451
|
Dittrich A, Gautrey H, Browell D, Tyson-Capper A. The HER2 Signaling Network in Breast Cancer--Like a Spider in its Web. J Mammary Gland Biol Neoplasia 2014; 19:253-70. [PMID: 25544707 DOI: 10.1007/s10911-014-9329-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/14/2014] [Indexed: 12/21/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is a major player in the survival and proliferation of tumour cells and is overexpressed in up to 30 % of breast cancer cases. A considerable amount of work has been undertaken to unravel the activity and function of HER2 to try and develop effective therapies that impede its action in HER2 positive breast tumours. Research has focused on exploring the HER2 activated phosphoinositide-3-kinase (PI3K)/AKT and rat sarcoma/mitogen-activated protein kinase (RAS/MAPK) pathways for therapies. Despite the advances, cases of drug resistance and recurrence of disease still remain a challenge to overcome. An important aspect for drug resistance is the complexity of the HER2 signaling network. This includes the crosstalk between HER2 and hormone receptors; its function as a transcription factor; the regulation of HER2 by protein-tyrosine phosphatases and a complex network of positive and negative feedback-loops. This review summarises the current knowledge of many different HER2 interactions to illustrate the complexity of the HER2 network from the transcription of HER2 to the effect of its downstream targets. Exploring the novel avenues of the HER2 signaling could yield a better understanding of treatment resistance and give rise to developing new and more effective therapies.
Collapse
Affiliation(s)
- A Dittrich
- Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | | | | | | |
Collapse
|
452
|
Korfanty J, Stokowy T, Widlak P, Gogler-Piglowska A, Handschuh L, Podkowiński J, Vydra N, Naumowicz A, Toma-Jonik A, Widlak W. Crosstalk between HSF1 and HSF2 during the heat shock response in mouse testes. Int J Biochem Cell Biol 2014; 57:76-83. [DOI: 10.1016/j.biocel.2014.10.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/24/2014] [Accepted: 10/06/2014] [Indexed: 11/27/2022]
|
453
|
Toma-Jonik A, Widlak W, Korfanty J, Cichon T, Smolarczyk R, Gogler-Piglowska A, Widlak P, Vydra N. Active heat shock transcription factor 1 supports migration of the melanoma cells via vinculin down-regulation. Cell Signal 2014; 27:394-401. [PMID: 25435429 DOI: 10.1016/j.cellsig.2014.11.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/23/2014] [Accepted: 11/06/2014] [Indexed: 12/17/2022]
Abstract
Heat shock transcription factor 1 (HSF1), the major regulator of stress response, is frequently activated in cancer and has an apparent role in malignant transformation. Here we analyzed the influence of the over-expression of a constitutively active transcriptionally-competent HSF1 mutant form on phenotypes of mouse and human melanoma cells. We observed that the expression of active HSF1 supported anchorage-independent growth in vitro, and metastatic spread in the animal model in vivo, although the proliferation rate of cancer cells was not affected. Furthermore, active HSF1 enhanced cell motility, reduced the adherence of cells to a fibronectin-coated surface, and affected the actin cytoskeleton. We found that although the expression of active HSF1 did not affect levels of epithelial-to-mesenchymal transition markers, it caused transcriptional down-regulation of vinculin, protein involved in cell motility, and adherence. Functional HSF1-binding sites were found in mouse and human Vcl/VCL genes, indicating a direct role of HSF1 in the regulation of this gene. An apparent association between HSF1-induced down-regulation of vinculin, increased motility, and a reduced adherence of cells suggests a possible mechanism of HSF1-mediated enhancement of the metastatic potential of cancer cells.
Collapse
Affiliation(s)
- Agnieszka Toma-Jonik
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Wieslawa Widlak
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Joanna Korfanty
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Tomasz Cichon
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Ryszard Smolarczyk
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Agnieszka Gogler-Piglowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Piotr Widlak
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Natalia Vydra
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| |
Collapse
|
454
|
Roth DM, Hutt DM, Tong J, Bouchecareilh M, Wang N, Seeley T, Dekkers JF, Beekman JM, Garza D, Drew L, Masliah E, Morimoto RI, Balch WE. Modulation of the maladaptive stress response to manage diseases of protein folding. PLoS Biol 2014; 12:e1001998. [PMID: 25406061 PMCID: PMC4236052 DOI: 10.1371/journal.pbio.1001998] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/07/2014] [Indexed: 12/31/2022] Open
Abstract
Diseases of protein folding arise because of the inability of an altered peptide sequence to properly engage protein homeostasis components that direct protein folding and function. To identify global principles of misfolding disease pathology we examined the impact of the local folding environment in alpha-1-antitrypsin deficiency (AATD), Niemann-Pick type C1 disease (NPC1), Alzheimer's disease (AD), and cystic fibrosis (CF). Using distinct models, including patient-derived cell lines and primary epithelium, mouse brain tissue, and Caenorhabditis elegans, we found that chronic expression of misfolded proteins not only triggers the sustained activation of the heat shock response (HSR) pathway, but that this sustained activation is maladaptive. In diseased cells, maladaptation alters protein structure-function relationships, impacts protein folding in the cytosol, and further exacerbates the disease state. We show that down-regulation of this maladaptive stress response (MSR), through silencing of HSF1, the master regulator of the HSR, restores cellular protein folding and improves the disease phenotype. We propose that restoration of a more physiological proteostatic environment will strongly impact the management and progression of loss-of-function and gain-of-toxic-function phenotypes common in human disease.
Collapse
Affiliation(s)
- Daniela Martino Roth
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Darren M. Hutt
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jiansong Tong
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Marion Bouchecareilh
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ning Wang
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - Theo Seeley
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Johanna F. Dekkers
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Jeffrey M. Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Centre, Utrecht, The Netherlands
| | - Dan Garza
- Proteostasis Therapeutics Inc., Cambridge, Massachusetts, United States of America
| | - Lawrence Drew
- Proteostasis Therapeutics Inc., Cambridge, Massachusetts, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, California, United States of America
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
| | - William E. Balch
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
- The Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
455
|
Ishikawa Y, Sakurai H. Heat-induced expression of the immediate-early gene IER5 and its involvement in the proliferation of heat-shocked cells. FEBS J 2014; 282:332-40. [PMID: 25355627 DOI: 10.1111/febs.13134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/16/2014] [Accepted: 10/27/2014] [Indexed: 01/15/2023]
Abstract
The serum-inducible and growth factor-inducible gene IER5 encodes a protein that acts as a regulator of cell proliferation. Expression of IER5 is also induced by treatment of cells with ionizing radiation and anticancer agents. In this study, we demonstrate the expression and function of IER5 in heat-shocked cells. Heat treatment causes robust expression of IER5 in a heat shock factor (HSF)1-dependent manner. HSF1 is the master transcriptional regulator of chaperone genes, and the IER5 promoter contains the binding sequence for HSF1 and is bound by heat-activated HSF1. Proteotoxic stressors, such as celastrol and MG132, are known to activate HSF1, and are potent inducers of HSF1 binding and IER5 expression. Overexpression of IER5 leads to upregulation of chaperone gene expression and to an increase in refolding of heat-denatured proteins. Cells expressing IER5 efficiently recover viability after heat challenge. These observations suggest that HSF1-mediated IER5 expression is involved in the expression of chaperone genes and in recovery from thermal stress.
Collapse
Affiliation(s)
- Yukio Ishikawa
- Department of Clinical Laboratory Science, Kanazawa University Graduate School of Medical Science, Japan
| | | |
Collapse
|
456
|
Benderska N, Ivanovska J, Rau TT, Schulze-Luehrmann J, Mohan S, Chakilam S, Gandesiri M, Ziesché E, Fischer T, Söder S, Agaimy A, Distel L, Sticht H, Mahadevan V, Schneider-Stock R. DAPK-HSF1 interaction as a positive-feedback mechanism stimulating TNF-induced apoptosis in colorectal cancer cells. J Cell Sci 2014; 127:5273-87. [PMID: 25380824 DOI: 10.1242/jcs.157024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Death-associated protein kinase (DAPK) is a serine-threonine kinase with tumor suppressor function. Previously, we demonstrated that tumor necrosis factor (TNF) induced DAPK-mediated apoptosis in colorectal cancer. However, the protein-protein interaction network associated with TNF-DAPK signaling still remains unclear. We identified HSF1 as a new DAPK phosphorylation target in response to low concentrations of TNF and verified a physical interaction between DAPK and HSF1 both in vitro and in vivo. We show that HSF1 binds to the DAPK promoter. Transient overexpression of HSF1 protein led to an increase in DAPK mRNA level and consequently to an increase in the amount of apoptosis. By contrast, treatment with a DAPK-specific inhibitor as well as DAPK knockdown abolished the phosphorylation of HSF1 at Ser230 (pHSF1(Ser230)). Furthermore, translational studies demonstrated a positive correlation between DAPK and pHSF1(Ser230) protein expression in human colorectal carcinoma tissues. Taken together, our data define a novel link between DAPK and HSF1 and highlight a positive-feedback loop in DAPK regulation under mild inflammatory stress conditions in colorectal tumors. For the first time, we show that under TNF the pro-survival HSF1 protein can be redirected to a pro-apoptotic program.
Collapse
Affiliation(s)
- Natalya Benderska
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Jelena Ivanovska
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Tilman T Rau
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Jan Schulze-Luehrmann
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Suma Mohan
- Faculty of School of Chemical & Biotechnology of the SASTRA University, Thanjavur 613401, India
| | - Saritha Chakilam
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Muktheshwar Gandesiri
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | | | - Thomas Fischer
- Center of Internal Medicine, Clinic of Hematology/Oncology, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| | - Stephan Söder
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Abbas Agaimy
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| | - Vijayalakshmi Mahadevan
- Faculty of School of Chemical & Biotechnology of the SASTRA University, Thanjavur 613401, India
| | - Regine Schneider-Stock
- Department of Experimental Tumor Pathology, Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen 91054, Germany
| |
Collapse
|
457
|
Morano KA, Sistonen L, Mezger V. Heat shock in the springtime. Cell Stress Chaperones 2014; 19:753-61. [PMID: 25199949 PMCID: PMC4389858 DOI: 10.1007/s12192-014-0539-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 11/26/2022] Open
Abstract
A collaborative workshop dedicated to the discussion of heat shock factors in stress response, development, and disease was held on April 22-24, 2014 at the Université Paris Diderot in Paris, France. Recent years have witnessed an explosion of interest in these highly conserved transcription factors, with biological roles ranging from environmental sensing to human development and cancer.
Collapse
Affiliation(s)
- Kevin A. Morano
- />Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, TX 77030 USA
| | - Lea Sistonen
- />Department of Biosciences, Åbo Akademi University, BioCity, 20520 Turku, Finland
| | - Valérie Mezger
- />UMR7216 Epigenetics and Cell Fate, CNRS, F-75205 Paris Cedex 13, France
- />University Paris Diderot, Sorbonne Paris Cité, F-75205 Paris Cedex 13, France
| |
Collapse
|
458
|
HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci U S A 2014; 111:16172-7. [PMID: 25352668 DOI: 10.1073/pnas.1418483111] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The circadian clock perceives environmental signals to reset to local time, but the underlying molecular mechanisms are not well understood. Here we present data revealing that a member of the heat shock factor (Hsf) family is involved in the input pathway to the plant circadian clock. Using the yeast one-hybrid approach, we isolated several Hsfs, including Heat Shock Factor B2b (HsfB2b), a transcriptional repressor that binds the promoter of Pseudo Response Regulator 7 (PRR7) at a conserved binding site. The constitutive expression of HsfB2b leads to severely reduced levels of the PRR7 transcript and late flowering and elongated hypocotyls. HsfB2b function is important during heat and salt stress because HsfB2b overexpression sustains circadian rhythms, and the hsfB2b mutant has a short circadian period under these conditions. HsfB2b is also involved in the regulation of hypocotyl growth under warm, short days. Our findings highlight the role of the circadian clock as an integrator of ambient abiotic stress signals important for the growth and fitness of plants.
Collapse
|
459
|
Abstract
Heat shock factor 1 (HSF1) is an evolutionarily highly conserved transcription factor that coordinates stress-induced transcription and directs versatile physiological processes in eukaryotes. The central position of HSF1 in cellular homeostasis has been well demonstrated, mainly through its strong effect in transactivating genes that encode heat shock proteins (HSPs). However, recent genome-wide studies have revealed that HSF1 is capable of reprogramming transcription more extensively than previously assumed; it is also involved in a multitude of processes in stressed and non-stressed cells. Consequently, the importance of HSF1 in fundamental physiological events, including metabolism, gametogenesis and aging, has become apparent and its significance in pathologies, such as cancer progression, is now evident. In this Cell Science at a Glance article, we highlight recent advances in the HSF1 field, discuss the organismal control over HSF1, and present the processes that are mediated by HSF1 in the context of cell type, cell-cycle phase, physiological condition and received stimuli.
Collapse
|
460
|
ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex. Mol Cell Biol 2014; 35:11-25. [PMID: 25312646 DOI: 10.1128/mcb.00754-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation.
Collapse
|
461
|
Feng Y, Huang W, Meng W, Jegga AG, Wang Y, Cai W, Kim HW, Pasha Z, Wen Z, Rao F, Modi RM, Yu X, Ashraf M. Heat shock improves Sca-1+ stem cell survival and directs ischemic cardiomyocytes toward a prosurvival phenotype via exosomal transfer: a critical role for HSF1/miR-34a/HSP70 pathway. Stem Cells 2014; 32:462-72. [PMID: 24123326 DOI: 10.1002/stem.1571] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022]
Abstract
Stem cell-based therapy is a promising intervention for ischemic heart diseases. However, the functional integrity of stem cells is impaired in an ischemic environment. Here, we report a novel finding that heat shock significantly improves Sca-1(+) stem cell survival in an ischemic environment by the regulation of the triangle: heat shock factor 1 (HSF1), HSF1/miR-34a, and heat shock protein 70 (HSP70). Initially we prove that HSP70 is the key chaperone-mediating cytoprotective effect of heat shock in Sca-1(+) cells and then we establish miR-34a as a direct repressor of HSP70. We found that miR-34a was downregulated in heat shocked Sca-11 stem cells (HSSca-11 cells) [corrected]. Intriguingly, we demonstrate that the downregulation of miR-34a is attributed to HSF1-mediated epigenetic repression through histone H3 Lys27 trimethylation (H3K27me3) on miR-34a promoter. Moreover, we show that heat shock induces exosomal transfer of HSF1 from Sca-1(+) cells, which directs ischemic cardiomyocytes toward a prosurvival phenotype by epigenetic repression of miR-34a. In addition, our in vivo study demonstrates that transplantation of (HS) Sca-1(+) cells significantly reduces apoptosis, attenuates fibrosis, and improves global heart functions in ischemic myocardium. Hence, our study provides not only novel insights into the effects of heat shock on stem cell survival and paracrine behavior but also may have therapeutic values for stem cell therapy in ischemic heart diseases.
Collapse
Affiliation(s)
- Yuliang Feng
- Medical Research Center of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Cardiovascular Institute, Southern Medical University, Guangzhou, China; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
462
|
Donnelly N, Passerini V, Dürrbaum M, Stingele S, Storchová Z. HSF1 deficiency and impaired HSP90-dependent protein folding are hallmarks of aneuploid human cells. EMBO J 2014; 33:2374-87. [PMID: 25205676 DOI: 10.15252/embj.201488648] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aneuploidy is a hallmark of cancer and is associated with malignancy and poor prognosis. Recent studies have revealed that aneuploidy inhibits proliferation, causes distinct alterations in the transcriptome and proteome and disturbs cellular proteostasis. However, the molecular mechanisms underlying the changes in gene expression and the impairment of proteostasis are not understood. Here, we report that human aneuploid cells are impaired in HSP90-mediated protein folding. We show that aneuploidy impairs induction of the heat shock response suggesting that the activity of the transcription factor heat shock factor 1 (HSF1) is compromised. Indeed, increased levels of HSF1 counteract the effects of aneuploidy on HSP90 expression and protein folding, identifying HSF1 overexpression as the first aneuploidy-tolerating mutation in human cells. Thus, impaired HSF1 activity emerges as a critical factor underlying the phenotypes linked to aneuploidy. Finally, we demonstrate that deficient protein folding capacity directly shapes gene expression in aneuploid cells. Our study provides mechanistic insight into the causes of the disturbed proteostasis in aneuploids and deepens our understanding of the role of HSF1 in cytoprotection and carcinogenesis.
Collapse
Affiliation(s)
- Neysan Donnelly
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Verena Passerini
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Milena Dürrbaum
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany Center for Integrated Protein Science Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Silvia Stingele
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Zuzana Storchová
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany Center for Integrated Protein Science Munich, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
463
|
Jaeger AM, Makley LN, Gestwicki JE, Thiele DJ. Genomic heat shock element sequences drive cooperative human heat shock factor 1 DNA binding and selectivity. J Biol Chem 2014; 289:30459-30469. [PMID: 25204655 DOI: 10.1074/jbc.m114.591578] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heat shock transcription factor 1 (HSF1) activates expression of a variety of genes involved in cell survival, including protein chaperones, the protein degradation machinery, anti-apoptotic proteins, and transcription factors. Although HSF1 activation has been linked to amelioration of neurodegenerative disease, cancer cells exhibit a dependence on HSF1 for survival. Indeed, HSF1 drives a program of gene expression in cancer cells that is distinct from that activated in response to proteotoxic stress, and HSF1 DNA binding activity is elevated in cycling cells as compared with arrested cells. Active HSF1 homotrimerizes and binds to a DNA sequence consisting of inverted repeats of the pentameric sequence nGAAn, known as heat shock elements (HSEs). Recent comprehensive ChIP-seq experiments demonstrated that the architecture of HSEs is very diverse in the human genome, with deviations from the consensus sequence in the spacing, orientation, and extent of HSE repeats that could influence HSF1 DNA binding efficacy and the kinetics and magnitude of target gene expression. To understand the mechanisms that dictate binding specificity, HSF1 was purified as either a monomer or trimer and used to evaluate DNA-binding site preferences in vitro using fluorescence polarization and thermal denaturation profiling. These results were compared with quantitative chromatin immunoprecipitation assays in vivo. We demonstrate a role for specific orientations of extended HSE sequences in driving preferential HSF1 DNA binding to target loci in vivo. These studies provide a biochemical basis for understanding differential HSF1 target gene recognition and transcription in neurodegenerative disease and in cancer.
Collapse
Affiliation(s)
- Alex M Jaeger
- Departments of Pharmacology and Cancer Biology and Duke University School of Medicine, Durham, North Carolina 27710
| | - Leah N Makley
- Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, California 94143
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, University of California at San Francisco, San Francisco, California 94143
| | - Dennis J Thiele
- Departments of Pharmacology and Cancer Biology and Duke University School of Medicine, Durham, North Carolina 27710; Departments of Biochemistry, Duke University School of Medicine, Durham, North Carolina 27710 and.
| |
Collapse
|
464
|
Li S, Ma W, Fei T, Lou Q, Zhang Y, Cui X, Qin X, Zhang J, Liu G, Dong Z, Ma Y, Song Z, Hu Y. Upregulation of heat shock factor 1 transcription activity is associated with hepatocellular carcinoma progression. Mol Med Rep 2014; 10:2313-21. [PMID: 25199534 PMCID: PMC4214332 DOI: 10.3892/mmr.2014.2547] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 05/09/2014] [Indexed: 12/31/2022] Open
Abstract
Heat shock factor 1 (HSF1) is associated with tissue‑specific tumorigenesis in a number of mouse models, and has been used a as prognostic marker of cancer types, including breast and prostatic cancer. However, its role in human hepatocellular carcinoma (HCC) is not well understood. Using immunoblotting and immunohistochemical staining, it was identified that HSF1 and its serine (S) 326 phosphorylation, a biomarker of HSF1 activation, are significantly upregulated in human HCC tissues and HCC cell lines compared with their normal counterparts. Cohort analyses indicated that upregulation of the expression of HSF1 and its phospho‑S326 is significantly correlated with HCC progression, invasion and patient survival prognosis (P<0.001); however, not in the presence of a hepatitis B virus infection and the expression of alpha-fetoprotein and carcinoembryonic antigen. Knockdown of HSF1 with shRNA induced the protein expression of tumor suppressor retinoblastoma protein, resulting in attenuated plc/prf5 cell growth and colony formation in vitro. Taken together, these data markedly support that HSF1 is a potential prognostic marker and therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Shulian Li
- State Key Laboratory of Antibody Engineering, Department of Genetics and Cell Biology, Henan University School of Medicine, Henan 475004, P.R. China
| | - Wanli Ma
- Department of Surgery, Huaihe Hospital Affiliated to Henan University, Kaifeng, Henan 475004, P.R. China
| | - Teng Fei
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 20072, P.R. China
| | - Qiang Lou
- State Key Laboratory of Antibody Engineering, Department of Genetics and Cell Biology, Henan University School of Medicine, Henan 475004, P.R. China
| | - Yaqin Zhang
- State Key Laboratory of Antibody Engineering, Department of Genetics and Cell Biology, Henan University School of Medicine, Henan 475004, P.R. China
| | - Xiukun Cui
- State Key Laboratory of Antibody Engineering, Department of Genetics and Cell Biology, Henan University School of Medicine, Henan 475004, P.R. China
| | - Xiaoming Qin
- State Key Laboratory of Antibody Engineering, Department of Genetics and Cell Biology, Henan University School of Medicine, Henan 475004, P.R. China
| | - Jun Zhang
- State Key Laboratory of Antibody Engineering, Department of Genetics and Cell Biology, Henan University School of Medicine, Henan 475004, P.R. China
| | - Guangchao Liu
- State Key Laboratory of Antibody Engineering, Department of Genetics and Cell Biology, Henan University School of Medicine, Henan 475004, P.R. China
| | - Zheng Dong
- State Key Laboratory of Antibody Engineering, Department of Genetics and Cell Biology, Henan University School of Medicine, Henan 475004, P.R. China
| | - Yuanfang Ma
- State Key Laboratory of Antibody Engineering, Department of Genetics and Cell Biology, Henan University School of Medicine, Henan 475004, P.R. China
| | - Zhengshun Song
- Department of Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai 20072, P.R. China
| | - Yanzhong Hu
- State Key Laboratory of Antibody Engineering, Department of Genetics and Cell Biology, Henan University School of Medicine, Henan 475004, P.R. China
| |
Collapse
|
465
|
Elsing AN, Aspelin C, Björk JK, Bergman HA, Himanen SV, Kallio MJ, Roos-Mattjus P, Sistonen L. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival. ACTA ACUST UNITED AC 2014; 206:735-49. [PMID: 25202032 PMCID: PMC4164949 DOI: 10.1083/jcb.201402002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In spite of global transcriptional inhibition, a decrease in HSF2 expression during mitosis allows for heat shock protein expression and protects cells against proteotoxicity. Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis.
Collapse
Affiliation(s)
- Alexandra N Elsing
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Camilla Aspelin
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Johanna K Björk
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Heidi A Bergman
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Samu V Himanen
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Marko J Kallio
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland VTT Health, VTT Technical Research Centre of Finland, 20520 Turku, Finland
| | - Pia Roos-Mattjus
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland
| | - Lea Sistonen
- Department of Biosciences, Åbo Akademi University, 20520 Turku, Finland Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
466
|
Nakamura Y, Fujimoto M, Fukushima S, Nakamura A, Hayashida N, Takii R, Takaki E, Nakai A, Muto M. Heat shock factor 1 is required for migration and invasion of human melanoma in vitro and in vivo. Cancer Lett 2014; 354:329-35. [PMID: 25194503 DOI: 10.1016/j.canlet.2014.08.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/20/2014] [Accepted: 08/20/2014] [Indexed: 10/24/2022]
Abstract
Heat shock factor 1 (HSF1) is a major transactivator of the heat shock response. Recent studies have demonstrated that HSF1 is involved in tumor initiation, maintenance, and progression by regulating the expression of heat shock proteins (HSPs) and other molecular targets. Furthermore, HSF1 was identified as a potent proinvasion oncogene in human melanomas. However, the biological functions of HSF1 in human melanoma remain poorly understood. To determine the functional role of HSF1 in melanoma, we used short hairpin RNA (shRNA) to silence HSF1 in human melanoma cell lines and investigated its effect on cell migration and invasive ability in vitro. We found that HSF1 knockdown led to a marked reduction in migration and invasive ability, and these functions were restored by overexpression of wild-type HSF1. To confirm the in vitro results, we performed subcutaneous xenograft experiments in athymic nude mice. We found that HSF1 was required for melanoma invasion and metastasis, as well as tumorigenic potential in vivo. Overall, these results show that HSF1 is indispensable for melanoma progression and metastasis, and suggests that HSF1 could be a promising therapeutic target for melanoma.
Collapse
Affiliation(s)
- Yoshitaka Nakamura
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | - Mitsuaki Fujimoto
- Department of Biochemistry and Molecular Biology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Sonoko Fukushima
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Akiko Nakamura
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Naoki Hayashida
- Department of Biochemistry and Molecular Biology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Ryosuke Takii
- Department of Biochemistry and Molecular Biology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Eiichi Takaki
- Department of Biochemistry and Molecular Biology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Akira Nakai
- Department of Biochemistry and Molecular Biology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Masahiko Muto
- Department of Dermatology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
467
|
The systemic amyloid precursor transthyretin (TTR) behaves as a neuronal stress protein regulated by HSF1 in SH-SY5Y human neuroblastoma cells and APP23 Alzheimer's disease model mice. J Neurosci 2014; 34:7253-65. [PMID: 24849358 DOI: 10.1523/jneurosci.4936-13.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increased neuronal synthesis of transthyretin (TTR) may favorably impact on Alzheimer's disease (AD) because TTR has been shown to inhibit Aβ aggregation and detoxify cell-damaging conformers. The mechanism whereby hippocampal and cortical neurons from AD patients and APP23 AD model mice produce more TTR is unknown. We now show that TTR expression in SH-SY5Y human neuroblastoma cells, primary hippocampal neurons and the hippocampus of APP23 mice, is significantly enhanced by heat shock factor 1 (HSF1). Chromatin immunoprecipitation (ChIP) assays demonstrated occupation of TTR promoter heat shock elements by HSF1 in APP23 hippocampi, primary murine hippocampal neurons, and SH-SY5Y cells, but not in mouse liver, cultured human hepatoma (HepG2) cells, or AC16 cultured human cardiomyocytes. Treating SH-SY5Y human neuroblastoma cells with heat shock or the HSF1 stimulator celastrol increased TTR transcription in parallel with that of HSP40, HSP70, and HSP90. With both treatments, ChIP showed increased occupancy of heat shock elements in the TTR promoter by HSF1. In vivo celastrol increased the HSF1 ChIP signal in hippocampus but not in liver. Transfection of a human HSF1 construct into SH-SY5Y cells increased TTR transcription and protein production, which could be blocked by shHSF1 antisense. The effect is neuron specific. In cultured HepG2 cells, HSF1 was either suppressive or had no effect on TTR expression confirming the differential effects of HSF1 on TTR transcription in different cell types.
Collapse
|
468
|
Koay YC, McConnell JR, Wang Y, Kim SJ, Buckton LK, Mansour F, McAlpine SR. Chemically accessible hsp90 inhibitor that does not induce a heat shock response. ACS Med Chem Lett 2014; 5:771-6. [PMID: 25050163 DOI: 10.1021/ml500114p] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/13/2014] [Indexed: 02/01/2023] Open
Abstract
Recent cancer therapies have focused on targeting biology networks through a single regulatory protein. Heat shock protein 90 (hsp90) is an ideal oncogenic target as it regulates over 400 client proteins and cochaperones. However, clinical inhibitors of hsp90 have had limited success; the primary reason being that they induce a heat shock response. We describe the synthesis and biological evaluation of a new hsp90 inhibitor, SM253. The previous generation on which SM253 is based (SM145) has poor overall synthetic yields, low solubility, and micromolar cytotoxicity. By comparison SM253 has relatively high overall yields, good aqueous solubility, and is more cytotoxic than its parent compound. Verification that hsp90 is SM253's target was accomplished using pull-down and protein folding assays. SM253 is superior to both SM145 and the clinical candidate 17-AAG as it decreases proteins related to the heat shock response by 2-fold, versus a 2-4-fold increase observed when cells are treated with 17-AAG.
Collapse
Affiliation(s)
- Yen Chin Koay
- The University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Yao Wang
- The University of New South Wales, Sydney, NSW 2052, Australia
| | - Seong Jong Kim
- The University of New South Wales, Sydney, NSW 2052, Australia
| | | | - Flora Mansour
- The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
469
|
Aramburu J, Ortells MC, Tejedor S, Buxadé M, López-Rodríguez C. Transcriptional regulation of the stress response by mTOR. Sci Signal 2014; 7:re2. [PMID: 24985347 DOI: 10.1126/scisignal.2005326] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The kinase mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation that integrates inputs from growth factor receptors, nutrient availability, intracellular ATP (adenosine 5'-triphosphate), and a variety of stressors. Since early works in the mid-1990s uncovered the role of mTOR in stimulating protein translation, this kinase has emerged as a rather multifaceted regulator of numerous processes. Whereas mTOR is generally activated by growth- and proliferation-stimulating signals, its activity can be reduced and even suppressed when cells are exposed to a variety of stress conditions. However, cells can also adapt to stress while maintaining their growth capacity and mTOR function. Despite knowledge accumulated on how stress represses mTOR, less is known about mTOR influencing stress responses. In this review, we discuss the capability of mTOR, in particular mTOR complex 1 (mTORC1), to activate stress-responsive transcription factors, and we outline open questions for future investigation.
Collapse
Affiliation(s)
- Jose Aramburu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| | - M Carmen Ortells
- Centre for Genomic Regulation and Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Sonia Tejedor
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Maria Buxadé
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Cristina López-Rodríguez
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain.
| |
Collapse
|
470
|
Chou SD, Murshid A, Eguchi T, Gong J, Calderwood SK. HSF1 regulation of β-catenin in mammary cancer cells through control of HuR/elavL1 expression. Oncogene 2014; 34:2178-2188. [PMID: 24954509 PMCID: PMC4275421 DOI: 10.1038/onc.2014.177] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 04/11/2014] [Accepted: 05/12/2014] [Indexed: 01/21/2023]
Abstract
There is now compelling evidence to indicate a place for heat shock factor 1 (HSF1) in mammary carcinogenesis, tumor progression and metastasis. Here we have investigated a role for HSF1 in regulating the expression of the stem cell renewal factor β-catenin in immortalized human mammary epithelial and carcinoma cells. We found HSF1 to be involved in regulating the translation of β–catenin, by investigating effects of gain and loss of HSF1 on this protein. Interestingly, although HSF1 is a potent transcription factor, it was not directly involved in regulating levels of β-catenin mRNA. Instead, our data suggest a complex role in translational regulation. HSF1 was shown to regulate levels of the RNA binding protein HuR that controlled β-catenin translation. An extra complexity was added to this scenario when it was shown that the long non-coding RNA molecule lincRNA-p21, known to be involved in β-catenin mRNA (CTNNB1) translational regulation, was controlled by HSF1 repression. We have shown previously that HSF1 was positively regulated through phosphorylation by mTOR kinase on a key residue, serine 326 essential for transcriptional activity. In this study we found that mTOR knockdown not only decreased HSF1-S326 phosphorylation in mammary cells, but also decreased β-catenin expression through a mechanism requiring HuR. Our data point to a complex role for HSF1 in the regulation of HuR and β-catenin expression that may be significant in mammary carcinogenesis.
Collapse
Affiliation(s)
- Shiuh-Dih Chou
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Takanori Eguchi
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| | - Jianlin Gong
- Boston University Medical Center, Boston, MA02215
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02215
| |
Collapse
|
471
|
Ryno LM, Genereux J, Naito T, Morimoto RI, Powers ET, Shoulders MD, Wiseman RL. Characterizing the altered cellular proteome induced by the stress-independent activation of heat shock factor 1. ACS Chem Biol 2014; 9:1273-83. [PMID: 24689980 PMCID: PMC4076015 DOI: 10.1021/cb500062n] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 04/01/2014] [Indexed: 01/18/2023]
Abstract
The heat shock response is an evolutionarily conserved, stress-responsive signaling pathway that adapts cellular proteostasis in response to pathologic insult. In metazoans, the heat shock response primarily functions through the posttranslational activation of heat shock factor 1 (HSF1), a stress-responsive transcription factor that induces the expression of cytosolic proteostasis factors including chaperones, cochaperones, and folding enzymes. HSF1 is a potentially attractive therapeutic target to ameliorate pathologic imbalances in cellular proteostasis associated with human disease, although the underlying impact of stress-independent HSF1 activation on cellular proteome composition remains to be defined. Here, we employ a highly controllable, ligand-regulated HSF1 that activates HSF1 to levels compatible with those that could be achieved using selective small molecule HSF1 activators. Using a combination of RNAseq and quantitative proteomics, we define the impact of stress-independent HSF1 activation on the composition of the cellular proteome. We show that stress-independent HSF1 activation selectively remodels cytosolic proteostasis pathways without globally influencing the composition of the cellular proteome. Furthermore, we show that stress-independent HSF1 activation decreases intracellular aggregation of a model polyglutamine-containing protein and reduces the cellular toxicity of environmental toxins like arsenite that disrupt cytosolic proteostasis. Collectively, our results reveal a proteome-level view of stress-independent HSF1 activation, providing a framework to establish therapeutic approaches to correct pathologic imbalances in cellular proteostasis through the selective targeting of HSF1.
Collapse
Affiliation(s)
- Lisa M. Ryno
- Department
of Molecular & Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Joseph
C. Genereux
- Department
of Molecular & Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Tadasuke Naito
- Department
of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard I. Morimoto
- Department
of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois 60208, United States
| | - Evan T. Powers
- Department
of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Matthew D. Shoulders
- Department
of Molecular & Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - R. Luke Wiseman
- Department
of Molecular & Experimental Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
472
|
Li-Weber M. Molecular mechanisms and anti-cancer aspects of the medicinal phytochemicals rocaglamides (=flavaglines). Int J Cancer 2014; 137:1791-9. [PMID: 24895251 DOI: 10.1002/ijc.29013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/29/2014] [Accepted: 06/02/2014] [Indexed: 01/08/2023]
Abstract
Rocaglamides (= flavaglines) are potent natural anti-cancer phytochemicals that inhibit cancer growth at nanomolar concentrations by the following mechanisms: (1) inhibition of translation initiation via inhibition of phosphorylation of the mRNA cap-binding eukaryotic translation initiation factor eIF4E and stabilization of RNA-binding of the translation initiation factor eIF4A in the eIF4F complex; (2) blocking cell cycle progression by activation of the ATM/ATR-Chk1/Chk2 checkpoint pathway; (3) inactivation of the heat shock factor 1 (HSF1) leading to up-regulation of thioredoxin-interacting protein (TXNIP) and consequent reduction of glucose uptake and (4) induction of apoptosis through activation of the MAPK p38 and JNK and inhibition of the Ras-CRaf-MEK-ERK signaling pathway. Besides the anti-cancer activities, rocaglamides are also shown to protect primary cells from chemotherapy-induced cell death and alleviate inflammation- and drug-induced injury in neuronal tissues. This review will focus on the recently discovered molecular mechanisms of the actions of rocaglamides and highlights the benefits of using rocaglamides in cancer treatment.
Collapse
Affiliation(s)
- Min Li-Weber
- Tumorimmunology Program (D030), German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| |
Collapse
|
473
|
Wolff S, Weissman JS, Dillin A. Differential scales of protein quality control. Cell 2014; 157:52-64. [PMID: 24679526 DOI: 10.1016/j.cell.2014.03.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 02/06/2023]
Abstract
Proteins are notorious for their unpleasant behavior-continually at risk of misfolding, collecting damage, aggregating, and causing toxicity and disease. To counter these challenges, cells have evolved elaborate chaperone and quality control networks that can resolve damage at the level of the protein, organelle, cell, or tissue. On the smallest scale, the integrity of individual proteins is monitored during their synthesis. On a larger scale, cells use compartmentalized defenses and networks of communication, capable sometimes of signaling between cells, to respond to changes in the proteome's health. Together, these layered defenses help protect cells from damaged proteins.
Collapse
Affiliation(s)
- Suzanne Wolff
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, California Institute of Quantitative Biology, Center for RNA Systems Biology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
474
|
Yoon T, Kang GY, Han AR, Seo EK, Lee YS. 2,4-Bis(4-hydroxybenzyl)phenol inhibits heat shock transcription factor 1 and sensitizes lung cancer cells to conventional anticancer modalities. JOURNAL OF NATURAL PRODUCTS 2014; 77:1123-9. [PMID: 24746225 DOI: 10.1021/np4009333] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Heat shock factor 1 (HSF1) is a transcription factor that regulates expression of heat shock protein (HSP) genes in response to stress. HSPs are expressed at high levels in a wide range of tumors. It has been reported that HSF1 and HSPs are associated closely in tumorigenesis. In the present study, a screen was performed using a luciferase reporter under the control of a heat shock element to find inhibitors of HSF1 activity, and 2,4-bis(4-hydroxybenzyl)phenol (1), isolated from the rhizomes of Gastrodia elata, was identified as an active compound. This substance effectively inhibited HSF1 activity and decreased levels of HSP27 and HSP70. Compound 1 induced the degradation of HSF1 protein through dephosphorylation of HSF1 on S326, which decreases HSF1 protein stability. In addition, 1 also induced growth arrest and apoptosis of NCI-H460 human lung cancer cells. Markers of apoptosis, such as cleaved PARP and cleaved caspase-3, were detected after treatment with 1. Furthermore, cotreatment with 1 and conventional anticancer modalities such as paclitaxel, cisplatin, or ionizing radiation potentiated their effects on lung cancer cells. These results suggest that inhibition of HSF1 by 1 may help overcome resistance to conventional anticancer modalities in HSF1-overexpressed cancer cells.
Collapse
Affiliation(s)
- Taesook Yoon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul 120-750, Korea
| | | | | | | | | |
Collapse
|
475
|
Engerud H, Tangen IL, Berg A, Kusonmano K, Halle MK, Oyan AM, Kalland KH, Stefansson I, Trovik J, Salvesen HB, Krakstad C. High level of HSF1 associates with aggressive endometrial carcinoma and suggests potential for HSP90 inhibitors. Br J Cancer 2014; 111:78-84. [PMID: 24853175 PMCID: PMC4090731 DOI: 10.1038/bjc.2014.262] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 11/12/2022] Open
Abstract
Background: Recent identification of a specific role of HSF1 in cancer progression has led to new relevance of HSF1 as both a prognostic and a predictive marker. The role of HSF1 in endometrial cancer has so far been unexplored. Methods: A total of 823 lesions from endometrial carcinoma precursors, primary tumours and metastases were prospectively collected and explored for HSF1 protein expression in relation to established markers for aggressive disease and survival. Transcriptional alterations related to HSF1 protein level were investigated by microarray analysis for 224 freshly frozen samples in parallel. Results: High expression of HSF1 protein in endometrial carcinoma is significantly associated with aggressive disease and poor survival (all P-values ⩽0.02), also among ERα-positive patients presumed to have good prognosis. The HSF1-related gene signatures increase during disease progression and were also found to have prognostic value. Gene expression analyses identified HSP90 inhibition as a potential novel therapeutic approach for cases with high protein expression of HSF1. Conclusions: We demonstrate for the first time in endometrial cancer that high expression of HSF1 and measures for transcriptional activation of HSF1 associate with poor outcome and disease progression. The HSP90 inhibitors are suggested as new targeted therapeutics for patients with high HSF1 levels in tumour in particular.
Collapse
Affiliation(s)
- H Engerud
- 1] Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway [2] Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - I L Tangen
- 1] Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway [2] Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - A Berg
- 1] Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway [2] Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - K Kusonmano
- 1] Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway [2] Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway [3] Computational Biology Unit, University of Bergen, Bergen, Norway
| | - M K Halle
- 1] Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway [2] Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - A M Oyan
- 1] Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway [2] Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - K H Kalland
- 1] Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway [2] Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - I Stefansson
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - J Trovik
- 1] Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway [2] Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - H B Salvesen
- 1] Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway [2] Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - C Krakstad
- 1] Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway [2] Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
476
|
Neueder A, Achilli F, Moussaoui S, Bates GP. Novel isoforms of heat shock transcription factor 1, HSF1γα and HSF1γβ, regulate chaperone protein gene transcription. J Biol Chem 2014; 289:19894-906. [PMID: 24855652 PMCID: PMC4106310 DOI: 10.1074/jbc.m114.570739] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The heat shock response, resulting in the production of heat shock proteins or molecular chaperones, is triggered by elevated temperature and a variety of other stressors. Its master regulator is heat shock transcription factor 1 (HSF1). Heat shock factors generally exist in multiple isoforms. The two known isoforms of HSF1 differ in the inclusion (HSF1α) or exclusion (HSF1β) of exon 11. Although there are some data concerning the differential expression patterns and transcriptional activities of HSF2 isoforms during development, little is known about the distinct properties of the HSF1 isoforms. Here we present evidence for two novel HSF1 isoforms termed HSF1γα and HSF1γβ, and we show that the HSF1 isoform ratio differentially regulates heat shock protein gene transcription. Hsf1γ isoforms are expressed in various mouse tissues and are translated into protein. Furthermore, after heat shock, HSF1γ isoforms are exported from the nucleus more rapidly or degraded more quickly than HSF1α or HSF1β. We also show that each individual HSF1 isoform is sufficient to induce the heat shock response and that expression of combinations of HSF1 isoforms, in particular HSF1α and HSF1β, results in a synergistic enhancement of the transcriptional response. In addition, HSF1γ isoforms potentially suppress the synergistic effect of HSF1α and HSF1β co-expression. Collectively, our observations suggest that the expression of HSF1 isoforms in a specific ratio provides an additional layer in the regulation of heat shock protein gene transcription.
Collapse
Affiliation(s)
- Andreas Neueder
- From the Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom and
| | - Francesca Achilli
- From the Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom and
| | - Saliha Moussaoui
- Neuroscience Discovery, Novartis Institute for Biomedical Research, CH-4002 Basel, Switzerland
| | - Gillian P Bates
- From the Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, United Kingdom and
| |
Collapse
|
477
|
Chen Y, Chen J, Yu J, Yang G, Temple E, Harbinski F, Gao H, Wilson C, Pagliarini R, Zhou W. Identification of mixed lineage leukemia 1(MLL1) protein as a coactivator of heat shock factor 1(HSF1) protein in response to heat shock protein 90 (HSP90) inhibition. J Biol Chem 2014; 289:18914-27. [PMID: 24831003 DOI: 10.1074/jbc.m114.574053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Heat shock protein 90 (HSP90) inhibition inhibits cancer cell proliferation through depleting client oncoproteins and shutting down multiple oncogenic pathways. Therefore, it is an attractive strategy for targeting human cancers. Several HSP90 inhibitors, including AUY922 and STA9090, show promising effects in clinical trials. However, the efficacy of HSP90 inhibitors may be limited by heat shock factor 1 (HSF1)-mediated feedback mechanisms. Here, we identify, through an siRNA screen, that the histone H3 lysine 4 methyltransferase MLL1 functions as a coactivator of HSF1 in response to HSP90 inhibition. MLL1 is recruited to the promoters of HSF1 target genes and regulates their expression in response to HSP90 inhibition. In addition, a striking combination effect is observed when MLL1 depletion is combined with HSP90 inhibition in various human cancer cell lines and tumor models. Thus, targeting MLL1 may block a HSF1-mediated feedback mechanism induced by HSP90 inhibition and provide a new avenue to enhance HSP90 inhibitor activity in human cancers.
Collapse
Affiliation(s)
| | | | - Jianjun Yu
- the Department of Oncology, Novartis Institutes for Biomedical Research, Emeryville, California 94608
| | | | | | | | - Hui Gao
- From the Departments of Oncology
| | - Christopher Wilson
- Neuroscience, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139 and
| | | | | |
Collapse
|
478
|
Chen Y, Chen J, Loo A, Jaeger S, Bagdasarian L, Yu J, Chung F, Korn J, Ruddy D, Guo R, McLaughlin ME, Feng F, Zhu P, Stegmeier F, Pagliarini R, Porter D, Zhou W. Targeting HSF1 sensitizes cancer cells to HSP90 inhibition. Oncotarget 2014; 4:816-29. [PMID: 23615731 PMCID: PMC3757240 DOI: 10.18632/oncotarget.991] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (HSP90) facilitates the appropriate folding of various oncogenic proteins and is necessary for the survival of some cancer cells. HSP90 is therefore an attractive drug target, but the efficacy of HSP90 inhibitor may be limited by HSP90 inhibition induced feedback mechanisms. Through pooled RNA interference screens, we identified that heat shock factor 1(HSF1) is a sensitizer of HSP90 inhibitor. A striking combinational effect was observed when HSF1 knockdown plus with HSP90 inhibitors treatment in various cancer cell lines and tumor mouse models. Interestingly, HSF1 is highly expressed in hepatocellular carcinoma (HCC) patient samples and HCC is sensitive to combinational treatment, indicating a potential indication for the combinational treatment. To understand the mechanism of the combinational effect, we identified that a HSF1-target gene DEDD2 is involved in attenuating the effect of HSP90 inhibitors. Thus, the transcriptional activities of HSF1 induced by HSP90 inhibitors provide a feedback mechanism of limiting the HSP90 inhibitor's activity, and targeting HSF1 may provide a new avenue to enhance HSP90 inhibitors activity in human cancers.
Collapse
Affiliation(s)
- Yaoyu Chen
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
479
|
Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer. PLoS One 2014; 9:e96330. [PMID: 24800749 PMCID: PMC4011729 DOI: 10.1371/journal.pone.0096330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/04/2014] [Indexed: 11/19/2022] Open
Abstract
Heat shock factor 1 (HSF1) is a master regulator that coordinates chaperone protein expression to enhance cellular survival in the face of heat stress. In cancer cells, HSF1 drives a transcriptional program distinct from heat shock to promote metastasis and cell survival. Its strong association with the malignant phenotype implies that HSF1 antagonists may have general and effective utilities in cancer therapy. For this purpose, we had identified an avid RNA aptamer for HSF1 that is portable among different model organisms. Extending our previous work in yeast and Drosophila, here we report the activity of this aptamer in human cancer cell lines. When delivered into cells using a synthetic gene and strong promoter, this aptamer was able to prevent HSF1 from binding to its DNA regulation elements. At the cellular level, expression of this aptamer induced apoptosis and abolished the colony-forming capability of cancer cells. At the molecular level, it reduced chaperones and attenuated the activation of the MAPK signaling pathway. Collectively, these data demonstrate the advantage of aptamers in drug target validation and support the hypothesis that HSF1 DNA binding activity is a potential target for controlling oncogenic transformation and neoplastic growth.
Collapse
|
480
|
Li D, Yallowitz A, Ozog L, Marchenko N. A gain-of-function mutant p53-HSF1 feed forward circuit governs adaptation of cancer cells to proteotoxic stress. Cell Death Dis 2014; 5:e1194. [PMID: 24763051 PMCID: PMC4001312 DOI: 10.1038/cddis.2014.158] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/03/2014] [Accepted: 03/06/2014] [Indexed: 11/09/2022]
Abstract
To overcome proteotoxic stress inherent to malignant transformation, cancer cells induce a range of adaptive mechanisms, with the master transcription factor heat-shock factor 1 (HSF1)-orchestrated response taking center stage. Here we define a novel gain-of-function of mutant p53 (mutp53), whereby mutp53-overexpressing cancer cells acquire superior tolerance to proteotoxic stress. mutp53 via constitutive stimulation of EGFR and ErbB2 signaling hyperactivates the MAPK and PI3K cascades, which induce stabilization and phosphoactivation of HSF1 on Ser326. Moreover, mutp53 protein via direct interaction with activated p-Ser326 HSF1 facilitates HSF1 recruitment to its specific DNA-binding elements and stimulates transcription of heat-shock proteins including Hsp90. In turn, induced Hsp90 stabilizes its oncogenic clients including EGFR, ErbB2 and mutp53, thereby further reinforcing oncogenic signaling. Thus, mutp53 initiates a feed forward loop that renders cancer cells more resistant to adverse conditions, providing a strong survival advantage.
Collapse
Affiliation(s)
- D Li
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - A Yallowitz
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - L Ozog
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8691, USA
| | - N Marchenko
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8691, USA
| |
Collapse
|
481
|
Kakkar V, Meister-Broekema M, Minoia M, Carra S, Kampinga HH. Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. Dis Model Mech 2014; 7:421-34. [PMID: 24719117 PMCID: PMC3974453 DOI: 10.1242/dmm.014563] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR)--and thus generally restoring the disturbed protein homeostasis associated with such diseases--has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated--so-called chaperonopathies--which are also discussed in this Review.
Collapse
Affiliation(s)
- Vaishali Kakkar
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Melanie Meister-Broekema
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Melania Minoia
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Serena Carra
- Università degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, via G. Campi 287, 41125 Modena, Italy
| | - Harm H. Kampinga
- University Medical Center Groningen, University of Groningen, Department of Cell Biology, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
482
|
Villicaña C, Cruz G, Zurita M. The basal transcription machinery as a target for cancer therapy. Cancer Cell Int 2014; 14:18. [PMID: 24576043 PMCID: PMC3942515 DOI: 10.1186/1475-2867-14-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/21/2014] [Indexed: 01/11/2023] Open
Abstract
General transcription is required for the growth and survival of all living cells. However, tumor cells require extraordinary levels of transcription, including the transcription of ribosomal RNA genes by RNA polymerase I (RNPI) and mRNA by RNA polymerase II (RNPII). In fact, cancer cells have mutations that directly enhance transcription and are frequently required for cancer transformation. For example, the recent discovery that MYC enhances the transcription of the majority genes in the genome correlates with the fact that several transcription interfering drugs preferentially kill cancer cells. In recent years, advances in the mechanistic studies of the basal transcription machinery and the discovery of drugs that interfere with multiple components of transcription are being used to combat cancer. For example, drugs such as triptolide that targets the general transcription factors TFIIH and JQ1 to inhibit BRD4 are administered to target the high proliferative rate of cancer cells. Given the importance of finding new strategies to preferentially sensitize tumor cells, this review primarily focuses on several transcription inhibitory drugs to demonstrate that the basal transcription machinery constitutes a potential target for the design of novel cancer drugs. We highlight the drugs’ mechanisms for interfering with tumor cell survival, their importance in cancer treatment and the challenges of clinical application.
Collapse
Affiliation(s)
| | | | - Mario Zurita
- Departament of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico, Mexico.
| |
Collapse
|
483
|
Acquaviva J, He S, Sang J, Smith DL, Sequeira M, Zhang C, Bates RC, Proia DA. mTOR Inhibition Potentiates HSP90 Inhibitor Activity via Cessation of HSP Synthesis. Mol Cancer Res 2014; 12:703-13. [DOI: 10.1158/1541-7786.mcr-13-0605] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
484
|
Gandin V, Topisirovic I. Co-translational mechanisms of quality control of newly synthesized polypeptides. ACTA ACUST UNITED AC 2014; 2:e28109. [PMID: 26779401 PMCID: PMC4705825 DOI: 10.4161/trla.28109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/30/2013] [Accepted: 02/04/2014] [Indexed: 01/23/2023]
Abstract
During protein synthesis, nascent polypeptides emerge from ribosomes to fold into functional proteins. Misfolding of newly synthesized polypeptides (NSPs) at this stage leads to their aggregation. These misfolded NSPs must be expediently cleared to circumvent the deleterious effects of protein aggregation on cell physiology. To this end, a sizable portion of NSPs are ubiquitinated and rapidly degraded by the proteasome. This suggests the existence of co-translational mechanisms that play a pivotal role in the quality control of NSPs. It is generally thought that ribosomes play a central role in this process. During mRNA translation, ribosomes sense errors that lead to the accumulation of aberrant polypeptides, and serve as a hub for protein complexes that are required for optimal folding and/or proteasome-dependent degradation of misfolded polypeptides. In this review, we discuss recent findings that shed light on the molecular underpinnings of the co-translational quality control of NSPs.
Collapse
Affiliation(s)
- Valentina Gandin
- Lady Davis Institute for Medical Research; Sir Mortimer B. Davis-Jewish General Hospital; Montréal, QC Canada; Department of Oncology; McGill University; Montréal, QC Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research; Sir Mortimer B. Davis-Jewish General Hospital; Montréal, QC Canada; Department of Oncology; McGill University; Montréal, QC Canada
| |
Collapse
|
485
|
Jego G, Lanneau D, De Thonel A, Berthenet K, Hazoumé A, Droin N, Hamman A, Girodon F, Bellaye PS, Wettstein G, Jacquel A, Duplomb L, Le Mouël A, Papanayotou C, Christians E, Bonniaud P, Lallemand-Mezger V, Solary E, Garrido C. Dual regulation of SPI1/PU.1 transcription factor by heat shock factor 1 (HSF1) during macrophage differentiation of monocytes. Leukemia 2014; 28:1676-86. [PMID: 24504023 DOI: 10.1038/leu.2014.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/31/2022]
Abstract
In addition to their cytoprotective role in stressful conditions, heat shock proteins (HSPs) are involved in specific differentiation pathways, for example, we have identified a role for HSP90 in macrophage differentiation of human peripheral blood monocytes that are exposed to macrophage colony-stimulating factor (M-CSF). Here, we show that deletion of the main transcription factor involved in heat shock gene regulation, heat shock factor 1 (HSF1), affects M-CSF-driven differentiation of mouse bone marrow cells. HSF1 transiently accumulates in the nucleus of human monocytes undergoing macrophage differentiation, including M-CSF-treated peripheral blood monocytes and phorbol ester-treated THP1 cells. We demonstrate that HSF1 has a dual effect on SPI1/PU.1, a transcription factor essential for macrophage differentiation and whose deregulation can lead to the development of leukemias and lymphomas. Firstly, HSF1 regulates SPI1/PU.1 gene expression through its binding to a heat shock element within the intron 2 of this gene. Furthermore, downregulation or inhibition of HSF1 impaired both SPI1/PU.1-targeted gene transcription and macrophage differentiation. Secondly, HSF1 induces the expression of HSP70 that interacts with SPI1/PU.1 to protect the transcription factor from proteasomal degradation. Taken together, HSF1 appears as a fine-tuning regulator of SPI1/PU.1 expression at the transcriptional and post-translational levels during macrophage differentiation of monocytes.
Collapse
Affiliation(s)
- G Jego
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - D Lanneau
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - A De Thonel
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - K Berthenet
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - A Hazoumé
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - N Droin
- 1] INSERM, UMR 1009, Institut Gustave Roussy, 114 rue Edouard Vaillaint, Villejuif, France [2] University Paris-Sud 11, Institut Gustave Roussy, 114 rue Edouard Vaillaint, Villejuif, France
| | - A Hamman
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - F Girodon
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - P-S Bellaye
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - G Wettstein
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - A Jacquel
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [3] INSERM, U526, Nice, France
| | - L Duplomb
- 1] Faculty of Medicine and Pharmacy, Génétique et anomalies du développement, University of Burgundy, Dijon, France [2] CHU, Dijon, France
| | - A Le Mouël
- 1] CNRS, UMR7216 Épigénétique et Destin Cellulaire, 35 rue Hélène Brion, Paris, France [2] University Paris Diderot, Sorbonne Paris Cité, 35 rue Hélène Brion, Paris, France
| | - C Papanayotou
- University Paris Diderot, Sorbonne Paris Cité, Institut jacques Monod, UMR 7592, Paris cedex 13, France
| | - E Christians
- CNRS, UMR 5547, Université Paul Sabatier, 118 route de Narbonne, Toulouse, France
| | - P Bonniaud
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France
| | - V Lallemand-Mezger
- 1] CNRS, UMR7216 Épigénétique et Destin Cellulaire, 35 rue Hélène Brion, Paris, France [2] University Paris Diderot, Sorbonne Paris Cité, 35 rue Hélène Brion, Paris, France
| | - E Solary
- 1] INSERM, UMR 1009, Institut Gustave Roussy, 114 rue Edouard Vaillaint, Villejuif, France [2] University Paris-Sud 11, Institut Gustave Roussy, 114 rue Edouard Vaillaint, Villejuif, France
| | - C Garrido
- 1] INSERM, UMR 866, 'Equipe Labellisée Ligue contre le Cancer', Dijon, France [2] Faculty of Medicine and Pharmacy, University of Burgundy, Dijon, France [3] Centre de lutte contre le cancer George-François Leclerc, Dijon, France
| |
Collapse
|
486
|
Filone CM, Caballero IS, Dower K, Mendillo ML, Cowley GS, Santagata S, Rozelle DK, Yen J, Rubins KH, Hacohen N, Root DE, Hensley LE, Connor J. The master regulator of the cellular stress response (HSF1) is critical for orthopoxvirus infection. PLoS Pathog 2014; 10:e1003904. [PMID: 24516381 PMCID: PMC3916389 DOI: 10.1371/journal.ppat.1003904] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022] Open
Abstract
The genus Orthopoxviridae contains a diverse group of human pathogens including monkeypox, smallpox and vaccinia. These viruses are presumed to be less dependent on host functions than other DNA viruses because they have large genomes and replicate in the cytoplasm, but a detailed understanding of the host factors required by orthopoxviruses is lacking. To address this topic, we performed an unbiased, genome-wide pooled RNAi screen targeting over 17,000 human genes to identify the host factors that support orthopoxvirus infection. We used secondary and tertiary assays to validate our screen results. One of the strongest hits was heat shock factor 1 (HSF1), the ancient master regulator of the cytoprotective heat-shock response. In investigating the behavior of HSF1 during vaccinia infection, we found that HSF1 was phosphorylated, translocated to the nucleus, and increased transcription of HSF1 target genes. Activation of HSF1 was supportive for virus replication, as RNAi knockdown and HSF1 small molecule inhibition prevented orthopoxvirus infection. Consistent with its role as a transcriptional activator, inhibition of several HSF1 targets also blocked vaccinia virus replication. These data show that orthopoxviruses co-opt host transcriptional responses for their own benefit, thereby effectively extending their functional genome to include genes residing within the host DNA. The dependence on HSF1 and its chaperone network offers multiple opportunities for antiviral drug development.
Collapse
Affiliation(s)
- Claire Marie Filone
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Ignacio S. Caballero
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ken Dower
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Marc L. Mendillo
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Glenn S. Cowley
- The Broad Institute, Cambridge Massachusetts, United States of America
| | - Sandro Santagata
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Daniel K. Rozelle
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Judy Yen
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kathleen H. Rubins
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Nir Hacohen
- The Broad Institute, Cambridge Massachusetts, United States of America
| | - David E. Root
- The Broad Institute, Cambridge Massachusetts, United States of America
| | - Lisa E. Hensley
- United States Army Medical Research Institute of Infectious Diseases, Virology Division, Fort Detrick, Maryland, United States of America
| | - John Connor
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
487
|
Raychaudhuri S, Loew C, Körner R, Pinkert S, Theis M, Hayer-Hartl M, Buchholz F, Hartl F. Interplay of Acetyltransferase EP300 and the Proteasome System in Regulating Heat Shock Transcription Factor 1. Cell 2014; 156:975-85. [DOI: 10.1016/j.cell.2014.01.055] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/20/2013] [Accepted: 01/23/2014] [Indexed: 12/22/2022]
|
488
|
Carpenter RL, Paw I, Dewhirst MW, Lo HW. Akt phosphorylates and activates HSF-1 independent of heat shock, leading to Slug overexpression and epithelial-mesenchymal transition (EMT) of HER2-overexpressing breast cancer cells. Oncogene 2014; 34:546-57. [PMID: 24469056 PMCID: PMC4112182 DOI: 10.1038/onc.2013.582] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/26/2013] [Accepted: 12/03/2013] [Indexed: 12/30/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an essential step for tumor progression, although the mechanisms driving EMT are still not fully understood. In an effort to investigate these mechanisms, we observed that heregulin-mediated activation of HER2, or HER2 overexpression, resulted in EMT, which is accompanied with increased expression of a known EMT regulator Slug, but not TWIST or Snail. We then investigated how HER2 induced Slug expression and found, for the first time, that there are four consensus HSF Sequence-binding Elements (HSEs), the binding sites for heat shock factor-1 (HSF-1), located in the Slug promoter. HSF-1 bound to and transactivated the Slug promoter independent of heat shock, leading to Slug expression in breast cancer cells. Mutation of the putative HSEs ablated Slug transcriptional activation induced by heregulin or HSF-1 overexpression. Knockdown of HSF-1 expression by siRNA reduced Slug expression and heregulin-induced EMT. The positive association between HSF-1 and Slug was confirmed by immunohistochemical staining of a cohort of 100 invasive breast carcinoma specimens. While investigating how HER2 activated HSF-1 independent of heat shock, we observed that HER2 activation resulted in concurrent phosphorylation of Akt and HSF-1. We then observed, also for the first time, that Akt directly interacted with HSF-1 and phosphorylated HSF-1 at S326. Inhibition of Akt using siRNA, dominant-negative Akt mutant, or small molecule inhibitors prevented heregulin-induced HSF-1 activation and Slug expression. Conversely, constitutively active Akt induced HSF-1 phosphorylation and Slug expression. HSF-1 knockdown reduced the ability of Akt to induce Slug expression, indicating an essential that HSF-1 plays in Akt-induced Slug upregulation. Together, our study uncovered the existence of a novel Akt-HSF-1 signaling axis that leads to Slug upregulation and EMT, and potentially contributes to progression of HER2-positive breast cancer.
Collapse
Affiliation(s)
- R L Carpenter
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - I Paw
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - M W Dewhirst
- 1] Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, USA [2] Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - H-W Lo
- 1] Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA [2] Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
489
|
Das S, Bhattacharyya NP. Transcription regulation of HYPK by Heat Shock Factor 1. PLoS One 2014; 9:e85552. [PMID: 24465598 PMCID: PMC3897489 DOI: 10.1371/journal.pone.0085552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
HYPK (Huntingtin Yeast Partner K) was originally identified by yeast two-hybrid assay as an interactor of Huntingtin, the protein mutated in Huntington's disease. HYPK was characterized earlier as an intrinsically unstructured protein having chaperone-like activity in vitro and in vivo. HYPK has the ability of reducing rate of aggregate formation and subsequent toxicity caused by mutant Huntingtin. Further investigation revealed that HYPK is involved in diverse cellular processes and required for normal functioning of cells. In this study we observed that hyperthermia increases HYPK expression in human and mouse cells in culture. Expression of exogenous Heat Shock Factor 1 (HSF1), upon heat treatment could induce HYPK expression, whereas HSF1 knockdown reduced endogenous as well as heat-induced HYPK expression. Putative HSF1-binding site present in the promoter of human HYPK gene was identified and validated by reporter assay. Chromatin immunoprecipitation revealed in vivo interaction of HSF1 and RNA polymerase II with HYPK promoter sequence. Additionally, acetylation of histone H4, a known epigenetic marker of inducible HSF1 binding, was observed in response to heat shock in HYPK gene promoter. Overexpression of HYPK inhibited cells from lethal heat-induced death whereas knockdown of HYPK made the cells susceptible to lethal heat shock-induced death. Apart from elevated temperature, HYPK was also upregulated by hypoxia and proteasome inhibition, two other forms of cellular stress. We concluded that chaperone-like protein HYPK is induced by cellular stress and under transcriptional regulation of HSF1.
Collapse
Affiliation(s)
- Srijit Das
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Nitai Pada Bhattacharyya
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
- * E-mail:
| |
Collapse
|
490
|
HER2/ErbB2 activates HSF1 and thereby controls HSP90 clients including MIF in HER2-overexpressing breast cancer. Cell Death Dis 2014; 5:e980. [PMID: 24384723 PMCID: PMC4040658 DOI: 10.1038/cddis.2013.508] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/30/2013] [Accepted: 11/11/2013] [Indexed: 01/31/2023]
Abstract
Overexpression of the human epidermal growth factor receptor-2 (HER2) in breast cancer strongly correlates with aggressive tumors and poor prognosis. Recently, a positive correlation between HER2 and MIF (macrophage migration inhibitory factor, a tumor-promoting protein and heat-shock protein 90 (HSP90) client) protein levels was shown in cancer cells. However, the underlying mechanistic link remained unknown. Here we show that overexpressed HER2 constitutively activates heat-shock factor 1 (HSF1), the master transcriptional regulator of the inducible proteotoxic stress response of heat-shock chaperones, including HSP90, and a crucial factor in initiation and maintenance of the malignant state. Inhibiting HER2 pharmacologically by Lapatinib (a dual HER2/epidermal growth factor receptor inhibitor) or CP724.714 (a specific HER2 inhibitor), or by knockdown via siRNA leads to inhibition of phosphoactivated Ser326 HSF1, and subsequently blocks the activity of the HSP90 chaperone machinery in HER2-overexpressing breast cancer lines. Consequently, HSP90 clients, including MIF, AKT, mutant p53 and HSF1 itself, become destabilized, which in turn inhibits tumor proliferation. Mechanistically, HER2 signals via the phosphoinositide-3-kinase (PI3K)–AKT– mammalian target of rapamycin (mTOR) axis to induce activated pSer326 HSF1. Heat-shock stress experiments confirm this functional link between HER2 and HSF1, as HER2 (and PI3K) inhibition attenuate the HSF1-mediated heat-shock response. Importantly, we confirmed this axis in vivo. In the mouse model of HER2-driven breast cancer, ErbB2 inhibition by Lapatinib strongly suppresses tumor progression, and this is associated with inactivation of the HSF1 pathway. Moreover, ErbB2-overexpressing cancer cells derived from a primary mouse ErbB2 tumor also show HSF1 inactivation and HSP90 client destabilization in response to ErbB2 inhibition. Furthermore, in HER2-positive human breast cancers HER2 levels strongly correlate with pSer326 HSF1 activity. Our results show for the first time that HER2/ErbB2 overexpression controls HSF1 activity, with subsequent stabilization of numerous tumor-promoting HSP90 clients such as MIF, AKT and HSF1 itself, thereby causing a robust promotion in tumor growth in HER2-positive breast cancer.
Collapse
|
491
|
Samarasinghe B, Wales CTK, Taylor FR, Jacobs AT. Heat shock factor 1 confers resistance to Hsp90 inhibitors through p62/SQSTM1 expression and promotion of autophagic flux. Biochem Pharmacol 2013; 87:445-55. [PMID: 24291777 DOI: 10.1016/j.bcp.2013.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023]
Abstract
Heat shock protein 90 (Hsp90) has an important role in many cancers. Biochemical inhibitors of Hsp90 are in advanced clinical development for the treatment of solid and hematological malignancies. At the cellular level, their efficacy is diminished by the fact that Hsp90 inhibition causes activation of heat shock factor 1 (HSF1). We report a mechanism by which HSF1 activation diminishes the effect of Hsp90 inhibitors geldanamycin and 17-allylaminogeldanamycin (17-AAG, tanespimycin). Silencing HSF1 with siRNA or inhibiting HSF1 activity with KRIBB11 lowers the threshold for apoptosis in geldanamycin and 17-AAG-treated cancer cells. Autophagy also mitigates the actions of Hsp90 inhibitors. Blocking autophagy with 3-methyladenine (3-MA), bafilomycin A1, or beclin 1 siRNA also lower the threshold for apoptosis. Exploring a potential relationship between HSF1 and autophagy, we monitored autophagosome formation and autophagic flux in control and HSF1-silenced cells. Results show HSF1 is required for autophagy in Hsp90 inhibitor-treated cells. The reduced autophagy observed in HSF1-silenced cells correlates with enhanced cell death. To investigate how HSF1 promotes autophagy, we monitored the expression of genes involved in the autophagic cascade. These data show that sequestosome 1 (p62/SQSTM1), a protein involved in the delivery of autophagic substrates and nucleation of autophagosomes, is an HSF1-regulated gene. Gene silencing was used to evaluate the significance of p62/SQSTM1 in Hsp90 inhibitor resistance. Cells where p62/SQSTM1 was silenced showed a dramatic increase in sensitivity to Hsp90 inhibitors. Results highlight the importance of HSF1 and HSF1-dependent p62/SQSTM1 expression in resistance Hsp90 inhibitors, underscoring the potential of targeting HSF1 to improve the efficacy of Hsp90 inhibitors in cancer.
Collapse
Affiliation(s)
- Buddhini Samarasinghe
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 W. Kawili St., Hilo, HI 96720, United States
| | - Christina T K Wales
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 W. Kawili St., Hilo, HI 96720, United States
| | - Frederick R Taylor
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 W. Kawili St., Hilo, HI 96720, United States
| | - Aaron T Jacobs
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 200 W. Kawili St., Hilo, HI 96720, United States; University of Hawaii Cancer Center, 701 Ilalo Street, Honolulu, HI 96813, United States.
| |
Collapse
|
492
|
Scherz-Shouval R, Bagley AF, Whitesell L, Bhatia SN, Lindquist S. Abstract C132: Targeting heat shock factor 1 improves the antitumor efficiency of hyperthermia. Mol Cancer Ther 2013. [DOI: 10.1158/1535-7163.targ-13-c132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The heat-shock response is a powerful transcriptional program which acts genome-wide, not only to restore normal protein folding through the induction of heat shock proteins (HSP), but to re-shape global cellular pathways controlling survival, growth and metabolism. In mammals, this response is regulated primarily by the Heat Shock Factor 1 (HSF1) transcription factor. We have previously shown that HSF1 plays a fundamental role in tumorigenesis, by promoting the survival and malignance of tumor cells, both in tissue culture and in mouse models of cancer [1]. HSF1 exerts its role by activating a unique transcriptional program in the cancer cells [2]. Indeed, increased HSF1 levels, as well as activation of its transcriptional signature, are associated with reduced survival in breast, lung and colon cancer patients [3].
Cancer cells are exquisitely dependent on HSF1 for survival. Exposure to additional stress, such as heat, further increases their dependency on HSF1. Recently we described how translation is linked to HSF1 activation using a derivative of the natural compound rocaglamide [4]. We found that this drug-like inhibitor of translation-initiation inhibits HSF1 and leads to tumor regression in hematopoietic malignancies. Here we combine this compound, or genetic inhibition of HSF1 expression, with focal heat therapy delivered via gold nano rods. We find that inhibiting HSF1 in solid tumors increases the efficiency of hyperthermia as an anticancer treatment.
Citation Information: Mol Cancer Ther 2013;12(11 Suppl):C132.
Citation Format: Ruth Scherz-Shouval, Alexander F. Bagley, Luke Whitesell, Sangeeta N. Bhatia, Susan Lindquist. Targeting heat shock factor 1 improves the antitumor efficiency of hyperthermia. [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2013 Oct 19-23; Boston, MA. Philadelphia (PA): AACR; Mol Cancer Ther 2013;12(11 Suppl):Abstract nr C132.
Collapse
Affiliation(s)
| | | | - Luke Whitesell
- 1Whitehead Institute for Biomedical Research, Cambridge, MA
| | | | | |
Collapse
|
493
|
Wiita AP, Ziv E, Wiita PJ, Urisman A, Julien O, Burlingame AL, Weissman JS, Wells JA. Global cellular response to chemotherapy-induced apoptosis. eLife 2013; 2:e01236. [PMID: 24171104 PMCID: PMC3808542 DOI: 10.7554/elife.01236] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/23/2013] [Indexed: 12/28/2022] Open
Abstract
How cancer cells globally struggle with a chemotherapeutic insult before succumbing to apoptosis is largely unknown. Here we use an integrated systems-level examination of transcription, translation, and proteolysis to understand these events central to cancer treatment. As a model we study myeloma cells exposed to the proteasome inhibitor bortezomib, a first-line therapy. Despite robust transcriptional changes, unbiased quantitative proteomics detects production of only a few critical anti-apoptotic proteins against a background of general translation inhibition. Simultaneous ribosome profiling further reveals potential translational regulation of stress response genes. Once the apoptotic machinery is engaged, degradation by caspases is largely independent of upstream bortezomib effects. Moreover, previously uncharacterized non-caspase proteolytic events also participate in cellular deconstruction. Our systems-level data also support co-targeting the anti-apoptotic regulator HSF1 to promote cell death by bortezomib. This integrated approach offers unique, in-depth insight into apoptotic dynamics that may prove important to preclinical evaluation of any anti-cancer compound. DOI:http://dx.doi.org/10.7554/eLife.01236.001 Many cancer treatments work by causing cancer cells to enter an advanced stage of a process known as programmed cell death or apoptosis. When a cell begins apoptosis, it takes a series of metabolic steps–such as fragmenting its DNA or reducing its volume–that eventually kills it. The cancer cells in tumours are able to grow because they are able to avoid apoptosis. When cancer cells are treated with cytotoxic drugs they do not die immediately but try to stave off the effect of the drug. However, we still know relatively little about what happens at the molecular levels as cancer cells struggle to avoid apoptosis. Now Wiita et al. have combined two methods for studying cancer cells–deep sequencing of RNA and quantitative proteomics–to simultaneously observe a variety of processes, including the transcription of genes to produce messenger RNA (mRNA) molecules, the translation of these mRNA molecules to produce proteins, and the proteolysis (or breakdown) of these proteins when the cells were subjected to chemotherapy. Wiita et al. studied how human myeloma cells responded to bortezomib, a drug that is used to treat various blood cancers, and found that ribosomes–the complex molecular machines that perform the translation step– reacted to the chemotherapy by preferentially translating certain mRNA molecules in order to produce a set of proteins that protect the cell. Developing drugs to inhibit the effects of these stress-response proteins could make the cancer cells more responsive to existing anticancer drugs. When this effort to stay alive is ultimately unsuccessful, the destruction of proteins appears surprisingly unrelated to the previous attempts that were made to protect the cell. With further work the “global cellular response” approach developed by Wiita et al. could lead to the discovery of new drug targets, improve our understanding of drug resistance in chemotherapy, and provide new ways to monitor how patients respond to treatment. DOI:http://dx.doi.org/10.7554/eLife.01236.002
Collapse
Affiliation(s)
- Arun P Wiita
- Department of Pharmaceutical Chemistry , University of California, San Francisco , San Francisco , United States ; Department of Laboratory Medicine , University of California, San Francisco , San Francisco , United States
| | | | | | | | | | | | | | | |
Collapse
|
494
|
Vydra N, Toma A, Glowala-Kosinska M, Gogler-Piglowska A, Widlak W. Overexpression of Heat Shock Transcription Factor 1 enhances the resistance of melanoma cells to doxorubicin and paclitaxel. BMC Cancer 2013; 13:504. [PMID: 24165036 PMCID: PMC4231344 DOI: 10.1186/1471-2407-13-504] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background Heat Shock Transcription Factor 1 (HSF1) is activated under stress conditions. In turn, it induces expression of Heat Shock Proteins (HSPs), which are well-known regulators of protein homeostasis. Elevated levels of HSF1 and HSPs were observed in many types of tumors. The aim of the present study was to determine whether HSF1 could have an effect on the survival of cancer cells treated with chemotherapeutic cytotoxic agents. Methods We constructed mouse (B16F10) and human (1205Lu, WM793B) melanoma cells overexpressing full or mutant form of human HSF1: a constitutively active one with a deletion in regulatory domain or a dominant negative one with a deletion in the activation domain. The impact of different forms of HSF1 on the expression of HSP and ABC genes was studied by RT-PCR and Western blotting. Cell cultures were treated with increasing amounts of doxorubicin, paclitaxel, cisplatin, vinblastine or bortezomib. Cell viability was determined by MTT, and IC50 was calculated. Cellular accumulation of fluorescent dyes and side population cells were studied using flow cytometry. Results Cells overexpressing HSF1 and characterized by increased HSPs accumulation were more resistant to doxorubicin or paclitaxel, but not to cisplatin, vinblastine or bortezomib. This resistance correlated with the enhanced efflux of fluorescent dyes and the increased number of side population cells. The expression of constitutively active mutant HSF1, also resulting in HSPs overproduction, did not reduce the sensitivity of melanoma cells to drugs, unlike in the case of dominant negative form expression. Cells overexpressing a full or dominant negative form of HSF1, but not a constitutively active one, had higher transcription levels of ABC genes when compared to control cells. Conclusions HSF1 overexpression facilitates the survival of melanoma cells treated with doxorubicin or paclitaxel. However, HSF1-mediated chemoresistance is not dependent on HSPs accumulation but on an increased potential for drug efflux by ABC transporters. Direct transcriptional activity of HSF1 is not necessary for increased expression of ABC genes, which is probably mediated by HSF1 regulatory domain.
Collapse
Affiliation(s)
- Natalia Vydra
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, Poland.
| | | | | | | | | |
Collapse
|
495
|
Chen YF, Dong Z, Xia Y, Tang J, Peng L, Wang S, Lai D. Nucleoside analog inhibits microRNA-214 through targeting heat-shock factor 1 in human epithelial ovarian cancer. Cancer Sci 2013; 104:1683-9. [PMID: 24033540 DOI: 10.1111/cas.12277] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 01/06/2023] Open
Abstract
The important functions of heat shock factor 1 (HSF1) in certain malignant cancers have granted it to be an appealing target for developing novel strategy for cancer therapy. Here, we report that higher HSF1 expression is associated with more aggressive malignization in epithelial ovarian tumors, indicating that targeting HSF1 is also a promising strategy against ovarian cancer. We found that a nucleoside analog (Ly101-4B) elicits efficient inhibition on HSF1 expression and potent anticancer activity on epithelial ovarian cancer both in vitro and in vivo. Moreover, by targeting HSF1, Ly101-4B inhibits the biogenesis of microRNA-214, which has been revealed to be overexpressed and to promote cell survival in human ovarian epithelial tumors. These findings demonstrate that Ly101-4B is a promising candidate for ovarian cancer therapy, and expand our understanding of HSF1, by revealing that it can regulate microRNA biogenesis in addition to its canonical function of regulating protein-coding RNAs.
Collapse
Affiliation(s)
- Yi-Fei Chen
- The International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
496
|
Chuma M, Sakamoto N, Nakai A, Hige S, Nakanishi M, Natsuizaka M, Suda G, Sho T, Hatanaka K, Matsuno Y, Yokoo H, Kamiyama T, Taketomi A, Fujii G, Tashiro K, Hikiba Y, Fujimoto M, Asaka M, Maeda S. Heat shock factor 1 accelerates hepatocellular carcinoma development by activating nuclear factor-κB/mitogen-activated protein kinase. Carcinogenesis 2013; 35:272-81. [PMID: 24130164 DOI: 10.1093/carcin/bgt343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heat shock factor 1 (HSF1), a major transactivator of stress responses, has been implicated in carcinogenesis in various organs. However, little is known about the biological functions of HSF1 in the development of hepatocellular carcinoma (HCC). To clarify the functional role of HSF1 in HCC, we established HSF1-knockdown (HSF1 KD) KYN2 HCC cells by stably expressing either small hairpin RNA (shRNA) against HSF1 (i.e. HSF1 KD) or control shRNA (HSF1 control). Tumorigenicity was significantly reduced in orthotopic mice with HSF1 KD cells compared with those with HSF1 control cells. Reduced tumorigenesis in HSF1 KD cells appeared attributable to increased apoptosis and decreased proliferation. Tumor necrosis factor-α-induced apoptosis was increased in HSF1 KD cells and HSF1(-/-) mouse hepatocytes compared with controls. Decreased expression of IκB kinase γ, a positive regulator of nuclear factor-κB, was also observed in HSF1 KD cells and HSF1(-/-) mouse hepatocytes. Furthermore, expression of bcl-2-associated athanogene domain 3 (BAG3) was dramatically reduced in HSF1 KD cells and HSF1(-/-) mouse hepatocytes. We also found that epidermal growth factor-stimulated mitogen-activated protein kinase signaling was impaired in HSF1 KD cells. Clinicopathological analysis demonstrated frequent overexpression of HSF1 in human HCCs. Significant correlations between HSF1 and BAG3 protein levels and prognosis were also observed. In summary, these results identify a mechanistic link between HSF1 and liver tumorigenesis and may provide as a potential molecular target for the development of anti-HCC therapies.
Collapse
Affiliation(s)
- Makoto Chuma
- Department of Gastroenterology and Hepatology, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
497
|
Gidalevitz T, Wang N, Deravaj T, Alexander-Floyd J, Morimoto RI. Natural genetic variation determines susceptibility to aggregation or toxicity in a C. elegans model for polyglutamine disease. BMC Biol 2013; 11:100. [PMID: 24079614 PMCID: PMC3816611 DOI: 10.1186/1741-7007-11-100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/11/2013] [Indexed: 11/10/2022] Open
Abstract
Background Monogenic gain-of-function protein aggregation diseases, including Huntington’s disease, exhibit substantial variability in age of onset, penetrance, and clinical symptoms, even between individuals with similar or identical mutations. This difference in phenotypic expression of proteotoxic mutations is proposed to be due, at least in part, to the variability in genetic background. To address this, we examined the role of natural variation in defining the susceptibility of genetically diverse individuals to protein aggregation and toxicity, using the Caenorhabditis elegans polyglutamine model. Results Introgression of polyQ40 into three wild genetic backgrounds uncovered wide variation in onset of aggregation and corresponding toxicity, as well as alteration in the cell-specific susceptibility to aggregation. To further dissect these relationships, we established a panel of 21 recombinant inbred lines that showed a broad range of aggregation phenotypes, independent of differences in expression levels. We found that aggregation is a transgressive trait, and does not always correlate with measures of toxicity, such as early onset of muscle dysfunction, egg-laying deficits, or reduced lifespan. Moreover, distinct measures of proteotoxicity were independently modified by the genetic background. Conclusions Resistance to protein aggregation and the ability to restrict its associated cellular dysfunction are independently controlled by the natural variation in genetic background, revealing important new considerations in the search for targets for therapeutic intervention in conformational diseases. Thus, our C. elegans model can serve as a powerful tool to dissect the contribution of natural variation to individual susceptibility to proteotoxicity. Please see related commentary by Kaeberlein, http://www.biomedcentral.com/1741-7007/11/102.
Collapse
Affiliation(s)
- Tali Gidalevitz
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208-3500, USA.
| | | | | | | | | |
Collapse
|
498
|
Raynes R, Brunquell J, Westerheide SD. Stress Inducibility of SIRT1 and Its Role in Cytoprotection and Cancer. Genes Cancer 2013; 4:172-82. [PMID: 24020008 DOI: 10.1177/1947601913484497] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cells must continuously respond to stressful insults via the upregulation of cytoprotective pathways. The longevity factor and deacetylase SIRT1 plays a critical role in coordinating this cellular response to stress. SIRT1 activity and levels are regulated by cellular stressors, including metabolic, genotoxic, oxidative, and proteotoxic stress. As a stress sensor, SIRT1 impacts cell survival by deacetylating substrate proteins to drive the cell towards a cytoprotective pathway. Extreme stress conditions, however, can cause SIRT1 to lead cells down an apoptotic pathway instead. SIRT1 is frequently dysregulated in cancer cells and has been characterized to have a dual role as both an oncogene and a tumor suppressor, likely due to its pivotal function in regulating cytoprotection. Recently, the ability of SIRT1 to regulate HSF1-dependent induction of the heat shock response has highlighted another pathway through which SIRT1 can modulate cytoprotection. Activation of HSF1 results in the production of cytoprotective chaperones that can facilitate the transformed phenotype of cancer cells. In this review, we discuss the stress-dependent regulation of SIRT1. We highlight the role of SIRT1 in stress management and cytoprotection and emphasize SIRT1-dependent activation of HSF1 as a potential mechanism for cancer promotion.
Collapse
Affiliation(s)
- Rachel Raynes
- Department of Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | | | | |
Collapse
|
499
|
Calamini B, Morimoto RI. Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr Top Med Chem 2013; 12:2623-40. [PMID: 23339312 DOI: 10.2174/1568026611212220014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/26/2012] [Accepted: 09/26/2012] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation are widely implicated in an increasing number of human diseases providing for new therapeutic opportunities targeting protein homeostasis (proteostasis). The cellular response to proteotoxicity is highly regulated by stress signaling pathways, molecular chaperones, transport and clearance machineries that function as a proteostasis network (PN) to protect the stability and functional properties of the proteome. Consequently, the PN is essential at the cellular and organismal level for development and lifespan. However, when challenged during aging, stress, and disease, the folding and clearance machineries can become compromised leading to both gain-of-function and loss-of-function proteinopathies. Here, we assess the role of small molecules that activate the heat shock response, the unfolded protein response, and clearance mechanisms to increase PN capacity and protect cellular proteostasis against proteotoxicity. We propose that this strategy to enhance cell stress pathways and chaperone activity establishes a cytoprotective state against misfolding and/or aggregation and represents a promising therapeutic avenue to prevent the cellular damage associated with the variety of protein conformational diseases.
Collapse
Affiliation(s)
- Barbara Calamini
- Department of Neurobiology and Center for Drug Discovery, Duke University, Durham, NC, USA
| | | |
Collapse
|
500
|
Evolutionarily conserved domain of heat shock transcription factor negatively regulates oligomerization and DNA binding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:930-6. [DOI: 10.1016/j.bbagrm.2013.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/19/2013] [Accepted: 03/28/2013] [Indexed: 12/27/2022]
|