451
|
Sun X, Zhao J, Ma L, Sun X, Ge J, Yu Y, Ma J, Zhang M. B7-H6 as an efficient target for T cell-induced cytotoxicity in haematologic malignant cells. Invest New Drugs 2020; 39:24-33. [PMID: 32770284 DOI: 10.1007/s10637-020-00976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/22/2020] [Indexed: 12/27/2022]
Abstract
T cells play crucial roles in the antitumour immune response. However, their dysfunction leads to inefficient tumour eradication. New members of the B7 family have moved to the fore of cancer research because of their involvement in T cell-mediated immune escape and tumorigenesis. Recently, bispecific antibodies (Bi-Abs) have become attractive because of their ability to activate T cells to target tumours. In this study, we examined the expression of new B7 family members B7-H4, B7-H5, B7-H6, and B7-H7 in human haematological tumour cells. Furthermore, we explored whether B7-H6 is an efficient target for T cell-induced cytotoxicity in haematologic malignant cells. We determined the capability of T cells armed with the bispecific antibody anti-CD3 × anti-B7-H6 (B7-H6Bi-Ab) to target haematological tumours in K562, Thp-1, Daudi, Jurkat, and U266 cells. Compared with their T cell counterparts, B7-H6Bi-Ab-armed T cells demonstrated significant cytotoxicity induction in B7-H6+ haematological tumour cells, according to quantitative luciferase and lactate dehydrogenase assays, and their activity was accompanied by increased levels of the secreted killing mediators granzyme B and perforin. Moreover, B7-H6Bi-Ab-armed T cells produced more T cell-derived cytokines: TNF-α, IFN-γ, and IL-2. In addition, compared to the control T cells, a higher level of the activation marker CD69 was detected on the B7-H6Bi-Ab-armed T cells. Taken together, these data suggest that the antitumour effect of B7-H6Bi-Ab-armed T cells may be a promising immunotherapy for use in future haematologic treatments.
Collapse
Affiliation(s)
- Xin Sun
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
| | - Jingyuan Zhao
- Department of Orthopaedic, Aerospace Central Hospital, 15 Yuquan Road, Haidian District, Beijng, 100049, China
| | - Li Ma
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Ximing Sun
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Jing Ge
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Yang Yu
- Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.,Department of Hematology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Juan Ma
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China. .,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China. .,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
| | - Man Zhang
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China. .,Peking University Ninth School of Clinical Medicine, Beijing, 100038, China. .,Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
| |
Collapse
|
452
|
Zeidan AM, Boddu PC, Patnaik MM, Bewersdorf JP, Stahl M, Rampal RK, Shallis R, Steensma DP, Savona MR, Sekeres MA, Roboz GJ, DeAngelo DJ, Schuh AC, Padron E, Zeidner JF, Walter RB, Onida F, Fathi A, DeZern A, Hobbs G, Stein EM, Vyas P, Wei AH, Bowen DT, Montesinos P, Griffiths EA, Verma AK, Keyzner A, Bar-Natan M, Navada SC, Kremyanskaya M, Goldberg AD, Al-Kali A, Heaney ML, Nazha A, Salman H, Luger S, Pratz KW, Konig H, Komrokji R, Deininger M, Cirici BX, Bhatt VR, Silverman LR, Erba HP, Fenaux P, Platzbecker U, Santini V, Wang ES, Tallman MS, Stone RM, Mascarenhas J. Special considerations in the management of adult patients with acute leukaemias and myeloid neoplasms in the COVID-19 era: recommendations from a panel of international experts. Lancet Haematol 2020; 7:e601-e612. [PMID: 32563283 PMCID: PMC7302757 DOI: 10.1016/s2352-3026(20)30205-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/28/2023]
Abstract
The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 is a global public health crisis. Multiple observations indicate poorer post-infection outcomes for patients with cancer than for the general population. Herein, we highlight the challenges in caring for patients with acute leukaemias and myeloid neoplasms amid the COVID-19 pandemic. We summarise key changes related to service allocation, clinical and supportive care, clinical trial participation, and ethical considerations regarding the use of lifesaving measures for these patients. We recognise that these recommendations might be more applicable to high-income countries and might not be generalisable because of regional differences in health-care infrastructure, individual circumstances, and a complex and highly fluid health-care environment. Despite these limitations, we aim to provide a general framework for the care of patients with acute leukaemias and myeloid neoplasms during the COVID-19 pandemic on the basis of recommendations from international experts.
Collapse
Affiliation(s)
- Amer M Zeidan
- Section of Hematology, Yale School of Medicine, Yale University, New Haven, CT, USA; Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Prajwal C Boddu
- Section of Hematology, Yale School of Medicine, Yale University, New Haven, CT, USA; Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA
| | | | - Jan Philipp Bewersdorf
- Section of Hematology, Yale School of Medicine, Yale University, New Haven, CT, USA; Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Hematology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Raajit K Rampal
- Department of Hematology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rory Shallis
- Section of Hematology, Yale School of Medicine, Yale University, New Haven, CT, USA; Yale Comprehensive Cancer Center, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - David P Steensma
- Department of Hematology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael R Savona
- Department of Hematology, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Mikkael A Sekeres
- Leukemia Program, Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Gail J Roboz
- Department of Hematology and Oncology, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Daniel J DeAngelo
- Department of Hematology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andre C Schuh
- Division of Medical Oncology and Hematology, University of Toronto, Toronto, ON, Canada
| | - Eric Padron
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Joshua F Zeidner
- Division of Hematology and Oncology, Lineberger Comprehensive Care Center, University of North Carolina, Chapel Hill, NC, USA
| | - Roland B Walter
- Division of Hematology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Francesco Onida
- Department of Hematology, IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Amir Fathi
- Department of Hematology, Centre for Leukemia, Massachusetts General Hospital, Boston, MA, USA
| | - Amy DeZern
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Gabriela Hobbs
- Department of Hematology, Centre for Leukemia, Massachusetts General Hospital, Boston, MA, USA
| | - Eytan M Stein
- Department of Hematology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paresh Vyas
- MRC Molecular Haematology Unit, BRC Oxford Department of Haematology, University of Oxford, Oxford, UK
| | - Andrew H Wei
- Department of Clinical Haematology, Alfred Hospital, Melbourne, VIC, Australia
| | - David T Bowen
- Department of Haematology, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
| | - Pau Montesinos
- Department of Haematology, Hospital Universitario y Politecnico La Fe, Valencia, Spain; CIBERONC, Instituto Carlos III, University of Valencia, Madrid, Spain
| | - Elizabeth A Griffiths
- Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Amit K Verma
- Department of Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Alla Keyzner
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michal Bar-Natan
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shyamala C Navada
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marina Kremyanskaya
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aaron D Goldberg
- Department of Hematology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Aref Al-Kali
- Department of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Mark L Heaney
- Department of Hematology, Herbert Irving Comprehensive Care Centre, Columbia University, New York, NY, USA
| | - Aziz Nazha
- Department of Hematology, Cleveland Clinic-Taussig Cancer Institute, Cleveland, OH, USA
| | - Huda Salman
- Department of Internal Medicine, Stony Brook University Cancer Center, Stony Brook, NY, USA
| | - Selina Luger
- Department of Medicine, Hematology and Oncology Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Keith W Pratz
- Department of Medicine, Hematology and Oncology Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Heiko Konig
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology and Oncology, Indiana University, Indianapolis, IN, USA
| | - Rami Komrokji
- Department of Malignant Hematology, Moffitt Cancer Center, Tampa, FL, USA
| | - Michael Deininger
- Huntsman Cancer Institute, Department of Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT, USA
| | - Blanca Xicoy Cirici
- Clinical Haematology Department, Josep Carreras Leukaemia Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vijaya Raj Bhatt
- Fred and Pamela Buffett Cancer Center, Department of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lewis R Silverman
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Harry P Erba
- Duke Cancer Institute, Department of Medicine, Division of Hematologic Malignancies and Cellular Therapies, Durham, NC, USA
| | - Pierre Fenaux
- Department of Hematology, Hôpital St Louis, Assistance Publique-Hôpitaux de Paris, Paris, France; Department of Haematology, Paris University, Paris, France
| | - Uwe Platzbecker
- Department of Medicine, Division of Translational Hematology, Leipzig University Hospital, Leipzig, Germany
| | - Valeria Santini
- Department of Medicine, University of Florence Medical School, Florence, Italy
| | - Eunice S Wang
- Leukemia Service, Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Martin S Tallman
- Department of Hematology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard M Stone
- Department of Hematology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John Mascarenhas
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
453
|
He C, Wang X, Luo J, Ma Y, Yang Z. Long Noncoding RNA Maternally Expressed Gene 3 Is Downregulated, and Its Insufficiency Correlates With Poor-Risk Stratification, Worse Treatment Response, as Well as Unfavorable Survival Data in Patients With Acute Myeloid Leukemia. Technol Cancer Res Treat 2020; 19:1533033820945815. [PMID: 32720591 PMCID: PMC7388093 DOI: 10.1177/1533033820945815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Our study aimed to investigate the correlation of long noncoding RNA maternally expressed gene 3 expression with clinical features, treatment response, and survival profiles in patients with acute myeloid leukemia. METHODS Bone marrow samples of 122 de novo patients with acute myeloid leukemia (prior to treatment) and 30 healthy donors (after enrollment) were collected, and long noncoding RNA maternally expressed gene 3 expression was detected by reverse transcription quantitative polymerase chain reaction. According to median value of long noncoding RNA maternally expressed gene 3 expression in patients with acute myeloid leukemia, they were divided into long noncoding RNA maternally expressed gene 3 high expression and low expression patients (which were further categorized as low---, low--, and low- expression patients). RESULTS Long noncoding RNA maternally expressed gene 3 expression was decreased in patients with acute myeloid leukemia compared to healthy donors. Besides, receiver operating characteristic curve displayed that long noncoding RNA maternally expressed gene 3 distinguished patients with acute myeloid leukemia from healthy donors. In patients with acute myeloid leukemia, long noncoding RNA maternally expressed gene 3 low expression was associated with poor-risk stratification but was not correlated with age, gender, French-American-Britain classification, or white blood cell level. For prognosis, complete remission rate was lowest in long noncoding RNA maternally expressed gene 3 low--- expression patients, followed by long noncoding RNA maternally expressed gene 3 low-- expression patients, long noncoding RNA maternally expressed gene 3 low- expression patients, and was highest in long noncoding RNA maternally expressed gene 3 high expression patients; Kaplan-Meier curves displayed that lower long noncoding RNA maternally expressed gene 3 expression was associated with reduced event-free survival and overall survival; Cox regression analysis showed that lower long noncoding RNA maternally expressed gene 3 expression independently predicted decreased event-free survival and worse overall survival in patients with acute myeloid leukemia. CONCLUSION Long noncoding RNA maternally expressed gene 3 may function as a novel marker for effective surveillance and management of acute myeloid leukemia.
Collapse
Affiliation(s)
- Chunling He
- Department of Clinical Hematology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinmei Wang
- Department of Clinical Hematology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Luo
- Department of Clinical Hematology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yinghua Ma
- Department of Clinical Hematology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhen Yang
- Department of Clinical Hematology, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
454
|
Hou HA, Tien HF. Genomic landscape in acute myeloid leukemia and its implications in risk classification and targeted therapies. J Biomed Sci 2020; 27:81. [PMID: 32690020 PMCID: PMC7372828 DOI: 10.1186/s12929-020-00674-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy in terms of clinical features, underlying pathogenesis and treatment outcomes. Recent advances in genomic techniques have unraveled the molecular complexity of AML leukemogenesis, which in turn have led to refinement of risk stratification and personalized therapeutic strategies for patients with AML. Incorporation of prognostic and druggable genetic biomarkers into clinical practice to guide patient-specific treatment is going to be the mainstay in AML therapeutics. Since 2017 there has been an explosion of novel treatment options to tailor personalized therapy for AML patients. In the past 3 years, the U.S. Food and Drug Administration approved a total of eight drugs for the treatment of AML; most specifically target certain gene mutations, biological pathways, or surface antigen. These novel agents are especially beneficial for older patients or those with comorbidities, in whom the treatment choice is limited and the clinical outcome is very poor. How to balance efficacy and toxicity to further improve patient outcome is clinically relevant. In this review article, we give an overview of the most relevant genetic markers in AML with special focus on the therapeutic implications of these aberrations.
Collapse
Affiliation(s)
- Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
455
|
Imidazo[1,2- b]pyrazole-7-Carboxamide Derivative Induces Differentiation-Coupled Apoptosis of Immature Myeloid Cells Such as Acute Myeloid Leukemia and Myeloid-Derived Suppressor Cells. Int J Mol Sci 2020; 21:ijms21145135. [PMID: 32698503 PMCID: PMC7404197 DOI: 10.3390/ijms21145135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy-induced differentiation of immature myeloid progenitors, such as acute myeloid leukemia (AML) cells or myeloid-derived suppressor cells (MDSCs), has remained a challenge for the clinicians. Testing our imidazo[1,2-b]pyrazole-7-carboxamide derivative on HL-60 cells, we obtained ERK phosphorylation as an early survival response to treatment followed by the increase of the percentage of the Bcl-xlbright and pAktbright cells. Following the induction of Vav1 and the AP-1 complex, a driver of cellular differentiation, FOS, JUN, JUNB, and JUND were elevated on a concentration and time-dependent manner. As a proof of granulocytic differentiation, the cells remained non-adherent, the expression of CD33 decreased; the granularity, CD11b expression, and MPO activity of HL-60 cells increased upon treatment. Finally, viability of HL-60 cells was hampered shown by the depolarization of mitochondria, activation of caspase-3, cleavage of Z-DEVD-aLUC, appearance of the sub-G1 population, and the leakage of the lactate-dehydrogenase into the supernatant. We confirmed the differentiating effect of our drug candidate on human patient-derived AML cells shown by the increase of CD11b and decrease of CD33+, CD7+, CD206+, and CD38bright cells followed apoptosis (IC50: 80 nM) after treatment ex vivo. Our compound reduced both CD11b+/Ly6C+ and CD11b+/Ly6G+ splenic MDSCs from the murine 4T1 breast cancer model ex vivo.
Collapse
|
456
|
Tran AA, Miljković M, Prasad V. Analysis of estimated clinical benefit of newly approved drugs for US patients with acute myeloid leukemia. Leuk Res 2020; 96:106420. [PMID: 32712431 DOI: 10.1016/j.leukres.2020.106420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/19/2023]
Abstract
The increased number of available United States Food and Drug Administration (FDA)-approved drugs indicated for acute myeloid leukemia (AML) have generated considerable interest and may have the potential to influence practice. We performed a retrospective cross-sectional study performed from September to November 2019 to determine 1) demographic and subgroup characteristics of patients with newly diagnosed cases of acute myeloid leukemia, 2) FDA data on drugs indicated for AML approved from 1969 through November 2019, 3) measures of response from drug labels, and 4) published reports documenting the response for drugs approved before the 1979 Labeling Act. We used publicly available data from the Food and Drug Administration (FDA), the American Cancer Society, the Leukemia and Lymphoma Society, and the U.S. Census Bureau. According to our estimation methods, cytarabine infused continuously for 7 days, with three short boluses of anthracycline over Days 1-3, the standard of care known as "7 + 3", continues to have the largest population benefit. The maximum cost per course of treatment for an average regimen is enasidenib for salvage therapy, estimated to be around $120,131. The minimum cost was $1,662.50 for standard 7 + 3 chemotherapy. The mean and median cost for all AML treatments was $43,784.26 and $35,083.70, respectively. While it is true that the number of available therapies approved by the FDA has increased dramatically, it is not yet clear how large of a clinical benefit we can expect to see from these new lines of therapies.
Collapse
Affiliation(s)
- Audrey A Tran
- School of Medicine, Oregon Health & Science University, United States; Division of Hematology Oncology, Knight Cancer Institute, Oregon Health & Science University, United States
| | - Milos Miljković
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, United States
| | - Vinay Prasad
- Department of Epidemiology and Biostatistics, University of California, San Francisco, United States.
| |
Collapse
|
457
|
Nagdy B, Kassem HA, Abdel-Ghaffar ARB, Seoudi DM, Kassem NM. The Clinicopathological Impact of Granulocyte-Macrophage Colony-Stimulating Factor Gene Expression and Different Molecular Prognostic Biomarkers in Egyptian Acute Myeloid Leukemia Patients. Asian Pac J Cancer Prev 2020; 21:1993-2001. [PMID: 32711425 PMCID: PMC7573395 DOI: 10.31557/apjcp.2020.21.7.1993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 11/29/2022] Open
Abstract
Background: Acute myeloid leukemia (AML) is characterized by clonal expansion of myeloid precursors with diminished capacity for differentiation. It develops as the consequence of a series of genetic changes in a hematopoietic precursor cell. Purpose This study aimed to investigate the correlation between GM-CSF gene expression and different molecular prognostic markers such as FLT3-ITD, NPM1 mutation A and CEBPA gene expression in 100 Egyptian AML patients. As well as, correlation with the response to induction therapy, DFS andOS in these patients. Methodology: Quantitative assessment of GM-CSF gene expression was performed by qRT-PCR. Additional prognostic molecular markers were determined as FLT3-ITD and NPM1 mutation A together with quantitative assessment of CEBPA gene expression by qRT-PCR. Results: Patients with high GM-CSF expression levels had better OS and DFS with p value 0.004 and 0.02, respectively. However, no statistically significant difference between low andhigh GM-CSF gene expression was found regarding the response to therapy (p value= 0.08). Most patients with low CEBPA expression had resistant disease together with poor OS and DFS (P value = <0.001 for each). Our results showed that patients with high CEBPA gene expression whether GM-CSF gene expression was high or low had significant higher complete remission rates (p value = 0.1 for each). However, low GM-CSF gene expression andlow CEBPA gene expression showed poor response to treatment. Conclusion: Our findings suggest that molecular diagnostic biomarkers for AML are an essential tool that improves prognostication andhence better patients’ management.
Collapse
Affiliation(s)
- Bassant Nagdy
- Molecular Oncology Unit, Kasr Al-Aiby Centre of Clinical Oncology; Nuclear Medicine, School of Medicine, Cairo University, Egypt
| | - Hebatallah A Kassem
- Department of Clinical and Chemical Pathology, Kasr Al Ainy Centre of Clinical Oncology, Nuclear Medicine, School of Medicine, Cairo University, Cairo, Egypt
| | | | - Dina M Seoudi
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Neemat M Kassem
- Department of Clinical and Chemical Pathology, Kasr Al Ainy Centre of Clinical Oncology, Nuclear Medicine, School of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
458
|
Sokołowska A, Świerzko AS, Gajek G, Gołos A, Michalski M, Nowicki M, Szala-Poździej A, Wolska-Washer A, Brzezińska O, Wierzbowska A, Jamroziak K, Kowalski ML, Thiel S, Matsushita M, Jensenius JC, Cedzyński M. Associations of ficolins and mannose-binding lectin with acute myeloid leukaemia in adults. Sci Rep 2020; 10:10561. [PMID: 32601370 PMCID: PMC7324623 DOI: 10.1038/s41598-020-67516-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
We investigated clinical associations of ficolins and mannose-binding lectin (MBL) in 157 patients suffering from acute myeloid leukaemia (AML). Concentrations of ficolin-1, ficolin-2, ficolin-3 and MBL (before chemotherapy) in serum were determined as were selected polymorphisms of the corresponding genes (FCN1, FCN2, FCN3 and MBL2). The control group (C) consisted of 267 healthy unrelated individuals. Median level of ficolin-1 in patients was lower (p < 0.000001) while median levels of ficolin-2, ficolin-3 and MBL were higher (p < 0.000001, p < 0.000001 and p = 0.0016, respectively) compared with controls. These findings were generally associated with AML itself, however the highest MBL levels predicted higher risk of severe hospital infections (accompanied with bacteremia and/or fungaemia) (p = 0.012) while the lowest ficolin-1 concentrations tended to be associated with prolonged (> 7 days) fever (p = 0.026). Genotyping indicated an association of G/G homozygosity (corresponding to FCN1 gene - 542 G > A polymorphism) with malignancy [p = 0.004, OR = 2.95, 95% CI (1.41-6.16)]. Based on ROC analysis, ficolin-1, -2 and -3 may be considered candidate supplementary biomarkers of AML. Their high potential to differentiate between patients from non-malignant controls but also from persons suffering from other haematological cancers (multiple myeloma and lymphoma) was demonstrated.
Collapse
Affiliation(s)
- Anna Sokołowska
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Gabriela Gajek
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Aleksandra Gołos
- Department of Hematology, Institute of Hematology and Transfusion Medicine, I. Gandhi 14, 02-776, Warsaw, Poland
| | - Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Copernicus Memorial Hospital in Łódź Comprehensive Cancer Center and Traumatology, Pabianicka 62, 93-513, Lodz, Poland
| | - Agnieszka Szala-Poździej
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland
| | - Anna Wolska-Washer
- Department of Hematology, Medical University of Łódź, Ciołkowskiego 2, 93-510, Lodz, Poland
| | - Olga Brzezińska
- Department of Immunology and Allergy, Medical University of Łódź, Pomorska 251, 92-213, Lodz, Poland
- Department of Rheumatology, Medical University of Łódź, Pieniny 30, 92-003, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Łódź, Ciołkowskiego 2, 93-510, Lodz, Poland
| | - Krzysztof Jamroziak
- Department of Hematology, Institute of Hematology and Transfusion Medicine, I. Gandhi 14, 02-776, Warsaw, Poland
| | - Marek L Kowalski
- Department of Immunology and Allergy, Medical University of Łódź, Pomorska 251, 92-213, Lodz, Poland
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Misao Matsushita
- Department of Applied Biochemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Jens C Jensenius
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232, Lodz, Poland.
| |
Collapse
|
459
|
Monteiro CAP, Silva RC, Assis LG, Pereira G, Pereira GAL, Santos BS, Cabral Filho PE, Fontes A. Quantum dots functionalized with 3-mercaptophenylboronic acids as novel nanoplatforms to evaluate sialic acid content on cell membranes. Colloids Surf B Biointerfaces 2020; 193:111142. [PMID: 32526653 DOI: 10.1016/j.colsurfb.2020.111142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 11/29/2022]
Abstract
Sialic acids (SAs) modulate essential physiological and pathological conditions, including cell-cell communication, immune response, neurological disorders, and cancer. Besides, SAs confer negative charges to cell membranes, also contributing to hemorheology. Phenylboronic acids, called as mimetic lectins, have been highlighted to study SA profiles. The association of these interesting molecules with the optical properties of quantum dots (QDs) can provide a deeper/complementary understanding of mechanisms involving SAs. Herein, we explored the thiol affinity to the QD surface to develop a simple, fast and direct attachment procedure to functionalize these nanocrystals with 3-mercaptophenylboronic acids (MPBAs). The functionalization was confirmed by fluorescence correlation spectroscopy and inductively coupled plasma spectrometry. The conjugate specificity/efficiency was proved in experiments using red blood cells (RBCs). A labeling >90% was found for RBCs incubated with conjugates, which reduced to 17% after neuraminidase pretreatment. Moreover, QDs-MPBA conjugates were applied in a comparative study using acute (KG-1) and chronic (K562) myelogenous leukemia cell lines. Results indicated that KG-1 membranes have a greater level of SA, with 100% of cells labeled and a median of fluorescence intensity of ca. 2.5-fold higher when compared to K562 (94%). Therefore, this novel QDs-MPBA conjugate can be considered a promising nanoplatform to evaluate SA contents in a variety of biological systems.
Collapse
Affiliation(s)
- Camila A P Monteiro
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, CB, UFPE, 50670-901, Recife, PE, Brazil
| | - Ryan C Silva
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, CB, UFPE, 50670-901, Recife, PE, Brazil
| | - Lara G Assis
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, CB, UFPE, 50670-901, Recife, PE, Brazil
| | - Goreti Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Giovannia A L Pereira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Beate S Santos
- Departmento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, CB, UFPE, 50670-901, Recife, PE, Brazil.
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, CB, UFPE, 50670-901, Recife, PE, Brazil.
| |
Collapse
|
460
|
Yi M, Li A, Zhou L, Chu Q, Song Y, Wu K. The global burden and attributable risk factor analysis of acute myeloid leukemia in 195 countries and territories from 1990 to 2017: estimates based on the global burden of disease study 2017. J Hematol Oncol 2020; 13:72. [PMID: 32513227 PMCID: PMC7282046 DOI: 10.1186/s13045-020-00908-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/28/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a common leukemia subtype and has a poor prognosis. The risk of AML is highly related to age. In the context of population aging, a comprehensive report presenting epidemiological trends of AML is evaluable for policy-marker to allocate healthy resources. METHODS This study was based on the Global Burden of Disease 2017 database. We analyzed the change trends of incidence rate, death rate, and disability-adjusted life year (DALY) rate by calculating the corresponding estimated annual percentage change (EAPC) values. Besides, we investigated the influence of social development degree on AML's epidemiological trends and potential risk factors for AML-related mortality. RESULTS From 1990 to 2017, the incidence of AML gradually increased in the globe. Males and elder people had a higher possibility to develop AML. Developed countries tended to have higher age-standardized incidence rate and death rate than developing regions. Smoking, high body mass index, occupational exposure to benzene, and formaldehyde were the main risk factors for AML-related mortality. Notably, the contribution ratio of exposure to carcinogens was significantly increased in the low social-demographic index (SDI) region than in the high SDI region. CONCLUSION Generally, the burden of AML became heavier during the past 28 years which might need more health resources to resolve this population aging-associated problem. In the present stage, developed countries with high SDI had the most AML incidences and deaths. At the same time, developing countries with middle- or low-middle SDI also need to take actions to relieve rapidly increased AML burden.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anping Li
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongping Song
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
461
|
Epidemiology of the classical myeloproliferative neoplasms: The four corners of an expansive and complex map. Blood Rev 2020; 42:100706. [PMID: 32517877 DOI: 10.1016/j.blre.2020.100706] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/02/2020] [Accepted: 05/08/2020] [Indexed: 12/15/2022]
Abstract
The classical myeloproliferative neoplasms (MPNs), specifically chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF), represent clonal myeloid disorders whose pathogenesis is driven by well-defined molecular abnormalities. In this comprehensive review, we summarize the epidemiological literature and present our own analysis of the most recent the Surveillance, Epidemiology, and End Results (SEER) program data through 2016. Older age and male gender are known risk factors for MPNs, but the potential etiological role of other variables is less established. The incidences of CML, PV, and ET are relatively similar at 1.0-2.0 per 100,000 person-years in the United States, while PMF is rarer with an incidence of 0.3 per 100,000 person-years. The availability of tyrosine kinase inhibitor therapy has dramatically improved CML patient outcomes and yield a life expectancy similar to the general population. Patients with PV or ET have better survival than PMF patients.
Collapse
|
462
|
Yan Y, Li X, Gao J. Identification of A-kinase interacting protein 1 as a potential biomarker for risk and prognosis of acute myeloid leukemia. J Clin Lab Anal 2020; 34:e23055. [PMID: 32356617 PMCID: PMC7246368 DOI: 10.1002/jcla.23055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background This study aimed to investigate the correlation of A‐kinase interacting protein 1 (AKIP1) expression with disease risk, clinical characteristics, and prognosis of acute myeloid leukemia (AML). Methods 291 de novo AML patients and 97 controls were consecutively recruited, and bone marrow samples were collected to detect AKIP1 expression using quantitative polymerase chain reaction prior to initial treatment. Treatment response, event‐free survival (EFS), and overall survival (OS) in AML patients were evaluated. Results A‐kinase interacting protein 1 expression was higher in AML patients than that in controls; meanwhile, receiver operating characteristic curve displayed that AKIP1 was able to distinguish AML patients from controls (area under the curve:0.772, 95%CI: 0.720‐0.823). Among AML patients, AKIP1 high expression was correlated with −7 or 7q−, monosomal karyotype, and worse risk stratification. Moreover, AKIP1 expression was negatively correlated with complete remission achievement, while no correlation of AKIP1 expression with hematopoietic stem cell transplantation achievement was observed. AKIP1 high expression was associated with shorter EFS and OS in total patients, and further subgroup analysis exhibited that AKIP1 high expression correlated with worse EFS and OS in intermediate‐risk and poor‐risk patients but not in better‐risk patients. Besides, subsequent analysis revealed that AKIP1 high expression was an independent factor predicting unfavorable EFS and OS. Conclusion A‐kinase interacting protein 1 has the potential to be a novel marker for assisting AML management.
Collapse
Affiliation(s)
- Yan Yan
- Department of Hematology, Bayannur Hospital, Bayannur, China
| | - Xiaoyan Li
- Department of Hematology, Bayannur Hospital, Bayannur, China
| | - Jie Gao
- Department of General Surgery, Bayannur Chinese Medicine Hospital, Bayannur, China
| |
Collapse
|
463
|
Montesinos P, Beckermann BM, Catalani O, Esteve J, Gamel K, Konopleva MY, Martinelli G, Monnet A, Papayannidis C, Park A, Récher C, Rodríguez-Veiga R, Röllig C, Vey N, Wei AH, Yoon SS, Fenaux P. MIRROS: a randomized, placebo-controlled, Phase III trial of cytarabine ± idasanutlin in relapsed or refractory acute myeloid leukemia. Future Oncol 2020; 16:807-815. [DOI: 10.2217/fon-2020-0044] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with refractory or relapsed acute myeloid leukemia (R/R AML) have a poor prognosis, with a high unmet medical need. Idasanutlin is a small-molecule inhibitor of MDM2, a negative regulator of tumor suppressor p53. By preventing the p53–MDM2 interaction, idasanutlin allows for p53 activation, particularly in patients with TP53 wild-type (WT) status. MIRROS (NCT02545283) is a randomized Phase III trial evaluating idasanutlin + cytarabine versus placebo + cytarabine in R/R AML. The primary end point is overall survival in the TP53-WT population. Secondary end points include complete remission rate (cycle 1), overall remission rate (cycle 1) and event-free survival in the TP53-WT population. MIRROS has an innovative design that integrates a stringent interim analysis for futility; continuation criteria were met in mid-2017 and accrual is ongoing. Trial registration number: NCT02545283
Collapse
Affiliation(s)
- Pau Montesinos
- Departamento de Hematologia, Hospital Universitari i Politècnic La Fe, València, Spain
- CIBERONC, Instituto Carlos III, Madrid, Spain
| | | | | | - Jordi Esteve
- Hospital Clinic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Katia Gamel
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marina Y Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Martinelli
- Department of Hematology and Sciences Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | | | - Cristina Papayannidis
- Department of Experimental, Diagnostic and Specialty Medicine Institute of Hematology & Medical Oncology L & A Seràgnoli, Bologna, Italy
| | - Aaron Park
- Hoffmann-La Roche Ltd, Mississauga, ON, Canada
| | - Christian Récher
- Serviced’Hématologie, Institut Universitaire du Cancer Toulouse – Oncopole,Toulouse, France
| | | | - Christoph Röllig
- Department of Internal Medicine, Universitätsklinikum Carl Gustav Carus, Dresden, Germany
| | - Norbert Vey
- Hematology Department, Aix-Marseille University, Institut Paoli-Calmettes, Marseille, France
| | - Andrew H Wei
- Department of Haematology, The Alfred Hospital & Monash University, Melbourne, VIC, Australia
| | - Sung-Soo Yoon
- Division of Hematology/Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Pierre Fenaux
- Service d'Hématologie Séniors Hôpital Saint-Louis, Assistance Publique – Hôpitaux de Paris, Université de Paris, Paris, France
| |
Collapse
|
464
|
Shallis RM, Stahl M, Wei W, Montesinos P, Lengline E, Neukirchen J, Bhatt VR, Sekeres MA, Fathi AT, Konig H, Luger S, Khan I, Roboz GJ, Cluzeau T, Martínez-Cuadron D, Raffoux E, Germing U, Umakanthan JM, Mukhereje S, Brunner AM, Miller A, McMahon CM, Ritchie EK, Rodríguez-Veiga R, Itzykson R, Boluda B, Rabian F, Tormo M, Acuña-Cruz E, Rabinovich E, Yoo B, Cano I, Podoltsev NA, Bewersdorf JP, Gore S, Zeidan AM. Patterns of care and clinical outcomes of patients with newly diagnosed acute myeloid leukemia presenting with hyperleukocytosis who do not receive intensive chemotherapy. Leuk Lymphoma 2020; 61:1220-1225. [PMID: 32100599 PMCID: PMC8273667 DOI: 10.1080/10428194.2020.1728753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Rory M. Shallis
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| | - Maximilian Stahl
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| | - Wei Wei
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | | | - Etienne Lengline
- Hematology Department, Saint-Louis Hospital AP-HP, Paris, France
| | - Judith Neukirchen
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Vijaya R. Bhatt
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Amir T. Fathi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Heiko Konig
- Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | - Selina Luger
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Irum Khan
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Gail J. Roboz
- Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | - Thomas Cluzeau
- CHU of Nice, Hematology Department, Cote d’Azur University, Nice, France
| | | | - Emmanuel Raffoux
- Hematology Department, Saint-Louis Hospital AP-HP, Paris, France
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | | | | | - Andrew M Brunner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Adam Miller
- Indiana University Simon Cancer Center, Indianapolis, IN, USA
| | | | - Ellen K. Ritchie
- Weill Cornell Medicine, The New York Presbyterian Hospital, New York, NY, USA
| | | | - Raphaël Itzykson
- Hematology Department, Saint-Louis Hospital AP-HP, Paris, France
| | | | - Florence Rabian
- CIBERONC, Instituto Carlos III, Madrid, Spain
- Hematology Department, Saint-Louis Hospital AP-HP, Paris, France
| | - Mar Tormo
- University Clinical Hospital, INCLIVA, Valencia, Spain
| | | | | | - Brendan Yoo
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Isabel Cano
- CIBERONC, Instituto Carlos III, Madrid, Spain
| | - Nikolai A. Podoltsev
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| | - Jan Philipp Bewersdorf
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| | - Steven Gore
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| | - Amer M. Zeidan
- Department of Internal Medicine, Section of Hematology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
465
|
Shallis RM, Stahl M, Bewersdorf JP, Hendrickson JE, Zeidan AM. Leukocytapheresis for patients with acute myeloid leukemia presenting with hyperleukocytosis and leukostasis: a contemporary appraisal of outcomes and benefits. Expert Rev Hematol 2020; 13:489-499. [PMID: 32248712 DOI: 10.1080/17474086.2020.1751609] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Hyperleukocytosis, defined as a total white blood cell count (WBC) >50 or more commonly >100 × 109 cells/L, is a presenting feature of acute myeloid leukemia (AML) in about 6-20% of cases and is associated with a higher risk of tumor lysis syndrome (TLS), disseminated intravascular coagulation (DIC), clinical leukostasis with end organ damage, and mortality.Areas covered: In this review, authors discuss the implications of hyperleukocytosis in AML and the current understanding of cytoreductive strategies with a focus on the use of leukocytapheresis.Expert commentary: Efforts to rapidly reduce peripheral myeloblasts have included the use of leukocytapheresis. Early studies demonstrated feasibility in reducing peripheral WBC and blast counts as well as clinically relevant patient outcomes which prompted its common use for many years. However, more recent data have directly challenged the previously touted reports of reduced TLS and DIC incidence as well as survival benefit, even in patients with clinical leukostasis. The use of leukocytapheresis remains highly controversial with wide practice variations among physicians, institutions, and countries given the lack of high-quality data, risks associated with leukocytapheresis itself, associated high costs, resource utilization, and lack of evidence-based clinical guidelines.
Collapse
Affiliation(s)
- Rory M Shallis
- Division of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Center, New Haven, CT, USA
| | - Maximilian Stahl
- Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan Philipp Bewersdorf
- Division of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jeanne E Hendrickson
- Departments of Laboratory Medicine and Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Amer M Zeidan
- Division of Hematology, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Yale Cancer Center, New Haven, CT, USA
| |
Collapse
|
466
|
Wang Y, Zhang L, Tang X, Luo J, Tu Z, Jiang K, Ren X, Xu F, Chan S, Li Y, Zhang Z, Ding K. GZD824 as a FLT3, FGFR1 and PDGFRα Inhibitor Against Leukemia In Vitro and In Vivo. Transl Oncol 2020; 13:100766. [PMID: 32247263 PMCID: PMC7125355 DOI: 10.1016/j.tranon.2020.100766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/16/2020] [Indexed: 11/28/2022] Open
Abstract
GZD824 is a novel third-generation BCR-ABL inhibitor. It entered Phase II clinical trials in China and Phase Ib clinical trials in USA in 2019 for treatment of patients with resistant chronic myeloid leukemia (CML). We found that at concentrations below 10 nM, GZD824 significantly suppresses FLT3, FGFR1 and PDGFRα kinase activities and inhibits their signal pathways in MV4-11Flt3-ITD, KG-1FGFR1OP2-FGFR1 and EOL-1FIP1L1-PDGFRa leukemia cells. It selectively inhibits the growth of MV4-11Flt3-ITD, KG-1FGFR1OP2-FGFR1 and EOL-1FIP1L1-PDGFRa cells, and also effectively suppresses the growth of Ba/F3-FLT3-ITD cells harboring F691I and other mutations with IC50 values <10 nM. GZD824 induces G0/G1 phase arrest and apoptosis in MV4-11, KG-1 and EOL-1 cells and activates cleavage of caspase-3 and PARP. In MV4-11, Ba/F3-ITD-F691I and KG-1 mouse xenograft models, GZD824 at 10 or 20 mg/kg, q2d, p.o. almost completely eradicates tumors. It also inhibits the viability of primary leukemic blasts from a FLT3-ITD positive AML patient but not those expressing native FLT3. Thus GZD824 suppresses leukemia cells of FLT3-ITD-driven AML and other hematologic malignancies driven by FGFR1 or PDGFRa, and it may be considered to be a novel agent for the treatment of leukemia.
Collapse
Affiliation(s)
- Yuting Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lenghe Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongYeDaDaoZhong, Guangzhou, Guangdong, 510280, China
| | - Xia Tang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jinfeng Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Zhengchao Tu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Guangzhou 510530, China
| | - Kaili Jiang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaomei Ren
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shingpan Chan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, No. 253 GongYeDaDaoZhong, Guangzhou, Guangdong, 510280, China.
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
467
|
Wen B, You W, Yang S, Du X. Indirect comparison of azacitidine and decitabine for the therapy of elderly patients with acute myeloid leukemia: a systematic review and network meta-analysis. Exp Hematol Oncol 2020; 9:3. [PMID: 32190414 PMCID: PMC7075015 DOI: 10.1186/s40164-020-00160-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 02/27/2020] [Indexed: 12/22/2022] Open
Abstract
Background The DNA hypomethylating agents (HMAs) decitabine and azacitidine have been widely used in the management of elderly patients with acute myeloid leukemia (AML). However, no direct clinical trials have been carried out to compare the two agents. A systematic review and network meta-analysis were performed to indirectly compare the efficacy and safety of decitabine and azacitidine in elderly AML patients. Methods We systematically searched PubMed, Medline, Web of Science, Embase and Cochrane Library through May 14, 2019. Randomized controlled trials on elderly AML patients comparing the efficacy and safety between decitabine and azacitidine, or comparing one of HMAs to standard supportive care or placebo were selected. The major outcomes of interest were performed with methods of adjusted indirect comparison and the fixed effect model. Results Only three RCTs including a total number of 1086 patients were identified. Direct comparisons showed that azacitidine significantly reduced mortality (RR = 0.90, 95% CI 0.83–0.97) while decitabine was not significantly associated with lower mortality (RR = 0.97, 95% CI 0.92–1.02) compared to the conventional care regimen (CCR). In addition, for the indirect method, azacitidine significantly reduced mortality compared to decitabine (RR = 0.83 95% CI 0.77–0.90) and was more likely to improve complete response (CR) (RR = 1.66, 95% CI 1.17–2.35, low-certainty evidence). No statistical significance was found for the other studied outcomes. Conclusions Compared to CCR, decitabine and azacitidine can promote studied outcomes in elderly AML patients. Indirect evidence with low certainty was used to compare these two agents. The superiority of either agent cannot be confirmed, and head-to-head clinical trials are still required.
Collapse
Affiliation(s)
- Bingbing Wen
- 1Department of Internal Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000 China
| | - Weiwen You
- 2Department of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 3002 Sungang West Road, Futian District, Shenzhen, 518000 China
| | - Sitian Yang
- 2Department of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 3002 Sungang West Road, Futian District, Shenzhen, 518000 China
| | - Xin Du
- 2Department of Hematology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, 3002 Sungang West Road, Futian District, Shenzhen, 518000 China
| |
Collapse
|
468
|
Anande G, Deshpande NP, Mareschal S, Batcha AMN, Hampton HR, Herold T, Lehmann S, Wilkins MR, Wong JWH, Unnikrishnan A, Pimanda JE. RNA Splicing Alterations Induce a Cellular Stress Response Associated with Poor Prognosis in Acute Myeloid Leukemia. Clin Cancer Res 2020; 26:3597-3607. [PMID: 32122925 DOI: 10.1158/1078-0432.ccr-20-0184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/13/2020] [Accepted: 02/26/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE RNA splicing is a fundamental biological process that generates protein diversity from a finite set of genes. Recurrent somatic mutations of splicing factor genes are common in some hematologic cancers but are relatively uncommon in acute myeloid leukemia (AML, < 20% of patients). We examined whether RNA splicing differences exist in AML, even in the absence of splicing factor mutations. EXPERIMENTAL DESIGN We developed a bioinformatics pipeline to study alternative RNA splicing in RNA-sequencing data from large cohorts of patients with AML. RESULTS We have identified recurrent differential alternative splicing between patients with poor and good prognosis. These splicing events occurred even in patients without any discernible splicing factor mutations. Alternative splicing recurrently occurred in genes with specific molecular functions, primarily related to protein translation. Developing tools to predict the functional impact of alternative splicing on the translated protein, we discovered that approximately 45% of the splicing events directly affected highly conserved protein domains. Several splicing factors were themselves misspliced and the splicing of their target transcripts were altered. Studying differential gene expression in the same patients, we identified that alternative splicing of protein translation genes in ELNAdv patients resulted in the induction of an integrated stress response and upregulation of inflammation-related genes. Finally, using machine learning techniques, we identified a splicing signature of four genes which refine the accuracy of existing risk prognosis schemes and validated it in a completely independent cohort. CONCLUSIONS Our discoveries therefore identify aberrant alternative splicing as a molecular feature of adverse AML with clinical relevance.See related commentary by Bowman, p. 3503.
Collapse
Affiliation(s)
- Govardhan Anande
- Adult Cancer Program, Lowy Cancer Research Centre & Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Nandan P Deshpande
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, New South Wales, Australia
| | - Sylvain Mareschal
- Hematology Centre, Karolinska University Hospital and Department of Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Aarif M N Batcha
- Institute of Medical Data Processing, Biometrics and Epidemiology, Faculty of Medicine, LMU Munich, Munich, Germany.,Data Integration for Future Medicine, LMU Munich, Munich, Germany
| | - Henry R Hampton
- Adult Cancer Program, Lowy Cancer Research Centre & Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Tobias Herold
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Soren Lehmann
- Hematology Centre, Karolinska University Hospital and Department of Medicine, Karolinska Institutet, Huddinge, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales Sydney, New South Wales, Australia
| | - Jason W H Wong
- Adult Cancer Program, Lowy Cancer Research Centre & Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Ashwin Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre & Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia.
| | - John E Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre & Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia. .,Department of Pathology, School of Medical Sciences, University of New South Wales Sydney, New South Wales, Australia.,Department of Haematology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
469
|
Shallis RM, Boddu PC, Bewersdorf JP, Zeidan AM. The golden age for patients in their golden years: The progressive upheaval of age and the treatment of newly-diagnosed acute myeloid leukemia. Blood Rev 2020; 40:100639. [DOI: 10.1016/j.blre.2019.100639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/29/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022]
|
470
|
Li Q, Wang J. LncRNA TUG1 Regulates Cell Viability and Death by Regulating miR-193a-5p/Rab10 Axis in Acute Myeloid Leukemia. Onco Targets Ther 2020; 13:1289-1301. [PMID: 32103996 PMCID: PMC7025684 DOI: 10.2147/ott.s234935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a serious threat to human health. Long non-coding RNA (lncRNA) Taurine-Upregulated Gene1 (TUG1) has been reported to participate in the development and progression of several cancers, including AML. Herein, we aimed to investigate the pathognomonic role of TUG1 in AML cells and its potential mechanistic pathway. Methods Quantitative real-time PCR (qRT-PCR) assay was applied to detect the expression levels of lncRNA TUG1, miR-193a-5p and Rab10 in AML bone marrow and cell lines. The CCK-8 assay was conducted to assess the cell viability of AML HL-60 and NB4 cells and cell apoptotic assay was performed to assess the cell death. Dual-luciferase reporter assay was carried out to clarify the relationships among TUG1, miR-193a-5p and Rab10. Also, the protein level of Rab10 was examined by Western blot assay. Results LncRNA TUG1 was up-regulated in AML bone marrow and cells. Functional analysis showed that the silencing of TUG1 suppressed cell viability, while promoted cell death in AML HL-60 and NB4 cells. TUG1 targeted miR-193a-5p and negatively regulated miR-193a-5p expression. Overexpressed miR-193a-5p resulted in the decrease of cell viability and the increase in the cell death in AML cells. Restoration experiments proved that TUG1 regulated the cell viability and death of AML cells through regulating the miR-193a-5p/Rab10 axis. Rab10 was a direct target of miR-193a-5p and was inversely regulated by miR-193a-5p. TUG1 regulated the cell viability and death of AML cells through upregulating Rab10. Conclusion Silencing of lncRNA TUG1 induces a cytotoxic effect on AML cell lines through sponging miR-193a-5p and the suppression of Rab10.
Collapse
Affiliation(s)
- Qun Li
- Department of PICU, First People's Hospital of Shangqiu City, Shangqiu, Henan Province, People's Republic of China
| | - Jianmin Wang
- Department of PICU, First People's Hospital of Shangqiu City, Shangqiu, Henan Province, People's Republic of China
| |
Collapse
|
471
|
Gurnari C, Voso MT, Maciejewski JP, Visconte V. From Bench to Bedside and Beyond: Therapeutic Scenario in Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12020357. [PMID: 32033196 PMCID: PMC7072629 DOI: 10.3390/cancers12020357] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of clonal disorders characterized by abnormal proliferation of undifferentiated myeloid progenitors, impaired hematopoiesis, and variable response to therapy. To date, only about 30% of adult patients with AML become long-term survivors and relapse and/or disease refractoriness are the major cause of treatment failure. Thus, this is an urgent unmet clinical need and new drugs are envisaged in order to ameliorate disease survival outcomes. Here, we review the latest therapeutic approaches (investigational and approved agents) for AML treatment. A specific focus will be given to molecularly targeted therapies for AML as a representation of possible agents for precision medicine. We will discuss experimental and preclinical data for FLT3, IDH1, BCL-2, Hedgehog pathway inhibitors, and epitherapy.
Collapse
Affiliation(s)
- Carmelo Gurnari
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (J.P.M.)
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Maria Teresa Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
- Neuro-Oncohematology Unit, Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.), 00143 Rome, Italy
| | - Jaroslaw P. Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (J.P.M.)
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (C.G.); (J.P.M.)
- Correspondence:
| |
Collapse
|
472
|
Zhang F, Lu Y, Wang M, Zhu J, Li J, Zhang P, Yuan Y, Zhu F. Exosomes derived from human bone marrow mesenchymal stem cells transfer miR-222-3p to suppress acute myeloid leukemia cell proliferation by targeting IRF2/INPP4B. Mol Cell Probes 2020; 51:101513. [PMID: 31968218 DOI: 10.1016/j.mcp.2020.101513] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/21/2022]
Abstract
AIM This study aims to explore the role and mechanism of exosomes derived from human bone marrow mesenchymal stem cells (hBM-MSCs-Exo) in regulating proliferation and apoptosis of acute myeloid leukemia (AML) cell line THP-1. METHODS hBM-MSCs-Exo was isolated by ultra-centrifugation and administered into THP-1 cells to elucidate the effects of exosomes in THP-1 cells. Cell proliferation and apoptosis were examined by CCK-8 assay and flow cytometry, respectively. The expression of miR-222-3p, IRF2, and INPP4B were measured by qRT-PCR and western blot. The interaction between miR-222-3p and IRF2 was analyzed by luciferase reporter assay. RESULTS Lower cell viability rate, higher apoptosis ratio, higher miR-222-3p expression, and lower IRF1/INPP4B expression were observed in THP-1 cells exposed to BM-MSCs-Exo. The proliferation-inhibitory and pro-apoptotic effects of BM-MSCs-Exo on THP-1 cells were markedly compromised when miR-222-3p expression in BM-MSCs-Exo was inhibited. Furthermore, miR-222-3p directly targeted IRF2 and negatively regulated IRF2/INPP4B signaling in THP-1 cells. Moreover, overexpression of either IRF2 or INPP4B counteracted the proliferation-inhibitory and pro-apoptotic effects mediated by BM-MSCs-Exo. CONCLUSION BM-MSCs delivered miR-222-3p via exosomes to inhibit cell proliferation and promote cell apoptosis by targeting IRF2 and negatively regulating IRF2/INPP4B signaling in THP-1 cells.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Yaqin Lu
- Department of Hematology, Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Meng Wang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Junfeng Zhu
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Jiajia Li
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Pingping Zhang
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Yuan Yuan
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China
| | - Fangbing Zhu
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, China.
| |
Collapse
|
473
|
Ferrara F, Picardi A. Is outcome of older people with acute myeloid leukemia improving with new therapeutic approaches and stem cell transplantation? Expert Rev Hematol 2020; 13:99-108. [PMID: 31922453 DOI: 10.1080/17474086.2020.1715207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: The clinical outcome of older patients with acute myeloid leukemia (AML) is still poor, especially for those who are unfit to treatments aimed at altering the natural course of the disease. Hypomethylating agents (HMA) offer an important therapeutic opportunity to a consistent number of patients, but long-term results are largely unsatisfactory.Area covered: Recently, a number of new agents have been registered for AML, some of which selectively available for older patient population, with promising results in terms of response rate and survival. Furthermore, the upper age limit for allogeneic stem cell transplantation is constantly increasing, so that this procedure is offered and actually given to an increasing number of older patients with AML. A literature review was conducted of the PubMed database for articles published in English as well as for abstracts from most important and recent hematology meetings on AML in older patients.Expert opinion: Appropriate selection among different options on the basis of clinical fitness and molecular findings at diagnosis as well as at relapse would result in improvement of therapeutic results, sparing unnecessary toxicity and optimizing health systems resources.
Collapse
Affiliation(s)
- Felicetto Ferrara
- Division of Hematology and Stem Cell Transplantation Program, AORN Cardarelli Hospital, Naples, Italy
| | - Alessandra Picardi
- Division of Hematology and Stem Cell Transplantation Program, AORN Cardarelli Hospital, Naples, Italy.,Department of Biomedicine and Prevention, University of Tor Vergata, Rome, Italy
| |
Collapse
|
474
|
Yu YH, Xin F, Dong L, Ge L, Zhai CY, Shen XL. Weighted gene coexpression network analysis identifies critical genes in different subtypes of acute myeloid leukaemia. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1811767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Yan-Hui Yu
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Fei Xin
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Lu Dong
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Li Ge
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Chun-Yan Zhai
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| | - Xu-Liang Shen
- Department of Hematology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, PR China
| |
Collapse
|
475
|
da Silva WF, da Rosa LI, Seguro FS, Silveira DRA, Bendit I, Buccheri V, Velloso EDRP, Rocha V, Rego EM. Salvage treatment for refractory or relapsed acute myeloid leukemia: a 10-year single-center experience. Clinics (Sao Paulo) 2020; 75:e1566. [PMID: 32294670 PMCID: PMC7134553 DOI: 10.6061/clinics/2020/e1566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/27/2020] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES The outcomes of refractory and relapsed acute myeloid leukemia (AML) patients in developing countries are underreported, even though the similar classic regimens are widely used. METHODS We conducted a retrospective comparison of "MEC" (mitoxantrone, etoposide, and cytarabine) and "FLAG-IDA" (fludarabine, cytarabine, idarubicin, and filgrastim) in adults with first relapse or refractory AML. RESULTS In total, 60 patients were included, of which 28 patients received MEC and 32 received FLAG-IDA. A complete response (CR) rate of 48.3% was observed. Of the included patients, 16 (27%) died before undergoing bone marrow assessment. No statiscally significant difference in CR rate was found between the two protocols (p=0.447). The median survival in the total cohort was 4 months, with a 3-year overall survival (OS) rate of 9.7%. In a multivariable model including age, fms-like tyrosine kinase 3 (FLT3) status, and stem-cell transplantation (SCT), only the last two indicators remained significant: FLT3-ITD mutation (hazard ratio [HR]=4.6, p<0.001) and SCT (HR=0.43, p=0.01). CONCLUSION In our analysis, there were no significant differences between the chosen regimens. High rates of early toxicity were found, emphasizing the role of supportive care and judicious selection of patients who are eligible for intensive salvage therapy in this setting. The FLT3-ITD mutation and SCT remained significant factors for survival in our study, in line with the results of previous studies.
Collapse
Affiliation(s)
- Wellington Fernandes da Silva
- Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Lidiane Inês da Rosa
- Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Fernanda Salles Seguro
- Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | | - Israel Bendit
- Hematologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Valeria Buccheri
- Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | | - Vanderson Rocha
- Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Eduardo M Rego
- Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
476
|
Galinsky I, Coleman M, Fechter L. Midostaurin: Nursing Perspectives on Managing Treatment and Adverse Events in Patients With FLT3 Mutation–Positive Acute Myeloid Leukemia and Advanced Systemic Mastocytosis. Clin J Oncol Nurs 2019; 23:599-608. [DOI: 10.1188/19.cjon.599-608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
477
|
Rialland-Battisti F, Audrain M. [Treatment of high-risk leukaemia: allograft and immunotherapy]. REVUE DE L'INFIRMIÈRE 2019; 68:16-18. [PMID: 31757321 DOI: 10.1016/j.revinf.2019.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Leukaemia results from a malignant proliferation of cells in the bone marrow. The prognosis is defined by the disease's biological characteristics. Treatment is based on chemotherapy. In cases of high-risk leukaemia, an allograft may be proposed. The arrival of targeted therapies and immunotherapy has revolutionised the prognosis of the disease. The challenge of the next few years will be to define the place of these therapies.
Collapse
Affiliation(s)
- Fanny Rialland-Battisti
- Service onco-immuno-hématologie pédiatrique, centre hospitalier universitaire de Nantes, 7 quai Moncousu, 44093 Nantes cedex 1, France.
| | - Marie Audrain
- Service onco-immuno-hématologie pédiatrique, centre hospitalier universitaire de Nantes, 7 quai Moncousu, 44093 Nantes cedex 1, France
| |
Collapse
|
478
|
Del Principe MI, De Bellis E, Gurnari C, Buzzati E, Savi A, Consalvo MAI, Venditti A. Applications and efficiency of flow cytometry for leukemia diagnostics. Expert Rev Mol Diagn 2019; 19:1089-1097. [PMID: 31709836 DOI: 10.1080/14737159.2019.1691918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Multiparametric flow cytometry immunophenotype (MFCI) plays a crucial role in the diagnosis of acute leukemia (AL). Through the comprehensive assessment of surface and intracellular antigens expressed by blasts, MFCI permits to distinguish myeloid or B/T lymphoid AL, or AL of ambiguous lineages. By means of MFCI, the blasts can be characterized in bone marrow, peripheral blood, and body fluids, such as cerebrospinal fluid.Area covered: This review discusses how MFCI is currently applied in the diagnostic evaluation of AL; it also focuses on 'peculiar' issues such as the role of MFCI for the diagnosis of central nervous system leukemic involvement.Expert commentary: Despite the improved knowledge about the biology of AL, MFCI remains a fundamental tool to make a prompt and accurate diagnosis. MFCI also provides prognostic information for some antigens are associated with specific cytogenetic/genetic abnormalities and, recently, it became a powerful tool to evaluate the quality and depth of response (the so called 'measurable residual disease'). Its role as an efficient detector of residual disease paved the way to the investigation of tissues other than bone marrow and peripheral blood, demonstrating that even small amounts of AL appear to have a prognostic impact and may require personalized intervention.
Collapse
Affiliation(s)
- Maria Ilaria Del Principe
- Cattedra di Ematologia, Dipartimento di Biomedicina e Prevenzione, Università Tor Vergata, Roma, Italia.,Ematologia, Dipartimento di Onco-Ematologia, Fondazione Policlinico Tor Vergata, Roma, Italia
| | - Eleonora De Bellis
- Cattedra di Ematologia, Dipartimento di Biomedicina e Prevenzione, Università Tor Vergata, Roma, Italia.,Ematologia, Dipartimento di Onco-Ematologia, Fondazione Policlinico Tor Vergata, Roma, Italia
| | - Carmelo Gurnari
- Cattedra di Ematologia, Dipartimento di Biomedicina e Prevenzione, Università Tor Vergata, Roma, Italia.,Ematologia, Dipartimento di Onco-Ematologia, Fondazione Policlinico Tor Vergata, Roma, Italia
| | - Elisa Buzzati
- Cattedra di Ematologia, Dipartimento di Biomedicina e Prevenzione, Università Tor Vergata, Roma, Italia.,Ematologia, Dipartimento di Onco-Ematologia, Fondazione Policlinico Tor Vergata, Roma, Italia
| | - Arianna Savi
- Cattedra di Ematologia, Dipartimento di Biomedicina e Prevenzione, Università Tor Vergata, Roma, Italia.,Ematologia, Dipartimento di Onco-Ematologia, Fondazione Policlinico Tor Vergata, Roma, Italia
| | | | - Adriano Venditti
- Cattedra di Ematologia, Dipartimento di Biomedicina e Prevenzione, Università Tor Vergata, Roma, Italia.,Ematologia, Dipartimento di Onco-Ematologia, Fondazione Policlinico Tor Vergata, Roma, Italia
| |
Collapse
|
479
|
Pollyea DA. Acute myeloid leukemia drug development in the post-venetoclax era. Am J Hematol 2019; 94:959-962. [PMID: 31179583 DOI: 10.1002/ajh.25556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Daniel A. Pollyea
- Division of HematologyUniversity of Colorado Department of Medicine Aurora Colorado
| |
Collapse
|
480
|
Shallis RM, Bewersdorf JP, Boddu PC, Zeidan AM. Hedgehog pathway inhibition as a therapeutic target in acute myeloid leukemia. Expert Rev Anticancer Ther 2019; 19:717-729. [PMID: 31422721 DOI: 10.1080/14737140.2019.1652095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: The Hedgehog (HH) pathway constitutes a collection of signaling molecules which critically influence embryogenesis. In adults, however, the HH pathway remains integral to the proliferation, maintenance, and apoptosis of adult stem cells including hematopoietic stem cells. Areas covered: We discuss the current understanding of the HH pathway as it relates to normal hematopoiesis, the pathology of acute myeloid leukemia (AML), the rationale for and data from combination therapies including HH pathway inhibitors, and ultimately the prospects that might offer promise in targeting this pathway in AML. Expert opinion: Efforts to target the HH pathway have been focused on impeding this disposition and restoring chemosensitivity to conventional myeloid neoplasm therapies. The year 2018 saw the first approval of a HH pathway inhibitor (glasdegib) for AML, though for an older population and in combination with an uncommonly-used therapy. Several other clinical trials with agents targeting modulators of HH signaling in AML and MDS are underway. Further study and understanding of the interplay between the numerous aspects of HH signaling and how it relates to the augmented survival of AML will provide a more reliable substrate for therapeutic strategies in patients with this poor-risk disease.
Collapse
Affiliation(s)
- Rory M Shallis
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Jan Philipp Bewersdorf
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Prajwal C Boddu
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Amer M Zeidan
- Division of Hematology, Department of Medicine, Yale University School of Medicine , New Haven , CT , USA.,Cancer Outcomes, Public Policy, and Effectiveness Research (COPPER) Center, Yale University , New Haven , CT , USA
| |
Collapse
|
481
|
Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int J Mol Sci 2019; 20:ijms20143500. [PMID: 31315298 PMCID: PMC6679228 DOI: 10.3390/ijms20143500] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
In recent years, the lymphocyte-specific protein tyrosine kinase (Lck) has emerged as one of the key molecules regulating T-cell functions. Studies using Lck knock-out mice or Lck-deficient T-cell lines have shown that Lck regulates the initiation of TCR signaling, T-cell development, and T-cell homeostasis. Because of the crucial role of Lck in T-cell responses, strategies have been employed to redirect Lck activity to improve the efficacy of chimeric antigen receptors (CARs) and to potentiate T-cell responses in cancer immunotherapy. In addition to the well-studied role of Lck in T cells, evidence has been accumulated suggesting that Lck is also expressed in the brain and in tumor cells, where it actively takes part in signaling processes regulating cellular functions like proliferation, survival and memory. Therefore, Lck has emerged as a novel druggable target molecule for the treatment of cancer and neuronal diseases. In this review, we will focus on these new functions of Lck.
Collapse
|
482
|
Sun X, Yu Y, Ma L, Xue X, Gao Z, Ma J, Zhang M. T cell cytotoxicity toward hematologic malignancy via B7-H3 targeting. Invest New Drugs 2019; 38:722-732. [PMID: 31267380 DOI: 10.1007/s10637-019-00819-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/14/2019] [Indexed: 01/14/2023]
Abstract
T cells are important effectors in anti-tumor immunity, and aberrant expression of B7 family members may contribute to tumor evasion. In this study, we analyzed expression of costimulatory molecules on human hematologic tumor cells and explored whether B7-H3, a member of the B7 superfamily, is an effective target for T cell mediated cytotoxicity toward hematologic malignancy. We investigated the bispecific antibody anti-CD3 × anti-B7-H3 (B7-H3Bi-Ab) for its ability to redirect T cells to target B7-H3 positive hematologic tumors, including Thp-1, K562, Daudi cells and a primary culture. The capacity of T cells armed with B7-H3Bi-Ab to kill hematologic tumors was evaluated by lactate dehydrogenase assay, flow cytometry, ELISA, and luciferase quantitative assay at an effector/target ratio of 5:1. Compared with unarmed T cells, B7-H3Bi-Ab-armed T cells exhibited significant cytotoxicity toward hematological tumor cells. Moreover, B7-H3Bi-Ab-armed T cells secreted more IFN-γ, TNF-α, IL-2, and Granzyme B and expressed higher levels of activating marker CD69 compared to unarmed T cells. In conclusion, B7-H3Bi-Ab enhances the ability of T cells to kill hematologic tumor cells, and B7-H3 may serve as a novel target for immunotherapy against hematologic malignancy.
Collapse
Affiliation(s)
- Xin Sun
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Yang Yu
- Peking University Ninth School of Clinical Medicine, Beijing, 100038, China
- Department of Hematology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Li Ma
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Xin Xue
- Institute of Basic Theory, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhenkui Gao
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
- Peking University Ninth School of Clinical Medicine, Beijing, 100038, China
| | - Juan Ma
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China.
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
- Peking University Ninth School of Clinical Medicine, Beijing, 100038, China.
| | - Man Zhang
- Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Haidian District, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
- Peking University Ninth School of Clinical Medicine, Beijing, 100038, China
| |
Collapse
|
483
|
The Role of Forkhead Box Proteins in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060865. [PMID: 31234353 PMCID: PMC6627614 DOI: 10.3390/cancers11060865] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/29/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
Forkhead box (FOX) proteins are a group of transcriptional factors implicated in different cellular functions such as differentiation, proliferation and senescence. A growing number of studies have focused on the relationship between FOX proteins and cancers, particularly hematological neoplasms such as acute myeloid leukemia (AML). FOX proteins are widely involved in AML biology, including leukemogenesis, relapse and drug sensitivity. Here we explore the role of FOX transcription factors in the major AML entities, according to "The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia", and in the context of the most recurrent gene mutations identified in this heterogeneous disease. Moreover, we report the new evidences about the role of FOX proteins in drug sensitivity, mechanisms of chemoresistance, and possible targeting for personalized therapies.
Collapse
|