451
|
Tang H, Liu Y, Wang C, Zheng H, Chen Y, Liu W, Chen X, Zhang J, Chen H, Yang Y, Yang J. Inhibition of COX-2 and EGFR by Melafolone Improves Anti-PD-1 Therapy through Vascular Normalization and PD-L1 Downregulation in Lung Cancer. J Pharmacol Exp Ther 2018; 368:401-413. [PMID: 30591531 DOI: 10.1124/jpet.118.254359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022] Open
Abstract
Checkpoint blockade therapy has been proven efficacious in lung cancer patients. However, primary/acquired resistance hampers its efficacy. Therefore, there is an urgent need to develop novel strategies to improve checkpoint blockade therapy. Here we tested whether dual inhibition of cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) by flavonoid melafolone improves program death 1 (PD-1) checkpoint blockade therapy through normalizing tumor vasculature and PD-1 ligand (PD-L1) downregulation. Virtual screening assay, cellular thermal shift assay, and enzyme inhibition assay identified melafolone as a potential inhibitor of COX-2 and EGFR. In Lewis lung carcinoma (LLC) and CMT167 models, dual inhibition of COX-2 and EGFR by melafolone promoted survival, tumor growth inhibition, and vascular normalization, and ameliorated CD8+ T-cell suppression, accompanied by the downregulation of transforming growth factor-β (TGF-β), vascular endothelial growth factor (VEGF), and PD-L1 in the tumor cells. Mechanistically, dual inhibition of COX-2 and EGFR in lung cancer cells by melafolone increased the migration of pericyte, decreased the proliferation and migration of endothelial cells, and enhanced the proliferation and effector function of CD8+ T cells through VEGF, TGF-β, or PD-L1 downregulation and PI3K/AKT inactivation. Notably, melafolone improved PD-1 immunotherapy against LLC and CMT167 tumors. Together, dual inhibition of COX-2 and EGFR by melafolone improves checkpoint blockade therapy through vascular normalization and PD-L1 downregulation and, by affecting vessels and immune cells, may be a promising combination strategy for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Honglin Tang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yanzhuo Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Chenlong Wang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Hao Zheng
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yaxin Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Wen Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Xuewei Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Jing Zhang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Honglei Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yuqing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Jing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-Related Diseases (H.T., Y.L., C.W., H.Z., Y.C., W.L., X.C., J.Z., J.Y.) and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| |
Collapse
|
452
|
Xie L, Xu J, Sun X, Tang X, Yan T, Yang R, Guo W. Apatinib for Advanced Osteosarcoma after Failure of Standard Multimodal Therapy: An Open Label Phase II Clinical Trial. Oncologist 2018; 24:e542-e550. [PMID: 30559126 DOI: 10.1634/theoncologist.2018-0542] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/06/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Antiangiogenesis tyrosine kinase inhibitors (TKIs) have been shown to prolong progression-free survival (PFS) in advanced osteosarcoma. Methylsulfonic apatinib is a TKI that specifically inhibits vascular endothelial growth factor receptor-2. We aim to assess apatinib in patients with advanced high-grade osteosarcoma progressing upon chemotherapy. MATERIALS AND METHODS This phase II trial was conducted at Peking University People's Hospital. We enrolled participants (≥16 years of age) with progressive relapsed or unresectable osteosarcoma. Participants received 750 mg or 500 mg of apatinib according to body surface area once daily until disease progression or unacceptable toxicity. The primary endpoint was objective response rate and PFS at 4 months. RESULTS A total of 37 participants were finally included into the analysis. Until final follow-up, the objective response rate (complete response + partial response) was 43.24% (16/37). The 4-month PFS rate was 56.76% (95% confidence interval [CI], 39.43%-70.84%). Median PFS and overall survival were 4.50 (95% CI, 3.47-6.27) and 9.87 (95% CI 7.97-18.93) months, respectively. Toxic effects led to dose reductions or interruptions in a total of 25 of 37 (67.57%) patients. The most common grade 3-4 adverse events were pneumothorax in six (16.22%) patients, wound dehiscence in four (10.81%), proteinuria in three (8.11%), diarrhea in three (8.11%), and palmar-plantar erythrodysesthesia syndrome in three (8.11%). No other serious adverse events were reported during the trial. There were no treatment-related deaths. CONCLUSION Apatinib is a sensitive drug for advanced osteosarcoma with a high response rate after failure of chemotherapy, with similar duration of response compared to other TKIs. IMPLICATIONS FOR PRACTICE For advanced osteosarcoma progressing upon chemotherapy, antiangiogenesis tyrosine kinase inhibitors (TKIs) have been proved to be effective in prolonging the progression-free survival in previous multicenter trials and have been included into new National Comprehensive Cancer Network guidelines as second-line therapy. Apatinib is a TKI that specifically inhibits vascular endothelial growth factor receptor-2, which is domestically made in China. This phase II trial supports the use of apatinib in patients with advanced osteosarcoma progressing after chemotherapy.
Collapse
Affiliation(s)
- Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xin Sun
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China
| | - Rongli Yang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
453
|
Wu FTH, Xu P, Chow A, Man S, Krüger J, Khan KA, Paez-Ribes M, Pham E, Kerbel RS. Pre- and post-operative anti-PD-L1 plus anti-angiogenic therapies in mouse breast or renal cancer models of micro- or macro-metastatic disease. Br J Cancer 2018; 120:196-206. [PMID: 30498230 PMCID: PMC6342972 DOI: 10.1038/s41416-018-0297-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND There are phase 3 clinical trials underway evaluating anti-PD-L1 antibodies as adjuvant (postoperative) monotherapies for resectable renal cell carcinoma (RCC) and triple-negative breast cancer (TNBC); in combination with antiangiogenic VEGF/VEGFR2 inhibitors (e.g., bevacizumab and sunitinib) for metastatic RCC; and in combination with chemotherapeutics as neoadjuvant (preoperative) therapies for resectable TNBC. METHODS This study investigated these and similar clinically relevant drug combinations in highly translational preclinical models of micro- and macro-metastatic disease that spontaneously develop after surgical resection of primary kidney or breast tumours derived from orthotopic implantation of murine cancer cell lines (RENCAluc or EMT-6/CDDP, respectively). RESULTS In the RENCAluc model, adjuvant sunitinib plus anti-PD-L1 improved overall survival compared to either drug alone, while the same combination was ineffective as early therapy for unresected primary tumours or late-stage therapy for advanced metastatic disease. In the EMT-6/CDDP model, anti-PD-L1 was highly effective as an adjuvant monotherapy, while its combination with paclitaxel chemotherapy (with or without anti-VEGF) was most effective as a neoadjuvant therapy. CONCLUSIONS Our preclinical data suggest that anti-PD-L1 plus sunitinib may warrant further investigation as an adjuvant therapy for RCC, while anti-PD-L1 may be improved by combining with chemotherapy in the neoadjuvant but not the adjuvant setting of treating breast cancer.
Collapse
Affiliation(s)
- Florence T H Wu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ping Xu
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Annabelle Chow
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Shan Man
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Janna Krüger
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marta Paez-Ribes
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
| | - Elizabeth Pham
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.,Amgen Discovery Research, South San Francisco, CA, USA
| | - Robert S Kerbel
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
454
|
Lin W, Chen M, Hong L, Zhao H, Chen Q. Crosstalk Between PD-1/PD-L1 Blockade and Its Combinatorial Therapies in Tumor Immune Microenvironment: A Focus on HNSCC. Front Oncol 2018; 8:532. [PMID: 30519541 PMCID: PMC6258806 DOI: 10.3389/fonc.2018.00532] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/30/2018] [Indexed: 02/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide with a poor prognosis and high mortality. More than two-thirds of HNSCC patients still have no effective control of clinical progression, and the five-year survival rate is < 50%. Moreover, patients with platinum-refractory HNSCC have a median survival of < 6 months. The significant toxicity and low survival rates of current treatment strategies highlight the necessity for new treatment modalities. Recently, a large number of studies have demonstrated that programmed cell death protein-1 (PD-1) and its ligand, programmed cell death protein ligand-1 (PD-L1) play an essential role in tumor initiation and progression. PD-1/PD-L1 blockade has shown a desired and long-lasting therapeutic effect in the treatment of HNSCC and other malignancies. However, only a small number of patients with HNSCC can benefit from PD-1/PD-L1 blockade monotherapy, while the majority of patients do not respond. To overcome the unsatisfactory therapeutic effect of PD-1/PD-L1 blockade monotherapy, combining other treatment options for HNSCC (including chemotherapy, radiotherapy, targeted therapy, and immunotherapy) in the treatment scheme has become a commonly used strategy. Herein, the potential mechanisms underlying the crosstalk between PD-1/PD-L1 blockade and its combinatorial therapies for HNSCC were reviewed, and it is hoped that the improved understanding of the crosstalk process would provide further ideas for the design of a combinatorial regimen with a higher efficiency and response rate for the treatment of HNSCC and other malignancies.
Collapse
Affiliation(s)
- Weimin Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Le Hong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
455
|
Katoh M. Combination immuno-oncology therapy with pembrolizumab, an anti-PD-1 monoclonal antibody targeting immune evasion, and standard chemotherapy for patients with the squamous and non-squamous subtypes of non-small cell lung cancer. J Thorac Dis 2018; 10:5178-5183. [PMID: 30416762 DOI: 10.21037/jtd.2018.08.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan
| |
Collapse
|
456
|
Genetic variation determines VEGF-A plasma levels in cancer patients. Sci Rep 2018; 8:16332. [PMID: 30397360 PMCID: PMC6218528 DOI: 10.1038/s41598-018-34506-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis is essential in tumor biology and is regulated by vascular endothelial growth factor (VEGF) ligands and receptors. Here we aimed to discover genetic variants associated with levels of circulating angiogenic proteins in cancer patients. Plasma was collected at baseline in 216 pancreatic and 114 colorectal cancer patients. Thirty-one angiogenic proteins were measured by ELISA. 484,523 Single Nucleotide Polymorphisms (SNP) were tested for association with plasma levels for each protein in pancreatic cancer patients. Three top-ranked hits were then genotyped in colorectal cancer patients, where associations with the same proteins were measured. The results demonstrated rs2284284 and MCP1 (P-value = 6.7e–08), rs7504372 and VEGF-C (P-value = 9.8e–09), and rs7767396 and VEGF-A (P-value = 5.8e–09) were SNP-protein pairs identified in pancreatic cancer patients. In colorectal cancer patients, only rs7767396 (A > G) and VEGF-A was validated (P-value = 5.18e–05). The AA genotype of rs7767396 exhibited 2.04–2.3 and 2.7–3.4-fold higher VEGF-A levels than those with AG and GG genotypes. The G allele of rs7767396 reduces binding of the NF-AT1 transcription factor. In conclusion, a common genetic variant predicts the plasma levels of VEGF-A in cancer patients through altered binding of NF-AT1.
Collapse
|
457
|
Cavalcanti E, Ignazzi A, De Michele F, Caruso ML. PDGFRα expression as a novel therapeutic marker in well-differentiated neuroendocrine tumors. Cancer Biol Ther 2018; 20:423-430. [PMID: 30346879 PMCID: PMC6422502 DOI: 10.1080/15384047.2018.1529114] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/09/2018] [Accepted: 09/22/2018] [Indexed: 01/14/2023] Open
Abstract
AIMS To evaluate the biological significance of dense vascular networks associated with low-grade NENs, we assessed the impact of PDGFRα tissue expression in 77 GEP/NEN patients, associating PDGFRα expression with the morphological characterization in low-grade tumors. METHODS AND RESULTS Paraffin-embedded specimens of 77 GEP- NEN tissues, collected from January 2006 to March 2018, were evaluated for PDGFRα tissue expression and correlations with clinicopathological characteristics. PDGFRα tissue expression was significantly correlated with grade and the NEN growth pattern (p < 0.001) but not with gender, primary site or lymph nodes metastatic status. PDGFRα staining was mainly localized in the vascular pole of the neuroendocrine cells and in Enterochromaffin (EC) cells. In particular PDGFRα tissue expression was significantly more expressed in G2 (p < 0.001) than G1 and G3 cases (p 0.004; p < 0.0002;) and correlated with an insular growth pattern. PDGFRα tissue expression was associated with the Ki67 index and we found a significant negative trend of association with the Ki67 proliferation index (P < 0.001): thus PDGFRα expression is referred to morphological and not to proliferative data. CONCLUSIONS PDGFRα represents an effective target for new anti-angiogenic treatment in WD- GEP-NENs, in particular in G2 cases, and in G3 cases only when there is a mixed insular-acinar pattern. In this context, it is important to carefully delineate those tumors that might better respond to this type of treatment alone or in combination. Further investigation of the relationship between PD-L1 and PDGFRa is warranted, and may contribute to optimize the therapeutic approach in patients with GEP-NENs.
Collapse
Affiliation(s)
- Elisabetta Cavalcanti
- Department of Pathology, IRCCS Gastroenterologico “S. de Bellis”, Castellana Grotte, Bari, Italy
| | - Antonia Ignazzi
- Department of Pathology, IRCCS Gastroenterologico “S. de Bellis”, Castellana Grotte, Bari, Italy
| | - Francesco De Michele
- Department of Pathology, IRCCS Gastroenterologico “S. de Bellis”, Castellana Grotte, Bari, Italy
| | - Maria Lucia Caruso
- Department of Pathology, IRCCS Gastroenterologico “S. de Bellis”, Castellana Grotte, Bari, Italy
| |
Collapse
|
458
|
Wu JB, Tang YL, Liang XH. Targeting VEGF pathway to normalize the vasculature: an emerging insight in cancer therapy. Onco Targets Ther 2018; 11:6901-6909. [PMID: 30410348 PMCID: PMC6200071 DOI: 10.2147/ott.s172042] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Vascular normalization is a new concept of targeting angiogenesis to restore vessel structure and function and to increase blood perfusion and delivery of drugs. It has been confirmed that vascular normalization can decrease relapse and benefit other cancer therapy, including chemotherapy, radiotherapy, and immune cell therapy. The key point of this therapy is to inhibit pro-angiogenic factors and make it be balanced with anti-angiogenic factors, resulting in a mature and normal vessel characteristic. Vascular endothelial growth factor (VEGF) is a key player in the process of tumor angiogenesis, and inhibiting VEGF is a primary approach to tumor vessel normalization. Herein, we review newly uncovered mechanisms governing angiogenesis and vascular normalization of cancer and place emphasis on targeting VEGF pathway to normalize the vasculature. Also, important methods to depress VEGF pathway and make tumor vascular are discussed.
Collapse
Affiliation(s)
- Jing-Biao Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, People's Republic of China, ;
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, People's Republic of China, ;
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, People's Republic of China, ;
| |
Collapse
|
459
|
Wang J, Liu L, Bai Q, Ou C, Xiong Y, Qu Y, Wang Z, Xia Y, Guo J, Xu J. Tumor-infiltrating neutrophils predict therapeutic benefit of tyrosine kinase inhibitors in metastatic renal cell carcinoma. Oncoimmunology 2018; 8:e1515611. [PMID: 30546957 DOI: 10.1080/2162402x.2018.1515611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 01/15/2023] Open
Abstract
Tumor-infiltrating neutrophils (TINs) show diverse predictive effects in the context of different cancer types and therapeutic regimens. In this study we investigated their relevance with therapeutic effect of tyrosine kinase inhibitors (TKIs) in metastatic renal cell carcinoma (mRCC). Two independent datasets including 271 mRCC patients treated by TKIs or IL-2/IFN-α based immunotherapy were retrospective included, and TINs were detected by immunohistochemistry. The presence of TINs was observed in 50 (45.0%) samples of the TKI cohort and in 73 (45.6%) samples of the immunotherapy cohort. TINs were associated with shorter overall survival (HR, 1.776; 95%CI, 1.191-2.650; p = 0.004) in the TKI cohort, but not in the immunotherapy cohort (HR, 1.074; 95%CI, 0.767-1.505; p = 0.672). Multivariate Cox analysis confirmed the independent prognostic value of TINs for TKI-treated patients (HR, 2.078, 95%CI, 1.352-3.195; p = 0.001), apart from other parameters. Moreover, survival benefit of TKI therapy was superior to IL-2/IFN-α immunotherapy only among TINs-absent patients (HR, 1.561; 95%CI, 0.927-2.629; p = 0.094). Data mining in the TCGA cohort of renal cell carcinoma revealed the predominant immunosuppressive function of TINs in renal cell carcinoma. The negative correlation between TINs and intratumoral CD8+ T cells was further confirmed in the TKI cohort (p = 0.019), the immunotherapy cohort (p = 0.001) and the TCGA cohort (p < 0.001). In conclusion, the presence of TINs was an independent, unfavorable prognostic factor in TKI-treated mRCC patients. TINs could also predict therapeutic benefit of TKIs over IL-2/IFN-α immunotherapy. These findings should be further confirmed within datasets of clinical trials or prospective observational studies.
Collapse
Affiliation(s)
- Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chenzhang Ou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zewei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
460
|
Xue JM, Astère M, Zhong MX, Lin H, Shen J, Zhu YX. Efficacy and safety of apatinib treatment for gastric cancer, hepatocellular carcinoma and non-small cell lung cancer: a meta-analysis. Onco Targets Ther 2018; 11:6119-6128. [PMID: 30288047 PMCID: PMC6160267 DOI: 10.2147/ott.s172717] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apatinib (Aitan®, brand name in China) is a new anti-antiangiogenic agent that has recently been approved for the treatment of advanced gastric cancer (GC) in China. Nevertheless, its therapeutic efficacy against other types of advanced solid tumors remains unclear. This meta-analysis examines the short-term efficacy and safety of apatinib or combination therapy for GC, hepatocellular carcinoma (HCC) and non-small-cell lung cancer (NSCLC); and provides a discussion of its anti-angiogenesis therapy applications. Seven clinical studies met the inclusion criteria. The treatment of cancers using apatinib was more successful compared to therapy without apatinib. Both objective response rates (ORRs) and disease control rates (DCRs) were significantly improved in the apatinib group compared to those in the control group (RR=2.18, 95% CI 1.30–3.65; RR=2.09, 95% CI 1.21–3.60). The DCR of 850 mg qd and 750 mg qd were higher than those in the control group (P<0.05). Based on the short-term acute adverse reactions of apatinib, significant differences between groups were found for hypertension, urine protein, hand foot syndrome, and gastrointestinal reactions (diarrhea), while no significant differences were found for myelosuppression, nausea and vomiting. Moreover, the results showed that apatinib prolonged patient survival (HR=0.38, 95% CI: 0.28–0.52), and the effect was more pronounced in patients treated with 750 mg qd or 850 mg qd of apatinib than in those treated with a dose of ≤500 mg qd. Additionally, compared to its second-line application, the third-line application was shown to further reduce the risk ratio in patients. Furthermore, overall survival was longer in patients treated with apatinib. Apatinib was shown to have certain short-term effects and survival benefits on GC, HCC, and NSCLC with controllable adverse effects.
Collapse
Affiliation(s)
- Jin-Min Xue
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China, .,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China, .,Chongqing Clinical Cancer Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China,
| | - Manirakiza Astère
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China, .,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China, .,Chongqing Clinical Cancer Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China,
| | - Mao-Xi Zhong
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China, .,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China, .,Chongqing Clinical Cancer Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China,
| | - Han Lin
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China,
| | - Jin Shen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China
| | - Yu-Xi Zhu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China, .,Department of Oncology, Jinshan Hospital of The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China, .,Chongqing Clinical Cancer Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing City 400016, China,
| |
Collapse
|
461
|
Zhang X, Wang Y, Xie M, Corbett C, Singhal S, Dai B, Wang J, Ding Q, Lu Q, Wang Y. Downregulating Heparanase-Induced Vascular Normalization: A New Approach To Increase the Bioavailability of Chemotherapeutics in Solid Tumors. Mol Pharm 2018; 15:4303-4309. [PMID: 30059227 DOI: 10.1021/acs.molpharmaceut.8b00628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Downregulating heparanase has been shown to reduce tumor angiogenesis and prevent chemoresistance, and it is becoming an appealing approach to treat solid tumors. However, little attention has been given to its underlying antitumor mechanisms, especially the relationship between heparanase and vascular development in solid tumors, which is not yet fully understood. In this study, we found that downregulating heparanase through orthotopic injection of heparanase small interfering RNA not only could reduce vascular density but, more importantly, lead to vascular normalization in solid tumors. Consequently, this may lead to a more efficient delivery of chemotherapeutic agents. These findings provide the basis for developing new approaches to treat solid tumors with a combination of heparanase inhibitors and chemotherapeutics.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , 22 Hankou Road , Nanjing , Jiangsu Province 210093 , China
| | - Yuxin Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital , Medical School of Nanjing University , Nanjing 210008 , China
| | - Manman Xie
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , 22 Hankou Road , Nanjing , Jiangsu Province 210093 , China
| | - Christopher Corbett
- Department of Surgery , University of Pennsylvania Perelman School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | - Sunil Singhal
- Department of Surgery , University of Pennsylvania Perelman School of Medicine , Philadelphia , Pennsylvania 19104 , United States
| | - Bo Dai
- Drum Tower Clinical Medical College of Nanjing Medical University , Nanjing , Jiangsu 210000 , China
| | - Jianquan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , 22 Hankou Road , Nanjing , Jiangsu Province 210093 , China
| | - Qingqing Ding
- Department of Geriatric Gastroenterology , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , China
| | - Qian Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , 22 Hankou Road , Nanjing , Jiangsu Province 210093 , China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , 22 Hankou Road , Nanjing , Jiangsu Province 210093 , China
| |
Collapse
|
462
|
Nowak-Sliwinska P, Alitalo K, Allen E, Anisimov A, Aplin AC, Auerbach R, Augustin HG, Bates DO, van Beijnum JR, Bender RHF, Bergers G, Bikfalvi A, Bischoff J, Böck BC, Brooks PC, Bussolino F, Cakir B, Carmeliet P, Castranova D, Cimpean AM, Cleaver O, Coukos G, Davis GE, De Palma M, Dimberg A, Dings RPM, Djonov V, Dudley AC, Dufton NP, Fendt SM, Ferrara N, Fruttiger M, Fukumura D, Ghesquière B, Gong Y, Griffin RJ, Harris AL, Hughes CCW, Hultgren NW, Iruela-Arispe ML, Irving M, Jain RK, Kalluri R, Kalucka J, Kerbel RS, Kitajewski J, Klaassen I, Kleinmann HK, Koolwijk P, Kuczynski E, Kwak BR, Marien K, Melero-Martin JM, Munn LL, Nicosia RF, Noel A, Nurro J, Olsson AK, Petrova TV, Pietras K, Pili R, Pollard JW, Post MJ, Quax PHA, Rabinovich GA, Raica M, Randi AM, Ribatti D, Ruegg C, Schlingemann RO, Schulte-Merker S, Smith LEH, Song JW, Stacker SA, Stalin J, Stratman AN, Van de Velde M, van Hinsbergh VWM, Vermeulen PB, Waltenberger J, Weinstein BM, Xin H, Yetkin-Arik B, Yla-Herttuala S, Yoder MC, Griffioen AW. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018; 21:425-532. [PMID: 29766399 PMCID: PMC6237663 DOI: 10.1007/s10456-018-9613-x] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference.
Collapse
Affiliation(s)
- Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, Faculty of Sciences, University of Geneva, University of Lausanne, Rue Michel-Servet 1, CMU, 1211, Geneva 4, Switzerland.
- Translational Research Center in Oncohaematology, University of Geneva, Geneva, Switzerland.
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Elizabeth Allen
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
| | - Andrey Anisimov
- Wihuri Research Institute and Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - Hellmut G Augustin
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - David O Bates
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - R Hugh F Bender
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Gabriele Bergers
- Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, VIB-Center for Cancer Biology, KU Leuven, Louvain, Belgium
- Department of Neurological Surgery, Brain Tumor Research Center, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Andreas Bikfalvi
- Angiogenesis and Tumor Microenvironment Laboratory (INSERM U1029), University Bordeaux, Pessac, France
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Barbara C Böck
- European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium, Heidelberg, Germany
| | - Peter C Brooks
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute-FPO-IRCCS, 10060, Candiolo, Italy
| | - Bertan Cakir
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Daniel Castranova
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anca M Cimpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ondine Cleaver
- Department of Molecular Biology, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - George E Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, School of Medicine and Dalton Cardiovascular Center, Columbia, MO, USA
| | - Michele De Palma
- School of Life Sciences, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ruud P M Dings
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Emily Couric Cancer Center, The University of Virginia, Charlottesville, VA, USA
| | - Neil P Dufton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | | | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, UK
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bart Ghesquière
- Metabolomics Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, Metabolomics Expertise Center, KU Leuven, Leuven, Belgium
| | - Yan Gong
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adrian L Harris
- Molecular Oncology Laboratories, Oxford University Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | - Christopher C W Hughes
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | - Nan W Hultgren
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA
| | | | - Melita Irving
- Ludwig Institute for Cancer Research, Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Raghu Kalluri
- Department of Cancer Biology, Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Robert S Kerbel
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Jan Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hynda K Kleinmann
- The George Washington University School of Medicine, Washington, DC, USA
| | - Pieter Koolwijk
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Elisabeth Kuczynski
- Department of Medical Biophysics, Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Juan M Melero-Martin
- Department of Cardiac Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA
- Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Agnes Noel
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Jussi Nurro
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tatiana V Petrova
- Department of oncology UNIL-CHUV, Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund, Sweden
| | - Roberto Pili
- Genitourinary Program, Indiana University-Simon Cancer Center, Indianapolis, IN, USA
| | - Jeffrey W Pollard
- Medical Research Council Centre for Reproductive Health, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Mark J Post
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Paul H A Quax
- Einthoven Laboratory for Experimental Vascular Medicine, Department Surgery, LUMC, Leiden, The Netherlands
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine, National Council of Scientific and Technical Investigations (CONICET), Buenos Aires, Argentina
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
- National Cancer Institute "Giovanni Paolo II", Bari, Italy
| | - Curzio Ruegg
- Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Reinier O Schlingemann
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Steven A Stacker
- Tumour Angiogenesis and Microenvironment Program, Peter MacCallum Cancer Centre and The Sir Peter MacCallum, Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Jimmy Stalin
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU, Münster, Germany
| | - Amber N Stratman
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Maureen Van de Velde
- Laboratory of Tumor and Developmental Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Victor W M van Hinsbergh
- Department of Ophthalmology, University of Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Peter B Vermeulen
- HistoGeneX, Antwerp, Belgium
- Translational Cancer Research Unit, GZA Hospitals, Sint-Augustinus & University of Antwerp, Antwerp, Belgium
| | - Johannes Waltenberger
- Medical Faculty, University of Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hong Xin
- University of California, San Diego, La Jolla, CA, USA
| | - Bahar Yetkin-Arik
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Seppo Yla-Herttuala
- Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Mervin C Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
463
|
Theek B, Baues M, Gremse F, Pola R, Pechar M, Negwer I, Koynov K, Weber B, Barz M, Jahnen-Dechent W, Storm G, Kiessling F, Lammers T. Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. J Control Release 2018; 282:25-34. [PMID: 29730154 PMCID: PMC6130770 DOI: 10.1016/j.jconrel.2018.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 11/18/2022]
Abstract
Tumors are characterized by leaky blood vessels, and by an abnormal and heterogeneous vascular network. These pathophysiological characteristics contribute to the enhanced permeability and retention (EPR) effect, which is one of the key rationales for developing tumor-targeted drug delivery systems. Vessel abnormality and heterogeneity, however, which typically result from excessive pro-angiogenic signaling, can also hinder efficient drug delivery to and into tumors. Using histidine-rich glycoprotein (HRG) knockout and wild type mice, and HRG-overexpressing and normal t241 fibrosarcoma cells, we evaluated the effect of genetically induced and macrophage-mediated vascular normalization on the tumor accumulation and penetration of 10-20 nm-sized polymeric drug carriers based on poly(N-(2-hydroxypropyl)methacrylamide). Multimodal and multiscale optical imaging was employed to show that normalizing the tumor vasculature improves the accumulation of fluorophore-labeled polymers in tumors, and promotes their penetration out of tumor blood vessels deep into the interstitium.
Collapse
Affiliation(s)
- Benjamin Theek
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, Aachen, Germany; Department of Targeted Therapeutics, Biomaterial Science and Technology, University of Twente, Enschede, The Netherlands
| | - Maike Baues
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Felix Gremse
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Robert Pola
- Institute of Macromolecular Chemistry, Czech Academy of Science, Prague, Czech Republic
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Czech Academy of Science, Prague, Czech Republic
| | - Inka Negwer
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Benjamin Weber
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Willi Jahnen-Dechent
- Biointerface Laboratory, RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Gert Storm
- Department of Targeted Therapeutics, Biomaterial Science and Technology, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic and Helmholtz Institute for Biomedical Engineering, Aachen, Germany; Department of Targeted Therapeutics, Biomaterial Science and Technology, University of Twente, Enschede, The Netherlands; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
464
|
Kim GH, Won JE, Byeon Y, Kim MG, Wi TI, Lee JM, Park YY, Lee JW, Kang TH, Jung ID, Shin BC, Ahn HJ, Lee YJ, Sood AK, Han HD, Park YM. Selective delivery of PLXDC1 small interfering RNA to endothelial cells for anti-angiogenesis tumor therapy using CD44-targeted chitosan nanoparticles for epithelial ovarian cancer. Drug Deliv 2018; 25:1394-1402. [PMID: 29890852 PMCID: PMC6096458 DOI: 10.1080/10717544.2018.1480672] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Angiogenesis plays an essential role in the growth and metastasis of tumor cells, and the modulation of angiogenesis can be an effective approach for cancer therapy. We focused on silencing the angiogenic gene PLXDC1 as an important factor for anti-angiogenesis tumor therapy. Herein, we developed PLXDC1 small interfering siRNA (siRNA)-incorporated chitosan nanoparticle (CH-NP/siRNA) coated with hyaluronic acid (HA) to target the CD44 receptor on tumor endothelial cells. This study aimed to improve targeted delivery and enhance therapeutic efficacy for tumor anti-angiogenesis. The HA-CH-NP/siRNA was 200 ± 10 nm in size with a zeta potential of 26.4 mV. The loading efficiency of siRNA to the HA-CH-NP/siRNA was up to 60%. The selective binding of HA-CH-NP/siRNA to CD44-positive tumor endothelial cells increased by 2.1-fold compared with that of the CD44 nontargeted CH-NP/siRNA. PLXDC1 silencing by the HA-CH-NP/siRNA significantly inhibited tumor growth in A2780 tumor-bearing mice compared with that in the control group (p < .01), and mRNA expression of PLXDC1 was significantly reduced in the HA-CH-NP/siRNA-treated group. Furthermore, treatment with HA-CH-NP/siRNA resulted in significant inhibition of cell proliferation (p < .001), reduced microvessel density (p < .001), and increased cell apoptosis (p < .001). This study demonstrates that HA-CH-NP/siRNA is a highly selective delivery platform for siRNA, and has broad potential to be used in anti-angiogenesis tumor therapy.
Collapse
Affiliation(s)
- Ga Hee Kim
- Department of Immunology School of Medicine, Konkuk University, Chungju, South Korea
| | - Ji Eun Won
- Department of Immunology School of Medicine, Konkuk University, Chungju, South Korea
| | - Yeongseon Byeon
- Department of Immunology School of Medicine, Konkuk University, Chungju, South Korea
| | - Min Gi Kim
- Department of Immunology School of Medicine, Konkuk University, Chungju, South Korea
| | - Tae In Wi
- Department of Immunology School of Medicine, Konkuk University, Chungju, South Korea
| | - Jae Myeong Lee
- Department of Immunology School of Medicine, Konkuk University, Chungju, South Korea
| | - Yun-Yong Park
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae Heung Kang
- Department of Immunology School of Medicine, Konkuk University, Chungju, South Korea
| | - In Duk Jung
- Department of Immunology School of Medicine, Konkuk University, Chungju, South Korea
| | - Byung Cheol Shin
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hyung Jun Ahn
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Young Joo Lee
- Department of Bioscience and Biotechnology, Sejong University, Kwang-Jin-Gu, Seoul, Republic of Korea
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hee Dong Han
- Department of Immunology School of Medicine, Konkuk University, Chungju, South Korea
| | - Yeong-Min Park
- Department of Immunology School of Medicine, Konkuk University, Chungju, South Korea
| |
Collapse
|
465
|
Norton KA, Jin K, Popel AS. Modeling triple-negative breast cancer heterogeneity: Effects of stromal macrophages, fibroblasts and tumor vasculature. J Theor Biol 2018; 452:56-68. [PMID: 29750999 DOI: 10.1016/j.jtbi.2018.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/13/2018] [Accepted: 05/03/2018] [Indexed: 12/20/2022]
Abstract
A hallmark of breast tumors is its spatial heterogeneity that includes its distribution of cancer stem cells and progenitor cells, but also heterogeneity in the tumor microenvironment. In this study we focus on the contributions of stromal cells, specifically macrophages, fibroblasts, and endothelial cells on tumor progression. We develop a computational model of triple-negative breast cancer based on our previous work and expand it to include macrophage infiltration, fibroblasts, and angiogenesis. In vitro studies have shown that the secretomes of tumor-educated macrophages and fibroblasts increase both the migration and proliferation rates of triple-negative breast cancer cells. In vivo studies also demonstrated that blocking signaling of selected secreted factors inhibits tumor growth and metastasis in mouse xenograft models. We investigate the influences of increased migration and proliferation rates on tumor growth, the effect of the presence on fibroblasts or macrophages on growth and morphology, and the contributions of macrophage infiltration on tumor growth. We find that while the presence of macrophages increases overall tumor growth, the increase in macrophage infiltration does not substantially increase tumor growth and can even stifle tumor growth at excessive rates.
Collapse
Affiliation(s)
| | - Kideok Jin
- Department of Biomedical Engineering; Department of Pharmaceutical Science, Albany College of Pharmacy and Health Science, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering; Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, USA
| |
Collapse
|
466
|
Yang J, Yan J, Liu B. Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Front Immunol 2018; 9:978. [PMID: 29774034 PMCID: PMC5943566 DOI: 10.3389/fimmu.2018.00978] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/19/2018] [Indexed: 12/15/2022] Open
Abstract
In addition to the crucial role in promoting the growth of tumor vessels, vascular endothelial growth factor (VEGF) is also immunosuppressive. VEGF can inhibit the function of T cells, increase the recruitment of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), and hinder the differentiation and activation of dendritic cells (DCs). Recent studies have investigated the role of antiangiogenic agents in antitumor immunity, especially in recent 3 years. Therefore, it is necessary to update the role of targeting VEGF/VEGFR in antitumor immunity. In this review, we focus on the latest clinical and preclinical findings on the modulatory role of antiangiogenic agents targeting VEGF/VEGFR in immune cells, including effector T cells, Tregs, MDSCs, DCs, tumor-associated macrophages, and mast cells. Our review will be potentially helpful for the development of combinations of angiogenesis inhibitors with immunological modulators.
Collapse
Affiliation(s)
- Ju Yang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jing Yan
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
467
|
Wang S, Qin Y, Wang Z, Xiang J, Zhang Y, Xu M, Li B, Xia Y, Zhang P, Wang H. Construction of a human monoclonal antibody against bFGF for suppression of NSCLC. J Cancer 2018; 9:2003-2011. [PMID: 29896285 PMCID: PMC5995934 DOI: 10.7150/jca.24255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/13/2018] [Indexed: 01/01/2023] Open
Abstract
Compelling evidence implicates that overexpression of basic fibroblast growth factor (bFGF) and fibroblast growth factor receptor 1 (FGFR1) in non-small cell lung cancer (NSCLC) drives tumor progression, can serve as prognostic biomarkers or therapeutic targets for NSCLC patients. But at present, we still lack of effective drugs for bFGF. The preparation of monoclonal antibodies against bFGF or to understand its mechanism of action is urgently need. Previously, we used hybridoma technology to produce a murine anti-bFGF monoclonal antibody (E12). However, E12 carries risks of heterogeneity and immunogenicity. In the present work, we produced three humanized variants (H1L1, H2L2 and H3L3) based on E12 by substituting residues in or near the complementarity-determining region (CDR). In addition, we thoroughly explored VH/VL domain combinations to simulate full-length IgG1 antibodies using computational protein design. H3L3 was selected for further study, as it demonstrated the best humanization and strongest affinity for bFGF. Specially, humanization of H3L3's light chain and heavy chain were 100% and 98.89%, respectively. The FGF2 neutralizing effect of H3L3 were confirmed by ELISA. We also found that H3L3 can effectively suppress the growth and angiogenesis of cancer through reduce the phosphorylation of AKT and MAPK. Moreover, H3L3 dramatically reduced tumor size and micro-vessel density in nude mice. Altogether, our study demonstrates that H3L3 exerts anti-tumor effects by impeding NSCLC development.
Collapse
Affiliation(s)
- Sheng Wang
- Guangdong Province Engineering Research Center for antibody drug and immunoassay, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Yiyang Qin
- Guangdong Province Engineering Research Center for antibody drug and immunoassay, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Zhongmin Wang
- Akeso Biopharma, Inc., Zhongshan, 528400, Guangdong Province, China
| | - Junjian Xiang
- Guangdong Province Engineering Research Center for antibody drug and immunoassay, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Yu Zhang
- Guangdong Province Engineering Research Center for antibody drug and immunoassay, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Meng Xu
- Department of Oncology, the First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong Province, China
| | - Baiyong Li
- Akeso Biopharma, Inc., Zhongshan, 528400, Guangdong Province, China
| | - Yu Xia
- Akeso Biopharma, Inc., Zhongshan, 528400, Guangdong Province, China
| | - Peng Zhang
- Akeso Biopharma, Inc., Zhongshan, 528400, Guangdong Province, China
| | - Hong Wang
- Guangdong Province Engineering Research Center for antibody drug and immunoassay, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong Province, China
| |
Collapse
|
468
|
Orecchioni S, Talarico G, Labanca V, Calleri A, Mancuso P, Bertolini F. Vinorelbine, cyclophosphamide and 5-FU effects on the circulating and intratumoural landscape of immune cells improve anti-PD-L1 efficacy in preclinical models of breast cancer and lymphoma. Br J Cancer 2018; 118:1329-1336. [PMID: 29695766 PMCID: PMC5959935 DOI: 10.1038/s41416-018-0076-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/18/2022] Open
Abstract
Background Anti-PD-1 and anti-PD-L1 checkpoint inhibitors (CIs) are clinically active in many types of cancer. However, only a minority of patients achieve a complete and/or long-lasting clinical response. We studied the effects of different doses of three widely used, orally active chemotherapeutics (vinorelbine, cyclophosphamide and 5-FU) over local and metastatic tumour growth, and the landscape of circulating and tumour-infiltrating immune cells involved in CI activity. Methods Immunocompetent Balb/c mice were used to generate models of breast cancer (BC) and B-cell lymphoma. Vinorelbine, cyclophosphamide and 5-FU (alone or in combination with CIs), were given at low-dose metronomic, medium, or maximum tolerable dosages. Results Cyclophosphamide increased circulating myeloid derived suppressor cells (MDSC). Vinorelbine, cyclophosphamide and 5-FU reduced circulating APCs. Vinorelbine and cyclophosphamide (at medium/high doses) reduced circulating Tregs. Cyclophosphamide (at low doses) and 5-FU (at medium doses) slightly increased circulating Tregs. Cyclophosphamide was the most potent drug in reducing circulating CD3+CD8+ and CD3+CD4+ T cells. Vinorelbine, cyclophosphamide and 5-FU reduced the number of circulating B cells, with cyclophosphamide showing the most potent effect. Vinorelbine reduced circulating NKs, whereas cyclophosphamide and 5-FU, at low doses, increased circulating NKs. In spite of reduced circulating T, B and NK effector cells, preclinical synergy was observed between chemotherapeutics and anti-PD-L1. Most-effective combinatorial regimens where associated with neoplastic lesions enriched in B cells, and, in BC-bearing mice (but not in mice with lymphoma) also in NK cells. Conclusions Vinorelbine, cyclophosphamide and 5-FU have significant preclinical effects on circulating and tumour-infiltrating immune cells and can be used to obtain synergy with anti-PD-L1.
Collapse
Affiliation(s)
- Stefania Orecchioni
- Laboratory of Hematology-Oncology and Hemo-Lympho Pathology Unit, European Institute of Oncology, Milan, Italy
| | - Giovanna Talarico
- Laboratory of Hematology-Oncology and Hemo-Lympho Pathology Unit, European Institute of Oncology, Milan, Italy
| | - Valentina Labanca
- Laboratory of Hematology-Oncology and Hemo-Lympho Pathology Unit, European Institute of Oncology, Milan, Italy
| | - Angelica Calleri
- Hemo-Lympho Pathology Unit, European Institute of Oncology, Milan, Italy
| | - Patrizia Mancuso
- Laboratory of Hematology-Oncology and Hemo-Lympho Pathology Unit, European Institute of Oncology, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology and Hemo-Lympho Pathology Unit, European Institute of Oncology, Milan, Italy.
| |
Collapse
|
469
|
Reinmuth N. New data: new options for front-line therapy in NSCLC? ESMO Open 2018; 3:e000369. [PMID: 29713500 PMCID: PMC5922564 DOI: 10.1136/esmoopen-2018-000369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 11/03/2022] Open
Affiliation(s)
- Niels Reinmuth
- Thoracic Oncology, Asklepios Clinics Munich-Gauting, Gauting, Germany
| |
Collapse
|
470
|
Kanikarla-Marie P, Lam M, Sorokin AV, Overman MJ, Kopetz S, Menter DG. Platelet Metabolism and Other Targeted Drugs; Potential Impact on Immunotherapy. Front Oncol 2018; 8:107. [PMID: 29732316 PMCID: PMC5919962 DOI: 10.3389/fonc.2018.00107] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
The role of platelets in cancer progression has been well recognized in the field of cancer biology. Emerging studies are elaborating further the additional roles and added extent that platelets play in promoting tumorigenesis. Platelets release factors that support tumor growth and also form heterotypic aggregates with tumor cells, which can provide an immune-evasive advantage. Their most critical role may be the inhibition of immune cell function that can negatively impact the body’s ability in preventing tumor establishment and growth. This review summarizes the importance of platelets in tumor progression, therapeutic response, survival, and finally the notion of immunotherapy modulation being likely to benefit from the inclusion of platelet inhibitors.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Lam
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey V Sorokin
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J Overman
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David G Menter
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
471
|
Russo M, Giavazzi R. Anti-angiogenesis for cancer: Current status and prospects. Thromb Res 2018; 164 Suppl 1:S3-S6. [DOI: 10.1016/j.thromres.2018.01.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
|
472
|
Wang C, Li Y, Chen H, Huang K, Liu X, Qiu M, Liu Y, Yang Y, Yang J. CYP4X1 Inhibition by Flavonoid CH625 Normalizes Glioma Vasculature through Reprogramming TAMs via CB2 and EGFR-STAT3 Axis. J Pharmacol Exp Ther 2018; 365:72-83. [PMID: 29437915 DOI: 10.1124/jpet.117.247130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/29/2018] [Indexed: 01/03/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are pivotal effector cells in angiogenesis. Here, we tested whether CYP4X1 inhibition in TAMs by flavonoid CH625 prolongs survival and normalizes glioma vasculature. CH625 was selected against the CYP4X1 3D model by virtual screening and showed inhibitory activity on the CYP4X1 catalytic production of 14,15-EET-EA in the M2-polarized human peripheral blood mononuclear cells (IC50 = 16.5 μM). CH625 improved survival and reduced tumor burden in the C6 and GL261 glioma intracranial and subcutaneous model. In addition, CH625 normalized vasculature (evidenced by a decrease in microvessel density and HIF-1α expression and an increase in tumor perfusion, pericyte coverage, and efficacy of temozolomide therapy) accompanied with the decreased secretion of 14,15-EET-EA, VEGF, and TGF-β in the TAMs. Furthermore, CH625 attenuated vascular abnormalization and immunosuppression induced by coimplantation of GL261 cells with CYP4X1high macrophages. In vitro TAM polarization away from the M2 phenotype by CH625 inhibited proliferation and migration of endothelial cells, enhanced pericyte migration and T cell proliferation, and decreased VEGF and TGF-β production accompanied with the downregulation of CB2 and EGFR-dependent downstream STAT3 expression. These effects were reversed by overexpression of CYP4X1 and STAT3 or exogenous addition of 14,15-EET-EA, VEGF, TGF-β, EGF, and CB2 inhibitor AM630. These results suggest that CYP4X1 inhibition in TAMs by CH625 prolongs survival and normalizes tumor vasculature in glioma via CB2 and EGFR-STAT3 axis and may serve as a novel therapeutic strategy for human glioma.
Collapse
Affiliation(s)
- Chenlong Wang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Ying Li
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Honglei Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Keqing Huang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Xiaoxiao Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Miao Qiu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yanzhuo Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Yuqing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| | - Jing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases (C.W., Y.L., K.H., X.L., M.Q., Y.L., J.Y.), Experimental Teaching Center (J.Y.), and Department of Pathology and Pathophysiology (H.C.), School of Basic Medical Sciences, Wuhan University, Wuhan, China; Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, South-central University for Nationalities, Wuhan, China (C.W.); and Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey (Y.Y.)
| |
Collapse
|
473
|
van Dam PJ, Daelemans S, Ross E, Waumans Y, Van Laere S, Latacz E, Van Steen R, De Pooter C, Kockx M, Dirix L, Vermeulen PB. Histopathological growth patterns as a candidate biomarker for immunomodulatory therapy. Semin Cancer Biol 2018; 52:86-93. [PMID: 29355613 DOI: 10.1016/j.semcancer.2018.01.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
The encroachment of a growing tumor upon the cells and structures of surrounding normal tissue results in a series of histopathological growth patterns (HGPs). These morphological changes can be assessed in hematoxylin-and-eosin (H&E) stained tissue sections from primary and metastatic tumors and have been characterized in a range of tissue types including liver, lung, lymph node and skin. HGPs in different tissues share certain general characteristics like the extent of angiogenesis, but also appropriate tissue-specific mechanisms which ultimately determine differences in the biology of HGP subtypes. For instance, in the well-characterized HGPs of liver metastases, the two main subtypes, replacement and desmoplastic, recapitulate two responses of the normal liver to injury: regeneration and fibrosis. HGP subtypes have distinct cytokine profiles and differing levels of lymphocytic infiltration which suggests that they are indicative of immune status in the tumor microenvironment. HGPs predict response to bevacizumab and are associated with overall survival (OS) after surgery for liver metastases in colorectal cancer (CRC). In addition, HGPs can change over time in response to therapy. With standard scoring methods being developed, HGPs represent an easily accessible, dynamic biomarker to consider when determining strategies for treatment using anti-VEGF and immunomodulatory drugs.
Collapse
Affiliation(s)
- Pieter-Jan van Dam
- Translational Cancer Research Unit (CORE), Gasthuiszusters Antwerpen Hospitals, University of Antwerp, Wilrijk, Antwerp, Belgium; HistoGeneX NV, Wilrijk, Antwerp, Belgium
| | | | | | | | - Steven Van Laere
- Translational Cancer Research Unit (CORE), Gasthuiszusters Antwerpen Hospitals, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Emily Latacz
- Translational Cancer Research Unit (CORE), Gasthuiszusters Antwerpen Hospitals, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Roanne Van Steen
- Translational Cancer Research Unit (CORE), Gasthuiszusters Antwerpen Hospitals, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Christel De Pooter
- Translational Cancer Research Unit (CORE), Gasthuiszusters Antwerpen Hospitals, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Mark Kockx
- HistoGeneX NV, Wilrijk, Antwerp, Belgium
| | - Luc Dirix
- Translational Cancer Research Unit (CORE), Gasthuiszusters Antwerpen Hospitals, University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Peter B Vermeulen
- Translational Cancer Research Unit (CORE), Gasthuiszusters Antwerpen Hospitals, University of Antwerp, Wilrijk, Antwerp, Belgium; HistoGeneX NV, Wilrijk, Antwerp, Belgium.
| |
Collapse
|
474
|
M1-like macrophages change tumor blood vessels and microenvironment in murine melanoma. PLoS One 2018; 13:e0191012. [PMID: 29320562 PMCID: PMC5761928 DOI: 10.1371/journal.pone.0191012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/27/2017] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play a significant role in at least two key processes underlying neoplastic progression: angiogenesis and immune surveillance. TAMs phenotypic changes play important role in tumor vessel abnormalization/ normalization. M2-like TAMs stimulate immunosuppression and formation of defective tumor blood vessels leading to tumor progression. In contrast M1-like TAMs trigger immune response and normalize irregular tumor vascular network which should sensitize cancer cells to chemo- and radiotherapy and lead to tumor growth regression. Here, we demonstrated that combination of endoglin-based DNA vaccine with interleukin 12 repolarizes TAMs from tumor growth-promoting M2-like phenotype to tumor growth-inhibiting M1-like phenotype. Combined therapy enhances tumor infiltration by CD4+, CD8+ lymphocytes and NK cells. Depletion of TAMs as well as CD8+ lymphocytes and NK cells, but not CD4+ lymphocytes, reduces the effect of combined therapy. Furthermore, combined therapy improves tumor vessel maturation, perfusion and reduces hypoxia. It caused that suboptimal doses of doxorubicin reduced the growth of tumors in mice treated with combined therapy. To summarize, combination of antiangiogenic drug and immunostimulatory agent repolarizes TAMs phenotype from M2-like (pro-tumor) into M1-like (anti-tumor) which affects the structure of tumor blood vessels, improves the effect of chemotherapy and leads to tumor growth regression.
Collapse
|
475
|
Chen YL, Liu FQ, Guo Y, Cheng J, Yang L, Lu M, Li P, Xu J, Yu T, Wang ZG, Cao Y, Ran HT. PA/US dual-modality imaging to guide VEGFR-2 targeted photothermal therapy using ZnPc-/PFH-loaded polymeric nanoparticles. Biomater Sci 2018; 6:2130-2143. [PMID: 29916500 DOI: 10.1039/c8bm00213d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis is a common pathological characteristic of many solid tumors and vulnerable atherosclerotic plaques.
Collapse
|
476
|
Golkar MH, Saeedi Borujeni MJ, Rashidi B. The Effects of Administrated Sildenafil Citrate on Uterine Luminal Epithelium Height Associated with Ovarian Angiogenesis: An Experimental Animal Study. Adv Biomed Res 2017; 6:164. [PMID: 29387675 PMCID: PMC5767805 DOI: 10.4103/abr.abr_79_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Ovarian angiogenesis (OA) remains in lifetime and normal ovarian function depends to this continual remodeling of a complex vascular system. Endometrial thickness (ET) is one of the strongest predictors of successful implantation and pregnancy. Appropriate OA effects on ET by facilitating of ovarian hormone delivery. Materials and Methods Thirty adult female mice and twenty adult male mice were purchased. The female mice were divided into three groups: (1) control group without any intervention (n = 10), (2) gonadotropin group: receiving human menopausal gonadotropin (HMG) and human chorionic gonadotropin (n = 10), and (3) gonadotropin and sildenafil citrate (SC) group: receiving HMG and SC administration (n = 10). After mating, animals were deeply anesthetized, and the ovary and uterus was rapidly removed for histology and immunohistochemistry process. Results Four days after ovarian induction, all three layers of the uterus with specified thickness can be clearly seen. The heights of endometrial epithelial cells in gonadotropin group were not significantly different than those in control group. In gonadotropin and SC group, heights of the cells were significantly (P < 0.05) shorter than control and gonadotropin groups. ETs in all groups were not significantly deferent from each other (P > 0.05 each). Our results of immunohistochemistry survey for ovarian CD31 demonstrated that administrated SC increased OA but not significantly (P > 0.05 each). Conclusion It may finally conclude that administration of SC does not cause notable alterations in OA and ET; although for realistic decision about the SC effects on aforementioned parameters, more molecular investigations and longer drug consumption period are necessary.
Collapse
Affiliation(s)
- Mohammad Hosein Golkar
- Student Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Javad Saeedi Borujeni
- Department of Molecular Biology and Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Rashidi
- Department of Molecular Biology and Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
477
|
Lu H, Zhou X, Kwok HH, Dong M, Liu Z, Poon PY, Luan X, Ngok-Shun Wong R. Ginsenoside-Rb1-Mediated Anti-angiogenesis via Regulating PEDF and miR-33a through the Activation of PPAR-γ Pathway. Front Pharmacol 2017; 8:783. [PMID: 29180961 PMCID: PMC5693843 DOI: 10.3389/fphar.2017.00783] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/16/2017] [Indexed: 11/21/2022] Open
Abstract
Angiogenesis is the formation of new blood vessels from the existing vasculature, which is involved in multiple biological processes, including atherosclerosis, ischemic heart disease, and cancer. Ginsenoside-Rb1 (Rb1), the most abundant ginsenoside isolated form Panax ginseng, has been identified as a promising anti-angiogenic agent via the up-regulation of PEDF. However, the underlying molecular mechanisms still unknown. In the present study, human umbilical vein endothelial cells (HUVECs) were selected to perform in vitro assays. Rb1 (0-20 nM) treatment induced pigment epithelial-derived factor (PEDF) protein expression in concentration and time-dependent manners. Interestingly, it was also demonstrated that the exposure of Rb1 (10 nM) could increase PEDF protein expression without any alteration on mRNA level, suggesting the involvement of posttranscriptional regulation. Furthermore, bioinformatics predictions indicated the regulation of miR-33a on PEDF mRNA 3'-UTR, which was further confirmed by luciferase reporter gene assay and real-time PCR. Over-expression of pre-miR-33a was found to regress partly Rb1-mediated PEDF increment and anti-angiogenic effect in HUVECs. Additionally, Rb1-reduced miR-33a and increased PEDF expression was prevented by pre-incubation with peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist (GW9662) or transfection with PPAR-γ siRNA in HUVECs. Taken together, our findings demonstrated that Rb1 exerted anti-angiogenic effects through PPAR-γ signaling pathway via modulating miR-33a and PEDF expressions. Thus, Rb1 may have the potential of being developed as an anti-angiogenic agent, however, further appropriate studies are warranted to evaluate the effect in vivo.
Collapse
Affiliation(s)
- Huixia Lu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Gilbert Hung Ginseng Laboratory, Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Xunian Zhou
- Gilbert Hung Ginseng Laboratory, Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Hoi-Hin Kwok
- Gilbert Hung Ginseng Laboratory, Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Mei Dong
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaoqiang Liu
- Department of Ophthalmology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Po-Ying Poon
- Gilbert Hung Ginseng Laboratory, Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Xiaorong Luan
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Ricky Ngok-Shun Wong
- Gilbert Hung Ginseng Laboratory, Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, Hong Kong
| |
Collapse
|
478
|
García-Caballero M, Quesada AR, Medina MA, Marí-Beffa M. Fishing anti(lymph)angiogenic drugs with zebrafish. Drug Discov Today 2017; 23:366-374. [PMID: 29081356 DOI: 10.1016/j.drudis.2017.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Zebrafish, an amenable small teleost fish with a complex mammal-like circulatory system, is being increasingly used for drug screening and toxicity studies. It combines the biological complexity of in vivo models with a higher-throughput screening capability compared with other available animal models. Externally growing, transparent embryos, displaying well-defined blood and lymphatic vessels, allow the inexpensive, rapid, and automatable evaluation of drug candidates that are able to inhibit neovascularisation. Here, we briefly review zebrafish as a model for the screening of anti(lymph)angiogenic drugs, with emphasis on the advantages and limitations of the different zebrafish-based in vivo assays.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, and IBIMA (Biomedical Research Institute of Málaga), University of Málaga, Andalucía Tech, Málaga, Spain; Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Ana R Quesada
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, and IBIMA (Biomedical Research Institute of Málaga), University of Málaga, Andalucía Tech, Málaga, Spain; Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Miguel A Medina
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, and IBIMA (Biomedical Research Institute of Málaga), University of Málaga, Andalucía Tech, Málaga, Spain; Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain.
| | - Manuel Marí-Beffa
- Department of Cellular Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Málaga, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Málaga, Spain.
| |
Collapse
|
479
|
Immunogenomic Classification of Colorectal Cancer and Therapeutic Implications. Int J Mol Sci 2017; 18:ijms18102229. [PMID: 29064420 PMCID: PMC5666908 DOI: 10.3390/ijms18102229] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/06/2017] [Accepted: 10/20/2017] [Indexed: 12/17/2022] Open
Abstract
The immune system has a substantial effect on colorectal cancer (CRC) progression. Additionally, the response to immunotherapeutics and conventional treatment options (e.g., chemotherapy, radiotherapy and targeted therapies) is influenced by the immune system. The molecular characterization of colorectal cancer (CRC) has led to the identification of favorable and unfavorable immunological attributes linked to clinical outcome. With the definition of consensus molecular subtypes (CMSs) based on transcriptomic profiles, multiple characteristics have been proposed to be responsible for the development of the tumor immune microenvironment and corresponding mechanisms of immune escape. In this review, a detailed description of proposed immune phenotypes as well as their interaction with different therapeutic modalities will be provided. Finally, possible strategies to shift the CRC immune phenotype towards a reactive, anti-tumor orientation are proposed per CMS.
Collapse
|
480
|
Chen S, Zhang L, Zhao Y, Ke M, Li B, Chen L, Cai S. A perforated microhole-based microfluidic device for improving sprouting angiogenesis in vitro. BIOMICROFLUIDICS 2017; 11:054111. [PMID: 29085522 PMCID: PMC5634888 DOI: 10.1063/1.4994599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/01/2017] [Indexed: 05/15/2023]
Abstract
Microfluidic technology is an important research tool for investigating angiogenesis in vitro. Here, we fabricated a polydimethylsiloxane (PDMS) microfluidic device with five cross-shaped chambers using a coverslip molding method. Then, the perforated PDMS microhole arrays prepared by soft lithography were assembled in the device as barriers; a single microhole had a diameter of 100 μm. After injecting type I collagen into the middle gel chamber, we added a culture medium containing a vascular endothelial growth factor (VEGF) into the middle chamber. It would generate a linear concentration gradient of VEGF across the gel region from the middle chamber to the four peripheral chambers. Human umbilical vein endothelial cells (HUVECs) were then seeded on the microhole barrier. With VEGF stimulation, cells migrated along the inner walls of the microholes, formed annularly distributed cell clusters at the gel-barrier interface, and then three-dimensionally (3D) sprouted into the collagen scaffold. After 4 days of culture, we quantitatively analyzed the sprouting morphogenesis. HUVECs cultured on the microhole barrier had longer sprouts than HUVECs cultured without the barrier (controls). Furthermore, the initial distribution of sprouts was more regular and more connections of tube-like structures were generated when the microhole barrier was used. This study introduces a novel microfluidic device containing both microtopographic structures and 3D collagen. HUVECs cultured with the microhole barrier could form well-interconnected tube-like structures and are thus an ideal in vitro angiogenesis model.
Collapse
Affiliation(s)
- Sijia Chen
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Liguang Zhang
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yi Zhao
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ming Ke
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | | | | | - Shaoxi Cai
- Key Laboratory of Biorheological Science and Technology of the State Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
481
|
Fine-Tuning Tumor Endothelial Cells to Selectively Kill Cancer. Int J Mol Sci 2017; 18:ijms18071401. [PMID: 28665313 PMCID: PMC5535894 DOI: 10.3390/ijms18071401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Abstract
Tumor endothelial cells regulate several aspects of tumor biology, from delivering oxygen and nutrients to shaping the immune response against a tumor and providing a barrier against tumor cell dissemination. Accordingly, targeting tumor endothelial cells represents an important modality in cancer therapy. Whereas initial anti-angiogenic treatments focused mainly on blocking the formation of new blood vessels in cancer, emerging strategies are specifically influencing certain aspects of tumor endothelial cells. For instance, efforts are generated to normalize tumor blood vessels in order to improve tumor perfusion and ameliorate the outcome of chemo-, radio-, and immunotherapy. In addition, treatment options that enhance the properties of tumor blood vessels that support a host’s anti-tumor immune response are being explored. Hence, upcoming anti-angiogenic strategies will shape some specific aspects of the tumor blood vessels that are no longer limited to abrogating angiogenesis. In this review, we enumerate approaches that target tumor endothelial cells to provide anti-cancer benefits and discuss their therapeutic potential.
Collapse
|
482
|
van Beijnum JR, Giovannetti E, Poel D, Nowak-Sliwinska P, Griffioen AW. miRNAs: micro-managers of anticancer combination therapies. Angiogenesis 2017; 20:269-285. [PMID: 28474282 PMCID: PMC5519663 DOI: 10.1007/s10456-017-9545-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/11/2017] [Indexed: 12/15/2022]
Abstract
Angiogenesis is one of the hallmarks of cancer progression and as such has been considered a target of therapeutic interest. However, single targeted agents have not fully lived up to the initial promise of anti-angiogenic therapy. Therefore, it has been suggested that combining therapies and agents will be the way forward in the oncology field. In recent years, microRNAs (miRNAs) have received considerable attention as drivers of tumor development and progression, either acting as tumor suppressors or as oncogenes (so-called oncomiRs), as well as in the process of tumor angiogenesis (angiomiRs). Not only from a functional, but also from a therapeutic view, miRNAs are attractive tools. Thus far, several mimics and antagonists of miRNAs have entered clinical development. Here, we review the provenance and promise of miRNAs as targets as well as therapeutics to contribute to anti-angiogenesis-based (combination) treatment of cancer.
Collapse
Affiliation(s)
- Judy R van Beijnum
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Laboratory Medical Oncology, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Dennis Poel
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | | | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, VUMC - Cancer Center Amsterdam, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
483
|
Hamming LC, Slotman BJ, Verheul HMW, Thijssen VL. The clinical application of angiostatic therapy in combination with radiotherapy: past, present, future. Angiogenesis 2017; 20:217-232. [PMID: 28364160 PMCID: PMC5437175 DOI: 10.1007/s10456-017-9546-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022]
Abstract
Although monotherapy with angiostatic drugs is still far from effective, there is abundant evidence that angiostatic therapy can improve the efficacy of conventional treatments like radiotherapy. This has instigated numerous efforts to optimize and clinically implement the combination of angiostatic drugs with radiation treatment. The results from past and present clinical trials that explored this combination therapy indeed show encouraging results. However, current findings also show that the combination has variable efficacy and is associated with increased toxicity. This indicates that combining radiotherapy with angiostatic drugs not only holds opportunities but also provides several challenges. In the current review, we provide an update of the most recent insights from clinical trials that evaluated the combination of angiostatic drugs with radiation treatment. In addition, we discuss the outstanding questions for future studies in order to improve the clinical benefit of combining angiostatic therapy with radiation therapy.
Collapse
Affiliation(s)
- Lisanne C Hamming
- Department of Medical Oncology, VU University Medical Centre, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, VU University Medical Centre, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, VU University Medical Centre, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands
| | - Victor L Thijssen
- Department of Radiation Oncology, VU University Medical Centre, De Boelelaan 1118, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
484
|
Nowak-Sliwinska P, Griffioen AW. Angiogenesis inhibitors in combinatorial approaches. Angiogenesis 2017; 20:183-184. [PMID: 28382510 DOI: 10.1007/s10456-017-9544-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/12/2017] [Indexed: 11/25/2022]
Affiliation(s)
| | - Arjan W Griffioen
- Department of Medical Oncology, VU University Medical Center, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
485
|
Berndsen RH, Abdul UK, Weiss A, Zoetemelk M, te Winkel MT, Dyson PJ, Griffioen AW, Nowak-Sliwinska P. Epigenetic approach for angiostatic therapy: promising combinations for cancer treatment. Angiogenesis 2017; 20:245-267. [DOI: 10.1007/s10456-017-9551-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/10/2017] [Indexed: 12/15/2022]
|