451
|
Kronenberg HM. Bone and Mineral Metabolism: Where Are We, Where Are We Going, and How Will We Get There? J Clin Endocrinol Metab 2016; 101:795-8. [PMID: 26908104 PMCID: PMC4803156 DOI: 10.1210/jc.2015-3607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Advances in diagnosing and treating metabolic bone diseases will require ways to assess cellular signaling within human bones, ideally noninvasively. Only then will we be able to fully harness the increased molecular understanding of bone that derives from human genetics and model organisms, primarily rodents. New hormones regulating mineral ion homeostasis surely remain to be discovered, probably through advances in the study of human genetic disease.
Collapse
Affiliation(s)
- Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
452
|
Maeda K, Enomoto A, Hara A, Asai N, Kobayashi T, Horinouchi A, Maruyama S, Ishikawa Y, Nishiyama T, Kiyoi H, Kato T, Ando K, Weng L, Mii S, Asai M, Mizutani Y, Watanabe O, Hirooka Y, Goto H, Takahashi M. Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells. Sci Rep 2016; 6:22288. [PMID: 26924503 PMCID: PMC4770287 DOI: 10.1038/srep22288] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/11/2016] [Indexed: 01/14/2023] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) in culture are derived from BM stromal cells or skeletal stem cells. Whereas MSCs have been exploited in clinical medicine, the identification of MSC-specific markers has been limited. Here, we report that a cell surface and secreted protein, Meflin, is expressed in cultured MSCs, fibroblasts and pericytes, but not other types of cells including epithelial, endothelial and smooth muscle cells. In vivo, Meflin is expressed by immature osteoblasts and chondroblasts. In addition, Meflin is found on stromal cells distributed throughout the BM, and on pericytes and perivascular cells in multiple organs. Meflin maintains the undifferentiated state of cultured MSCs and is downregulated upon their differentiation, consistent with the observation that Meflin-deficient mice exhibit increased number of osteoblasts and accelerated bone development. In the bone and BM, Meflin is more highly expressed in primitive stromal cells that express platelet-derived growth factor receptor α and Sca-1 than the Sca-1-negative adipo-osteogenic progenitors, which create a niche for hematopoiesis. Those results are consistent with a decrease in the number of clonogenic colony-forming unit-fibroblasts within the BM of Meflin-deficient mice. These preliminary data suggest that Meflin is a potential marker for cultured MSCs and their source cells in vivo.
Collapse
Affiliation(s)
- Keiko Maeda
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akitoshi Hara
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Naoya Asai
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takeshi Kobayashi
- Department of Physiology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Asuka Horinouchi
- Department of Nephrology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shoichi Maruyama
- Department of Nephrology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yuichi Ishikawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, , 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takahiro Nishiyama
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, , 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, , 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takuya Kato
- Tumour Cell Biology Laboratory, The Francis-Crick Institute, 44 Lincoln's Inn Fields, London, WC2A 3LY, United Kingdom
| | - Kenju Ando
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Liang Weng
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shinji Mii
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masato Asai
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasuyuki Mizutani
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.,Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Osamu Watanabe
- Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hidemi Goto
- Department of Gastroenterology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Masahide Takahashi
- Department of Pathology, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
453
|
Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research. Stem Cells Int 2016; 2016:2849879. [PMID: 27006661 PMCID: PMC4783549 DOI: 10.1155/2016/2849879] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/02/2016] [Indexed: 12/28/2022] Open
Abstract
Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs). The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs) are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research.
Collapse
|
454
|
Stem Cells for Bone Regeneration: From Cell-Based Therapies to Decellularised Engineered Extracellular Matrices. Stem Cells Int 2016; 2016:9352598. [PMID: 26997959 PMCID: PMC4779529 DOI: 10.1155/2016/9352598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/11/2016] [Accepted: 01/17/2016] [Indexed: 02/07/2023] Open
Abstract
Currently, autologous bone grafting represents the clinical gold standard in orthopaedic surgery. In certain cases, however, alternative techniques are required. The clinical utility of stem and stromal cells has been demonstrated for the repair and regeneration of craniomaxillofacial and long bone defects although clinical adoption of bone tissue engineering protocols has been very limited. Initial tissue engineering studies focused on the bone marrow as a source of cells for bone regeneration, and while a number of promising results continue to emerge, limitations to this technique have prompted the exploration of alternative cell sources, including adipose and muscle tissue. In this review paper we discuss the advantages and disadvantages of cell sources with a focus on adipose tissue and the bone marrow. Additionally, we highlight the relatively recent paradigm of developmental engineering, which promotes the recapitulation of naturally occurring developmental processes to allow the implant to optimally respond to endogenous cues. Finally we examine efforts to apply lessons from studies into different cell sources and developmental approaches to stimulate bone growth by use of decellularised hypertrophic cartilage templates.
Collapse
|
455
|
Zhang P, Liu Y, Jin C, Zhang M, Tang F, Zhou Y. Histone Acetyltransferase GCN5 Regulates Osteogenic Differentiation of Mesenchymal Stem Cells by Inhibiting NF-κB. J Bone Miner Res 2016; 31:391-402. [PMID: 26420353 DOI: 10.1002/jbmr.2704] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/26/2015] [Accepted: 09/03/2015] [Indexed: 02/02/2023]
Abstract
As the most well-studied histone acetyltransferase (HAT) in yeast and mammals, general control nonderepressible 5 (GCN5) was documented to play essential roles in various developmental processes. However, little is known about its role in osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we detected the critical function of GCN5 in osteogenic commitment of MSCs. In this role, the HAT activity of GCN5 was not required. Mechanistically, GCN5 repressed nuclear factor kappa B (NF-κB)-dependent transcription and inhibited the NF-κB signaling pathway. The impaired osteogenic differentiation by GCN5 knockdown was blocked by inhibition of NF-κB. Most importantly, the expression of GCN5 was decreased significantly in the bone tissue sections of ovariectomized mice or aged mice. Collectively, these results may point to the GCN5-NF-κB pathway as a novel potential molecular target for stem cell mediated regenerative medicine and the treatment of metabolic bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chanyuan Jin
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Fuchou Tang
- Biodynamic Optical Imaging Center, College of Life Sciences, Peking University, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
456
|
Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nat Commun 2016; 7:10526. [PMID: 26830436 PMCID: PMC4740445 DOI: 10.1038/ncomms10526] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/22/2015] [Indexed: 12/17/2022] Open
Abstract
The suture mesenchyme serves as a growth centre for calvarial morphogenesis and has been postulated to act as the niche for skeletal stem cells. Aberrant gene regulation causes suture dysmorphogenesis resulting in craniosynostosis, one of the most common craniofacial deformities. Owing to various limitations, especially the lack of suture stem cell isolation, reconstruction of large craniofacial bone defects remains highly challenging. Here we provide the first evidence for an Axin2-expressing stem cell population with long-term self-renewing, clonal expanding and differentiating abilities during calvarial development and homeostastic maintenance. These cells, which reside in the suture midline, contribute directly to injury repair and skeletal regeneration in a cell autonomous fashion. Our findings demonstrate their true identity as skeletal stem cells with innate capacities to replace the damaged skeleton in cell-based therapy, and permit further elucidation of the stem cell-mediated craniofacial skeletogenesis, leading to revealing the complex nature of congenital disease and regenerative medicine.
Collapse
|
457
|
Abstract
Mesenchymal stromal cells (MSCs) are heterogeneous and primitive cells discovered first in the bone marrow (BM). They have putative roles in maintaining tissue homeostasis and are increasingly recognized as components of stem cell niches, which are best defined in the blood. The absence of in vivo MSC markers has limited our ability to track their behavior in vivo and draw comparisons with in vitro observations. Here we review the historical background of BM-MSCs, advances made in their prospective isolation, their developmental origin and contribution to maintaining subsets of hematopoietic cells, and how mesenchymal cells contribute to other stem cell niches.
Collapse
Affiliation(s)
- Youmna Kfoury
- Center for Regenerative Medicine and MGH Cancer Center, Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Boston, MA 02114, USA
| | - David T Scadden
- Center for Regenerative Medicine and MGH Cancer Center, Massachusetts General Hospital, Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Boston, MA 02114, USA.
| |
Collapse
|
458
|
Schepers K, Campbell TB, Passegué E. Normal and leukemic stem cell niches: insights and therapeutic opportunities. Cell Stem Cell 2016; 16:254-67. [PMID: 25748932 DOI: 10.1016/j.stem.2015.02.014] [Citation(s) in RCA: 323] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem cells (HSCs) rely on instructive cues from the bone marrow (BM) niche to maintain their quiescence and adapt blood production to the organism's needs. Alterations in the BM niche are commonly observed in blood malignancies and directly contribute to the aberrant function of disease-initiating leukemic stem cells (LSCs). Here, we review recent insights into the cellular and molecular determinants of the normal HSC niche and describe how genetic changes in stromal cells and leukemia-induced BM niche remodeling contribute to blood malignancies. Moreover, we discuss how these findings can be applied to non-cell-autonomous therapies targeting the LSC niche.
Collapse
Affiliation(s)
- Koen Schepers
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Timothy B Campbell
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emmanuelle Passegué
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
459
|
Pagnotti GM, Styner M. Exercise Regulation of Marrow Adipose Tissue. Front Endocrinol (Lausanne) 2016; 7:94. [PMID: 27471493 PMCID: PMC4943947 DOI: 10.3389/fendo.2016.00094] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone - a PPARγ-agonist known to increase MAT and fracture risk - mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise significantly suppresses MAT volume and induces bone formation. That exercise can both suppress MAT volume and increase bone quantity, notwithstanding the skeletal harm induced by rosiglitazone, underscores exercise as a powerful regulator of bone remodeling, encouraging marrow stem cells toward the osteogenic lineage to fulfill an adaptive need for bone formation. Thus, exercise represents an effective strategy to mitigate the deleterious effects of overeating and iatrogenic etiologies on bone and fat.
Collapse
Affiliation(s)
- Gabriel M. Pagnotti
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
- *Correspondence: Maya Styner,
| |
Collapse
|
460
|
Abstract
New evidence has recently emerged defining a close relationship between fat and bone metabolism. Adipose tissue is one of the largest organs in the body but its functions vary by location and origin. Adipocytes can act in an autocrine manner to regulate energy balance by sequestering triglycerides and then, depending on demand, releasing fatty acids through lipolysis for energy utilization, and in some cases through uncoupling protein 1 for generating heat. Adipose tissue can also act in an endocrine or paracrine manner by releasing adipokines that modulate the function of other organs. Bone is one of those target tissues, although recent evidence has emerged that the skeleton reciprocates by releasing its own factors that modulate adipose tissue and beta cells in the pancreas. Therefore, it is not surprising that these energy-modulating tissues are controlled by a central regulatory mechanism, primarily the sympathetic nervous system. Disruption in this complex regulatory circuit and its downstream tissues is manifested in a wide range of metabolic disorders, for which the most prevalent is type 2 diabetes mellitus. The aim of this review is to summarize our knowledge of common determinants in the bone and adipose function and the translational implications of recent work in this emerging field.
Collapse
Affiliation(s)
- Beata Lecka-Czernik
- Dept. of Orthopaedic Surgery, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH 43614, United States; Dept. of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH 43614, United States
| | - Clifford J Rosen
- Tufts University School of Medicine, and Maine Medical Center Research Institute, Scarborough, ME 04074, United States.
| |
Collapse
|
461
|
Scheller EL, Khoury B, Moller KL, Wee NKY, Khandaker S, Kozloff KM, Abrishami SH, Zamarron BF, Singer K. Changes in Skeletal Integrity and Marrow Adiposity during High-Fat Diet and after Weight Loss. Front Endocrinol (Lausanne) 2016; 7:102. [PMID: 27512386 PMCID: PMC4961699 DOI: 10.3389/fendo.2016.00102] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/08/2016] [Indexed: 12/21/2022] Open
Abstract
The prevalence of obesity has continued to rise over the past three decades leading to significant increases in obesity-related medical care costs from metabolic and non-metabolic sequelae. It is now clear that expansion of body fat leads to an increase in inflammation with systemic effects on metabolism. In mouse models of diet-induced obesity, there is also an expansion of bone marrow adipocytes. However, the persistence of these changes after weight loss has not been well described. The objective of this study was to investigate the impact of high-fat diet (HFD) and subsequent weight loss on skeletal parameters in C57Bl6/J mice. Male mice were given a normal chow diet (ND) or 60% HFD at 6 weeks of age for 12, 16, or 20 weeks. A third group of mice was put on HFD for 12 weeks and then on ND for 8 weeks to mimic weight loss. After these dietary challenges, the tibia and femur were removed and analyzed by micro computed-tomography for bone morphology. Decalcification followed by osmium staining was used to assess bone marrow adiposity, and mechanical testing was performed to assess bone strength. After 12, 16, or 20 weeks of HFD, mice had significant weight gain relative to controls. Body mass returned to normal after weight loss. Marrow adipose tissue (MAT) volume in the tibia increased after 16 weeks of HFD and persisted in the 20-week HFD group. Weight loss prevented HFD-induced MAT expansion. Trabecular bone volume fraction, mineral content, and number were decreased after 12, 16, or 20 weeks of HFD, relative to ND controls, with only partial recovery after weight loss. Mechanical testing demonstrated decreased fracture resistance after 20 weeks of HFD. Loss of mechanical integrity did not recover after weight loss. Our study demonstrates that HFD causes long-term, persistent changes in bone quality, despite prevention of marrow adipose tissue accumulation, as demonstrated through changes in bone morphology and mechanical strength in a mouse model of diet-induced obesity and weight loss.
Collapse
Affiliation(s)
- Erica L. Scheller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- *Correspondence: Erica L. Scheller,
| | - Basma Khoury
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kayla L. Moller
- Division of Bone and Mineral Diseases, Department of Medicine, Washington University, St. Louis, MO, USA
| | - Natalie K. Y. Wee
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Shaima Khandaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Kenneth M. Kozloff
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Simin H. Abrishami
- Division of Pediatric Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Brian F. Zamarron
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Kanakadurga Singer
- Division of Pediatric Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
462
|
Walji TA, Turecamo SE, Sanchez AC, Anthony BA, Abou-Ezzi G, Scheller EL, Link DC, Mecham RP, Craft CS. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice. Front Endocrinol (Lausanne) 2016; 7:87. [PMID: 27445989 PMCID: PMC4928449 DOI: 10.3389/fendo.2016.00087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022] Open
Abstract
Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2 (-/-)) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2 (-/-) mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2 (-/-) mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2 (-/-) mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2 (-/-) mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2 (-/-) mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2 (-/-) mice; and substantial MAT accumulation does not necessitate a proportional decrease in either bone mass or bone marrow cellularity.
Collapse
Affiliation(s)
- Tezin A. Walji
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sarah E. Turecamo
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alejandro Coca Sanchez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcala de Henares, Madrid, Spain
| | - Bryan A. Anthony
- Department of Medicine, Oncology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Grazia Abou-Ezzi
- Department of Medicine, Oncology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Erica L. Scheller
- Department of Medicine, Bone and Mineral Diseases Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C. Link
- Department of Medicine, Oncology Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Clarissa S. Craft
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Bone and Mineral Diseases Division, Washington University School of Medicine, St. Louis, MO, USA
- *Correspondence: Clarissa S. Craft,
| |
Collapse
|
463
|
Tencerova M, Kassem M. The Bone Marrow-Derived Stromal Cells: Commitment and Regulation of Adipogenesis. Front Endocrinol (Lausanne) 2016; 7:127. [PMID: 27708616 PMCID: PMC5030474 DOI: 10.3389/fendo.2016.00127] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022] Open
Abstract
Bone marrow (BM) microenvironment represents an important compartment of bone that regulates bone homeostasis and the balance between bone formation and bone resorption depending on the physiological needs of the organism. Abnormalities of BM microenvironmental dynamics can lead to metabolic bone diseases. BM stromal cells (also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell (BMSC)] are multipotent stem cells located within BM stroma and give rise to osteoblasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage commitment to adipocytic lineage and regulation of BM adipocyte formation are not fully understood. In this review, we will discuss recent findings pertaining to identification and characterization of adipocyte progenitor cells in BM and the regulation of differentiation into mature adipocytes. We have also emphasized the clinical relevance of these findings.
Collapse
Affiliation(s)
- Michaela Tencerova
- Department of Molecular Endocrinology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- *Correspondence: Michaela Tencerova,
| | - Moustapha Kassem
- Department of Molecular Endocrinology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- Stem Cell Unit, Department of Anatomy, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
464
|
Chan SCW, Tekari A, Benneker LM, Heini PF, Gantenbein B. Osteogenic differentiation of bone marrow stromal cells is hindered by the presence of intervertebral disc cells. Arthritis Res Ther 2015; 18:29. [PMID: 26809343 PMCID: PMC4727301 DOI: 10.1186/s13075-015-0900-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/14/2015] [Indexed: 02/04/2023] Open
Abstract
Background Clinical observations indicate that the presence of nucleus pulposus (NP) tissue during spinal fusion hinders the rate of disc ossification. While the underlying mechanism remains unknown, this observation could be due to incomplete removal of NP cells (NPCs) that secrete factors preventing disc calcification, such as bone morphogenetic protein (BMP) antagonists including noggin and members of the DAN (differential screening selected gene aberrative in neuroblastoma) family. Methods Monolayer human bone marrow-derived mesenchymal stem cells (MSCs) were cocultured withNPCs and annulus fibrosus cells (AFCs) embedded in alginate for 21 days. At the end of coculture, MSCs were stained for mineral deposition by alizarin red, and relative expression of bone-related genes [Runt-related transcription factor 2, (RUNX2), Osteopontin (OPN), and Alkaline phosphatase (ALP)] and ALP activity were analyzed. Relative expression of three BMP antagonists, chordin (CHRD), gremlin (GREM1), and noggin (NOG), was determined in primary human NPCs and AFCs. These cells were also stained for Gremlin and Noggin by immunocytochemistry. Results Alizarin red staining showed that MSC osteogenesis in monolayer cultures was inhibited by coculture with NPCs or AFCs. ALP activity and RT-PCR analyses confirmed these results and demonstrated inhibition of osteogenesis of MSC in the presence of disc cells. NOG was significantly up-regulated in MSCs after coculture. Relative gene expression of intervertebral disc (IVD) cells showed higher expression of GREM1 in NPCs than in AFCs. Conclusions We show that primary IVD cells inhibit osteogenesis of MSCs. BMP inhibitors NOG, GREM1 and CHRD were expressed in IVD cells. GREM1 appears to be differentially expressed in NPCs and AFCs. Our results have implications for the design and development of treatments for non-union in spinal fusion.
Collapse
Affiliation(s)
- Samantha C W Chan
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, Bern, CH-3014, Switzerland. .,Biointerfaces, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St Gallen, CH-9014, Switzerland.
| | - Adel Tekari
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, Bern, CH-3014, Switzerland.
| | - Lorin M Benneker
- Department for Orthopedic Surgery and Traumatology, Inselspital, University of Bern, Freiburgstrasse 4, Bern, CH-3010, Switzerland. .,AOSpine Research Network, Stettbachstrasse 6, Dübendorf, CH-8600, Switzerland.
| | - Paul F Heini
- Orthopedic Department, Sonnenhof Clinic, Buchserstrasse 30, Bern, CH-3006, Switzerland.
| | - Benjamin Gantenbein
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, Bern, CH-3014, Switzerland. .,AOSpine Research Network, Stettbachstrasse 6, Dübendorf, CH-8600, Switzerland.
| |
Collapse
|
465
|
Abstract
BACKGROUND & AIMS Intestinal epithelial stem cells that express Lgr5 and/or Bmi1 continuously replicate and generate differentiated cells throughout life1. Previously, Paneth cells were suggested to constitute an epithelium-intrinsic niche that regulates the behavior of these stem cells2. However, ablating Paneth cells has no effect on maintenance of functional stem cells3-5. Here, we demonstrate definitively that a small subset of mesenchymal, subepithelial cells expressing the winged-helix transcription factor Foxl1 are a critical component of the intestinal stem cell niche. METHODS We genetically ablated Foxl1+ mesenchymal cells in adult mice using two separate models by expressing either the human or simian diphtheria toxin receptor (DTR) under Foxl1 promoter control. CONCLUSIONS Killing Foxl1+ cells by diphtheria toxin administration led to an abrupt cessation of proliferation of both epithelial stem- and transit-amplifying progenitor-cell populations that was associated with a loss of active Wnt signaling to the intestinal epithelium. Therefore, Foxl1-expressing mesenchymal cells constitute the fundamental niche for intestinal stem cells.
Collapse
|
466
|
Mortensen LJ, Hill WD. Skeletal stem cells for bone development, homeostasis and repair: one or many? BONEKEY REPORTS 2015; 4:769. [PMID: 26788287 DOI: 10.1038/bonekey.2015.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Luke J Mortensen
- Regenerative Bioscience Center, Rhodes Center for ADS, and College of Engineering, University of Georgia , Athens, GA, USA
| | - William D Hill
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopaedic Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; The Institute for Regenerative and Reparative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| |
Collapse
|
467
|
Prospective isolation of resident adult human mesenchymal stem cell population from multiple organs. Int J Hematol 2015; 103:138-44. [PMID: 26676805 DOI: 10.1007/s12185-015-1921-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem/stromal cells (MSCs) have the potential to form colonies in culture and reside in adult tissues. Because MSCs have been defined using cells cultured in vitro, discrepancies have arisen between studies concerning their properties. There are also differences between populations obtained using different isolation methods. This review article focuses on recent developments in the identification of novel MSC markers for the in vivo localization and prospective isolation of human MSCs. The prospective isolation method described in this study represents an important strategy for the isolation of MSCs in a short period of time, and may find applications for regenerative medicine. Purified MSCs can be tailored according to their intended clinical therapeutic applications. Lineage tracing methods define the MSC phenotype and can be used to investigate the physiological roles of MSCs in vivo. These findings may facilitate the development of effective stem cell treatments.
Collapse
|
468
|
Hayakawa Y, Ariyama H, Stancikova J, Sakitani K, Asfaha S, Renz BW, Dubeykovskaya ZA, Shibata W, Wang H, Westphalen CB, Chen X, Takemoto Y, Kim W, Khurana SS, Tailor Y, Nagar K, Tomita H, Hara A, Sepulveda AR, Setlik W, Gershon MD, Saha S, Ding L, Shen Z, Fox JG, Friedman RA, Konieczny SF, Worthley DL, Korinek V, Wang TC. Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche. Cancer Cell 2015; 28:800-814. [PMID: 26585400 PMCID: PMC4684751 DOI: 10.1016/j.ccell.2015.10.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/26/2015] [Accepted: 10/08/2015] [Indexed: 12/12/2022]
Abstract
The regulation and stem cell origin of normal and neoplastic gastric glands are uncertain. Here, we show that Mist1 expression marks quiescent stem cells in the gastric corpus isthmus. Mist1(+) stem cells serve as a cell-of-origin for intestinal-type cancer with the combination of Kras and Apc mutation and for diffuse-type cancer with the loss of E-cadherin. Diffuse-type cancer development is dependent on inflammation mediated by Cxcl12(+) endothelial cells and Cxcr4(+) gastric innate lymphoid cells (ILCs). These cells form the perivascular gastric stem cell niche, and Wnt5a produced from ILCs activates RhoA to inhibit anoikis in the E-cadherin-depleted cells. Targeting Cxcr4, ILCs, or Wnt5a inhibits diffuse-type gastric carcinogenesis, providing targets within the neoplastic gastric stem cell niche.
Collapse
Affiliation(s)
- Yoku Hayakawa
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hiroshi Ariyama
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jitka Stancikova
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Kosuke Sakitani
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Samuel Asfaha
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Bernhard W Renz
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Department of General, Visceral, Transplantation, Vascular, and Thoracic Surgery, Hospital of the University of Munich, Munich 81377, Germany
| | - Zinaida A Dubeykovskaya
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Wataru Shibata
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hongshan Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Christoph B Westphalen
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Xiaowei Chen
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yoshihiro Takemoto
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Woosook Kim
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Shradha S Khurana
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yagnesh Tailor
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Karan Nagar
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Antonia R Sepulveda
- Division of Clinical Pathology and Cell Biology, Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Wanda Setlik
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael D Gershon
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Subhrajit Saha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lei Ding
- Departments of Rehabilitation and Regenerative Medicine and Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zeli Shen
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard A Friedman
- Herbert Irving Comprehensive Cancer Center Biomedical Informatics Shared Resource and Department of Biomedical Informatics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Stephen F Konieczny
- Department of Biological Sciences and the Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel L Worthley
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 14220, Czech Republic
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
469
|
Asfaha S. Intestinal stem cells and inflammation. Curr Opin Pharmacol 2015; 25:62-6. [PMID: 26654865 DOI: 10.1016/j.coph.2015.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium is renewed every 3-5 days from at least two principal stem cell pools. Actively cycling crypt based columnar (CBC) Lgr5(+) cells and slower cycling Bmi1-expressing or Krt19-expressing cells maintain the small intestinal and colonic epithelium in homeostasis and injury. Following acute epithelial damage, Lgr5+ stem cells are susceptible to injury and a reserve stem cell or progenitor pool is responsible for regeneration of the epithelium. Current data suggests that intestinal stem cells respond to inflammatory signals to modulate their expansion during epithelial regeneration. Here, we review how inflammation and injury affect intestinal and colonic stem cells.
Collapse
|
470
|
Abstract
Stem cells offer great promise to help understand the normal mechanisms of tissue renewal, regeneration, and repair, and also for development of cell-based therapies to treat patients after tissue injury. Most adult tissues contain stem cells and progenitor cells that contribute to homeostasis, remodeling, and repair. Multiple stem and progenitor cell populations in bone are found in the marrow, the endosteum, and the periosteum. They contribute to the fracture healing process after injury and are an important component in tissue engineering approaches for bone repair. This review focuses on current concepts in stem cell biology related to fracture healing and bone tissue regeneration, as well as current strategies and limitations for clinical cell-based therapies.
Collapse
|
471
|
Three-Dimensional Gastrointestinal Organoid Culture in Combination with Nerves or Fibroblasts: A Method to Characterize the Gastrointestinal Stem Cell Niche. Stem Cells Int 2015; 2016:3710836. [PMID: 26697073 PMCID: PMC4677245 DOI: 10.1155/2016/3710836] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/06/2015] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal epithelium is characterized by a high turnover of cells and intestinal stem cells predominantly reside at the bottom of crypts and their progeny serve to maintain normal intestinal homeostasis. Accumulating evidence demonstrates the pivotal role of a niche surrounding intestinal stem cells in crypts, which consists of cellular and soluble components and creates an environment constantly influencing the fate of stem cells. Here we describe different 3D culture systems to culture gastrointestinal epithelium that should enable us to study the stem cell niche in vitro in the future: organoid culture and multilayered systems such as organotypic cell culture and culture of intestinal tissue fragments ex vivo. These methods mimic the in vivo situation in vitro by creating 3D culture conditions that reflect the physiological situation of intestinal crypts. Modifications of the composition of the culture media as well as coculturing epithelial organoids with previously described cellular components such as myofibroblasts, collagen, and neurons show the impact of the methods applied to investigate niche interactions in vitro. We further present a novel method to isolate labeled nerves from the enteric nervous system using Dclk1-CreGFP mice.
Collapse
|
472
|
Lattanzi W, Parolisi R, Barba M, Bonfanti L. Osteogenic and Neurogenic Stem Cells in Their Own Place: Unraveling Differences and Similarities Between Niches. Front Cell Neurosci 2015; 9:455. [PMID: 26635534 PMCID: PMC4656862 DOI: 10.3389/fncel.2015.00455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/06/2015] [Indexed: 02/06/2023] Open
Abstract
Although therapeutic use of stem cells (SCs) is already available in some tissues (cornea, blood, and skin), in most organs we are far from reaching the translational goal of regenerative medicine. In the nervous system, due to intrinsic features which make it refractory to regeneration/repair, it is very hard to obtain functionally integrated regenerative outcomes, even starting from its own SCs (the neural stem cells; NSCs). Besides NSCs, mesenchymal stem cells (MSCs) have also been proposed for therapeutic purposes in neurological diseases. Yet, direct (regenerative) and indirect (bystander) effects are often confused, as are MSCs and bone marrow-derived (stromal, osteogenic) stem cells (BMSCs), whose plasticity is actually overestimated (i.e., trans-differentiation along non-mesodermal lineages, including neural fates). In order to better understand failure in the "regenerative" use of SCs for neurological disorders, it could be helpful to understand how NSCs and BMSCs have adapted to their respective organ niches. In this perspective, here the adult osteogenic and neurogenic niches are considered and compared within their in vivo environment.
Collapse
Affiliation(s)
- Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore , Rome , Italy ; Latium Musculoskeletal Tissue Bank , Rome , Italy
| | - Roberta Parolisi
- Neuroscience Institute Cavalieri Ottolenghi (NICO) , Orbassano , Italy ; Department of Veterinary Sciences, University of Turin , Turin , Italy
| | - Marta Barba
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO) , Orbassano , Italy ; Department of Veterinary Sciences, University of Turin , Turin , Italy
| |
Collapse
|
473
|
An Y, wei W, Jing H, Ming L, Liu S, Jin Y. Bone marrow mesenchymal stem cell aggregate: an optimal cell therapy for full-layer cutaneous wound vascularization and regeneration. Sci Rep 2015; 5:17036. [PMID: 26594024 PMCID: PMC4655471 DOI: 10.1038/srep17036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/26/2015] [Indexed: 12/13/2022] Open
Abstract
Cutaneous wounds are among the most common soft tissue injuries. Wounds involving dermis suffer more from outside influence and higher risk of chronic inflammation. Therefore the appearance and function restoration has become an imperative in tissue engineering research. In this study, cell-aggregates constructed with green fluorescent protein-expressing (GFP+) rat bone marrow mesenchymal stem cells (BMMSCs) were applied to rat acute full-layer cutaneous wound model to confirm its pro-regeneration ability and compare its regenerative efficacy with the currently thriving subcutaneous and intravenous stem cell administration strategy, with a view to sensing the advantages, disadvantages and the mechanism behind. According to results, cell-aggregates cultured in vitro enjoyed higher expression of several pro-healing genes than adherent cultured cells. Animal experiments showed better vascularization along with more regular dermal collagen deposition for cell-aggregate transplanted models. Immunofluorescence staining on inflammatory cells indicated a shorter inflammatory phase for cell-aggregate group, which was backed up by further RT-PCR. The in situ immunofluorescence staining manifested a higher GFP+-cell engraftment for cell-aggregate transplanted models versus cell administered ones. Thus it is safe to say the BMMSCs aggregate could bring superior cutaneous regeneration for full layer cutaneous wound to BMMSCs administration, both intravenous and subcutaneous.
Collapse
Affiliation(s)
- Yulin An
- State Key Laboratory of Military Stomatology, Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Zhen Jiang Entry-Exit Inspection And Quarantine Bureau, No. 84 Dongwu Road, Zhen Jiang, Jiang Su 212000, China
| | - Wei wei
- State Key Laboratory of Military Stomatology, Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an 710032, China
| | - Huan Jing
- State Key Laboratory of Military Stomatology, Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China
| | - Leiguo Ming
- State Key Laboratory of Military Stomatology, Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology, Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Center of Tissue Engineering, School of Stomatology, The Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, No. 145 Changlexi Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
474
|
Sheng G. The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC DEVELOPMENTAL BIOLOGY 2015; 15:44. [PMID: 26589542 PMCID: PMC4654913 DOI: 10.1186/s12861-015-0094-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mesenchymal Stem/Stromal Cells (MSCs) define a population of progenitor cells capable of giving rises to at least three mesodermal lineages in vitro, the chondrocytes, osteoblasts and adipocytes. The validity of MSCs in vivo has been questioned because their existence, either as a homogeneous progenitor cell population or as a stem cell lineage, has been difficult to prove. The wide use of primary MSCs in regenerative and therapeutic applications raises ethical and regulatory concerns in many countries. In contrast to hematopoietic stem cells, a parallel concept which carries an embryological emphasis from its outset, MSCs have attracted little interest among developmental biologists and the embryological basis for their existence, or lack thereof, has not been carefully evaluated. METHODS This article provides a brief, embryological overview of these three mesoderm cell lineages and offers a framework of ontological rationales for the potential existence of MSCs in vivo. RESULTS Emphasis is given to the common somatic lateral plate mesoderm origin of the majority of body's adipose and skeletal tissues and of the major sources used for MSC derivation clinically. Support for the MSC hypothesis also comes from a large body of molecular and lineage analysis data in vivo. CONCLUSIONS It is concluded that despite the lack of a definitive proof, the MSC concept has a firm embryological basis and that advances in MSC research can be facilitated by achieving a better integration with developmental biology.
Collapse
Affiliation(s)
- Guojun Sheng
- Sheng Laboratory, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
475
|
Janeczek AA, Tare RS, Scarpa E, Moreno-Jimenez I, Rowland CA, Jenner D, Newman TA, Oreffo ROC, Evans ND. Transient Canonical Wnt Stimulation Enriches Human Bone Marrow Mononuclear Cell Isolates for Osteoprogenitors. Stem Cells 2015; 34:418-30. [PMID: 26573091 PMCID: PMC4981914 DOI: 10.1002/stem.2241] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022]
Abstract
Activation of the canonical Wnt signaling pathway is an attractive anabolic therapeutic strategy for bone. Emerging data suggest that activation of the Wnt signaling pathway promotes bone mineral accrual in osteoporotic patients. The effect of Wnt stimulation in fracture healing is less clear as Wnt signaling has both stimulatory and inhibitory effects on osteogenesis. Here, we tested the hypothesis that transient Wnt stimulation promotes the expansion and osteogenesis of a Wnt‐responsive stem cell population present in human bone marrow. Bone marrow mononuclear cells (BMMNCs) were isolated from patients undergoing hip arthroplasty and exposed to Wnt3A protein. The effect of Wnt pathway stimulation was determined by measuring the frequency of stem cells within the BMMNC populations by fluorescence‐activated cell sorting and colony forming unit fibroblast (CFU‐F) assays, before determining their osteogenic capacity in in vitro differentiation experiments. We found that putative skeletal stem cells in BMMNC isolates exhibited elevated Wnt pathway activity compared with the population as whole. Wnt stimulation resulted in an increase in the frequency of skeletal stem cells marked by the STRO‐1bright/Glycophorin A− phenotype. Osteogenesis was elevated in stromal cell populations arising from BMMNCs transiently stimulated by Wnt3A protein, but sustained stimulation inhibited osteogenesis in a concentration‐dependent manner. These results demonstrate that Wnt stimulation could be used as a therapeutic approach by transient targeting of stem cell populations during early fracture healing, but that inappropriate stimulation may prevent osteogenesis. Stem Cells2016;34:418–430
Collapse
Affiliation(s)
- Agnieszka A Janeczek
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Rahul S Tare
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Edoardo Scarpa
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ines Moreno-Jimenez
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Caroline A Rowland
- Microbiology group, Chemical, Biological and Radiological Division, Salisbury, United Kingdom
| | - Dominic Jenner
- Microbiology group, Chemical, Biological and Radiological Division, Salisbury, United Kingdom
| | - Tracey A Newman
- Clinical and Experimental Sciences, Faculty of Medicine, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Nicholas D Evans
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton, United Kingdom
- Bone and Joint Research Group, Human Development and Health Academic Unit, Institute for Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
476
|
Myers TJ, Longobardi L, Willcockson H, Temple JD, Tagliafierro L, Ye P, Li T, Esposito A, Moats-Staats BM, Spagnoli A. BMP2 Regulation of CXCL12 Cellular, Temporal, and Spatial Expression is Essential During Fracture Repair. J Bone Miner Res 2015; 30:2014-27. [PMID: 25967044 PMCID: PMC4970512 DOI: 10.1002/jbmr.2548] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 12/30/2022]
Abstract
The cellular and humoral responses that orchestrate fracture healing are still elusive. Here we report that bone morphogenic protein 2 (BMP2)-dependent fracture healing occurs through a tight control of chemokine C-X-C motif-ligand-12 (CXCL12) cellular, spatial, and temporal expression. We found that the fracture repair process elicited an early site-specific response of CXCL12(+)-BMP2(+) endosteal cells and osteocytes that was not present in unfractured bones and gradually decreased as healing progressed. Absence of a full complement of BMP2 in mesenchyme osteoprogenitors (BMP2(cKO/+)) prevented healing and led to a dysregulated temporal and cellular upregulation of CXCL12 expression associated with a deranged angiogenic response. Healing was rescued when BMP2(cKO/+) mice were systemically treated with AMD3100, an antagonist of CXCR4 and agonist for CXCR7 both receptors for CXCL12. We further found that mesenchymal stromal cells (MSCs), capable of delivering BMP2 at the endosteal site, restored fracture healing when transplanted into BMP2(cKO/+) mice by rectifying the CXCL12 expression pattern. Our in vitro studies showed that in isolated endosteal cells, BMP2, while inducing osteoblastic differentiation, stimulated expression of pericyte markers that was coupled with a decrease in CXCL12. Furthermore, in isolated BMP2(cKO/cKO) endosteal cells, high expression levels of CXCL12 inhibited osteoblastic differentiation that was restored by AMD3100 treatment or coculture with BMP2-expressing MSCs that led to an upregulation of pericyte markers while decreasing platelet endothelial cell adhesion molecule (PECAM). Taken together, our studies show that following fracture, a CXCL12(+)-BMP2(+) perivascular cell population is recruited along the endosteum, then a timely increase of BMP2 leads to downregulation of CXCL12 that is essential to determine the fate of the CXCL12(+)-BMP2(+) to osteogenesis while departing their supportive role to angiogenesis. Our findings have far-reaching implications for understanding mechanisms regulating the selective recruitment of distinct cells into the repairing niches and the development of novel pharmacological (by targeting BMP2/CXCL12) and cellular (MSCs, endosteal cells) interventions to promote fracture healing.
Collapse
Affiliation(s)
- Timothy J Myers
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lara Longobardi
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Helen Willcockson
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph D Temple
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Lidia Tagliafierro
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ping Ye
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tieshi Li
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Alessandra Esposito
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Billie M Moats-Staats
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anna Spagnoli
- Division of Endocrinology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
477
|
Pers YM, Ruiz M, Noël D, Jorgensen C. Mesenchymal stem cells for the management of inflammation in osteoarthritis: state of the art and perspectives. Osteoarthritis Cartilage 2015; 23:2027-35. [PMID: 26521749 DOI: 10.1016/j.joca.2015.07.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is the most common form of degenerative arthritis, mainly characterized by the degradation of articular cartilage and associated with subchondral bone lesions. Novel therapeutic approaches for OA include cell-based therapies that have become thriving areas of research and development. In this context, mesenchymal stem or stromal cells (MSCs) have gained much interest based on their trophic and immunomodulatory properties that can help tissue repair/regeneration. The present review article discusses the interest of using MSCs in cell-therapy approaches with a focus on the mechanisms by which MSCs might exhibit a therapeutic potential in OA. Special attention is given to the anti-inflammatory function of MSCs and on miRNA modulation in OA for possible future innovative strategies. The paper also presents the current data on the undergoing MSCs-based clinical trials in OA.
Collapse
Affiliation(s)
- Y-M Pers
- Inserm U1183, Hôpital Saint-Eloi, Montpellier, F-34295, France; Université Montpellier, UFR de Médecine, Montpellier, F-34000, France; Service d'immuno-Rhumatologie, Hôpital Lapeyronie, Montpellier, F-34295, France
| | - M Ruiz
- Inserm U1183, Hôpital Saint-Eloi, Montpellier, F-34295, France; Université Montpellier, UFR de Médecine, Montpellier, F-34000, France
| | - D Noël
- Inserm U1183, Hôpital Saint-Eloi, Montpellier, F-34295, France; Université Montpellier, UFR de Médecine, Montpellier, F-34000, France.
| | - C Jorgensen
- Inserm U1183, Hôpital Saint-Eloi, Montpellier, F-34295, France; Université Montpellier, UFR de Médecine, Montpellier, F-34000, France; Service d'immuno-Rhumatologie, Hôpital Lapeyronie, Montpellier, F-34295, France
| |
Collapse
|
478
|
Lemos DR, Eisner C, Hopkins CI, Rossi FMV. Skeletal muscle-resident MSCs and bone formation. Bone 2015; 80:19-23. [PMID: 26103092 DOI: 10.1016/j.bone.2015.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 05/28/2015] [Accepted: 06/17/2015] [Indexed: 12/11/2022]
Abstract
Recent research has highlighted the importance of bone and muscle interactions during development and regeneration. There still remains, however, a large gap in the current understanding of the cells and mechanisms involved in this interplay. In particular, how muscle-derived cells, specifically mesenchymal stromal cells (MSCs), can impact bone regeneration or lead to pathologic ectopic bone formation is unclear. Here, a review is given of the evidence supporting the contribution of muscle-derived MSC to bone regeneration and suggesting a critical role for the inflammatory milieu. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Dario R Lemos
- Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Christine Eisner
- Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Claudia I Hopkins
- Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Fabio M V Rossi
- Biomedical Research Centre, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
479
|
Sato M, Kawana K, Fujimoto A, Yoshida M, Nakamura H, Nishida H, Inoue T, Taguchi A, Takahashi J, Adachi K, Nagasaka K, Matsumoto Y, Wada-Hiraike O, Oda K, Osuga Y, Fujii T. Clinical significance of Gremlin 1 in cervical cancer and its effects on cancer stem cell maintenance. Oncol Rep 2015; 35:391-7. [PMID: 26530461 DOI: 10.3892/or.2015.4367] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/14/2015] [Indexed: 11/05/2022] Open
Abstract
Gremlin 1 is one of the bone morphogenetic protein (BMP) antagonists and is also related to differentiation in combination with BMPs and is associated with various types of diseases. Gremlin 1 is overexpressed in various types of human cancers and has been reported to play a role in cervical cancer oncogenesis. However, there is no report concerning the relationship between Gremlin 1 and cervical cancer stem cells (CSCs). The objective of the present study was to identify the clinical significance of Gremlin 1 in cervical cancer and its effects on CSC-like properties in vitro. Clinical samples were obtained. Gremlin 1 mRNA expression levels in the cervical cancer tissues were measured by RT-qPCR and assessed for correlation with their clinical prognosis [overall survival (OS), progression-free survival (PFS)] and with other prognostic factors. In vitro, cervical cancer, CaSki cells, exposed to Gremlin 1 (1,000 ng/ml) for 24 h were evaluated for expression of undifferentiated-cell markers (Nanog, Oct3/4, Sox2) by RT-qPCR, the population of ALDH-positive cells by flow cytometry and sphere-forming ability on a ultra-low attachment culture dish. Cervical cancer tissues from 104 patients were collected. A high mRNA expression level of Gremlin 1 was an independent poor prognostic factor of PFS but not of OS. A high mRNA expression level of Gremlin 1 was correlated with bulky (>4 cm) tumors. The Nanog mRNA expression level was significantly increased in the CaSki cells exposed to Gremlin 1 (P=0.0008) but not Oct3/4 and Sox2 mRNA expression levels. The population of ALDH-positive cells in the Gremlin 1-exposed cells was 1.41-fold higher compared with the control (P=0.0184). Sphere-forming ability was increased when 1,000 Gremlin 1-exposed cells were seeded (P=0.0379). In cervical cancer, it is suggested that Gremlin 1 may have a role in clinical recurrence and maintaining CSC-like properties.
Collapse
Affiliation(s)
- Masakazu Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Asaha Fujimoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Mitsuyo Yoshida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Hiroe Nakamura
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Haruka Nishida
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Tomoko Inoue
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Juri Takahashi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Yoko Matsumoto
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo‑ku, Tokyo 1138655, Japan
| |
Collapse
|
480
|
Frenkel B, White W, Tuckermann J. Glucocorticoid-Induced Osteoporosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215995 DOI: 10.1007/978-1-4939-2895-8_8] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoporosis is among the most devastating side effects of glucocorticoid (GC) therapy for the management of inflammatory and auto-immune diseases. Evidence from both humans and mice indicate deleterious skeletal effects within weeks of pharmacological GC administration, both related and unrelated to a decrease in bone mineral density (BMD). Osteoclast numbers and bone resorption are also rapidly increased, and together with osteoblast inactivation and decreased bone formation, these changes lead the fastest loss in BMD during the initial disease phase. Bone resorption then decreases to sub-physiological levels, but persistent and severe inhibition of bone formation leads to further bone loss and progressively increased fracture risk, up to an order of magnitude higher than that observed in untreated individuals. Bone forming osteoblasts are thus considered the main culprits in GC-induced osteoporosis (GIO). Accordingly, we focus this review primarily on deleterious effects on osteoblasts: inhibition of cell replication and function and acceleration of apoptosis. Mediating these adverse effects, GCs target pivotal regulatory mechanisms that govern osteoblast growth, differentiation and survival. Specifically, GCs inhibit growth factor pathways, including Insulin Growth Factors, Growth Hormone, Hepatocyte Growth/Scatter Factor and IL6-type cytokines. They also inhibit downstream kinases, including PI3-kinase and the MAP kinase ERK, the latter attributable in part to direct transcriptional stimulation of MAP kinase phosphatase 1. Most importantly, however, GCs inhibit the Wnt signaling pathway, which plays a pivotal role in osteoblast replication, function and survival. They transcriptionally stimulate expression of Wnt inhibitors of both the Dkk and Sfrp families, and they induce reactive oxygen species (ROS), which result in loss of ß-catenin to ROS-activated FoxO transcription factors. Identification of dissociated GCs, which would suppress the immune system without causing osteoporosis, is proving more challenging than initially thought, and GIO is currently managed by co-treatment with bisphosphonates or PTH. These drugs, however, are not ideally suited for GIO. Future therapeutic approaches may aim at GC targets such as those mentioned above, or newly identified targets including the Notch pathway, the AP-1/Il11 axis and the osteoblast master regulator RUNX2.
Collapse
Affiliation(s)
- Baruch Frenkel
- Department of Orthopaedic Surgery, Keck School of Medicine, Institute for Genetic Medicine, University of Southern California, 2250 Alcazar Street, CSC-240, Los Angeles, CA, 90033, USA,
| | | | | |
Collapse
|
481
|
|
482
|
Aldahmash A. Skeletal stem cells and their contribution to skeletal fragility: senescence and rejuvenation. Biogerontology 2015; 17:297-304. [PMID: 26510555 PMCID: PMC4819465 DOI: 10.1007/s10522-015-9623-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/23/2015] [Indexed: 12/13/2022]
Abstract
Age-related osteoporotic fractures are major health care problem worldwide and are the result of impaired bone formation, decreased bone mass and bone fragility. Bone formation is accomplished by skeletal stem cells (SSC) that are recruited to bone surfaces from bone marrow microenvironment. This review discusses targeting SSC to enhance bone formation and to abolish age-related bone fragility in the context of using stem cells for treatment of age-related disorders. Recent studies are presented that have demonstrated that SSC exhibit impaired functions during aging due to intrinsic senescence-related changes as well as the presence of senescent microenvironment. Also, a number of approaches aiming at increasing bone formation through targeting SSC and that include systemic SSC transplantation, systemic SSC targeting using aptamers or antibodies, use of therapeutic screteome and tissue engineering approaches will be presented and discussed.
Collapse
Affiliation(s)
- Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
- Department of Endocrinology and Metabolism, University Hospital of Odense, 5000, Odense, Denmark.
| |
Collapse
|
483
|
Yin Y, Yang Y, Yang L, Yang Y, Li C, Liu X, Qu Y. Overexpression of Gremlin promotes non-small cell lung cancer progression. Tumour Biol 2015; 37:2597-602. [PMID: 26392110 DOI: 10.1007/s13277-015-4093-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/13/2015] [Indexed: 10/23/2022] Open
Abstract
Lung cancer is the major cause of cancer-related death worldwide, and 80 % of them are non-small cell lung cancer (NSCLC) cases. Gremlin, a bone morphogenetic protein (BMP) antagonist, is overexpressed in various cancerous tissues; however, little is known about the roles of Gremlin in lung carcinogenesis, and it remains unclear whether Gremlin expression may associate with EGFR-TKI resistance. In this study, expression of Gremlin mRNA and protein in matched tumor and normal lung specimens are quantified by quantitative real-time PCR and western blot. The functional role of Gremlin in NSCLC cells was evaluated by interference RNA (siRNA). The effects of Silenced Gremlin on the resistant PC-9/GR cell line were investigated by proliferation and apoptosis analysis compared with control PC-9 cells. Our results found that Gremlin expression levels were higher in NSCLC tissues, and Gremlin was more highly expressed in PC-9/GR cells compared to PC-9 cells. Knocking down of Gremlin in PC-9/GR cells decreased cell proliferation and increased the expression of BMP7 protein. In addition, Gremlin silencing significantly potentiated apoptosis induced by gefitinib in PC-9/GR with Gremlin knockdown compared to PC-9 transfected with control shRNA, suggesting Gremlin contributes to gefitinib resistance in NSCLC. Gremlin might be explored as a candidate of therapeutic target for modulating EGFR-TKI sensitivity in NSCLC.
Collapse
Affiliation(s)
- Yunhong Yin
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yie Yang
- Clinical Laboratory, Qianfoshan Hospital of Shandong Province, Jinan, 250012, China
| | - Liyun Yang
- Yinan Branch of Qilu Hospital of Shandong University, Yinan, 276300, China
| | - Yan Yang
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Chunyu Li
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiao Liu
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yiqing Qu
- Department of Respiratory Medicine, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
484
|
Athanassiou-Papaefthymiou M, Papagerakis P, Papagerakis S. Isolation and Characterization of Human Adult Epithelial Stem Cells from the Periodontal Ligament. J Dent Res 2015; 94:1591-600. [PMID: 26392003 DOI: 10.1177/0022034515606401] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We report a novel method for the isolation of adult human epithelial stem cells (hEpiSCs) from the epithelial component of the periodontal ligament-the human epithelial cell rests of Malassez (hERM). hEpiSC-rich integrin-α6(+ve) hERM cells derived by fluorometry can be clonally expanded, can grow organoids, and express the markers of pluripotency (OCT4, NANOG, SOX2), polycomb protein RING1B, and the hEpiSC supermarker LGR5. They maintain the growth profile of their originating hERM in vitro. Subcutaneous cotransplantation with mesenchymal stem cells from the dental pulp on poly-l-lactic acid scaffolds in nude mice gave rise to perfect heterotopic ossicles in vivo with ultrastructure of dentin, enamel, cementum, and bone. These remarkable fully mineralized ossicles underscore the importance of epithelial-mesenchymal crosstalk in tissue regeneration using human progenitor stem cells, which may have already committed to lineage despite maintaining hallmarks of pluripotency. In addition, we report the clonal expansion and isolation of human LGR5(+ve) cells from the hERM in xeno-free culture conditions. The genetic profile of LGR5(+ve) cells includes both markers of pluripotency and genes important for secretory epithelial and dental epithelial cell differentiation, giving us a first insight into periodontal ligament-derived hEpiSCs.
Collapse
Affiliation(s)
- M Athanassiou-Papaefthymiou
- Laboratory of Tooth Organogenesis and Regeneration, Department of Orthodontics and Pediatric Medicine, School of Dentistry; Center for Organogenesis, School of Medicine; Center for Computational Medicine and Bioinformatics; University of Michigan, Ann Arbor, MI, USA Laboratory for Oral, Head, and Neck Cancer Metastasis, Kresge Hearing Research Institute, Department of Otolaryngology and Comprehensive Cancer Center, Medical School, University of Michigan, Ann Arbor, MI, USA The Cancer Cure, Ann Arbor, MI, USA
| | - P Papagerakis
- Laboratory of Tooth Organogenesis and Regeneration, Department of Orthodontics and Pediatric Medicine, School of Dentistry; Center for Organogenesis, School of Medicine; Center for Computational Medicine and Bioinformatics; University of Michigan, Ann Arbor, MI, USA
| | - S Papagerakis
- Laboratory for Oral, Head, and Neck Cancer Metastasis, Kresge Hearing Research Institute, Department of Otolaryngology and Comprehensive Cancer Center, Medical School, University of Michigan, Ann Arbor, MI, USA Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
485
|
Abstract
Stem cells are remarkable, and stem cell-based tissue engineering is an emerging field of biomedical science aiming to restore damaged tissue or organs. In dentistry and reconstructive facial surgery, it is of great interest to restore lost teeth or craniofacial bone defects using stem cell-mediated therapy. In the craniofacial region, various stem cell populations have been identified with regeneration potential. In this review, we provide an overview of the current knowledge concerning the various types of tooth- and craniofacial bone-related stem cells and discuss their in vivo identities and regulating mechanisms.
Collapse
Affiliation(s)
- H Zhao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Y Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
486
|
Manieri NA, Mack MR, Himmelrich MD, Worthley DL, Hanson EM, Eckmann L, Wang TC, Stappenbeck TS. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Invest 2015; 125:3606-18. [PMID: 26280574 DOI: 10.1172/jci81423] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy is an emerging field of regenerative medicine; however, it is often unclear how these cells mediate repair. Here, we investigated the use of MSCs in the treatment of intestinal disease and modeled abnormal repair by creating focal wounds in the colonic mucosa of prostaglandin-deficient mice. These wounds developed into ulcers that infiltrated the outer intestinal wall. We determined that penetrating ulcer formation in this model resulted from increased hypoxia and smooth muscle wall necrosis. Prostaglandin I₂ (PGI₂) stimulated VEGF-dependent angiogenesis to prevent penetrating ulcers. Treatment of mucosally injured WT mice with a VEGFR inhibitor resulted in the development of penetrating ulcers, further demonstrating that VEGF is critical for mucosal repair. We next used this model to address the role of transplanted colonic MSCs (cMSCs) in intestinal repair. Compared with intravenously injected cMSCs, mucosally injected cMSCs more effectively prevented the development of penetrating ulcers, as they were more efficiently recruited to colonic wounds. Importantly, mucosally injected cMSCs stimulated angiogenesis in a VEGF-dependent manner. Together, our results reveal that penetrating ulcer formation results from a reduction of local angiogenesis and targeted injection of MSCs can optimize transplantation therapy. Moreover, local MSC injection has potential for treating diseases with features of abnormal angiogenesis and repair.
Collapse
|
487
|
Isolation, Culture, and Characterization of Chicken Cartilage Stem/Progenitor Cells. BIOMED RESEARCH INTERNATIONAL 2015; 2015:586290. [PMID: 26351636 PMCID: PMC4553168 DOI: 10.1155/2015/586290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 01/01/2023]
Abstract
A chondrocyte progenitor population isolated from the surface zone of articular cartilage has become a promising cell source for cell-based cartilage repair. The cartilage-derived stem/progenitor cells are multipotent stem cells, which can differentiate into three cell types in vitro including adipocytes, osteoblasts, and chondrocytes. Much work has been done on cartilage stem/progenitor cells (CSPCs) from people, horses, and cattle, but the relatively little literature has been published about these cells in chickens. In our work, CSPCs were isolated from chicken embryos in incubated eggs for 20 days. In order to inquire into the biological characteristics of chicken CSPCs, immunofluorescence, reverse transcription-polymerase chain reaction (RT-PCR), and flow cytometry were adopted to detect the characteristic surface markers of CSPCs. Primary CSPCs were subcultured to passage 22 and, for purpose of knowing the change of cell numbers, we drew the growth curves. Isolated CSPCs were induced to adipocytes, osteoblasts, and chondrocytes. Our results suggest that we have identified and characterised a novel cartilage progenitor population resident in chicken articular cartilage and CSPCs isolated from chickens possess similar biological characteristics to those from other species, which will greatly benefit future cell-based cartilage repair therapies.
Collapse
|
488
|
Zhong L, Huang X, Karperien M, Post JN. The Regulatory Role of Signaling Crosstalk in Hypertrophy of MSCs and Human Articular Chondrocytes. Int J Mol Sci 2015; 16:19225-47. [PMID: 26287176 PMCID: PMC4581295 DOI: 10.3390/ijms160819225] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/07/2015] [Indexed: 12/26/2022] Open
Abstract
Hypertrophic differentiation of chondrocytes is a main barrier in application of mesenchymal stem cells (MSCs) for cartilage repair. In addition, hypertrophy occurs occasionally in osteoarthritis (OA). Here we provide a comprehensive review on recent literature describing signal pathways in the hypertrophy of MSCs-derived in vitro differentiated chondrocytes and chondrocytes, with an emphasis on the crosstalk between these pathways. Insight into the exact regulation of hypertrophy by the signaling network is necessary for the efficient application of MSCs for articular cartilage repair and for developing novel strategies for curing OA. We focus on articles describing the role of the main signaling pathways in regulating chondrocyte hypertrophy-like changes. Most studies report hypertrophic differentiation in chondrogenesis of MSCs, in both human OA and experimental OA. Chondrocyte hypertrophy is not under the strict control of a single pathway but appears to be regulated by an intricately regulated network of multiple signaling pathways, such as WNT, Bone morphogenetic protein (BMP)/Transforming growth factor-β (TGFβ), Parathyroid hormone-related peptide (PTHrP), Indian hedgehog (IHH), Fibroblast growth factor (FGF), Insulin like growth factor (IGF) and Hypoxia-inducible factor (HIF). This comprehensive review describes how this intricate signaling network influences tissue-engineering applications of MSCs in articular cartilage (AC) repair, and improves understanding of the disease stages and cellular responses within an OA articular joint.
Collapse
Affiliation(s)
- Leilei Zhong
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| | - Xiaobin Huang
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
- School of Life Sciences, Chongqing University, Chongqing 400030, China.
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| | - Janine N Post
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede 7500 AE, The Netherlands.
| |
Collapse
|
489
|
Rumman M, Dhawan J, Kassem M. Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration. Stem Cells 2015; 33:2903-12. [DOI: 10.1002/stem.2056] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Mohammad Rumman
- Institute for Stem Cell Biology and Regenerative Medicine (inStem); Bangalore Karnataka India
- Manipal University; Manipal Karnataka India
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine (inStem); Bangalore Karnataka India
- CSIR-Center for Cell and Molecular Biology (CCMB); Hyderabad Telangana India
| | - Moustapha Kassem
- Laboratory for Molecular Endocrinology (KMEB), Department of Endocrinology and Metabolism; University Hospital of Odense; Odense Denmark
- Danish Stem Cell Center (DanStem), Panum Institute; University of Copenhagen; Copenhagen Denmark
- Stem cell Unit, Department of Anatomy, College of Medicine; King Saud University; Kingdom of Saudi Arabia
| |
Collapse
|
490
|
Abstract
Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.
Collapse
Affiliation(s)
- Noriaki Ono
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Henry M Kronenberg
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA,
| |
Collapse
|
491
|
Berry R, Rodeheffer MS, Rosen CJ, Horowitz MC. Adipose Tissue Residing Progenitors (Adipocyte Lineage Progenitors and Adipose Derived Stem Cells (ADSC). ACTA ACUST UNITED AC 2015; 1:101-109. [PMID: 26526875 DOI: 10.1007/s40610-015-0018-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The formation of brown, white and beige adipocytes have been a subject of intense scientific interest in recent years due to the growing obesity epidemic in the United States and around the world. This interest has led to the identification and characterization of specific tissue resident progenitor cells that give rise to each adipocyte population in vivo. However, much still remains to be discovered about each progenitor population in terms of their "niche" within each tissue and how they are regulated at the cellular and molecular level during healthy and diseased states. While our knowledge of brown, white and beige adipose tissue is rapidly increasing, little is still known about marrow adipose tissue and its progenitor despite recent studies demonstrating possible roles for marrow adipose tissue in regulating the hematopoietic space and systemic metabolism at large. This chapter focuses on our current knowledge of brown, white, beige and marrow adipose tissue with a specific focus on the formation of each tissue from tissue resident progenitor cells.
Collapse
Affiliation(s)
- Ryan Berry
- Department of Orthopaedics and Rehabiliation, Yale School of Medicine, New Haven, CT 06510
| | - Matthew S Rodeheffer
- Department of Molecular, Cell and Developmental Biology, Yale University and the Section of Comparative Medicine, Yale School of Medicine, 375 Congress Avenue, New Haven, CT 06510
| | - Clifford J Rosen
- The Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabiliation, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
492
|
Characterization of Nestin, a Selective Marker for Bone Marrow Derived Mesenchymal Stem Cells. Stem Cells Int 2015; 2015:762098. [PMID: 26236348 PMCID: PMC4506912 DOI: 10.1155/2015/762098] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/07/2015] [Accepted: 06/22/2015] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into multiple cell lineages and contributing to tissue repair and regeneration. Characterization of the physiological function of MSCs has been largely hampered by lack of unique markers. Nestin, originally found in neuroepithelial stem cells, is an intermediate filament protein expressed in the early stages of development. Increasing studies have shown a particular association between Nestin and MSCs. Nestin could characterize a subset of bone marrow perivascular MSCs which contributed to bone development and closely contacted with hematopoietic stem cells (HSCs). Nestin expressing (Nes(+)) MSCs also play a role in the progression of various diseases. However, Nes(+) cells were reported to participate in angiogenesis as MSCs or endothelial progenitor cells (EPCs) in several tissues and be a heterogeneous population comprising mesenchymal cells and endothelial cells in the developing bone marrow. In this review article, we will summarize the progress of the research on Nestin, particularly the function of Nes(+) cells in bone marrow, and discuss the feasibility of using Nestin as a specific marker for MSCs.
Collapse
|
493
|
Strategies of Manipulating BMP Signaling in Microgravity to Prevent Bone Loss. VITAMINS AND HORMONES 2015; 99:249-72. [PMID: 26279379 DOI: 10.1016/bs.vh.2015.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bone structure and function is shaped by gravity. Prolonged exposure to microgravity leads to 1-2% bone loss per month in crew members compared to 1% bone loss per year in postmenopausal women. Exercise countermeasures developed to date are ineffective in combating bone loss in microgravity. The search is on for alternate therapies to prevent bone loss in space. Microgravity is an ideal stimulus to understand bone interactions at different levels of organizations. Spaceflight experiments are limited by high costs and lack of opportunity. Ground-based microgravity analogs have proven to simulate biological responses in space. Mice experiments have given important signaling clues in microgravity-associated bone loss, but are restricted by numbers and human application. Cell-based systems provide initial clues to signaling changes; however, the information is simplistic and limited to the cell type. There is a need to integrate information at different levels and provide a complete picture which will help develop a unique strategy to prevent bone weakening. Limited exposure to simulated microgravity using random positioning machine induces proliferation and differentiation of bipotential murine oval liver stem cells. Bone morphogenetic proteins (BMPs) are the prototypal osteogenic signaling molecule with multitude of bone protective functions. In this chapter, we discuss the basic BMP structure, its significance in bone repair, and stem cell differentiation in microgravity. Based on the current information, we propose a model for BMP signaling in space. Development of new technologies may help osteoporosis patients, bedridden people, spinal injuries, or paralytic patients.
Collapse
|
494
|
Zhou S. Paracrine effects of haematopoietic cells on human mesenchymal stem cells. Sci Rep 2015; 5:10573. [PMID: 26030407 PMCID: PMC4450757 DOI: 10.1038/srep10573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/17/2015] [Indexed: 12/28/2022] Open
Abstract
Stem cell function decline during ageing can involve both cell intrinsic and extrinsic mechanisms. Bone and blood formation are intertwined in bone marrow, therefore haematopoietic cells and bone cells could be extrinsic factors for each other. In this study, we assessed the paracrine effects of extrinsic factors from haematopoietic cells on human mesenchymal stem cells (MSCs). Our data showed that haematopoietic cells stimulate proliferation, osteoblast differentiation and inhibit senescence of MSCs; TNF-α, PDGF-β, Wnt1, 4, 6, 7a and 10a, sFRP-3 and sFRP-5 are dominantly expressed in haematopoietic cells; the age-related increase of TNF-α in haematopoietic cells may perform as a negative factor in the interactions of haematopoietic cells on MSCs via TNF-α receptors and then activating NF-κB signaling or Wnt/β-catenin signaling to induce senescence and reduce osteoblast differentiation in MSCs. In conclusion, our data demonstrated that there are paracrine interactions of haematopoietic cells on human MSCs; immunosenescence may be one of the extrinsic mechanisms by which skeletal stem cell function decline during human skeletal ageing.
Collapse
Affiliation(s)
- Shuanhu Zhou
- 1] Department of Orthopedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA [2] Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
495
|
Reagan MR, Liaw L, Rosen CJ, Ghobrial IM. Dynamic interplay between bone and multiple myeloma: emerging roles of the osteoblast. Bone 2015; 75:161-9. [PMID: 25725265 PMCID: PMC4580250 DOI: 10.1016/j.bone.2015.02.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 01/06/2023]
Abstract
Multiple myeloma is a B-cell malignancy characterized by the unrelenting proliferation of plasma cells. Multiple myeloma causes osteolytic lesions and fractures that do not heal due to decreased osteoblastic and increased osteoclastic activity. However, the exact relationship between osteoblasts and myeloma cells remains elusive. Understanding the interactions between these dynamic bone-forming cells and myeloma cells is crucial to understanding how osteolytic lesions form and persist and how tumors grow within the bone marrow. This review provides a comprehensive overview of basic and translational research focused on the role of osteoblasts in multiple myeloma progression and their relationship to osteolytic lesions. Importantly, current challenges for in vitro studies exploring direct osteoblastic effects on myeloma cells, and gaps in understanding the role of the osteoblast in myeloma progression are delineated. Finally, successes and challenges in myeloma treatment with osteoanabolic therapy (i.e., any treatment that induces increased osteoblastic number or activity) are enumerated. Our goal is to illuminate novel mechanisms by which osteoblasts may contribute to multiple myeloma disease progression and osteolysis to better direct research efforts. Ultimately, we hope this may provide a roadmap for new approaches to the pathogenesis and treatment of multiple myeloma with a particular focus on the osteoblast.
Collapse
Affiliation(s)
- Michaela R Reagan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Lucy Liaw
- Maine Medical Center Research Institute, Scarborough, ME, USA; Tufts University School of Medicine, Boston, MA, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, Scarborough, ME, USA; Tufts University School of Medicine, Boston, MA, USA.
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
496
|
Abstract
Skeletal stem cells (SSCs) reside in the postnatal bone marrow and give rise to cartilage, bone, hematopoiesis-supportive stroma and marrow adipocytes in defined in vivo assays. These lineages emerge in a specific sequence during embryonic development and post natal growth, and together comprise a continuous anatomical system, the bone-bone marrow organ. SSCs conjoin skeletal and hematopoietic physiology, and are a tool for understanding and ameliorating skeletal and hematopoietic disorders. Here and in the accompanying poster, we concisely discuss the biology of SSCs in the context of the development and postnatal physiology of skeletal lineages, to which their use in medicine must remain anchored.
Collapse
Affiliation(s)
- Paolo Bianco
- Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Pamela G Robey
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| |
Collapse
|
497
|
Erdmann R, Ozden C, Weidmann J, Schultze A. Targeting the Gremlin-VEGFR2 axis - a promising strategy for multiple diseases? J Pathol 2015; 236:403-6. [PMID: 25875212 DOI: 10.1002/path.4544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 11/06/2022]
Abstract
Published recently in the Journal of Pathology, Lavoz et al. show that Gremlin promotes renal inflammation directly via VEGFR2. As Gremlin has been implicated in many other diseases, such as heart, lung and liver fibrosis, osteogenesis, angiogenesis and cancer, the new findings provide a rationale for novel concepts to investigate and potentially treat several pathologies.
Collapse
Affiliation(s)
- Robert Erdmann
- Department of Haematology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Germany
| | - Cansu Ozden
- Institute of Pathology, University Medical Centre Hamburg-Eppendorf, Germany
| | - Jens Weidmann
- Department of Haematology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Germany
| | - Alexander Schultze
- Department of Haematology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Germany
| |
Collapse
|
498
|
Abstract
The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice and demonstrate its role in skeletal tissue maintenance and regeneration.
Collapse
Affiliation(s)
- Moustapha Kassem
- Department of Endocrinology; University Hospital of Odense, 5000 Odense C, Denmark; The Danish Stem Cell Centre-DanStem, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Paolo Bianco
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
499
|
Zhao H, Feng J, Ho TV, Grimes W, Urata M, Chai Y. The suture provides a niche for mesenchymal stem cells of craniofacial bones. Nat Cell Biol 2015; 17:386-96. [PMID: 25799059 PMCID: PMC4380556 DOI: 10.1038/ncb3139] [Citation(s) in RCA: 293] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/16/2015] [Indexed: 12/19/2022]
Abstract
Bone tissue undergoes constant turnover supported by stem cells. Recent studies showed that perivascular mesenchymal stem cells (MSCs) contribute to the turnover of long bones. Craniofacial bones are flat bones derived from a different embryonic origin than the long bones. The identity and regulating niche for craniofacial-bone MSCs remain unknown. Here, we identify Gli1+ cells within the suture mesenchyme as the main MSC population for craniofacial bones. They are not associated with vasculature, give rise to all craniofacial bones in the adult and are activated during injury repair. Gli1+ cells are typical MSCs in vitro. Ablation of Gli1+ cells leads to craniosynostosis and arrest of skull growth, indicating that these cells are an indispensable stem cell population. Twist1(+/-) mice with craniosynostosis show reduced Gli1+ MSCs in sutures, suggesting that craniosynostosis may result from diminished suture stem cells. Our study indicates that craniofacial sutures provide a unique niche for MSCs for craniofacial bone homeostasis and repair.
Collapse
Affiliation(s)
- Hu Zhao
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033
| | - Weston Grimes
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033
| | - Mark Urata
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA 103, Los Angeles, CA 90033
| |
Collapse
|
500
|
McGonagle D, Jones EA. A new in vivo stem cell model for regenerative rheumatology. Nat Rev Rheumatol 2015; 11:200-1. [DOI: 10.1038/nrrheum.2015.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|