - Lance D Dworkin
- Division of Kidney Disease and Hypertension, Brown University School of Medicine, Providence, RI, 02903, United States; Division of Nephrology, University of Toledo College of Medicine, Toledo, OH, 43614, United States; Department of Medicine, University of Toledo College of Medicine, Toledo, OH, 43614, United States
| | - Zhangsuo Liu
- Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Rujun Gong
- Division of Kidney Disease and Hypertension, Brown University School of Medicine, Providence, RI, 02903, United States; Division of Nephrology, University of Toledo College of Medicine, Toledo, OH, 43614, United States; Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH, 43614, United States.
| |
Collapse
|
478
|
Young donors with severe acute kidney injury offer an opportunity to expand the donor pool. Am J Surg 2019; 218:7-13. [DOI: 10.1016/j.amjsurg.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 02/18/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
|
479
|
Salt Inducible Kinase Signaling Networks: Implications for Acute Kidney Injury and Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20133219. [PMID: 31262033 PMCID: PMC6651122 DOI: 10.3390/ijms20133219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
A number of signal transduction pathways are activated during Acute Kidney Injury (AKI). Of particular interest is the Salt Inducible Kinase (SIK) signaling network, and its effects on the Renal Proximal Tubule (RPT), one of the primary targets of injury in AKI. The SIK1 network is activated in the RPT following an increase in intracellular Na+ (Na+in), resulting in an increase in Na,K-ATPase activity, in addition to the phosphorylation of Class IIa Histone Deacetylases (HDACs). In addition, activated SIKs repress transcriptional regulation mediated by the interaction between cAMP Regulatory Element Binding Protein (CREB) and CREB Regulated Transcriptional Coactivators (CRTCs). Through their transcriptional effects, members of the SIK family regulate a number of metabolic processes, including such cellular processes regulated during AKI as fatty acid metabolism and mitochondrial biogenesis. SIKs are involved in regulating a number of other cellular events which occur during AKI, including apoptosis, the Epithelial to Mesenchymal Transition (EMT), and cell division. Recently, the different SIK kinase isoforms have emerged as promising drug targets, more than 20 new SIK2 inhibitors and activators having been identified by MALDI-TOF screening assays. Their implementation in the future should prove to be important in such renal disease states as AKI.
Collapse
|
480
|
Singh N, Avigan ZM, Kliegel JA, Shuch BM, Montgomery RR, Moeckel GW, Cantley LG. Development of a 2-dimensional atlas of the human kidney with imaging mass cytometry. JCI Insight 2019; 4:129477. [PMID: 31217358 DOI: 10.1172/jci.insight.129477] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022] Open
Abstract
An incomplete understanding of the biology of the human kidney, including the relative abundances of and interactions between intrinsic and immune cells, has long constrained the development of therapies for kidney disease. The small amount of tissue obtained by renal biopsy has previously limited the ability to use patient samples for discovery purposes. Imaging mass cytometry (IMC) is an ideal technology for quantitative interrogation of scarce samples, permitting concurrent analysis of more than 40 markers on a single tissue section. Using a validated panel of metal-conjugated antibodies designed to confer unique signatures on the structural and infiltrating cells comprising the human kidney, we performed simultaneous multiplexed imaging with IMC in 23 channels on 16 histopathologically normal human samples. We devised a machine-learning pipeline (Kidney-MAPPS) to perform single-cell segmentation, phenotyping, and quantification, thus creating a spatially preserved quantitative atlas of the normal human kidney. These data define selected baseline renal cell types, respective numbers, organization, and variability. We demonstrate the utility of IMC coupled to Kidney-MAPPS to qualitatively and quantitatively distinguish individual cell types and reveal expected as well as potentially novel abnormalities in diseased versus normal tissue. Our studies define a critical baseline data set for future quantitative analysis of human kidney disease.
Collapse
Affiliation(s)
- Nikhil Singh
- Section of Nephrology, Department of Internal Medicine
| | | | | | | | | | - Gilbert W Moeckel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
481
|
Kim SE, Lee H, Kim J, Lee YK, Kang M, Hijioka Y, Kim H. Temperature as a risk factor of emergency department visits for acute kidney injury: a case-crossover study in Seoul, South Korea. Environ Health 2019; 18:55. [PMID: 31200714 PMCID: PMC6570878 DOI: 10.1186/s12940-019-0491-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Previous studies show that escalations in ambient temperature are among the risk factors for acute kidney injury (AKI). However, it has not been adequately studied in our location, Seoul, South Korea. In this study, we aimed to examine the association between ambient temperatures and AKI morbidity using emergency department (ED) visit data. METHODS We obtained data on ED visits from the National Emergency Medical Center for 21,656 reported cases of AKI from 2010 to 2014. Time-stratified case-crossover design analysis based on conditional logistic regression was used to analyze short-term effects of ambient temperature on AKI after controlling for relevant covariates. The shape of the exposure-response curve, effect modification by individual demographic characteristics, season, and comorbidities, as well as lag effects, were investigated. RESULTS The odds ratio (OR) per 1 °C increase at lag 0 was 1.0087 (95% confidence interval [CI]: 1.0041-1.0134). Risks were higher during the warm season (OR = 1.0149; 95% CI: 1.0065-1.0234) than during the cool season (OR = 1.0059; 95% CI: 1.0003-1.0116) and even higher above 22.3 °C (OR = 1.0235; 95% CI: 1.0230-1.0239). CONCLUSIONS This study provides evidence that ED visits for AKI were associated with ambient temperature. Early detection and treatment of patients at risk is important in both clinical and economic concerns related to AKI.
Collapse
Affiliation(s)
- Satbyul Estella Kim
- Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyewon Lee
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jayeun Kim
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young Kyu Lee
- Division of Nephrology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Minjin Kang
- Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Yasuaki Hijioka
- Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506, Japan.
| | - Ho Kim
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Department of Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
482
|
Zhu G, Pei L, Lin F, Yin H, Li X, He W, Liu N, Gou X. Exosomes from human-bone-marrow-derived mesenchymal stem cells protect against renal ischemia/reperfusion injury via transferring miR-199a-3p. J Cell Physiol 2019; 234:23736-23749. [PMID: 31180587 DOI: 10.1002/jcp.28941] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 02/05/2023]
Abstract
Renal ischemia/reperfusion (I/R) injury is the main reason for acute kidney injury (AKI) and is closely related to high morbidity and mortality. In this study, we found that exosomes from human-bone-marrow-derived mesenchymal stem cells (hBMSC-Exos) play a protective role in hypoxia/reoxygenation (H/R) injury. hBMSC-Exos were enriched in miR-199a-3p, and hBMSC-Exo treatment increased the expression level of miR-199a-3p in renal cells. We further explored the function of miR-199a-3p on H/R injury. miR-199a-3p was knocked down in hBMSCs with a miR-199a-3p inhibitor. HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs were more susceptible to H/R injury and showed more apoptosis than those cocultured with hBMSCs or miR-199a-3p-overexpressing hBMSCs. Meanwhile, we found that HK-2 cells exposed to H/R treatment incubated with hBMSC-Exos decreased semaphorin 3A (Sema3A) and activated the protein kinase B (AKT) and extracellular-signal-regulated kinase (ERK) pathways. However, HK-2 cells cocultured with miR-199a-3p-knockdown hBMSCs restored Sema3A expression and blocked the activation of the AKT and ERK pathways. Moreover, knocking down Sema3A could reactivate the AKT and ERK pathways suppressed by a miR-199a-3p inhibitor. In vivo, we injected hBMSC-Exos into mice suffering from I/R injury; this treatment induced functional recovery and histologic protection and reduced cleaved caspase-3 and Sema3A expression levels, as shown by immunohistochemistry. On the whole, this study demonstrated an antiapoptotic effect of hBMSC-Exos, which protected against I/R injury, via delivering miR-199a-3p to renal cells, downregulating Sema3A expression and thereby activating the AKT and ERK pathways. These findings reveal a novel mechanism of AKI treated with hBMSC-Exos and provide a therapeutic method for kidney diseases.
Collapse
Affiliation(s)
- Gongmin Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lijiao Pei
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Lin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hubin Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nian Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
483
|
Lai Y, Deng J, Wang M, Wang M, Zhou L, Meng G, Zhou Z, Wang Y, Guo F, Yin M, Zhou X, Jiang H. Vagus nerve stimulation protects against acute liver injury induced by renal ischemia reperfusion via antioxidant stress and anti-inflammation. Biomed Pharmacother 2019; 117:109062. [PMID: 31177065 DOI: 10.1016/j.biopha.2019.109062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE Renal ischemia reperfusion (I/R) is not an isolated event; however, it results in remote organ dysfunction. Vagus nerve stimulation (VNS) has shown protective effects against renal I/R injury via an anti-inflammatory mechanism. This study aimed to investigate whether VNS could attenuate liver injury induced by renal I/R and identify the underlying mechanisms. METHODS Eighteen healthy male Sprague-Dawley rats (200-250 g) were equally divided into three groups: sham group (sham surgery without I/R or VNS), I/R group (renal I/R) and VNS group (renal I/R plus VNS). The I/R model was established by excising the right kidney and then clamping the left renal pedicle with an occlusive nontraumatic microaneurysm clamp for 45 min followed by a 6-h reperfusion. The rats in the VNS group received spontaneous left cervical VNS with renal ischemia and reperfusion. At the end of the experiment, blood and liver tissues were collected to detect liver function, oxidative stress and inflammatory parameters. Additionally, TUNEL staining, real-time PCR, western blotting and hematoxylin and eosin staining of liver tissues were performed to assess liver injury and the underlying mechanisms. RESULTS Kidney and liver function was severely damaged in the I/R group compared to the sham group. However, VNS significantly protected kidney and liver function. Rats treated with VNS revealed decreases in oxidative enzymes, apoptosis and levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in serum and liver compared with rats in the I/R group. Rats in the VNS group also showed increased antioxidant stress responses compared to rats in the I/R group. CONCLUSION VNS exerts protective effects against liver injury from renal I/R via inhibiting oxidative stress and apoptosis, downregulating inflammatory cytokines and enhancing antioxidative capability in the liver, and may become a promising adjuvant therapeutic strategy for treating liver injury induced by acute renal injury.
Collapse
Affiliation(s)
- Yanqiu Lai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Jielin Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Meng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Guannan Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Zhen Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yuhong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Fuding Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Ming Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China.
| |
Collapse
|
484
|
Chang ST, Wang YT, Hou YC, Wang IK, Hong HH, Weng CH, Huang WH, Hsu CW, Yen TH. Acute kidney injury and the risk of mortality in patients with methanol intoxication. BMC Nephrol 2019; 20:205. [PMID: 31170938 PMCID: PMC6554873 DOI: 10.1186/s12882-019-1404-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/30/2019] [Indexed: 12/19/2022] Open
Abstract
Background Methanol poisoning is a serious public health issue in developing countries, but few data are available in the literature on acute kidney injury (AKI) after methanol intoxication. Methods This study examined the clinical features, spectrum and outcomes of AKI in patients with methanol intoxication and evaluated the predictors of mortality after methanol intoxication. A total of 50 patients with methanol intoxication were seen at Chang Gung Memorial Hospital between 2000 and 2013. Patients were grouped according to the status of renal damage as AKI (n = 33) or non-AKI (n = 19). Demographic, clinical, laboratory, and mortality data were obtained for analysis. Results Most patients were middle-aged (47.8 ± 14.9 years), predominantly male (74.0%), and habitual alcohol consumers (70.0%). Most incidents were oral exposures (96.0%) and unintentional (66.0%). Two (4.0%) patients attempted suicide by intravenous injection of methanol. Five (10.0%) patients suffered methanol intoxication after ingestion of methomyl pesticide that contained methanol as a solvent. Compared to non-AKI patients, the AKI patients were older (50.9 ± 13.7 versus 41.6 ± 15.6 years, P = 0.034), predominantly male (90.9% versus 42.8%, P = 0.000), more habitual alcohol users (84.8% versus 41.2%, P = 0.001) and had more unintentional exposures (82.8% versus 35.3%, P = 0.001). Furthermore, there was a higher incidence of respiratory failure (63.6% versus 29.4%, P = 0.022) in the AKI group than in the non-AKI group, respectively. The laboratory studies revealed that the AKI patients suffered from more severe metabolic acidosis than the non-AKI patients. By the end of this study, 13 (39.5%) AKI patients and 1 (5.9%) non-AKI patient had died. The overall in-hospital hospital mortality rate was 28%. In a multivariate binary logistic regression model, it was demonstrated that AKI (odds ratio 19.670, confidence interval 1.026–377.008, P = 0.048) and Glasgow coma scale score (odds ratio 1.370, confidence interval 1.079–1.739, P = 0.010) were significant factors associated with mortality. The Kaplan-Meier analysis disclosed that AKI patients suffered lower cumulative survival than non-AKI patients (log-rank test, chi-square = 5.115, P = 0.024). Conclusions AKI was common (66.0%) after methanol intoxication and was predictive of in-hospital hospital mortality. The development of AKI was associated with a 19.670-fold higher risk of in-hospital mortality.
Collapse
Affiliation(s)
- Shu-Ting Chang
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Yu-Ting Wang
- Department of Pediatrics, Taipei Municipal Wan Fang Hospital, Taipei, Taiwan
| | - Yi-Chou Hou
- Division of Nephrology, Department of Internal Medicine, Cardinal Tien Hospital and School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - I-Kuan Wang
- Department of Nephrology, China Medical University Hospital and College of Medicine, China Medical University, Taichung, Taiwan
| | - Hsiang-Hsi Hong
- Department of Periodontics, Chang Gung Memorial Hospital and Chang Gung University, Linkou, Taiwan
| | - Cheng-Hao Weng
- Department of Nephrology and Clinical Poison Center, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Linkou, Taiwan
| | - Wen-Hung Huang
- Department of Nephrology and Clinical Poison Center, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Linkou, Taiwan
| | - Ching-Wei Hsu
- Department of Nephrology and Clinical Poison Center, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Linkou, Taiwan
| | - Tzung-Hai Yen
- Department of Nephrology and Clinical Poison Center, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Linkou, Taiwan. .,Kidney Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan. .,Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan. .,Department of Nephrology, Chang Gung Memorial Hospital, 199 Tung Hwa North Road, Taipei, 105, Taiwan.
| |
Collapse
|
485
|
Nespoux J, Patel R, Hudkins KL, Huang W, Freeman B, Kim YC, Koepsell H, Alpers CE, Vallon V. Gene deletion of the Na +-glucose cotransporter SGLT1 ameliorates kidney recovery in a murine model of acute kidney injury induced by ischemia-reperfusion. Am J Physiol Renal Physiol 2019; 316:F1201-F1210. [PMID: 30995111 PMCID: PMC6620597 DOI: 10.1152/ajprenal.00111.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/05/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Renal Na+-glucose cotransporter SGLT1 mediates glucose reabsorption in the late proximal tubule, a hypoxia-sensitive tubular segment that enters the outer medulla. Gene deletion in mice (Sglt1-/-) was used to determine the role of the cotransporter in acute kidney injury induced by ischemia-reperfusion (IR), including the initial injury and subsequent recovery phase. On days 1 and 16 after IR, absolute and fractional urinary glucose excretion remained greater in Sglt1-/- mice versus wild-type (WT) littermates, consistent with a sustained contribution of SGLT1 to tubular glucose reabsorption in WT mice. Absence of SGLT1 did not affect the initial kidney impairment versus WT mice, as indicated by similar increases on day 1 in plasma concentrations of creatinine and urinary excretion of the tubular injury marker kidney injury molecule-1 as well as a similar rise in plasma osmolality and fall in urine osmolality as indicators of impaired urine concentration. Recovery of kidney function on days 14/16, however, was improved in Sglt1-/- versus WT mice, as indicated by lower plasma creatinine, higher glomerula filtration rate (by FITC-sinistrin in awake mice), and more completely restored urine and plasma osmolality. This was associated with a reduced tubular injury score in the cortex and outer medulla, better preserved renal mRNA expression of tubular transporters (Sglt2 and Na+-K+-2Cl- cotransporter Nkcc2), and a lesser rise in renal mRNA expression of markers of injury, inflammation, and fibrosis [kidney injury molecule-1, chemokine (C-C motif) ligand 2, fibronectin 1, and collagen type I-α1] in Sglt1-/- versus WT mice. These results suggest that SGLT1 activity in the late proximal tubule may have deleterious effects during recovery of IR-induced acute kidney injury and identify SGLT1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Josselin Nespoux
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Kelly L Hudkins
- Department of Pathology, University of Washington , Seattle, Washington
| | - Winnie Huang
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Young Chul Kim
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Hermann Koepsell
- Department of Molecular Plant Physiology, University Würzburg , Würzburg , Germany
| | - Charles E Alpers
- Department of Pathology, University of Washington , Seattle, Washington
| | - Volker Vallon
- Department of Medicine, University of California , San Diego, California
- Veterans Affairs San Diego Healthcare System, San Diego, California
- Department of Pharmacology, University of California , San Diego, California
| |
Collapse
|
486
|
Kim JE, Ha J, Kim YS, Han SS. Effect of severe diarrhoea on kidney transplant outcomes. Nephrology (Carlton) 2019; 25:255-263. [DOI: 10.1111/nep.13599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Ji Eun Kim
- Transplantation CenterSeoul National University Hospital Seoul South Korea
| | - Jongwon Ha
- Transplantation CenterSeoul National University Hospital Seoul South Korea
- Department of SurgerySeoul National University College of Medicine Seoul South Korea
| | - Yon Su Kim
- Transplantation CenterSeoul National University Hospital Seoul South Korea
- Department of Internal MedicineSeoul National University College of Medicine Seoul South Korea
| | - Seung Seok Han
- Transplantation CenterSeoul National University Hospital Seoul South Korea
- Department of Internal MedicineSeoul National University College of Medicine Seoul South Korea
| |
Collapse
|
487
|
Soni H, Peixoto-Neves D, Olushoga MA, Adebiyi A. Pharmacological inhibition of TRPV4 channels protects against ischemia-reperfusion-induced renal insufficiency in neonatal pigs. Clin Sci (Lond) 2019; 133:CS20180815. [PMID: 30988131 PMCID: PMC11250923 DOI: 10.1042/cs20180815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/27/2019] [Accepted: 04/15/2019] [Indexed: 12/20/2022]
Abstract
Renal vasoconstriction, an early manifestation of ischemic acute kidney injury (AKI), results in renal hypoperfusion and a rapid decline in kidney function. The pathophysiological mechanisms that underlie ischemia-reperfusion (IR)-induced renal insufficiency are poorly understood, but possibilities include alterations in ion channel-dependent renal vasoregulation. In the present study, we show that pharmacological activation of TRPV4 channels constricted preglomerular microvessels and elicited renal hypoperfusion in neonatal pigs. Bilateral renal ischemia followed by short-term reperfusion increased TRPV4 protein expression in resistance size renal vessels and TRPV4-dependent cation currents in renal vascular smooth muscle cells (SMCs). Selective TRPV4 channel blockers attenuated IR-induced reduction in total renal blood flow (RBF), cortical perfusion, and glomerular filtration rate (GFR). TRPV4 inhibition also diminished renal IR-induced increase in AKI biomarkers. Furthermore, the level of angiotensin II (Ang II) was higher in the urine of IR- compared with sham-operated neonatal pigs. IR did not alter renal vascular expression of Ang II type 1 (AT1) receptors. However, losartan, a selective AT1 receptor antagonist, ameliorated IR-induced renal insufficiency in the pigs. Blockade of TRPV4 channels attenuated Ang II-evoked receptor-operated Ca2+ entry and constriction in preglomerular microvessels. TRPV4 inhibition also blunted Ang II-induced increase in renal vascular resistance (RVR) and hypoperfusion in the pigs. Together, our data suggest that SMC TRPV4-mediated renal vasoconstriction and the ensuing increase in RVR contribute to early hypoperfusion and renal insufficiency elicited by renal IR in neonatal pigs. We propose that multimodal signaling by renal vascular SMC TRPV4 channels controls neonatal renal microcirculation in health and disease.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Dieniffer Peixoto-Neves
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Michael A Olushoga
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, U.S.A.
| |
Collapse
|
488
|
Palanisamy K, Tsai TH, Yu TM, Sun KT, Yu SH, Lin FY, Wang IK, Li CY. RNA-binding protein, human antigen R regulates hypoxia-induced autophagy by targeting ATG7/ATG16L1 expressions and autophagosome formation. J Cell Physiol 2019; 234:7448-7458. [PMID: 30317574 DOI: 10.1002/jcp.27502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/07/2018] [Indexed: 01/01/2023]
Abstract
Autophagy, a prosurvival mechanism offers a protective role during acute kidney injury. We show novel findings on the functional role of RNA binding protein, HuR during hypoxia-induced autophagy in renal proximal tubular cells-2 (HK-2). HK-2 cells showed upregulated expressions of HuR and autophagy-related proteins such as autophagy related 7 (ATG7), autophagy related 16 like 1 (ATG16L1), and LC3II under hypoxia. Increased autophagosome formation was visualized as LC3 puncta in hypoxic cells. Further, short hairpin-RNA-mediated loss of HuR function in HK-2 cells significantly decreased ATG7 and ATG16L1 protein expressions. Bioinformatics prediction revealed HuR motif binding on the coding region of ATG7 and AU-rich element at 3'UTR ATG16L1 messnger RNA (mRNA). The RNA immunoprecipitation study showed that HuR was predominantly associated with ATG7 and ATG16L1 mRNAs under hypoxia. In addition, HuR enhanced autophagosome formation by regulating LC3II expressions. These results show that HuR regulates ATG7 and ATG16L1 expressions and thereby mediate autophagy in HK-2 cells. Importantly, HuR knockdown cells underwent apoptosis during hypoxia as observed through the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Collectively, these findings show the crucial role of HuR under hypoxia by regulating autophagy and suppressing apoptosis in renal tubular cells.
Collapse
Affiliation(s)
- Kalaiselvi Palanisamy
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Tsung-Hsun Tsai
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Division of Urology, Department of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Tung-Min Yu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuo-Ting Sun
- Department of Pediatric Dentistry, China Medical University Hospital, Taichung, Taiwan
- School of Dentistry, College of Dentistry, China Medical University, Taichung, Taiwan
| | - Shao-Hua Yu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - I-Kuan Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Division of Nephrology, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, China Medical University College of Medicine, Taichung, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
489
|
Sander V, Naylor RW, Davidson AJ. Mind the gap: renal tubule responses to injury and the role of Cxcl12 and Myc. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S30. [PMID: 31032310 DOI: 10.21037/atm.2019.01.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Veronika Sander
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Richard W Naylor
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Alan J Davidson
- Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
490
|
Lawal TA, Raji YR, Ajayi SO, Ademola AD, Ademola AF, Ayandipo OO, Adigun T, Ogundoyin OO, Olulana DI, Asinobi AO, Salako BL. Predictors and outcome of acute kidney injury after non-cardiac paediatric surgery. RENAL REPLACEMENT THERAPY 2019. [DOI: 10.1186/s41100-019-0214-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
491
|
Xie LB, Chen X, Chen B, Wang XD, Jiang R, Lu YP. Protective effect of bone marrow mesenchymal stem cells modified with klotho on renal ischemia-reperfusion injury. Ren Fail 2019; 41:175-182. [PMID: 30942135 PMCID: PMC6450585 DOI: 10.1080/0886022x.2019.1588131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective: To detect the combination protective effect of bone marrow mesenchymal stem cells (BMSCs) and Klotho gene on the renal ischemia-reperfusion injury (RIRI). Methods: BMSCs isolated from rats were transfected with Klotho gene to form BMSCKl. We injected BMSCKl to allogenic rat RIRI model. After 24 h and 72 h, we detected the serum creatinine (SCr), malondialdehyde (MDA), and superoxide dismutase (SOD) in renal tissue, Hematoxylin-eosin (HE) staining, and TUNEL of renal pathology. The expression of FoxO1 and p-FoxO1 in post-hypoxia tubular epithelial cells of normal rat kidney (NRK-52E) were detected by Western blot after cocultured with BMSCKl. Results: Comparing with BMSCCon group, Rats in BMSCKl group had lower SCr and MDA but higher SOD. Both HE and TUNEL score of renal tissue in BMSCKl group were lower than that of BMSCCon group. Western blot indicated that FoxO1 was upregulated, while p-FoxO1 was downregulated in post-hypoxia NRK-52E cells. Conclusions: BMSCs transfected with Klotho gene can further ameliorate RIRI. The possible mechanism may be attributed to the upregulation of SOD in NRK-52E caused by Klotho-FoxO1 axis.
Collapse
Affiliation(s)
- Li-Bo Xie
- a Department of Urology , The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Xi Chen
- b School of Biology Science , East China Normal University , Shanghai , China
| | - Bo Chen
- c Department of Human Anatomy , Southwest Medical University , Luzhou , China
| | - Xian-Ding Wang
- d Department of Urology , The Institution of Urology, West China Hospital, Sichuan University , Chengdu , China
| | - Rui Jiang
- a Department of Urology , The Affiliated Hospital of Southwest Medical University , Luzhou , China
| | - Yi-Ping Lu
- d Department of Urology , The Institution of Urology, West China Hospital, Sichuan University , Chengdu , China
| |
Collapse
|
492
|
Suzuki C, Tanida I, Ohmuraya M, Oliva Trejo JA, Kakuta S, Sunabori T, Uchiyama Y. Lack of Cathepsin D in the Renal Proximal Tubular Cells Resulted in Increased Sensitivity against Renal Ischemia/Reperfusion Injury. Int J Mol Sci 2019; 20:ijms20071711. [PMID: 30959855 PMCID: PMC6479628 DOI: 10.3390/ijms20071711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Cathepsin D is one of the major lysosomal aspartic proteases that is essential for the normal functioning of the autophagy-lysosomal system. In the kidney, cathepsin D is enriched in renal proximal tubular epithelial cells, and its levels increase during acute kidney injury. To investigate how cathepsin D-deficiency impacts renal proximal tubular cells, we employed a conditional knockout CtsDflox/−; Spink3Cre mouse. Immunohistochemical analyses using anti-cathepsin D antibody revealed that cathepsin D was significantly decreased in tubular epithelial cells of the cortico-medullary region, mainly in renal proximal tubular cells of this mouse. Cathepsin D-deficient renal proximal tubular cells showed an increase of microtubule-associated protein light chain 3 (LC3; a marker for autophagosome/autolysosome)-signals and an accumulation of abnormal autophagic structures. Renal ischemia/reperfusion injury resulted in an increase of early kidney injury marker, Kidney injury molecule 1 (Kim-1), in the cathepsin D-deficient renal tubular epithelial cells of the CtsDflox/−; Spink3Cre mouse. Inflammation marker was also increased in the cortico-medullary region of the CtsDflox/−; Spink3Cre mouse. Our results indicated that lack of cathepsin D in the renal tubular epithelial cells led to an increase of sensitivity against ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-0033, Japan.
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-0033, Japan.
| | - Isei Tanida
- Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Bunkyo-Ku, Tokyo 113-0033, Japan.
| | - Masaki Ohmuraya
- Department of Genetics, Hyogo College of Medicine, Nishinomiya 663-8131, Japan.
| | - Juan Alejandro Oliva Trejo
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-0033, Japan.
| | - Soichiro Kakuta
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-0033, Japan.
- Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-Ku 113-0033, Japan.
| | - Takehiko Sunabori
- Department of Cell Biology and Neuroscience, Juntendo University School of Medicine, Bunkyo-Ku, Tokyo 113-0033, Japan.
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-0033, Japan.
| |
Collapse
|
493
|
Ahmadvand H, Yalameha B, Adibhesami G, Nasri M, Naderi N, Babaeenezhad E, Nouryazdan N. The Protective Role of Gallic Acid Pretreatment On Renal Ischemia-reperfusion Injury in Rats. Rep Biochem Mol Biol 2019; 8:42-48. [PMID: 31334287 PMCID: PMC6590945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 10/14/2018] [Indexed: 06/10/2023]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIR) occurs when there is a temporary restriction of blood flow to the kidneys followed by an influx of blood, re-oxygenating the tissues. This occurs as a severe complication of major surgery. This process causes significant damage to the tissues and is responsible for the development of acute kidney injury (AKI), a life-threatening condition with high mortality rates. Here, we evaluated the potential protective effects of the antioxidant, gallic acid (GA), on RIR in an in vivo rat model. METHODS Adult male Sprague Dawley rats were randomly divided into three groups: group 1 (control, n = 8), group 2 (Ischemia-reperfusion (IR) with no-treatment, n = 7), and group 3 (IR + daily GA 100 mg/kg i.p, n = 7). The abdomens of the rats in the control group were opened during the surgical procedure, then sutured closed. GA pretreatment began daily 15 days prior to inducing RIR. To induce RIR, the umbilical arteries were obstructed on both sides and clamped with mild pressure for 45 min. Following the 45 min ischemia, the clamps were removed to allow for the induction of reperfusion. The reperfusion phase was 24 hours. RESULTS Following IR, the serum levels of urea and creatinine significantly increased compared to the controls. Pretreatment with GA was observed to reduce urea and creatinine levels following IR. However, this decrease was not statistically significant. The serum and renal levels of malondialdehyde (MDA) in the IR group was significantly elevated compared to the control group. Conversely, glutathione (GSH) levels and the activity of glutathione peroxidase (GPX) significantly decreased in the IR group compared to controls. Our findings show GA pretreatment to significantly improve the levels of renal MDA, serum GSH, and GPX activity following RIR. CONCLUSION Our findings highlight the protective role for GA in mitigating the damage caused by RIR and its applications as a potential treatment.
Collapse
Affiliation(s)
- Hassan Ahmadvand
- Razi Herbal Medicine Research Center, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Banafsheh Yalameha
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Glavizh Adibhesami
- Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Maryam Nasri
- Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Negar Naderi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Esmaeel Babaeenezhad
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Negar Nouryazdan
- Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
494
|
Cao L, Zhi D, Han J, Kumar Sah S, Xie Y. Combinational effect of curcumin and metformin against gentamicin-induced nephrotoxicity: Involvement of antioxidative, anti-inflammatory and antiapoptotic pathway. J Food Biochem 2019; 43:e12836. [PMID: 31353717 DOI: 10.1111/jfbc.12836] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/19/2019] [Accepted: 02/23/2019] [Indexed: 12/17/2022]
Abstract
Gentamicin (GM) is an antibiotic related to aminoglycoside group that is used in treating Gram-negative bacterial infections. However, treatment with gentamicin is considered to be limited as it induces an oxidative stress-mediated apoptosis in kidney which causes a nephrotoxicity. Metformin is a well-known biguanide that is used for treating diabetes mellitus, especially type 2. Supplement with plant metabolites or natural antioxidants produce a protective activity against many types of diseases in vivo. Curcumin is a main medicinal constituent of Curcuma longa, has reported for number of biological effects, such as antioxidant, anti-inflammatory, and antitumor. The study aims at evaluating the metformin and curcumin alone or in combination on nephrotoxicity induced by GM. The outcome of the study shows that both metformin and curcumin, when used unaided, were effectively decreasing GM-induced nephrotoxicity. The two drugs combination was showed synergistic effect in ameliorating a GM-induced kidney injury, as supported by expressively improved renal dysfunction. Metformin and curcumin showed strong protection against oxidative stress in GM treated animals through decreasing the activities and expression of various antioxidative enzymes. Moreover, combination of two drugs showed an anti-inflammatory response through reducing a level of pro-inflammatory cytokines including tumor necrosis factor-alpha, interleukin 1-beta, and interleukin 6 in GM intoxicated group of animals. Furthermore, GM agitated apoptosis was affectedly diminished by the combinational treatment of metformin and curcumin via down-regulating activity of cleaved Caspase-3 and pro-apoptotic factor Bax, whereas increasing anti-apoptotic factor Bcl-2 signaling pathways. The above results suggested that combinational treatment of metformin and curcumin might be have a synergizing effect and substantial potential against nephrotoxicity induced by GM. PRACTICAL APPLICATIONS: Curcumin and metformin combination exhibited substantial synergistic effect against GM-induced nephrotoxicity through reducing oxidative stress, inflammation, as well as apoptosis in kidney cells. Therefore, the method of combination of curcumin and metformin might be functional to treat or inhibit GM prompted nephrotoxicity in future.
Collapse
Affiliation(s)
- Liying Cao
- Department of Nephrology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Dongyun Zhi
- Department of Nephrology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Jing Han
- Department of Nephrology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Sushil Kumar Sah
- Department of Pharmacology, Birat Medical College, Biratnagar, Nepal
| | - Yunhui Xie
- Department of Paediatrics, The Second People's Hospital of Yunnan Province, Kunming, China
| |
Collapse
|
495
|
Fu H, Zhou D, Zhu H, Liao J, Lin L, Hong X, Hou FF, Liu Y. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int 2019; 95:1167-1180. [PMID: 30878215 DOI: 10.1016/j.kint.2018.11.043] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinase-7 (MMP-7) is a secreted endopeptidase that degrades a broad range of substrates. Recent studies have identified MMP-7 as an early biomarker to predict severe acute kidney injury (AKI) and poor outcomes after cardiac surgery; however, the role of MMP-7 in the pathogenesis of AKI is unknown. In this study, we investigated the expression of MMP-7 and the impact of MMP-7 deficiency in several models of AKI. MMP-7 was induced in renal tubules following ischemia/ reperfusion injury or cisplatin administration, and in folic acid-induced AKI. MMP-7 knockout mice experienced higher mortality, elevated serum creatinine, and more severe histologic lesions after ischemic or toxic insults. Tubular apoptosis and interstitial inflammation were more prominent in MMP-7 knockout kidneys. These histologic changes were accompanied by increased expression of FasL and other components of the extrinsic apoptotic pathway, as well as increased expression of pro-inflammatory chemokines. In a rescue experiment, exogenous MMP-7 ameliorated kidney injury in MMP-7 knockout mice after ischemia/reperfusion. In vitro, MMP-7 protected tubular epithelial cells against apoptosis by directly degrading FasL. In isolated tubules ex vivo, MMP-7 promoted cell proliferation by degrading E-cadherin and thereby liberating β-catenin, priming renal tubules for regeneration. Taken together, these results suggest that induction of MMP-7 is protective in AKI by degrading FasL and mobilizing β-catenin, thereby priming kidney tubules for survival and regeneration.
Collapse
Affiliation(s)
- Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haili Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Liao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Lin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xue Hong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
496
|
Diao C, Wang L, Liu H, Du Y, Liu X. Aged kidneys are refractory to autophagy activation in a rat model of renal ischemia-reperfusion injury. Clin Interv Aging 2019; 14:525-534. [PMID: 30880933 PMCID: PMC6402441 DOI: 10.2147/cia.s197444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background Ischemia-reperfusion (I/R) injury is the most common cause of acute kidney injury (AKI). Numerous therapeutic approaches for I/R injury have been studied, including autophagy, particularly in animal models of renal I/R injury derived from young or adult animals. However, the precise role of autophagy in renal ischemia-reperfusion in the aged animal model remains unclear. The purpose of this study was to demonstrate whether autophagy has similar effects on renal I/R injury in young and aged rats. Materials and methods All rats were divided into two age groups (3 months and 24 months) with each group being further divided into four subgroups (sham, I/R, I/R+Rap (rapamycin, an activator of autophagy), I/R+3-MA (3-methyladenine, an inhibitor of autophagy)). The I/R+Rap and I/R+3-MA groups were intraperitoneally injected with rapamycin and 3-MA prior to ischemia. We then measured serum levels of urea nitrogen, creatinine and assessed damage in the renal tissue. Immunohistochemistry was used to assess LC3-II and caspase-3, and Western blotting was used to evaluate the autophagy-related proteins LC3-II, Beclin-1 and P62. Apoptosis and autophagosomes were evaluated by TUNEL and transmission electron microscopy, respectively. Results Autophagy was activated in both young and aged rats by I/R and enhanced by rapamycin, although the level of autophagy was lower in the aged groups. In young rats, the activation of autophagy markedly improved renal function, reduced apoptosis in the renal tubular epithelial cells and the injury score in the renal tissue, thereby exerting protective effects on renal I/R injury. However, this level of protection was not present in aged rats. Conclusion Our data indicated that the activation of autophagy was ineffective in aged rat kidneys. These discoveries may have major implications in that severe apoptosis in aged kidneys might be refractory to antiapoptotic effect induced by the activation of autophagy.
Collapse
Affiliation(s)
- Changhui Diao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China, ;
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China, ;
| | - Hao Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China, ;
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China, ;
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China, ;
| |
Collapse
|
497
|
Dong Y, Zhang Q, Wen J, Chen T, He L, Wang Y, Yin J, Wu R, Xue R, Li S, Fan Y, Wang N. Ischemic Duration and Frequency Determines AKI-to-CKD Progression Monitored by Dynamic Changes of Tubular Biomarkers in IRI Mice. Front Physiol 2019; 10:153. [PMID: 30873045 PMCID: PMC6401609 DOI: 10.3389/fphys.2019.00153] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/08/2019] [Indexed: 01/06/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is one of the most common causes of acute kidney injury (AKI). However, the pathogenesis and biomarkers predicting the progression of IRI-induced AKI to chronic kidney disease (CKD) remain unclear. A side-by-side comparison between different IRI animal models with variable ischemic duration and episodes was performed. The dynamic changes of KIM-1 and NGAL continuously from AKI to CKD phases were studied as well. Short-term duration of ischemia induced mild renal tubule-interstitial injury which was completely reversed at acute phase of kidney injury, while long-term duration of ischemia caused severe tubular damage, cell apoptosis and inflammatory infiltration at early disease stage, leading to permanent chronic kidney fibrosis at the late stage. Repeated attacks of moderate IRI accelerated the progression of AKI to CKD. Different from serum and urine levels of KIM-1 that increased at acute phase of IRI then declined gradually in chronic phase, NGAL increased continuously during AKI-to-CKD transition. Severity and frequency of ischemia injury determines the progression and outcome of ischemia-induced AKI. Inflammation, apoptosis and fibrogenesis likely participate in the progression of AKI to CKD. Both KIM-1 and NGAL enable noninvasive and early detection of AKI, but NGAL is associated better with the process of AKI-to-CKD progression.
Collapse
Affiliation(s)
- Yang Dong
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qunzi Zhang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiejun Wen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Teng Chen
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li He
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yiyun Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jianyong Yin
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Wu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Xue
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shiqi Li
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Fan
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Niansong Wang
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
498
|
Syndecan-1 Shedding Inhibition to Protect Against Ischemic Acute Kidney Injury Through HGF Target Signaling Pathway. Transplantation 2019; 102:e331-e344. [PMID: 29557914 DOI: 10.1097/tp.0000000000002170] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The hepatocyte growth factor (HGF) target pathway plays pivotal renoprotective roles after acute kidney injury. Syndecan-1 (SDC-1) serves as the coreceptor for HGF. Shedding of SDC-1 is involved in various pathological processes. Thus, we hypothesized that ischemia/reperfusion injury induced SDC-1 shedding, and inhibiting SDC-1 shedding would protect against kidney injury by potentiating activation of the HGF receptor mesenchymal epithelial transition factor (c-Met). METHODS Expression of SDC-1 and its sheddases were observed in kidneys of sham and ischemia/reperfusion (I/R) mice. To inhibit SDC-1 shedding, mice were injected with the sheddase inhibitor GM6001 before I/R surgery, and then, renal inflammation, tubular apoptosis, and activation of the c-Met/AKT/glycogen synthase kinase-3β (GSK-3β) pathway were analyzed. In vitro, human proximal tubular cell lines were pretreated with GM6001 under hypoxia/reperfusion conditions. The apoptosis and viability of cells and expression of c-Met/AKT/GSK-3β pathway components were evaluated. The relationship was further confirmed by treatment with SU11274, a specific inhibitor of phospho-c-Met. RESULTS Shedding of SDC-1 was induced after ischemia/reperfusion injury both in vivo and in vitro. GM6001 pretreatment suppressed SDC-1 shedding, alleviated renal inflammation and tubular apoptosis, and upregulated phosphorylation of the c-Met/AKT/GSK-3β pathway. In vitro, pretreatment with GM6001 also decreased hypoxia/reperfusion-induced cell apoptosis and promoted activation of the c-Met pathway. In addition, the cytoprotective role of GM6001 was attenuated by suppressing c-Met phosphorylation with SU11274. CONCLUSIONS Our findings suggest that inhibiting I/R-induced SDC-1 shedding protected against ischemic acute kidney injury by potentiating the c-Met/AKT/GSK-3β pathway.
Collapse
|
499
|
Pressly JD, Soni H, Jiang S, Wei J, Liu R, Moore BM, Adebiyi A, Park F. Activation of the cannabinoid receptor 2 increases renal perfusion. Physiol Genomics 2019; 51:90-96. [PMID: 30707046 DOI: 10.1152/physiolgenomics.00001.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Acute kidney injury (AKI) is an increasing clinical problem that is associated with chronic kidney disease progression. Cannabinoid receptor 2 (CB2) activation has been shown to mitigate some of the deleterious tubular effects due to AKI, but its role on the renal vasculature has not been fully described. In this study, we investigated the effects of our novel CB2 receptor agonist, SMM-295, on renal vasculature by assessing cortical perfusion with laser Doppler flowmetry and changes in luminal diameter with isolated afferent arterioles. In this study, intravenously infused SMM-295 (6 mg/kg) significantly increased cortical renal perfusion (13.8 ± 0.6%; P < 0.0001; n = 7) compared with vehicle (0.1 ± 1.5%; n = 10) normalized to baseline values in anesthetized C57BL/6J mice. This effect was not dependent upon activation of the CB1 receptor (met-anandamide; 6 mg/kg iv) and was predominantly abolished in Cnr2 knockout mice with SMM-295 (6 mg/kg iv). Ablation of the renal afferent nerves with capsaicin blocked the SMM-295-dependent increase in renal cortical perfusion, and the increased renal blood flow was not dependent upon products synthesized by cyclooxygenase or nitric oxide synthase. The increased renal perfusion by CB2 receptor activation is also attributed to a direct vascular effect, since SMM-295 (5 μM) engendered a significant 37 ± 7% increase ( P < 0.0001; n = 4) in luminal diameters of norepinephrine-preconstricted afferent arterioles. These data provide new insight into the potential benefit of SMM-295 by activating vascular and nonvascular CB2 receptors to promote renal vasodilation, and provide a new therapeutic target to treat renal injuries that impact renal blood flow dynamics.
Collapse
Affiliation(s)
- J D Pressly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - H Soni
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - S Jiang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - J Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - R Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine , Tampa, Florida
| | - B M Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - A Adebiyi
- Department of Physiology, University of Tennessee Health Science Center , Memphis, Tennessee
| | - F Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
500
|
Rostin P, Teja BJ, Friedrich S, Shaefi S, Murugappan KR, Ramachandran SK, Houle TT, Eikermann M. The association of early postoperative desaturation in the operating theatre with hospital discharge to a skilled nursing or long-term care facility. Anaesthesia 2019; 74:457-467. [DOI: 10.1111/anae.14517] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 12/17/2022]
Affiliation(s)
- P. Rostin
- Department of Anesthesia, Critical Care, and Pain Medicine; Massachusetts General Hospital and Harvard Medical School; Boston MA USA
- Department of Anaesthesiology and Intensive Care Medicine; University Duisburg-Essen; Essen Germany
| | - B. J. Teja
- Department of Anesthesia, Critical Care and Pain Medicine; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston MA USA
| | - S. Friedrich
- Department of Anesthesia, Critical Care, and Pain Medicine; Massachusetts General Hospital and Harvard Medical School; Boston MA USA
- Department of Anesthesia, Critical Care and Pain Medicine; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston MA USA
| | - S. Shaefi
- Department of Anesthesia, Critical Care and Pain Medicine; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston MA USA
| | - K. R. Murugappan
- Department of Anesthesia, Critical Care and Pain Medicine; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston MA USA
| | - S. K. Ramachandran
- Department of Anesthesia, Critical Care and Pain Medicine; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston MA USA
| | - T. T. Houle
- Department of Anesthesia, Critical Care, and Pain Medicine; Massachusetts General Hospital and Harvard Medical School; Boston MA USA
| | - M. Eikermann
- Department of Anesthesia, Critical Care and Pain Medicine; Beth Israel Deaconess Medical Center and Harvard Medical School; Boston MA USA
- Department of Anaesthesiology and Intensive Care Medicine; University Duisburg-Essen; Essen Germany
| |
Collapse
|