451
|
Pang KM, Ishidate T, Nakamura K, Shirayama M, Trzepacz C, Schubert CM, Priess JR, Mello CC. The minibrain kinase homolog, mbk-2, is required for spindle positioning and asymmetric cell division in early C. elegans embryos. Dev Biol 2004; 265:127-39. [PMID: 14697358 DOI: 10.1016/j.ydbio.2003.09.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the newly fertilized Caenorhabditis elegans zygote, cytoplasmic determinants become localized asymmetrically along the anterior-posterior (A-P) axis of the embryo. The mitotic apparatus then orients so as to cleave the embryo into anterior and posterior blastomeres that differ in both size and developmental potential. Here we describe a role for MBK-2, a member of the Dyrk family of protein kinases, in asymmetric cell division in C. elegans. In mbk-2 mutants, the initial mitotic spindle is misplaced and cytoplasmic factors, including the germline-specific protein PIE-1, are mislocalized. Our findings support a model in which MBK-2 down-regulates the katanin-related protein MEI-1 to control spindle positioning and acts through distinct, as yet unknown factors, to control the localization of cytoplasmic determinants. These findings in conjunction with work from Schizosaccharomyces pombe indicate a possible conserved role for Dyrk family kinases in the regulation of spindle placement during cell division.
Collapse
Affiliation(s)
- Ka Ming Pang
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
452
|
Korobko EV, Kiselev SL, Korobko IV. Subcellular localization of MAK-V/Hunk protein kinase expressed in COS-1 cells. Cell Biol Int 2004; 28:49-56. [PMID: 14759768 DOI: 10.1016/j.cellbi.2003.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2003] [Revised: 09/16/2003] [Accepted: 10/31/2003] [Indexed: 02/07/2023]
Abstract
MAK-V/Hunk is a MARK/Par-1-related protein kinase, whose function is unknown. We studied the subcellular localization of MAK-V/Hunk in COS-1 cells by immunofluorescence. It has a nucleocytoplasmic distribution and is localized to the centrosome, as indicated by co-localization with gamma-tubulin. A putative kinase-deficient mutant, with a mutation in the invariant lysine residue in the catalytic domain, was not targeted to the nucleus or centrosome. These results suggest that the nuclear and centrosomal targeting of MAK-V/Hunk is specific, and is likely to be coupled to its catalytic activity.
Collapse
Affiliation(s)
- Elena V Korobko
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | | | | |
Collapse
|
453
|
Drewes G, Nurse P. The protein kinase kin1, the fission yeast orthologue of mammalian MARK/PAR-1, localises to new cell ends after mitosis and is important for bipolar growth. FEBS Lett 2003; 554:45-9. [PMID: 14596912 DOI: 10.1016/s0014-5793(03)01080-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The kin1 protein kinase of the fission yeast Schizosaccharomyces pombe is a member of the PAR-1/MARK (partitioning-defective 1/microtubule-associated protein/microtubule affinity-regulating kinase) family important in eukaryotic cell polarity and cytoskeletal dynamics. We show here that kin1 plays a role in establishing the characteristic rod-shaped morphology of fission yeast. Cells in which kin1 was deleted are viable but are impaired in growth, and are rounded at one end or both ends. They are monopolar because after mitosis they fail to activate bipolar growth, and are delayed in cytokinesis, resulting in a high proportion of septated cells often with multiple septa. This phenotype can be partially rescued by heterologous expression of human MARKs, which restore bipolar growth in most cells, but do not correct the delay in cytokinesis. Using chromosomal epitope tagging, we show that kin1p localises to the cell ends, except during mitosis when it disappears from cell ends. After mitosis, kin1p first reappears at the new cell end. Overexpression of kin1 results in a loss of polarity, with partially or fully rounded cells. From these results we suggest that kin1 is required to direct the growth machinery to the cell ends.
Collapse
Affiliation(s)
- Gerard Drewes
- Cell Cycle Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | |
Collapse
|
454
|
Brajenovic M, Joberty G, Küster B, Bouwmeester T, Drewes G. Comprehensive proteomic analysis of human Par protein complexes reveals an interconnected protein network. J Biol Chem 2003; 279:12804-11. [PMID: 14676191 DOI: 10.1074/jbc.m312171200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The polarization of eukaryotic cells is controlled by the concerted activities of asymmetrically localized proteins. The PAR proteins, first identified in Caenorhabditis elegans, are common regulators of cell polarity conserved from nematode and flies to man. However, little is known about the molecular mechanisms by which these proteins and protein complexes establish cell polarity in mammals. We have mapped multiprotein complexes formed around the putative human Par orthologs MARK4 (microtubule-associated protein/microtubule affinity-regulating kinase 4) (Par-1), Par-3, LKB1 (Par-4), 14-3-3zeta and eta (Par-5), Par-6a, -b, -c, and PKClambda (PKC3). We employed a proteomic approach comprising tandem affinity purification (TAP) of protein complexes from cultured cells and protein sequencing by tandem mass spectrometry. From these data we constructed a highly interconnected protein network consisting of three core complex "modules" formed around MARK4 (Par-1), Par-3.Par-6, and LKB1 (Par-4). The network confirms most previously reported interactions. In addition we identified more than 50 novel interactors, some of which, like the 14-3-3 phospho-protein scaffolds, occur in more than one distinct complex. We demonstrate that the complex formation between LKB1.Par-4, PAPK, and Mo25 results in the translocation of LKB1 from the nucleus to the cytoplasm and to tight junctions and show that the LKB1 complex may activate MARKs, which are known to introduce 14-3-3 binding sites into several substrates. Our findings suggest co-regulation and/or signaling events between the distinct Par complexes and provide a basis for further elucidation of the molecular mechanisms that govern cell polarity.
Collapse
|
455
|
Yoder JH, Chong H, Guan KL, Han M. Modulation of KSR activity in Caenorhabditis elegans by Zn ions, PAR-1 kinase and PP2A phosphatase. EMBO J 2003; 23:111-9. [PMID: 14685271 PMCID: PMC1271663 DOI: 10.1038/sj.emboj.7600025] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Accepted: 11/14/2003] [Indexed: 11/09/2022] Open
Abstract
Vulval differentiation in Caenorhabditis elegans is controlled by a conserved signal transduction pathway mediated by Ras and a kinase cascade that includes Raf, Mek and MAPK. Activation of this cascade is positively regulated by a number of proteins such as KSR (kinase suppressor of Ras), SUR-8/SOC-2, SUR-6/PP2A-B and CDF-1. We describe the functional characterization of sur-7 and several genes that regulate signaling downstream of ras. We identified sur-7 by isolating a mutation that suppresses an activated ras allele, and showed that SUR-7 is a divergent member of the cation diffusion facilitator family of heavy metal ion transporters that is probably localized to the endoplosmic recticulum membrane and regulates cellular Zn(2+) concentrations. Genetic double mutant analyses suggest that the SUR-7-mediated effect is not a general toxic response. Instead, Zn(2+) ions target a specific step of the pathway, probably regulation of the scaffolding protein KSR. Biochemical analysis in mammalian cells indicates that high Zn(2+) concentration causes a dramatic increase of KSR phosphorylation. Genetic analysis also indicates that PP2A phosphatase and PAR-1 kinase act downstream of Raf to positively and negatively regulate KSR activity, respectively.
Collapse
Affiliation(s)
- John H Yoder
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institution, University of Colorado, Boulder, CO, USA
- Present address: Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | - Huira Chong
- Department of Biological Chemistry and The Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA
| | - Kun-liang Guan
- Department of Biological Chemistry and The Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA
| | - Min Han
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institution, University of Colorado, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institution, University of Colorado, Boulder, CO 80309, USA. Tel.: +1 303 735 0375; Fax: +1 303 735 0175; E-mail:
| |
Collapse
|
456
|
Sun JS, Hélène C. Oligonucleotides and derivatives as gene-specific control agents. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2003; 22:489-505. [PMID: 14565225 DOI: 10.1081/ncn-120021950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The current achievement of genome sequence projects of a dozen eukaryote organisms (including human genome) and the development of functional genomics are providing the basic knowledge required to utilize gene-specific reagents for both basic understanding of cell physiology and therapeutical development. The field of chemical genomics has the ambitious goal of designing molecules that could act selectively on every single gene or gene product in a cell and in vivo. The progress in oligonucleotide-based approaches will be the topic of this review, however, other nucleic acid- and SELEX-based approaches as well as high sequence-specific low molecular weight DNA-specific ligands will also be discussed.
Collapse
Affiliation(s)
- Jian-Sheng Sun
- Laboratoire de Biophysique, USM0503 Régulation et Dynamique des Génomes, Muséum National d'Histoire Naturelle, UMR8646 CNRS-MNHN, U565 INSERM, Paris, France.
| | | |
Collapse
|
457
|
Abstract
The discoveries of RNA interference and RNA-mediated posttranscriptional gene silencing have opened an unanticipated new window on the regulation of gene expression as well as a facile and highly effective tool for knocking down gene expression in many organisms and cells. In addition, RNA interference and RNA silencing may conceivably be exploited for human therapeutics sometime in the future, possibly bringing greater clinical impact than have the so far disappointing antisense endeavors. This essay summarizes recent developments and offers some personalized perspectives, with emphasis on what we do not yet know.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Pharmacology and Program in Cell Dynamics, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| |
Collapse
|
458
|
Abstract
The anterior-posterior axis of the Caenorhabditis elegans zygote forms shortly after fertilization when the sperm pronucleus and its associated centrosomal asters provide a cue that establishes the anterior-posterior (AP) body axis. In response to this cue, the microfilament cytoskeleton polarizes the distribution of a group of widely conserved, cortically localized regulators called the PAR proteins, which are required for the first mitotic division to be asymmetric. These asymmetries include a posterior displacement of the first mitotic spindle and the differential segregation of cell-fate determinants to the anterior and posterior daughters produced by the first cleavage of the zygote. Here we review recent advances in our understanding of the mechanisms that polarize the one-cell zygote to generate an AP axis of asymmetry.
Collapse
Affiliation(s)
- Stephan Q Schneider
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA.
| | | |
Collapse
|
459
|
Timm T, Li XY, Biernat J, Jiao J, Mandelkow E, Vandekerckhove J, Mandelkow EM. MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. EMBO J 2003; 22:5090-101. [PMID: 14517247 PMCID: PMC204455 DOI: 10.1093/emboj/cdg447] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
MARK, a kinase family related to PAR-1 involved in establishing cell polarity, phosphorylates microtubule-associated proteins (tau/MAP2/MAP4) at KXGS motifs, causes detachment from microtubules, and their disassembly. The sites are prominent in tau from Alzheimer's disease brains. We studied the activation of MARK and identified the upstream kinase, MARKK, a member of the Ste20 kinase family. It phosphorylates MARK within the activation loop (T208 in MARK2). A fraction of MARK in brain tissue is doubly phosphorylated (at T208/S212), reminiscent of the activation of MAP kinase; however, the phosphorylation of the second site in MARK (S212) is inhibitory. In cells the activity of MARKK enhances microtubule dynamics through the activation of MARK and leads to phosphorylation and detachment of tau or equivalent MAPs from microtubules. Overexpression of MARK eventually leads to microtubule breakdown and cell death, but in neuronal cells the primary effect is to allow the development of neurites during differentiation.
Collapse
Affiliation(s)
- Thomas Timm
- Max-Planck-Unit for Structural Molecular Biology, Notkestrasse 85, D-22607 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
460
|
|
461
|
Trinczek B, Brajenovic M, Ebneth A, Drewes G. MARK4 is a novel microtubule-associated proteins/microtubule affinity-regulating kinase that binds to the cellular microtubule network and to centrosomes. J Biol Chem 2003; 279:5915-23. [PMID: 14594945 DOI: 10.1074/jbc.m304528200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MARK protein kinases were originally identified by their ability to phosphorylate a serine motif in the microtubule-binding domain of tau that is critical for microtubule binding. Here, we report the cloning and expression of a novel human paralog, MARK4, which shares 75% overall homology with MARK1-3 and is predominantly expressed in brain. Homology is most pronounced in the catalytic domain (90%), and MARK4 readily phosphorylates tau and the related microtubule-associated protein 2 (MAP2) and MAP4. In contrast to the three paralogs that all exhibit uniform cytoplasmic localization, MARK4 colocalizes with the centrosome and with microtubules in cultured cells. Overexpression of MARK4 causes thinning out of the microtubule network, concomitant with a reorganization of microtubules into bundles. In line with these findings, we show that a tandem affinity-purified MARK4 protein complex contains alpha-, beta-, and gamma-tubulin. In differentiated neuroblastoma cells, MARK4 is localized prominently at the tips of neurite-like processes. We suggest that although the four MARK/PAR-1 kinases might play multiple cellular roles in concert with different targets, MARK4 is likely to be directly involved in microtubule organization in neuronal cells and may contribute to the pathological phosphorylation of tau in Alzheimer's disease.
Collapse
Affiliation(s)
- Bernhard Trinczek
- Department of Medicinal Chemistry, University of Kansas, Malott Hall, Lawrence, Kansas 66045, USA
| | | | | | | |
Collapse
|
462
|
Abstract
OBJECTIVE Gene therapy is a rapidly evolving novel treatment for human disease. This review discusses the latest development in gene transfer technology and its potential use in the female reproductive tract. METHODS A comprehensive search using the MEDLINE database was performed to review current, innovative trends in gene transfer technology. In addition, articles on reproductive tract gene transfer were reviewed. CONCLUSION(S) Recent developments, such as the Human Genome Project, have generated great interest in the genetic basis of human health and disease. Gene therapy is a rapidly evolving field that uses gene transfer to treat disease. Ongoing research in the field focuses on improving vector technology to enable efficient in vivo gene transfer. Although multiple techniques for gene transfer have been described, no single technique can be used in all instances. The human female reproductive tract is easily accessible and can be readily transfected. In vivo gene transfer has resulted in successful alteration of implantation rates and has demonstrated potential for use in treatment of ovarian cancer.
Collapse
Affiliation(s)
- Gaurang S Daftary
- Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
463
|
Abstract
The completion of the human genome project has left researchers searching for an efficient method to study gene function in mammalian cells. RNA interference (RNAi) is an evolutionarily conserved post-transcriptional gene silencing (PTGS) mechanism mediated by double-stranded RNA (dsRNA). The dsRNA is processed into small duplex RNA molecules of approximately 21-22 nucleotides (nts) termed small interfering RNAs (siRNAs) by a RNase III enzyme called Dicer. Interaction of siRNAs with a multi-protein complex, termed the RNA-induced silencing complex (RISC), results in sequence specific association of the activated RISC complex with the cognate RNA transcript. This interaction leads to sequence-specific cleavage of the target transcript. Originally discovered in Caenorhabditis elegans, the study of RNAi in mammalian cells has blossomed in the last couple of years with the discovery that introduction of siRNA molecules directly into somatic mammalian cells circumvents the non-specific response vertebrate cells have against larger dsRNA molecules. Emerging as a powerful tool for reverse genetic analysis, RNAi is rapidly being applied to study the function of many genes associated with human disease, in particular those associated with oncogenesis and infectious disease. This review summarizes the mechanism of RNAi and provides an overview of its current applications in medicine.
Collapse
Affiliation(s)
- Jerry C Cheng
- Mattel Children's Hospital, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
464
|
Pellettieri J, Reinke V, Kim SK, Seydoux G. Coordinate activation of maternal protein degradation during the egg-to-embryo transition in C. elegans. Dev Cell 2003; 5:451-62. [PMID: 12967564 DOI: 10.1016/s1534-5807(03)00231-4] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transition from egg to embryo occurs in the absence of transcription yet requires significant changes in gene activity. Here, we show that the C. elegans DYRK family kinase MBK-2 coordinates the degradation of several maternal proteins, and is essential for zygotes to complete cytokinesis and pattern the first embryonic axis. In mbk-2 mutants, the meiosis-specific katanin subunits MEI-1 and MEI-2 persist during mitosis and the first mitotic division fails. mbk-2 is also required for posterior enrichment of the germ plasm before the first cleavage, and degradation of germ plasm components in anterior cells after cleavage. MBK-2 distribution changes dramatically after fertilization during the meiotic divisions, and this change correlates with activation of mbk-2-dependent processes. We propose that MBK-2 functions as a temporal regulator of protein stability, and that coordinate activation of maternal protein degradation is one of the mechanisms that drives the transition from symmetric egg to patterned embryo.
Collapse
Affiliation(s)
- Jason Pellettieri
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
465
|
|
466
|
DeRenzo C, Reese KJ, Seydoux G. Exclusion of germ plasm proteins from somatic lineages by cullin-dependent degradation. Nature 2003; 424:685-9. [PMID: 12894212 PMCID: PMC1892537 DOI: 10.1038/nature01887] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2003] [Accepted: 07/10/2003] [Indexed: 11/09/2022]
Abstract
In many animals, establishment of the germ line depends on segregation of a specialized cytoplasm, or 'germ plasm', to a small number of germline precursor cells during early embryogenesis. Germ plasm asymmetry involves targeting of RNAs and proteins to a specific region of the oocyte and/or embryo. Here we demonstrate that germ plasm asymmetry also depends on degradation of germline proteins in non-germline (somatic) cells. We show that five CCCH finger proteins, components of the Caenorhabditis elegans germ plasm, are targeted for degradation by the novel CCCH-finger-binding protein ZIF-1. ZIF-1 is a SOCS-box protein that interacts with the E3 ubiquitin ligase subunit elongin C. Elongin C, the cullin CUL-2, the ring finger protein RBX-1 and the E2 ubiquitin conjugation enzyme UBC5 (also known as LET-70) are all required in vivo for CCCH finger protein degradation. Degradation is activated in somatic cells by the redundant CCCH finger proteins MEX-5 and MEX-6, which are counteracted in the germ line by the PAR-1 kinase. We propose that segregation of the germ plasm involves both stabilization of germline proteins in the germ line and cullin-dependent degradation in the soma.
Collapse
Affiliation(s)
- Cynthia DeRenzo
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
467
|
Borkhardt A. Introduction: RNA interference in cancer biology and treatment. Semin Cancer Biol 2003. [DOI: 10.1016/s1044-579x(03)00037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
468
|
Oliveira DM, Goodell MA. Transient RNA interference in hematopoietic progenitors with functional consequences. Genesis 2003; 36:203-8. [PMID: 12929091 DOI: 10.1002/gene.10212] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Short interfering (si) RNAs have now been shown to inhibit gene expression in several species, including mammals (Elbashir et al.: Nature 411:494-498, 2001; Fire et al.: Nature 391:806-811, 1998). RNA inhibition in primary cells such as stem cells would facilitate rapid gene discovery in a postgenome era. While retroviruses can deliver siRNA expression cassettes for stable expression (Barton and Medzhitov: Proc Natl Acad Sci USA 99:14943-14945, 2002; Paddison et al.: Proc Natl Acad Sci USA 99:1443-1448, 2002; Rubinson et al.: Nat Genet 33:401-406, 2003), an efficient method for direct transfer of siRNA to stem cells is still lacking. Here, we established electroporation to deliver siRNA to hematopoietic progenitors. On average, at least 80% of cells take up the RNA, and these display nearly 100% knockout of marker gene expression at both the RNA and protein level. Moreover, knockdown of the hematopoietic regulator, CD45, results in 3-fold more hematopoietic colonies in a progenitor assay. These results demonstrate that transient transfection of siRNA to primary cells can have substantial functional consequences. This technology may be applicable to a variety of primary cell types.
Collapse
Affiliation(s)
- Daniela M Oliveira
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
469
|
Spicer J, Rayter S, Young N, Elliott R, Ashworth A, Smith D. Regulation of the Wnt signalling component PAR1A by the Peutz-Jeghers syndrome kinase LKB1. Oncogene 2003; 22:4752-6. [PMID: 12879020 DOI: 10.1038/sj.onc.1206669] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Loss-of-function mutations in the LKB1 (STK11) serine-threonine kinase gene cause Peutz-Jeghers syndrome, which is associated with inherited susceptibility to colorectal and other cancers. No downstream targets of LKB1 kinase activity have been identified. Here we show that LKB1 can direct the phosphorylation of the serine-threonine kinase PAR1A. The amino-acid residues phosphorylated as a result of LKB1 activity have been identified and phosphorylation at these residues is required for PAR1A kinase activity. PAR1A has previously been implicated as a positive regulator of the Wnt-betacatenin signalling pathway. We show here that LKB1 can modify transcription driven by the Wnt-regulated TCF response element, implicating LKB1 in a pathway known to play a key role in human colorectal tumorigenesis.
Collapse
Affiliation(s)
- James Spicer
- Cancer Research UK Gene Function and Regulation Group, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, Fulham Road, London SW3 6JB, UK
| | | | | | | | | | | |
Collapse
|
470
|
Abstract
Although initially recognized as a handy tool to reduce gene expression, RNA silencing, triggered by double-stranded RNA molecules, is now recognized as a mechanism for cellular protection and cleansing: It defends the genome against molecular parasites such as viruses and transposons, while removing abundant but aberrant nonfunctional messenger RNAs. The underlying mechanisms in distinct gene silencing phenomena in different genetic systems, such as cosuppression in plants and RNAi in animals, are very similar. There are common RNA intermediates, and similar genes are required in RNA silencing pathways in protozoa, plants, fungi, and animals, thus indicating an ancient pathway. This chapter gives an overview of both biochemical and genetic approaches leading to the current understanding of the molecular mechanism of RNA silencing and its probable biological function.
Collapse
Affiliation(s)
- Marcel Tijsterman
- Hubrecht Laboratory, Center for Biomedical Genetics, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands.
| | | | | |
Collapse
|
471
|
Xu Y, Zhang HY, Thormeyer D, Larsson O, Du Q, Elmén J, Wahlestedt C, Liang Z. Effective small interfering RNAs and phosphorothioate antisense DNAs have different preferences for target sites in the luciferase mRNAs. Biochem Biophys Res Commun 2003; 306:712-7. [PMID: 12810077 DOI: 10.1016/s0006-291x(03)01024-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antisense DNA target sites can be selected by the accessibility of the mRNA target. It remains unknown whether a mRNA site that is accessible to an antisense DNA is also a good candidate target site for a siRNA. Here, we reported a parallel analysis of 12 pairs of antisense DNAs and siRNA duplexes for their potency to inhibit reporter luciferase activity in mammalian cells, both of the antisense DNA and siRNA agents in a pair being directed to same site in the mRNA. Five siRNAs and two antisense DNAs turned out to be effective, but the sites targeted by those effective siRNAs and antisense DNAs did not overlap. Our results indicated that effective antisense DNAs and siRNAs have different preferences for target sites in the mRNA.
Collapse
Affiliation(s)
- Yunhe Xu
- Center for Genomics and Bioinformatics, Karolinska Institute, 17177, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
472
|
Abstract
LKB1 is a serine-threonine protein kinase mutated in patients with an autosomal dominantly inherited cancer syndrome predisposing to multiple benign and malignant tumours, termed Peutz-Jeghers syndrome. Since its discovery in 1998, much research has focused on identification and characterisation of its cellular roles and analysing how LKB1 might be regulated. In this review we discuss exciting recent advances indicating that LKB1 functions as a tumour suppressor perhaps by controlling cell polarity. We also outline the current understanding of the molecular mechanisms by which LKB1 is regulated in vivo, through interaction with other proteins as well as by protein phosphorylation and prenylation.
Collapse
Affiliation(s)
- Jérôme Boudeau
- MRC Protein Phosphorylation Unit, MSI/WTB Complex, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
473
|
Cohen D, Müsch A. Apical surface formation in MDCK cells: regulation by the serine/threonine kinase EMK1. Methods 2003; 30:269-76. [PMID: 12798141 DOI: 10.1016/s1046-2023(03)00033-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
It has recently become evident that basic mechanisms for the establishment of cell polarity are conserved between epithelial and nonepithelial systems. The vast catalogue of known gene products involved in various aspects of invertebrate and yeast cell polarity provides a repertoire of candidate proteins that can be tested for their roles in the organization of mammalian epithelia. Here, we describe cell biological approaches to study the development and maintenance of cell polarity in Mardin-Darby canine kidney (MDCK) cells, an established mammalian model cell line for simple epithelia. The assays allowed us to characterize the Caenorhabditis elegans PAR-1 homologue EMK1 as a novel regulator of apical surface formation in epithelial cells.
Collapse
Affiliation(s)
- David Cohen
- M. Dyson Institute of Vision Research, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
474
|
Colombo K, Grill SW, Kimple RJ, Willard FS, Siderovski DP, Gönczy P. Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 2003; 300:1957-61. [PMID: 12750478 DOI: 10.1126/science.1084146] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Asymmetric divisions are crucial for generating cell diversity; they rely on coupling between polarity cues and spindle positioning, but how this coupling is achieved is poorly understood. In one-cell stage Caenorhabditis elegans embryos, polarity cues set by the PAR proteins mediate asymmetric spindle positioning by governing an imbalance of net pulling forces acting on spindle poles. We found that the GoLoco-containing proteins GPR-1 and GPR-2, as well as the Galpha subunits GOA-1 and GPA-16, were essential for generation of proper pulling forces. GPR-1/2 interacted with guanosine diphosphate-bound GOA-1 and were enriched on the posterior cortex in a par-3- and par-2-dependent manner. Thus, the extent of net pulling forces may depend on cortical Galpha activity, which is regulated by anterior-posterior polarity cues through GPR-1/2.
Collapse
Affiliation(s)
- Kelly Colombo
- Swiss Institute for Experimental Cancer Research (ISREC), 1066 Epalinges/Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
475
|
Mendel J, Heinecke K, Fyrst H, Saba JD. Sphingosine phosphate lyase expression is essential for normal development in Caenorhabditis elegans. J Biol Chem 2003; 278:22341-9. [PMID: 12682045 DOI: 10.1074/jbc.m302857200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingolipids are ubiquitous membrane constituents whose metabolites function as signaling molecules in eukaryotic cells. Sphingosine 1-phosphate, a key sphingolipid second messenger, regulates proliferation, motility, invasiveness, and programmed cell death. These effects of sphingosine 1-phosphate and similar phosphorylated sphingoid bases have been observed in organisms as diverse as yeast and humans. Intracellular levels of sphingosine 1-phosphate are tightly regulated by the actions of sphingosine kinase, which is responsible for its synthesis and sphingosine-1-phosphate phosphatase and sphingosine phosphate lyase, the two enzymes responsible for its catabolism. In this study, we describe the cloning of the Caenorhabditis elegans sphingosine phosphate lyase gene along with its functional expression in Saccharomyces cerevisiae. Promoter analysis indicates tissue-specific and developmental regulation of sphingosine phosphate lyase gene expression. Inhibition of C. elegans sphingosine phosphate lyase expression by RNA interference causes accumulation of phosphorylated and unphosphorylated long-chain bases and leads to poor feeding, delayed growth, reproductive abnormalities, and intestinal damage similar to the effects seen with exposure to Bacillus thuringiensis toxin. Our results show that sphingosine phosphate lyase is an essential gene in C. elegans and suggest that the sphingolipid degradative pathway plays a conserved role in regulating animal development.
Collapse
Affiliation(s)
- Jane Mendel
- Children's Hospital Oakland Research Institute, Oakland, California 94609-1673, USA
| | | | | | | |
Collapse
|
476
|
Gotta M, Dong Y, Peterson YK, Lanier SM, Ahringer J. Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr Biol 2003; 13:1029-37. [PMID: 12814548 DOI: 10.1016/s0960-9822(03)00371-3] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Spindle positioning during an asymmetric cell division is of fundamental importance to ensure correct size of daughter cells and segregation of determinants. In the C. elegans embryo, the first spindle is asymmetrically positioned, and this asymmetry is controlled redundantly by two heterotrimeric Galpha subunits, GOA-1 and GPA-16. The Galpha subunits act downstream of the PAR polarity proteins, which control the relative pulling forces acting on the poles. How these heterotrimeric G proteins are regulated and how they control spindle position is still unknown. RESULTS Here we show that the Galpha subunits are regulated by a receptor-independent mechanism. RNAi depletion of gpr-1 and gpr-2, homologs of mammalian AGS3 and Drosophila PINS (receptor-independent G protein regulators), results in a phenotype identical to that of embryos depleted of both GPA-16 and GOA-1; the first cleavage is symmetric, but polarity is not affected. The loss of spindle asymmetry after RNAi of gpr-1 and gpr-2 appears to be the result of weakened pulling forces acting on the poles. The GPR protein(s) localize around the cortex of one-cell embryos and are enriched at the posterior. Thus, asymmetric G protein regulation could explain the posterior displacement of the spindle. Posterior enrichment is abolished in the absence of the PAR polarity proteins PAR-2 or PAR-3. In addition, LIN-5, a coiled-coil protein also required for spindle positioning, binds to and is required for cortical association of the GPR protein(s). Finally, we show that the GPR domain of GPR-1 and GPR-2 behaves as a GDP dissociation inhibitor for GOA-1, and its activity is thus similar to that of mammalian AGS3. CONCLUSIONS Our results suggest that GPR-1 and/or GPR-2 control an asymmetry in forces exerted on the spindle poles by asymmetrically modulating the activity of the heterotrimeric G protein in response to a signal from the PAR proteins.
Collapse
Affiliation(s)
- Monica Gotta
- Wellcome/Cancer Research United Kingdom Institute, Tennis Court Road, University of Cambridge, United Kingdom.
| | | | | | | | | |
Collapse
|
477
|
Abstract
The mechanisms orchestrating spatial cell division control remain poorly understood. In animal cells, the position of the mitotic spindle dictates cleavage furrow placement, and thus plays a key role in governing spatial relationships between resulting daughter cells. The one-cell stage Caenorhabditis elegans embryo is an attractive model system to investigate the mechanisms underlying spindle positioning in metazoans. In this review, the experimental advantages of this model system for an in vivo dissection of cell division processes are first discussed. Next, three lines of experiments that were conducted to dissect the mechanisms governing spindle positioning in one-cell stage C. elegans embryos are summarized. First, localized laser micro-irradiations were utilized to identify the forces acting on spindle poles during anaphase. This work revealed that there is a precise imbalance of pulling forces acting on the two spindle poles, with the forces acting on the posterior spindle pole being in slight excess, thus explaining the asymmetric spindle position achieved by the end of anaphase. Second, an RNAi-based functional genomic screen was carried out to identify novel components required for generating these pulling forces. This uncovered that gpr-1/gpr-2, which encode GoLoco-containing proteins, as well as the previously identified Ga subunits goa-1/gpa-16, are required for generation of pulling forces on the spindle poles. Third, the zyg-8 locus was identified by mutational analysis to play a distinct role during anaphase spindle positioning. zyg-8 was found to encode a protein related to human Doublecortin, which is affected in patients with neuronal migration disorders. Moreover, ZYG-8 is a microtubule-associated protein that stabilizes microtubules against depolymerization. Together, these experimental approaches contribute to a better understanding of the mechanisms orchestrating spatial cell division control in metazoan organisms.
Collapse
Affiliation(s)
- Pierre Gönczy
- ISREC, 155, chemin des Bouveresses, CH-1066 Epalinges/Lausanne, Suisse.
| |
Collapse
|
478
|
Srinivasan DG, Fisk RM, Xu H, van den Heuvel S. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C elegans. Genes Dev 2003; 17:1225-39. [PMID: 12730122 PMCID: PMC196055 DOI: 10.1101/gad.1081203] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Caenorhabditis elegans coiled-coil protein LIN-5 mediates several processes in cell division that depend on spindle forces, including alignment and segregation of chromosomes and positioning of the spindle. Here, we describe two closely related proteins, GPR-1 and GPR-2 (G protein regulator), which associate with LIN-5 in vivo and in vitro and depend on LIN-5 for localization to the spindle and cell cortex. GPR-1/GPR-2 contain a GoLoco/GPR motif that mediates interaction with GDP-bound Galpha(i/o). Inactivation of lin-5, gpr-1/gpr-2, or the Galpha(i/o) genes goa-1 and gpa-16 all cause highly similar chromosome segregation and spindle positioning defects, indicating a positive role for the LIN-5 and GPR proteins in G protein signaling. The lin-5 and gpr-1/gpr-2 genes appear to act downstream of the par polarity genes in the one- and two-cell stages and downstream of the tyrosine kinase-related genes mes-1 and src-1 at the four-cell stage. Together, these results indicate that GPR-1/GPR-2 in association with LIN-5 activate G protein signaling to affect spindle force. Polarity determinants may regulate LIN-5/GPR/Galpha locally to create the asymmetric forces that drive spindle movement. Results in C. elegans and other species are consistent with a novel model for receptor-independent activation of Galpha(i/o) signaling.
Collapse
Affiliation(s)
- Dayalan G Srinivasan
- Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts 02129, USA
| | | | | | | |
Collapse
|
479
|
Holen T, Amarzguioui M, Babaie E, Prydz H. Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res 2003; 31:2401-7. [PMID: 12711685 PMCID: PMC154224 DOI: 10.1093/nar/gkg338] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA interference (RNAi), mediated by either long double-stranded RNA (dsRNA) or short interfering RNA (siRNA), has become a routine tool for transient knockdown of gene expression in a wide range of organisms. The antisense strand of the siRNA duplex (antisense siRNA) was recently shown to have substantial mRNA depleting activity of its own. Here, targeting human Tissue Factor mRNA in HaCaT cells, we perform a systematic comparison of the activity of antisense siRNA and double-strand siRNA, and find almost identical target position effects, appearance of mRNA cleavage fragments and tolerance for mutational and chemical backbone modifications. These observations, together with the demonstration that excess inactive double-strand siRNA blocks antisense siRNA activity, i.e. shows sequence-independent competition, indicate that the two types of effector molecules share the same RNAi pathway. Interest ingly, both FITC-tagged and 3'-deoxy antisense siRNA display severely limited activity, despite having practically wild-type activity in a siRNA duplex. Finally, we find that maximum depletion of target mRNA expression occurs significantly faster with antisense siRNA than with double-strand siRNA, suggesting that the former enters the RNAi pathway at a later stage than double-strand siRNA, thereby requiring less time to exert its activity.
Collapse
Affiliation(s)
- Torgeir Holen
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalleen 21, N-0349 Oslo, Norway
| | | | | | | |
Collapse
|
480
|
Labbé JC, Maddox PS, Salmon ED, Goldstein B. PAR proteins regulate microtubule dynamics at the cell cortex in C. elegans. Curr Biol 2003; 13:707-14. [PMID: 12725727 DOI: 10.1016/s0960-9822(03)00251-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The PAR proteins are known to be localized asymmetrically in polarized C. elegans, Drosophila, and human cells and to participate in several cellular processes, including asymmetric cell division and spindle orientation. Although astral microtubules are known to play roles in these processes, their behavior during these events remains poorly understood. RESULTS We have developed a method that makes it possible to examine the residence time of individual astral microtubules at the cell cortex of developing embryos. Using this method, we found that microtubules are more dynamic at the posterior cortex of the C. elegans embryo compared to the anterior cortex during spindle displacement. We further observed that this asymmetry depends on the PAR-3 protein and heterotrimeric G protein signaling, and that the PAR-2 protein affects microtubule dynamics by restricting PAR-3 activity to the anterior of the embryo. CONCLUSIONS These results indicate that PAR proteins function to regulate microtubule dynamics at the cortex during microtubule-dependent cellular processes.
Collapse
Affiliation(s)
- Jean Claude Labbé
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280, USA.
| | | | | | | |
Collapse
|
481
|
Cuenca AA, Schetter A, Aceto D, Kemphues K, Seydoux G. Polarization of the C. elegans zygote proceeds via distinct establishment and maintenance phases. Development 2003; 130:1255-65. [PMID: 12588843 PMCID: PMC1761648 DOI: 10.1242/dev.00284] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polarization of the C. elegans zygote along the anterior-posterior axis depends on cortically enriched (PAR) and cytoplasmic (MEX-5/6) proteins, which function together to localize determinants (e.g. PIE-1) in response to a polarizing cue associated with the sperm asters. Using time-lapse microscopy and GFP fusions, we have analyzed the localization dynamics of PAR-2, PAR-6, MEX-5, MEX-6 and PIE-1 in wild-type and mutant embryos. These studies reveal that polarization involves two genetically and temporally distinct phases. During the first phase (establishment), the sperm asters at one end of the embryo exclude the PAR-3/PAR-6/PKC3 complex from the nearby cortex, allowing the ring finger protein PAR-2 to accumulate in an expanding 'posterior' domain. Onset of the establishment phase involves the non-muscle myosin NMY-2 and the 14-3-3 protein PAR-5. The kinase PAR-1 and the CCCH finger proteins MEX-5 and MEX-6 also function during the establishment phase in a feedback loop to regulate growth of the posterior domain. The second phase begins after pronuclear meeting, when the sperm asters begin to invade the anterior. During this phase (maintenance), PAR-2 maintains anterior-posterior polarity by excluding the PAR-3/PAR-6/PKC3 complex from the posterior. These findings provide a model for how PAR and MEX proteins convert a transient asymmetry into a stably polarized axis.
Collapse
Affiliation(s)
- Adrian A. Cuenca
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Aaron Schetter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Donato Aceto
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Kenneth Kemphues
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Geraldine Seydoux
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- *Author for correspondence (e-mail: )
| |
Collapse
|
482
|
Abstract
In recent years, sequence-specific gene silencing has been an area of increasing focus, both because of its interesting biology and because of its power as an experimental tool. A growing understanding of one such phenomenon, RNA interference (RNAi), has provided clues that many homology-dependent gene-silencing mechanisms share a common trigger, double-stranded RNA. Recent findings that RNAi and related pathways are involved not only in the response to exogenous pathogenic and endogenous parasitic nucleic acids but also in basic cellular processes, such as gene regulation and heterochromatin formation, have further fueled interest in this rapidly expanding field.
Collapse
Affiliation(s)
- Ahmet M Denli
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
483
|
Chen MJ, Lai YL. Tachykinin dysfunction attenuates monocrotaline-induced pulmonary hypertension. Toxicol Appl Pharmacol 2003; 187:178-85. [PMID: 12662901 DOI: 10.1016/s0041-008x(02)00070-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We explored the dysfunction of tachykinins on monocrotaline (MCT)-induced pulmonary hypertension by using double-stranded preprotachykinin (ds PPT) RNA and neurokinin receptor (NK) antagonists. Here, we showed the possibility to attenuate the PPT gene expression by ds RNA, RNA interference (RNAi), in fully developed tissue of rats. We designed four groups (control, MCT, RNAi + MCT, and solvent + MCT) of experiments in series 1 and seven groups (control, MCT, MCT + CP-96345-3.4, MCT + CP-96345-10, MCT + CP-96344-10, MCT + SR-48968, and MCT + SR-48965) of experiments in series 2. Rats in the control groups received saline injection. MCT-treated rats received a single MCT injection (60 mg/kg sc). One day prior to MCT, bilateral nodose ganglia were microinjected with ds PPT RNA in rats of the RNAi + MCT group or with solvent in the solvent + MCT group. Beginning from 1 day post-MCT, MCT-treated rats received a daily injection of the NK(1) receptor antagonist, CP-96345 (3.4 or 10 mg/kg ip) or its inactive enantiomer CP-96344 (10 mg/kg ip). The NK(2) receptor antagonist SR-48968 (3 mg/kg ip) or its inactive enantiomer SR-48965 (3 mg/kg ip) was injected to MCT-treated rats every other day starting 1 day post-MCT. Functional study was carried out 2 weeks (series 1) or 3 weeks (series 2) after MCT. MCT induced right ventricular hypertrophy, as well as increases in pulmonary arterial pressure, PPT mRNA (nodose ganglia and lung tissue), and lung tissue substance P level. All of the above MCT-induced alterations were attenuated by either RNAi or NK receptor antagonists. We conclude that tachykinins play an important role in MCT-induced pulmonary hypertension.
Collapse
MESH Headings
- Animals
- Blood Pressure
- Body Weight
- Heart Rate
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertrophy, Right Ventricular/chemically induced
- Hypertrophy, Right Ventricular/physiopathology
- Male
- Monocrotaline/toxicity
- Organ Size
- RNA Interference
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- Rats
- Rats, Wistar
- Receptors, Tachykinin/antagonists & inhibitors
- Receptors, Tachykinin/metabolism
- Substance P/analysis
- Tachykinins/genetics
- Tachykinins/metabolism
Collapse
Affiliation(s)
- Mei-Jung Chen
- Department of Physiology, National Taiwan University College of Medicine, 100, Taipei, Taiwan
| | | |
Collapse
|
484
|
Chen S, Spence AM, Schachter H. Isolation of null alleles of the Caenorhabditis elegans gly-12, gly-13 and gly-14 genes, all of which encode UDP-GlcNAc: alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I activity. Biochimie 2003; 85:391-401. [PMID: 12770777 DOI: 10.1016/s0300-9084(03)00009-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UDP-GlcNAc: alpha-3-D-mannoside beta1,2-N-acetylglucosaminyltransferase I (GnT I) is a Golgi-resident enzyme which transfers a GlcNAc residue in beta1,2 linkage to the Manalpha1,3Manbeta-terminus of (Manalpha1,6(Manalpha1,3)Manalpha1,6)(Manalpha1,3)Manbeta1,4GlcNAcbeta1,4GlcNAc-Asn-protein, thereby initiating the synthesis of hybrid N-glycans. Three Caenorhabditis elegans genes homologous to mammalian GnT I (designated gly-12, gly-13 and gly-14) have been cloned. All three cDNAs encode proteins with GnT I enzyme activity. We report in this paper the preparation by ultra-violet (UV) light irradiation in the presence of trimethylpsoralen, of mutants lacking either gly-12, gly-13 or gly-14. A double null mutation in the gly-12 and gly-14 genes (gly-14; gly-12) has also been prepared. These mutations are intragene deletions, removing large portions of the GnT I catalytic domain, and are therefore, all molecular nulls. The gly-12 and gly-14 mutants as well as the gly-14; gly-12 double mutant all displayed wild-type phenotypes, indicating that neither gly-12 nor gly-14 is necessary for worm development under standard laboratory conditions. In contrast, about 60% of the mutants lacking the gly-13 gene arrested as L1 larvae at 20 degrees C and the remaining 40% homozygous worms grew to adulthood but displayed severe morphological and behavioral defects despite the presence of the other two GnT I genes, gly-12 and gly-14. Attempts to rescue the gly-13 null phenotype with the wild type transgene were not successful. However, lethality co-segregated with the gly-13 deletion within 0.02 map units (mu) in genetic mapping experiments, suggesting that the gly-13 mutation is responsible for the phenotype.
Collapse
Affiliation(s)
- Shihao Chen
- The Burnham Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
485
|
Abstract
Cell polarity is an essential feature of many animal cells. It is critical for epithelial formation and function, for correct partitioning of fate-determining molecules, and for individual cells to chemotax or grow in a defined direction. For some of these processes, the position and orientation of the mitotic spindle must be coupled to cell polarity for correct positioning of daughter cells and inheritance of localised molecules. Recent work in several different systems has led to the realisation that similar mechanisms dictate the establishment of polarity and subsequent spindle positioning in many animal cells. Microtubules and conserved PAR proteins are essential mediators of cell polarity, and mitotic spindle positioning depends on heterotrimeric G protein signalling and the microtubule motor protein dynein.
Collapse
Affiliation(s)
- Julie Ahringer
- Wellcome Trust/Cancer Research UK Institute, Tennis Court Road, Cambridge CB2 1QR, UK.
| |
Collapse
|
486
|
Choi KS, Lee TH, Jung MH. Ribozyme-mediated cleavage of the human survivin mRNA and inhibition of antiapoptotic function of survivin in MCF-7 cells. Cancer Gene Ther 2003; 10:87-95. [PMID: 12536196 DOI: 10.1038/sj.cgt.7700531] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2002] [Indexed: 01/15/2023]
Abstract
Survivin is a new member of the inhibitor of apoptosis protein (IAP) family that is implicated in the control of cell proliferation and the regulation of cell life span. This protein is selectively expressed in most human carcinomas but not in normal adult tissues. To down-regulate a human survivin expression as a strategy for cancer gene therapy, we designed two hammerhead ribozymes (RZ-1, RZ-2) targeting human survivin mRNA. RZ-1 and RZ-2 efficiently cleaved the human survivin mRNA at nucleotide positions +279 and +289, which was identified by in vitro cleavage assay using in vitro transcribed ribozymes and truncated survivin mRNA substrate. To investigate the function of the ribozymes in cells, the sequences of the ribozymes were cloned into replication-deficient adenoviral vector and transferred to breast cancer cell, MCF-7. The infection with adenovirus encoding the ribozymes resulted in a significant reduction of survivin mRNA (74% and 73%, respectively) and protein. As revealed by nuclear condensation/ fragmentation and flow cytometry analysis, inhibition of survivin gene by ribozymes increased apoptosis and sensitivity induced by etoposide or serum starvation. Our results suggest that the designed hammerhead ribozymes against survivin mRNA are good candidates for feasible gene therapy in the treatment of cancer.
Collapse
Affiliation(s)
- Kyoung Suk Choi
- Department of Biomedical Sciences, Division of Metabolic Diseases, National Institute of Health, Eunpyung-gu, Seoul, South Korea
| | | | | |
Collapse
|
487
|
Martin SG, St Johnston D. A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 2003; 421:379-84. [PMID: 12540903 DOI: 10.1038/nature01296] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2002] [Accepted: 11/06/2002] [Indexed: 12/17/2022]
Abstract
The PAR-4 and PAR-1 kinases are necessary for the formation of the anterior-posterior (A-P) axis in Caenorhabditis elegans. PAR-1 is also required for A-P axis determination in Drosophila. Here we show that the Drosophila par-4 homologue, lkb1, is required for the early A-P polarity of the oocyte, and for the repolarization of the oocyte cytoskeleton that defines the embryonic A-P axis. LKB1 is phosphorylated by PAR-1 in vitro, and overexpression of LKB1 partially rescues the par-1 phenotype. These two kinases therefore function in a conserved pathway for axis formation in flies and worms. lkb1 mutant clones also disrupt apical-basal epithelial polarity, suggesting a general role in cell polarization. The human homologue, LKB1, is mutated in Peutz-Jeghers syndrome and is regulated by prenylation and by phosphorylation by protein kinase A. We show that protein kinase A phosphorylates Drosophila LKB1 on a conserved site that is important for its activity. Thus, Drosophila and human LKB1 may be functional homologues, suggesting that loss of cell polarity may contribute to tumour formation in individuals with Peutz-Jeghers syndrome.
Collapse
|
488
|
Edwards RG. Ovarian differentiation and human embryo quality. 1. Molecular and morphogenetic homologies between oocytes and embryos in Drosophila, C. elegans, Xenopus and mammals. Reprod Biomed Online 2003; 3:138-160. [PMID: 12513877 DOI: 10.1016/s1472-6483(10)61983-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Knowledge on the formation of oocytes and follicles in Drosophila, C. elegans and Xenopus, and the genetic regulation of polarities and embryo growth, has been related to comparable data in mammalian oocytes and embryos. Initially, details of the nature of the regulatory processes in the non-mammals are described, with considerable attention being paid to the role of individual genes and their specific functions. The molecular genetic aspects of these developmental processes are discussed in detail. Attention then turns to mammals, to identify, describe and evaluate their homologies with the lower animals and flies. Several of these homologies are described, including genes regulating primary ovarian failure and various aspects of early embryonic growth. The polarized distribution of genes in mammalian oocytes and embyros is discussed, together with the implications in the form of differentiation in the early embryo. Morphogenetic systems operative during follicle maturation, fertilization and cleavage are described and related to similar processes in lower forms. These events include ooplasmic and pronuclear rotations, the form of ooplasmic inheritance in early blastomeres and the establishment of embryonic axes. Models of early mammalian development are considered.
Collapse
Affiliation(s)
- R. G. Edwards
- Editorial Office, Reproductive BioMedicine Online, Duck End Farm, Dry Drayton, Cambridge CB3 8DB, UK
| |
Collapse
|
489
|
Diallo M, Arenz C, Schmitz K, Sandhoff K, Schepers U. RNA Interference: Analyzing the Function of Glycoproteins and Glycosylating Proteins in Mammalian Cells. Methods Enzymol 2003; 363:173-90. [PMID: 14579575 DOI: 10.1016/s0076-6879(03)01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- Mustapha Diallo
- Kekulé-Institute für Organische Chemie and Biochemie, Universitat Bonn, Gerhard Domagk Strasse 1, Bonn 53121, Germany
| | | | | | | | | |
Collapse
|
490
|
Wharton KA. Runnin' with the Dvl: proteins that associate with Dsh/Dvl and their significance to Wnt signal transduction. Dev Biol 2003; 253:1-17. [PMID: 12490194 DOI: 10.1006/dbio.2002.0869] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Wnt proteins transmit myriad intercellular signals crucial for the development and homeostasis of metazoan animals from Hydra to human. Abnormal Wnt signaling causes a growing number of diseases, including cancer and osteoporosis. Depending on the context, a given Wnt signal may denote: cell proliferation or apoptosis; cell fate determination, differentiation, or stem cell maintenance; a variety of changes in cell behavior; and/or coordinated interactions with its neighbors. Which event(s) occur in Wnt-responsive cells depends critically on the ability of Dishevelled (Dsh)/Dvl proteins to interpret distinct types of intracellular, receptor-generated stimuli and transmit them to at least two distinct sets of effector molecules, all while apparently ignoring a third type of Wnt-generated Ca(2+) signal. The three conserved domains present in Dsh/Dvl proteins uniquely function in each Wnt pathway, in part by association with 18 (and counting) Dsh/Dvl-associated proteins. The latest data suggest that Dsh/Dvl proteins organize dynamic, pathway-specific subcellular signaling complexes that ensure correct information routing, signal amplification, and dynamic control through feedback regulation. The biochemical and cell biological mechanisms by which Dsh/Dvl proteins accomplish these remarkable tasks remain obscure.
Collapse
Affiliation(s)
- Keith A Wharton
- Department of Pathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas, 75390-9072, USA.
| |
Collapse
|
491
|
Affiliation(s)
- Joanna B Grabarek
- Polgen/Cyclacel, Ltd, Babraham Bioincubators, Babraham, CB2 4AT, UK.
| |
Collapse
|
492
|
Abstract
The Caenorhabditis elegans vulva provides a simple model for the genetic analysis of pattern formation and organ morphogenesis during metazoan development. We have discovered an essential role for the polarity protein PAR-1 in the development of the vulva. Postembryonic RNA interference of PAR-1 causes a protruding vulva phenotype. We found that depleting PAR-1 during the development of the vulva has no detectable effect on fate specification or precursor proliferation, but instead seems to specifically alter morphogenesis. Using an apical junction-associated GFP marker, we discovered that PAR-1 depletion causes a failure of the two mirror-symmetric halves of the vulva to join into a single, coherent organ. The cells that normally form the ventral vulval rings fail to make contact or adhere and consequently form incomplete toroids, and dorsal rings adopt variably abnormal morphologies. We also found that PAR-1 undergoes a redistribution from apical junctions to basolateral domains during morphogenesis. Despite a known role for PAR-1 in cell polarity, we have observed no detectable differences in the distribution of various markers of epithelial cell polarity. We propose that PAR-1 activity at the cell cortex is critical for mediating cell shape changes, cell surface composition, or cell signaling during vulval morphogenesis.
Collapse
Affiliation(s)
- Daryl D Hurd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14580, USA
| | | |
Collapse
|
493
|
Abstract
Unlike many features of metazoan development, sex determination is not widely conserved among phyla. However, the recent demonstration that one gene family controls sexual development in Drosophila, C. elegans, and vertebrates suggests that sex determination mechanisms may have evolved from a common pathway that has diverged radically since the Cambrian. Sex determination gene sequences often evolve quickly, but it is not known how this relates to higher-order pathways or what selective or neutral forces are driving it. In such a rapidly evolving developmental pathway, the fate of functionally linked genes is of particular interest. To investigate a pair of such genes, we cloned orthologs of the key C. elegans male-promoting gene fem-3 from two sister species, C. briggsae and C. remanei. We employed RNA interference to show that in all three species, the male-promoting function of fem-3 and its epistatic relationship with its female-promoting upstream repressor, tra-2, are conserved. Consistent with this, the FEM-3 protein interacts with TRA-2 in each species, but in a strictly species-specific manner. Because FEM-3 is the most divergent protein yet described in Caenorhabditis and the FEM-3 binding domain of TRA-2 is itself hypervariable, a key protein-protein interaction is rapidly evolving in concert. Extrapolation of this result to larger phylogenetic scales helps explain the dissimilarity of the sex determination systems across phyla.
Collapse
Affiliation(s)
- Eric S Haag
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA.
| | | | | |
Collapse
|
494
|
Pellettieri J, Seydoux G. Anterior-posterior polarity in C. elegans and Drosophila--PARallels and differences. Science 2002; 298:1946-50. [PMID: 12471246 DOI: 10.1126/science.1072162] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The eggs of Caenorhabditis elegans and Drosophila bear little similarity to each other, yet both depend on the par genes for control of anterior-posterior polarity. Here we explore possible common roles for the par genes (pars) in converting transient asymmetries into stably polarized axes. Although clear mechanistic parallels remain to be established, par-dependent regulation of microtubule dynamics and protein stability emerge as common themes.
Collapse
Affiliation(s)
- Jason Pellettieri
- Department of Molecular Biology and Genetics, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
495
|
Ossipova O, He X, Green J. Molecular cloning and developmental expression of Par-1/MARK homologues XPar-1A and XPar-1B from Xenopus laevis. Mech Dev 2002; 119 Suppl 1:S143-8. [PMID: 14516676 DOI: 10.1016/s0925-4773(03)00107-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Par-1 encodes a serine/threonine kinase that is involved in asymmetric segregation of cell fate determinants in Caenorhabditis elegans and Drosophila embryos. Recent biochemical studies indicate an association of PAR-1 with the Dishevelled protein and suggest a role in so-called canonical Wnt signaling (Nat. Cell Biol. 3 (2001) 628). Here we describe two Xenopus laevis cDNAs, which encode PAR-1 homologues designated XPar-1A and XPar-1B. Structurally, XPar-1A and XPar-1B are closely related to rat MARK proteins and human Par-1A and Par-1Balpha, respectively. XPar-1A and XPar-1B are expressed both maternally and zygotically in an indistinguishable pattern. In the egg and cleavage stage embryos their transcripts are enriched in the animal pole of the embryo. During blastula and gastrula stages, cells in the animal and marginal regions continue to express both genes uniformly. Expression progresses vegetally towards and then through the blastopore lip concomitantly with the movements of epiboly and gastrulation. With the onset of neurulation, XPar-1A and XPar-1B transcripts are restricted to the neurectoderm. At tailbud and tadpole stages they are detected in the head region, including brain, eyes, otic vesicles, cement gland, branchial arches as well as spinal cord and somites. Therefore, this analysis suggests that the Xenopus par-1 homologues XPar-1A and XPar-1B are expressed in frog embryos both maternally and zygotically in a restricted pattern and may play a role in establishing polarity in early embryos as well as in organogenesis during later stages of development.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Cancer Biology, Dana Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
496
|
Benton R, Palacios IM, St Johnston D. Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Dev Cell 2002; 3:659-71. [PMID: 12431373 DOI: 10.1016/s1534-5807(02)00320-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PAR-1 kinases are required to determine the anterior-posterior (A-P) axis in C. elegans and Drosophila, but little is known about their molecular function. We identified 14-3-3 proteins as Drosophila PAR-1 interactors and show that PAR-1 binds a domain of 14-3-3 distinct from the phosphoserine binding pocket. PAR-1 kinases phosphorylate proteins to generate 14-3-3 binding sites and may therefore directly deliver 14-3-3 to these targets. 14-3-3 mutants display identical phenotypes to par-1 mutants in oocyte determination and the polarization of the A-P axis. Together, these results indicate that PAR-1's function is mediated by the binding of 14-3-3 to its substrates. The C. elegans 14-3-3 protein, PAR-5, is also required for A-P polarization, suggesting that this is a conserved mechanism by which PAR-1 establishes cellular asymmetries.
Collapse
Affiliation(s)
- Richard Benton
- The Wellcome Trust/Cancer Research UK Institute and Department of Genetics, University of Cambridge, CB2 1QR, Cambridge, United Kingdom
| | | | | |
Collapse
|
497
|
Biernat J, Wu YZ, Timm T, Zheng-Fischhöfer Q, Mandelkow E, Meijer L, Mandelkow EM. Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol Biol Cell 2002; 13:4013-28. [PMID: 12429843 PMCID: PMC133611 DOI: 10.1091/mbc.02-03-0046] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Protein kinases of the microtubule affinity-regulating kinase (MARK) family were originally discovered because of their ability to phosphorylate certain sites in tau protein (KXGS motifs in the repeat domain). This type of phosphorylation is enhanced in abnormal tau from Alzheimer brain tissue and causes the detachment of tau from microtubules. MARK-related kinases (PAR-1 and KIN1) occur in various organisms and are involved in establishing and maintaining cell polarity. Herein, we report the ability of MARK2 to affect the differentiation and outgrowth of cell processes from neuroblastoma and other cell models. MARK2 phosphorylates tau protein at the KXGS motifs; this results in the detachment of tau from microtubules and their destabilization. The formation of neurites in N2a cells is blocked if MARK2 is inactivated, either by transfecting a dominant negative mutant, or by MARK2 inhibitors such as hymenialdisine. Alternatively, neurites are blocked if the target KXGS motifs on tau are rendered nonphosphorylatable by point mutations. The results suggest that MARK2 contributes to the plasticity of microtubules needed for neuronal polarity and the growth of neurites.
Collapse
Affiliation(s)
- Jacek Biernat
- Max-Planck-Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
498
|
Davezac N, Baldin V, Blot J, Ducommun B, Tassan JP. Human pEg3 kinase associates with and phosphorylates CDC25B phosphatase: a potential role for pEg3 in cell cycle regulation. Oncogene 2002; 21:7630-41. [PMID: 12400006 DOI: 10.1038/sj.onc.1205870] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2001] [Revised: 07/11/2002] [Accepted: 07/15/2002] [Indexed: 11/08/2022]
Abstract
The pEg3 protein is a member of the evolutionarily conserved KIN1/PAR-1/MARK kinase family which is involved in cell polarity and microtubule dynamics. In Xenopus, pEg3 has been shown to be a cell cycle dependent kinase whose activity increases to a maximum level during mitosis of the first embryonic cell division. CDC25B is one of the three CDC25 phosphatase genes identified in human. It is thought to regulate the G2/M progression by dephosphorylating and activating the CDK/cyclin complexes. In the present study we show that the human pEg3 kinase is able to specifically phosphorylate CDC25B in vitro. One phosphorylation site was identified and corresponded to serine 323. This residue is equivalent to serine 216 in human CDC25C which plays an important role in the regulation of phosphatase during the cell cycle and at the G2 checkpoint. pEg3 is also able to specifically associate with CDC25B in vitro and in vivo. We show that the ectopic expression of active pEg3 in human U2OS cells induces an accumulation of cells in G2. This effect is counteracted by overexpression of CDC25B. Taken together these results suggest that pEg3 is a potential regulator of the G2/M progression and may act antagonistically to the CDC25B phosphatase.
Collapse
Affiliation(s)
- Noélie Davezac
- LBCMCP-CNRS UMR5088, IFR109, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex, France
| | | | | | | | | |
Collapse
|
499
|
Abstract
Several rapidly developing RNA interference (RNAi) methodologies hold the promise to selectively inhibit gene expression in mammals. RNAi is an innate cellular process activated when a double-stranded RNA (dsRNA) molecule of greater than 19 duplex nucleotides enters the cell, causing the degradation of not only the invading dsRNA molecule, but also single-stranded (ssRNAs) RNAs of identical sequences, including endogenous mRNAs. As such, RNAi technology is currently being evaluated not only as an extremely powerful instrument for functional genomic analyses, but also as a potentially useful method to develop highly specific dsRNA based gene-silencing therapeutics.
Collapse
Affiliation(s)
- David J Shuey
- Nucleonics, 14 Spring Mill Drive, Malvern, PA 19355, USA
| | | | | |
Collapse
|
500
|
Abstract
Genetic approaches in flies and worms continue to dissect the intricate molecular machinery of chemical synapses. Investigations carried out in the last year provide important new insights into the development and modulation of the presynaptic active zones and postsynaptic receptor fields mediating synaptic function. Mutant screens have identified overlapping gene classes mediating synaptogenesis. The leucocyte common antigen-related receptor tyrosine phosphatase interacts with liprin in the formation of the active zone. Spectrins are essential for the spatial restriction of synaptic proteins to define active zones. Glutamate acts as a negative regulator of its cognate postsynaptic receptor to sculpt receptor field size. Finally, protein translation and degradation regulation emerge as possible key regulators of synaptic efficacy.
Collapse
Affiliation(s)
- Kendal S Broadie
- Department of Biological Sciences, Vanderbilt University, 4270 Medical Research Building III, 465 21st Avenue South, Nashville, Tennessee 37235-1634, USA.
| | | |
Collapse
|