451
|
Namba T, Nakamuta S, Funahashi Y, Kaibuchi K. The role of selective transport in neuronal polarization. Dev Neurobiol 2011; 71:445-57. [DOI: 10.1002/dneu.20876] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
452
|
Cai Q, Davis ML, Sheng ZH. Regulation of axonal mitochondrial transport and its impact on synaptic transmission. Neurosci Res 2011; 70:9-15. [PMID: 21352858 PMCID: PMC3086944 DOI: 10.1016/j.neures.2011.02.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 02/07/2011] [Accepted: 02/07/2011] [Indexed: 12/11/2022]
Abstract
Mitochondria are essential organelles for neuronal survival and play important roles in ATP generation, calcium buffering, and apoptotic signaling. Due to their extreme polarity, neurons utilize specialized mechanisms to regulate mitochondrial transport and retention along axons and near synaptic terminals where energy supply and calcium homeostasis are in high demand. Axonal mitochondria undergo saltatory and bidirectional movement and display complex mobility patterns. In cultured neurons, approximately one-third of axonal mitochondria are mobile, while the rest remain stationary. Stationary mitochondria at synapses serve as local energy stations that produce ATP to support synaptic function. In addition, axonal mitochondria maintain local Ca²+ homeostasis at presynaptic boutons. The balance between mobile and stationary mitochondria is dynamic and responds quickly to changes in axonal and synaptic physiology. The coordination of mitochondrial mobility and synaptic activity is crucial for neuronal function synaptic plasticity. In this update article, we introduce recent advances in our understanding of the motor-adaptor complexes and docking machinery that mediate mitochondrial transport and axonal distribution. We will also discuss the molecular mechanisms underlying the complex mobility patterns of axonal mitochondria and how mitochondrial mobility impacts the physiology and function of synapses.
Collapse
Affiliation(s)
- Qian Cai
- Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Matthew L. Davis
- Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 35, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| |
Collapse
|
453
|
Zhu YB, Sheng ZH. Increased axonal mitochondrial mobility does not slow amyotrophic lateral sclerosis (ALS)-like disease in mutant SOD1 mice. J Biol Chem 2011; 286:23432-40. [PMID: 21518771 DOI: 10.1074/jbc.m111.237818] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reduced axonal mitochondrial transport has been observed in major neurodegenerative diseases, including fALS patients and SOD1(G93A) mice. However, it is unclear whether this defect plays a critical role in axonal degeneration or simply reflects sequelae of general transport alteration. Using genetic mouse models combined with time-lapse imaging of live neurons, we previously discovered that axon-targeted syntaphilin (SNPH) acts as a docking receptor specific for axonal mitochondria. Deletion of the snph gene in mice results in a substantially higher proportion of axonal mitochondria in the mobile state without any effect on the transport of other axonal organelles. Here we address whether increased (rescued) axonal mitochondrial mobility changes the disease course by crossing fALS-linked transgenic SOD1(G93A) and snph(-/-) knock-out mice. We found that a 2-fold increase in axonal mitochondrial mobility in SOD1(G93A)/snph(-/-) mice did not affect the onset of ALS-like symptoms. Both SOD1(G93A) and SOD1(G93A)/snph(-/-) mice exhibit similar weight loss, deterioration in motor function and motor neuron loss, significant gliosis, and a lifespan of 152-154 days. Thus, for the first time, our study provides genetic and pathological evidence that the impairment of mitochondrial transport seen in SOD1(G93A) mice plays a minimal role in the rapid-onset of fALS-linked pathology.
Collapse
Affiliation(s)
- Yi-Bing Zhu
- Synaptic Function Section, The Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland 20892-3706, USA
| | | |
Collapse
|
454
|
Brickley K, Stephenson FA. Trafficking kinesin protein (TRAK)-mediated transport of mitochondria in axons of hippocampal neurons. J Biol Chem 2011; 286:18079-92. [PMID: 21454691 DOI: 10.1074/jbc.m111.236018] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In neurons, the proper distribution of mitochondria is essential because of a requirement for high energy and calcium buffering during synaptic neurotransmission. The efficient, regulated transport of mitochondria along axons to synapses is therefore crucial for maintaining function. The trafficking kinesin protein (TRAK)/Milton family of proteins comprises kinesin adaptors that have been implicated in the neuronal trafficking of mitochondria via their association with the mitochondrial protein Miro and kinesin motors. In this study, we used gene silencing by targeted shRNAi and dominant negative approaches in conjunction with live imaging to investigate the contribution of endogenous TRAKs, TRAK1 and TRAK2, to the transport of mitochondria in axons of hippocampal pyramidal neurons. We report that both strategies resulted in impairing mitochondrial mobility in axonal processes. Differences were apparent in terms of the contribution of TRAK1 and TRAK2 to this transport because knockdown of TRAK1 but not TRAK2 impaired mitochondrial mobility, yet both TRAK1 and TRAK2 were shown to rescue transport impaired by TRAK1 gene knock-out. Thus, we demonstrate for the first time the pivotal contribution of the endogenous TRAK family of kinesin adaptors to the regulation of mitochondrial mobility.
Collapse
Affiliation(s)
- Kieran Brickley
- School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, United Kingdom
| | | |
Collapse
|
455
|
Abstract
The structure and function of the mitochondrial network is regulated by mitochondrial biogenesis, fission, fusion, transport and degradation. A well-maintained balance of these processes (mitochondrial dynamics) is essential for neuronal signaling, plasticity and transmitter release. Core proteins of the mitochondrial dynamics machinery play important roles in the regulation of apoptosis, and mutations or abnormal expression of these factors are associated with inherited and age-dependent neurodegenerative disorders. In Parkinson's disease (PD), oxidative stress and mitochondrial dysfunction underlie the development of neuropathology. The recessive Parkinsonism-linked genes PTEN-induced kinase 1 (PINK1) and Parkin maintain mitochondrial integrity by regulating diverse aspects of mitochondrial function, including membrane potential, calcium homeostasis, cristae structure, respiratory activity, and mtDNA integrity. In addition, Parkin is crucial for autophagy-dependent clearance of dysfunctional mitochondria. In the absence of PINK1 or Parkin, cells often develop fragmented mitochondria. Whereas excessive fission may cause apoptosis, coordinated induction of fission and autophagy is believed to facilitate the removal of damaged mitochondria through mitophagy, and has been observed in some types of cells. Compensatory mechanisms may also occur in mice lacking PINK1 that, in contrast to cells and Drosophila, have only mild mitochondrial dysfunction and lack dopaminergic neuron loss. A better understanding of the relationship between the specific changes in mitochondrial dynamics/turnover and cell death will be instrumental to identify potentially neuroprotective pathways steering PINK1-deficient cells towards survival. Such pathways may be manipulated in the future by specific drugs to treat PD and perhaps other neurodegenerative disorders characterized by abnormal mitochondrial function and dynamics.
Collapse
Affiliation(s)
- Hansruedi Büeler
- Department of Anatomy and Neurobiology, University of Kentucky, 800 Rose Street, Lexington, KY 40536, USA.
| |
Collapse
|
456
|
Arduíno DM, Esteves AR, Cardoso SM. Mitochondrial fusion/fission, transport and autophagy in Parkinson's disease: when mitochondria get nasty. PARKINSONS DISEASE 2011; 2011:767230. [PMID: 21403911 PMCID: PMC3043324 DOI: 10.4061/2011/767230] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 11/26/2010] [Accepted: 01/05/2011] [Indexed: 11/20/2022]
Abstract
Understanding the molecular basis of Parkinson's disease (PD) has proven to be a major challenge in the field of neurodegenerative diseases. Although several hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of PD, a growing body of evidence has highlighted the role of mitochondrial dysfunction and the disruption of the mechanisms of mitochondrial dynamics in PD and other parkinsonian disorders. In this paper, we comment on the recent advances in how changes in the mitochondrial function and mitochondrial dynamics (fusion/fission, transport, and clearance) contribute to neurodegeneration, specifically focusing on PD. We also evaluate the current controversies in those issues and discuss the role of fusion/fission dynamics in the mitochondrial lifecycle and maintenance. We propose that cellular demise and neurodegeneration in PD are due to the interplay between mitochondrial dysfunction, mitochondrial trafficking disruption, and impaired autophagic clearance.
Collapse
Affiliation(s)
- Daniela M Arduíno
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal
| | | | | |
Collapse
|
457
|
Tan AR, Cai AY, Deheshi S, Rintoul GL. Elevated intracellular calcium causes distinct mitochondrial remodelling and calcineurin-dependent fission in astrocytes. Cell Calcium 2011; 49:108-14. [DOI: 10.1016/j.ceca.2010.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/26/2022]
|
458
|
Bell KFS, Hardingham GE. The influence of synaptic activity on neuronal health. Curr Opin Neurobiol 2011; 21:299-305. [PMID: 21292474 DOI: 10.1016/j.conb.2011.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 12/11/2022]
Abstract
According to the theory of neuronal health, neurons exist in a spectrum of states ranging from highly resilient to vulnerable. An unhealthy neuron may be rendered dysfunctional or non-viable by an insult that would ordinarily be non-toxic to a healthy neuron. Over the years it has become clear that a neuron's health is subject to dynamic regulation by electrical or synaptic activity. This review highlights recently identified activity dependent signalling events that boost neuronal health through the transcriptional control of pro-apoptotic and anti-apoptotic genes, the enhancement of antioxidant defences, and the regulation of mitochondrial and neurotrophic factor availability. Furthermore, activity dependent signals have recently been shown to influence a variety of events specific to individual neurodegenerative diseases, which will also be highlighted.
Collapse
Affiliation(s)
- Karen F S Bell
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | | |
Collapse
|
459
|
Yamaoka S, Nakajima M, Fujimoto M, Tsutsumi N. MIRO1 influences the morphology and intracellular distribution of mitochondria during embryonic cell division in Arabidopsis. PLANT CELL REPORTS 2011; 30:239-44. [PMID: 20931334 DOI: 10.1007/s00299-010-0926-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/17/2010] [Accepted: 09/22/2010] [Indexed: 05/18/2023]
Abstract
Regulating the morphology and intracellular distribution of mitochondria is essential for embryo development in animals. However, the importance of such regulation is not clearly defined in plants. The evolutionarily conserved Miro proteins are known to be involved in the regulation of mitochondrial morphology and motility. We previously demonstrated that MIRO1, an Arabidopsis thaliana orthologue of the Miro protein, is required for embryogenesis. An insertional mutation in the MIRO1 gene causes arrest of embryonic cell division, leading to abortion of the embryo at an early stage. Here we investigated the role of MIRO1 in the regulation of mitochondrial behaviour in egg cells and early-stage embryos using GFP-labeled mitochondria. Two-photon laser scanning microscopy revealed that, in miro1 mutant egg cells, mitochondria are abnormally enlarged, although egg cell formation is nearly unaffected. After fertilization and subsequent zygotic cell division, the homozygous miro1 mutant two-celled embryo contained a significantly reduced number of mitochondria in its apical cell compared with the wild type, suggesting that the miro1 mutation inhibits proper intracellular distribution of mitochondria, leading to an arrest of embryonic cell division. Our findings suggest that proper mitochondrial morphology and intracellular distribution are maintained by MIRO1 and are vital for embryonic cell division.
Collapse
Affiliation(s)
- Shohei Yamaoka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
460
|
Disrupted in Schizophrenia-1 regulates intracellular trafficking of mitochondria in neurons. Mol Psychiatry 2011; 16:122-4, 121. [PMID: 21079610 DOI: 10.1038/mp.2010.110] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
461
|
Koshiba T, Holman HA, Kubara K, Yasukawa K, Kawabata SI, Okamoto K, MacFarlane J, Shaw JM. Structure-function analysis of the yeast mitochondrial Rho GTPase, Gem1p: implications for mitochondrial inheritance. J Biol Chem 2011; 286:354-62. [PMID: 21036903 PMCID: PMC3012993 DOI: 10.1074/jbc.m110.180034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/26/2010] [Indexed: 11/06/2022] Open
Abstract
Mitochondria undergo continuous cycles of homotypic fusion and fission, which play an important role in controlling organelle morphology, copy number, and mitochondrial DNA maintenance. Because mitochondria cannot be generated de novo, the motility and distribution of these organelles are essential for their inheritance by daughter cells during division. Mitochondrial Rho (Miro) GTPases are outer mitochondrial membrane proteins with two GTPase domains and two EF-hand motifs, which act as receptors to regulate mitochondrial motility and inheritance. Here we report that although all of these domains are biochemically active, only the GTPase domains are required for the mitochondrial inheritance function of Gem1p (the yeast Miro ortholog). Mutations in either of the Gem1p GTPase domains completely abrogated mitochondrial inheritance, although the mutant proteins retained half the GTPase activity of the wild-type protein. Although mitochondrial inheritance was not dependent upon Ca(2+) binding by the two EF-hands of Gem1p, a functional N-terminal EF-hand I motif was critical for stable expression of Gem1p in vivo. Our results suggest that basic features of Miro protein function are conserved from yeast to humans, despite differences in the cellular machinery mediating mitochondrial distribution in these organisms.
Collapse
Affiliation(s)
- Takumi Koshiba
- Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
462
|
Dynamic Behavior of Double-Membrane-Bounded Organelles in Plant Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:181-222. [DOI: 10.1016/b978-0-12-385859-7.00004-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
463
|
Abstract
Axons depend critically on axonal transport both for supplying materials and for communicating with cell bodies. This chapter looks at each activity, asking what aspects are essential for axon survival. Axonal transport declines in neurodegenerative disorders, such as Alzheimer's disease, amyotrophic lateral sclerosis, and multiple sclerosis, and in normal ageing, but whether all cargoes are equally affected and what limits axon survival remains unclear. Cargoes can be differentially blocked in some disorders, either individually or in groups. Each missing protein cargo results in localized loss-of-function that can be partially modeled by disrupting the corresponding gene, sometimes with surprising results. The axonal response to losing specific proteins also depends on the rates of protein turnover and on whether the protein can be locally synthesized. Among cargoes with important axonal roles are components of the PI3 kinase, Mek/Erk, and Jnk signaling pathways, which help to communicate with cell bodies and to regulate axonal transport itself. Bidirectional trafficking of Bdnf, NT-3, and other neurotrophic factors contribute to intra- and intercellular signaling, affecting the axon's cellular environment and survival. Finally, several adhesion molecules and gangliosides are key determinants of axon survival, probably by mediating axon-glia interactions. Thus, failure of long-distance intracellular transport can deprive axons of one, few, or many cargoes. This can lead to axon degeneration either directly, through the absence of essential axonal proteins, or indirectly, through failures in communication with cell bodies and nonneuronal cells.
Collapse
|
464
|
Vlahou G, Eliáš M, von Kleist-Retzow JC, Wiesner RJ, Rivero F. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur J Cell Biol 2010; 90:342-55. [PMID: 21131095 DOI: 10.1016/j.ejcb.2010.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 10/22/2010] [Accepted: 10/26/2010] [Indexed: 01/12/2023] Open
Abstract
Ras-related GTPases of the Miro family have been implicated in mitochondrial homeostasis and microtubule-dependent transport. They consist of two GTP-binding domains separated by calcium-binding motifs and of a C-terminal transmembrane domain that targets the protein to the outer mitochondrial membrane. We disrupted the single Miro-encoding gene in Dictyostelium discoideum and observed a substantial growth defect that we attribute to a decreased mitochondrial mass and cellular ATP content. However, mutant cells even showed an increased rate of oxygen consumption, while glucose consumption, mitochondrial transmembrane potential and production of reactive oxygen species were unaltered. Processes characteristic of the multicellular stage of the D. discoideum life cycle were also unaltered. Although mitochondria occasionally use microtubules for transport in D. discoideum, their size and distribution were not visibly affected. We found Miro in all branches of the eukaryotic tree with the exception of a few protist lineages (mainly those lacking typical mitochondria). Trypanosomatids and ciliates possess structurally unique homologs lacking the N-terminal or the C-terminal GTPase domain, respectively. We propose that in D. discoideum, as in yeasts and plants, Miro plays roles in mitochondrial homeostasis, but the ability to build a complex that regulates its association to kinesin for microtubule-dependent transport probably arose in metazoans.
Collapse
Affiliation(s)
- Georgia Vlahou
- Zentrum für Biochemie, Medizinische Fakultät, Universität zu Köln, Joseph-Stelzmann-Strasse 52, 50931 Köln, Germany
| | | | | | | | | |
Collapse
|
465
|
Abstract
The essential need for mitochondrial function has been extensively shown to relate to neuronal health. Neurodegeneration and neurodegeneration-related diseases have been associated with multiple mitochondrial dysfunctions. This review highlights key findings related to commonly studied mitochondrial dysfunctions: imbalance of mitochondrial dynamics, mutations in the mitochondrial genome, excessive reactive oxygen species, and misfolded protein associations/interactions with the mitochondria. Future research in mitochondrial function will help elucidate complex neurodegenerative events while impacting both individual and societal health.
Collapse
|
466
|
Comparison of muscle ultrastructure in myasthenia gravis with anti-MuSK and anti-AChR antibodies. J Neurol 2010; 258:746-52. [DOI: 10.1007/s00415-010-5823-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/22/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
|
467
|
Brickley K, Pozo K, Stephenson FA. N-acetylglucosamine transferase is an integral component of a kinesin-directed mitochondrial trafficking complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:269-81. [PMID: 21034780 DOI: 10.1016/j.bbamcr.2010.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/12/2010] [Accepted: 10/13/2010] [Indexed: 10/18/2022]
Abstract
Trafficking kinesin proteins (TRAKs) 1 and 2 are kinesin-associated proteins proposed to function in excitable tissues as adaptors in anterograde trafficking of cargoes including mitochondria. They are known to associate with N-acetylglucosamine transferase and the mitochondrial rho GTPase, Miro. We used confocal imaging, Förster resonance energy transfer and immunoprecipitations to investigate association between TRAKs1/2, N-acetylglucosamine transferase, the prototypic kinesin-1, KIF5C, and Miro. We demonstrate that in COS-7 cells, N-acetylglucosamine transferase, KIF5C and TRAKs1/2 co-distribute. Förster resonance energy transfer was observed between N-acetylglucosamine transferase and TRAKs1/2. Despite co-distributing with KIF5C and immunoprecipitations demonstrating a TRAK1/2, N-acetylglucosamine transferase and KIF5C ternary complex, no Förster resonance energy transfer was detected between N-acetylglucosamine transferase and KIF5C. KIF5C, N-acetylglucosamine transferase, TRAKs1/2 and Miro formed a quaternary complex. The presence of N-acteylglucosamine transferase partially prevented redistribution of mitochondria induced by trafficking proteins 1/2 and KIF5C. TRAK2 was a substrate for N-acetylglucosamine transferase with TRAK2 (S562) identified as a site of O-N-acetylglucosamine modification. These findings substantiate trafficking kinesin proteins as scaffolds for the formation of a multi-component complex involved in anterograde trafficking of mitochondria. They further suggest that O-glycosylation may regulate complex formation.
Collapse
Affiliation(s)
- Kieran Brickley
- School of Pharmacy, University of London, 29/39 Brunswick Square, London WC1N 1AX, UK
| | | | | |
Collapse
|
468
|
Early deficits in synaptic mitochondria in an Alzheimer's disease mouse model. Proc Natl Acad Sci U S A 2010; 107:18670-5. [PMID: 20937894 DOI: 10.1073/pnas.1006586107] [Citation(s) in RCA: 538] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Synaptic dysfunction and the loss of synapses are early pathological features of Alzheimer's disease (AD). Synapses are sites of high energy demand and extensive calcium fluctuations; accordingly, synaptic transmission requires high levels of ATP and constant calcium fluctuation. Thus, synaptic mitochondria are vital for maintenance of synaptic function and transmission through normal mitochondrial energy metabolism, distribution and trafficking, and through synaptic calcium modulation. To date, there has been no extensive analysis of alterations in synaptic mitochondria associated with amyloid pathology in an amyloid β (Aβ)-rich milieu. Here, we identified differences in mitochondrial properties and function of synaptic vs. nonsynaptic mitochondrial populations in the transgenic mouse brain, which overexpresses the human mutant form of amyloid precursor protein and Aβ. Compared with nonsynaptic mitochondria, synaptic mitochondria showed a greater degree of age-dependent accumulation of Aβ and mitochondrial alterations. The synaptic mitochondrial pool of Aβ was detected at an age as young as 4 mo, well before the onset of nonsynaptic mitochondrial and extensive extracellular Aβ accumulation. Aβ-insulted synaptic mitochondria revealed early deficits in mitochondrial function, as shown by increased mitochondrial permeability transition, decline in both respiratory function and activity of cytochrome c oxidase, and increased mitochondrial oxidative stress. Furthermore, a low concentration of Aβ (200 nM) significantly interfered with mitochondrial distribution and trafficking in axons. These results demonstrate that synaptic mitochondria, especially Aβ-rich synaptic mitochondria, are more susceptible to Aβ-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction relevant to the development of synaptic degeneration in AD.
Collapse
|
469
|
Cheng A, Hou Y, Mattson MP. Mitochondria and neuroplasticity. ASN Neuro 2010; 2:e00045. [PMID: 20957078 PMCID: PMC2949087 DOI: 10.1042/an20100019] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/06/2010] [Accepted: 08/13/2010] [Indexed: 12/22/2022] Open
Abstract
The production of neurons from neural progenitor cells, the growth of axons and dendrites and the formation and reorganization of synapses are examples of neuroplasticity. These processes are regulated by cell-autonomous and intercellular (paracrine and endocrine) programs that mediate responses of neural cells to environmental input. Mitochondria are highly mobile and move within and between subcellular compartments involved in neuroplasticity (synaptic terminals, dendrites, cell body and the axon). By generating energy (ATP and NAD(+)), and regulating subcellular Ca(2+) and redox homoeostasis, mitochondria may play important roles in controlling fundamental processes in neuroplasticity, including neural differentiation, neurite outgrowth, neurotransmitter release and dendritic remodelling. Particularly intriguing is emerging data suggesting that mitochondria emit molecular signals (e.g. reactive oxygen species, proteins and lipid mediators) that can act locally or travel to distant targets including the nucleus. Disturbances in mitochondrial functions and signalling may play roles in impaired neuroplasticity and neuronal degeneration in Alzheimer's disease, Parkinson's disease, psychiatric disorders and stroke.
Collapse
Key Words
- AD, Alzheimer's disease
- AP, adaptor protein
- APP, amyloid precursor protein
- Aβ, amyloid β-peptide
- BDNF, brain-derived neurotrophic factor
- CR, caloric restriction
- CREB, cAMP-response-element-binding protein
- CaMK, Ca2+/calmodulin-dependent protein kinase
- ES, embryonic stem
- ETC, electron transport chain
- HD, Huntington's disease
- LRRK2, leucine-rich repeat kinase 2
- LTP, long-term potentiation
- MAPK, mitogen-activated protein kinase
- Mn-SOD, manganese superoxide dismutase
- NGF, nerve growth factor
- NMDA, N-methyl-d-aspartate
- Nrf1, nuclear respiratory factor 1
- OPA1, Optic Atrophy-1
- PD, Parkinson's disease
- PGC1α, peroxisome-proliferator-activated receptor γ co-activator 1α
- PINK1, PTEN (phosphatase and tensin homologue deleted on chromosome 10)-induced kinase 1
- PPAR, peroxisome-proliferator-activated receptor
- UCP, uncoupling protein
- mitochondria biogenesis
- mitochondria fission and fusion
- neural progenitor cell
Collapse
Affiliation(s)
- Aiwu Cheng
- *Laboratory of Neurosciences, National Institute of Aging Intramural Research Program, Baltimore, MD 21224, U.S.A
| | - Yan Hou
- *Laboratory of Neurosciences, National Institute of Aging Intramural Research Program, Baltimore, MD 21224, U.S.A
| | - Mark P Mattson
- *Laboratory of Neurosciences, National Institute of Aging Intramural Research Program, Baltimore, MD 21224, U.S.A
- †Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| |
Collapse
|
470
|
Hung CHL, Ho YS, Chang RCC. Modulation of mitochondrial calcium as a pharmacological target for Alzheimer's disease. Ageing Res Rev 2010; 9:447-56. [PMID: 20553970 DOI: 10.1016/j.arr.2010.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 05/14/2010] [Accepted: 05/19/2010] [Indexed: 12/20/2022]
Abstract
Perturbed neuronal calcium homeostasis is a prominent feature in Alzheimer's disease (AD). Mitochondria accumulate calcium ions (Ca(2+)) for cellular bioenergetic metabolism and suppression of mitochondrial motility within the cell. Excessive Ca(2+) uptake into mitochondria often leads to mitochondrial membrane permeabilization and induction of apoptosis. Ca(2+) is an interesting second messenger which can initiate both cellular life and death pathways in mitochondria. This review critically discusses the potential of manipulating mitochondrial Ca(2+) concentrations as a novel therapeutic opportunity for treating AD. This review also highlights the neuroprotective role of a number of currently available agents that modulate different mitochondrial Ca(2+) transport pathways. It is reasoned that these mitochondrial Ca(2+) modulators are most effective in combination with agents that increase the Ca(2+) buffering capacity of mitochondria. Modulation of mitochondrial Ca(2+) handling is a potential pharmacological target for future development of AD treatments.
Collapse
Affiliation(s)
- Clara Hiu-Ling Hung
- Laboratory of Neurodegenerative Diseases, Department of Anatomy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | |
Collapse
|
471
|
Dodd JR, Birch NP, Waldvogel HJ, Christie DL. Functional and immunocytochemical characterization of the creatine transporter in rat hippocampal neurons. J Neurochem 2010; 115:684-93. [DOI: 10.1111/j.1471-4159.2010.06957.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
472
|
Vos M, Lauwers E, Verstreken P. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front Synaptic Neurosci 2010; 2:139. [PMID: 21423525 PMCID: PMC3059669 DOI: 10.3389/fnsyn.2010.00139] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 08/09/2010] [Indexed: 12/21/2022] Open
Abstract
Cell types rich in mitochondria, including neurons, display a high energy demand and a need for calcium buffering. The importance of mitochondria for proper neuronal function is stressed by the occurrence of neurological defects in patients suffering from a great variety of diseases caused by mutations in mitochondrial genes. Genetic and pharmacological evidence also reveal a role of these organelles in various aspects of neuronal physiology and in the pathogenesis of neurodegenerative disorders. Yet the mechanisms by which mitochondria can affect neurotransmission largely remain to be elucidated. In this review we focus on experimental data that suggest a critical function of synaptic mitochondria in the function and organization of synaptic vesicle pools, and in neurotransmitter release during intense neuronal activity. We discuss how calcium handling, ATP production and other mitochondrial mechanisms may influence synaptic vesicle pool organization and synaptic function. Given the link between synaptic mitochondrial function and neuronal communication, efforts toward better understanding mitochondrial biology may lead to novel therapeutic approaches of neurological disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and psychiatric disorders that are at least in part caused by mitochondrial deficits.
Collapse
Affiliation(s)
- Melissa Vos
- Department of Molecular and Developmental Genetics VIB, Leuven, Belgium
| | | | | |
Collapse
|
473
|
Arnold B, Cassady SJ, VanLaar VS, Berman SB. Integrating multiple aspects of mitochondrial dynamics in neurons: age-related differences and dynamic changes in a chronic rotenone model. Neurobiol Dis 2010; 41:189-200. [PMID: 20850532 DOI: 10.1016/j.nbd.2010.09.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 12/21/2022] Open
Abstract
Changes in dynamic properties of mitochondria are increasingly implicated in neurodegenerative diseases, particularly Parkinson's disease (PD). Static changes in mitochondrial morphology, often under acutely toxic conditions, are commonly utilized as indicators of changes in mitochondrial fission and fusion. However, in neurons, mitochondrial fission and fusion occur in a dynamic system of axonal/dendritic transport, biogenesis and degradation, and thus, likely interact and change over time. We sought to explore this using a chronic neuronal model (nonlethal low-concentration rotenone over several weeks), examining distal neurites, which may give insight into the earliest changes occurring in PD. Using this model, in live primary neurons, we directly quantified mitochondrial fission, fusion, and transport over time and integrated multiple aspects of mitochondrial dynamics, including morphology and growth/mitophagy. We found that rates of mitochondrial fission and fusion change as neurons age. In addition, we found that chronic rotenone exposure initially increased the ratio of fusion to fission, but later, this was reversed. Surprisingly, despite changes in rates of fission and fusion, mitochondrial morphology was minimally affected, demonstrating that morphology can be an inaccurate indicator of fission/fusion changes. In addition, we found evidence of subcellular compartmentalization of compensatory changes, as mitochondrial density increased in distal neurites first, which may be important in PD, where pathology may begin distally. We propose that rotenone-induced early changes such as in mitochondrial fusion are compensatory, accompanied later by detrimental fission. As evidence, in a dopaminergic neuronal model, in which chronic rotenone caused loss of neurites before cell death (like PD pathology), inhibiting fission protected against the neurite loss. This suggests that aberrant mitochondrial dynamics may contribute to the earliest neuropathologic mechanisms in PD. These data also emphasize that mitochondrial fission and fusion do not occur in isolation, and highlight the importance of analysis and integration of multiple mitochondrial dynamic functions in neurons.
Collapse
Affiliation(s)
- Beth Arnold
- University of Pittsburgh, Department of Neurology and Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
474
|
NMDA receptors regulate GABAA receptor lateral mobility and clustering at inhibitory synapses through serine 327 on the γ2 subunit. Proc Natl Acad Sci U S A 2010; 107:16679-84. [PMID: 20823221 DOI: 10.1073/pnas.1000589107] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modification of the number of GABA(A) receptors (GABA(A)Rs) clustered at inhibitory synapses can regulate inhibitory synapse strength with important implications for information processing and nervous system plasticity and pathology. Currently, however, the mechanisms that regulate the number of GABA(A)Rs at synapses remain poorly understood. By imaging superecliptic pHluorin tagged GABA(A)R subunits we show that synaptic GABA(A)R clusters are normally stable, but that increased neuronal activity upon glutamate receptor (GluR) activation results in their rapid and reversible dispersal. This dispersal correlates with increases in the mobility of single GABA(A)Rs within the clusters as determined using single-particle tracking of GABA(A)Rs labeled with quantum dots. GluR-dependent dispersal of GABA(A)R clusters requires Ca(2+) influx via NMDA receptors (NMDARs) and activation of the phosphatase calcineurin. Moreover, the dispersal of GABA(A)R clusters and increased mobility of individual GABA(A)Rs are dependent on serine 327 within the intracellular loop of the GABA(A)R γ2 subunit. Thus, NMDAR signaling, via calcineurin and a key GABA(A)R phosphorylation site, controls the stability of synaptic GABA(A)Rs, with important implications for activity-dependent control of synaptic inhibition and neuronal plasticity.
Collapse
|
475
|
Evidence that myosin activity opposes microtubule-based axonal transport of mitochondria. J Neurosci 2010; 30:8984-92. [PMID: 20592219 DOI: 10.1523/jneurosci.1621-10.2010] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurons transport and position mitochondria using a combination of saltatory, bidirectional movements and stationary docking. Axonal mitochondria move along microtubules (MTs) using kinesin and dynein motors, but actin and myosin also play a poorly defined role in their traffic. To ascertain this role, we have used RNA interference (RNAi) to deplete specific myosin motors in cultured Drosophila neurons and quantified the effects on mitochondrial motility. We produced a fly strain expressing the Caenorhabditis elegans RNA transporter SID-1 in neurons to increase the efficacy of RNAi in primary cultures. These neurons exhibited significantly increased RNAi-mediated knockdown of gene expression compared with neurons not expressing this transporter. Using this system, we observed a significant increase in mitochondrial transport during myosin V depletion. Mitochondrial mean velocity and duty cycle were augmented in both anterograde and retrograde directions, and the fraction of mitochondrial flux contained in long runs almost doubled for anterograde movement. Myosin VI depletion increased the same movement parameters but was selective for retrograde movement, whereas myosin II depletion produced no phenotype. An additional effect of myosin V depletion was an increase in mitochondrial length. These data indicate that myosin V and VI play related but distinct roles in regulating MT-based mitochondrial movement: they oppose, rather than complement, protracted MT-based movements and perhaps facilitate organelle docking.
Collapse
|
476
|
MacAskill AF, Atkin TA, Kittler JT. Mitochondrial trafficking and the provision of energy and calcium buffering at excitatory synapses. Eur J Neurosci 2010; 32:231-40. [PMID: 20946113 DOI: 10.1111/j.1460-9568.2010.07345.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuronal postsynaptic currents consume most of the brain's energy supply. Delineating how neurons control the distribution, morphology and function of the energy-producing mitochondria that fuel synaptic communication is therefore important for our understanding of nervous system function and pathology. Here we review recent insights into the molecular mechanisms that control activity-dependent regulation of mitochondrial trafficking, morphology and activity at excitatory synapses. We also consider some implications of this regulation for synaptic function and plasticity and discuss how this may contribute to synaptic dysfunction and signalling in neurological disease, with a focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Andrew F MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | | | | |
Collapse
|
477
|
Kawamata H, Manfredi G. Mitochondrial dysfunction and intracellular calcium dysregulation in ALS. Mech Ageing Dev 2010; 131:517-26. [PMID: 20493207 PMCID: PMC2933290 DOI: 10.1016/j.mad.2010.05.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/05/2010] [Accepted: 05/12/2010] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that affects the aging population. A progressive loss of motor neurons in the spinal cord and brain leads to muscle paralysis and death. As in other common neurodegenerative diseases, aging-related mitochondrial dysfunction is increasingly being considered among the pathogenic factors. Mitochondria are critical for cell survival: they provide energy to the cell, buffer intracellular calcium, and regulate apoptotic cell death. Whether mitochondrial abnormalities are a trigger or a consequence of the neurodegenerative process and the mechanisms whereby mitochondrial dysfunction contributes to disease are not clear yet. Calcium homeostasis is a major function of mitochondria in neurons, and there is ample evidence that intracellular calcium is dysregulated in ALS. The impact of mitochondrial dysfunction on intracellular calcium homeostasis and its role in motor neuron demise are intriguing issues that warrants in depth discussion. Clearly, unraveling the causal relationship between mitochondrial dysfunction, calcium dysregulation, and neuronal death is critical for the understanding of ALS pathogenesis. In this review, we will outline the current knowledge of various aspects of mitochondrial dysfunction in ALS, with a special emphasis on the role of these abnormalities on intracellular calcium handling.
Collapse
Affiliation(s)
- Hibiki Kawamata
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | |
Collapse
|
478
|
Kinesin's light chains inhibit the head- and microtubule-binding activity of its tail. Proc Natl Acad Sci U S A 2010; 107:11781-6. [PMID: 20547877 DOI: 10.1073/pnas.1005854107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinesin-1 is a microtubule-based motor comprising two heavy chains (KHCs) and two light chains (KLCs). Motor activity is precisely regulated to avoid futile ATP consumption and to ensure proper intracellular localization of kinesin-1 and its cargoes. The KHC tail inhibits ATPase activity by interacting with the enzymatic KHC heads, and the tail also binds microtubules. Here, we present a role for the KLCs in regulating both the head- and microtubule-binding activities of the kinesin-1 tail. We show that KLCs reduce the affinity of the head-tail interaction over tenfold and concomitantly repress the tail's regulatory activity. We also show that KLCs inhibit tail-microtubule binding by a separate mechanism. Inhibition of head-tail binding requires steric and electrostatic factors. Inhibition of tail-microtubule binding is largely electrostatic, pH dependent, and mediated partly by a highly negatively charged linker region between the KHC-interacting and cargo-binding domains of the KLCs. Our data support a model wherein KLCs promote activation of kinesin-1 for cargo transport by simultaneously suppressing tail-head and tail-microtubule interactions. KLC-mediated inhibition of tail-microtubule binding may also influence diffusional movement of kinesin-1 on microtubules, and kinesin-1's role in microtubule transport/sliding.
Collapse
|
479
|
Morel M, Authelet M, Dedecker R, Brion J. Glycogen synthase kinase-3β and the p25 activator of cyclin dependent kinase 5 increase pausing of mitochondria in neurons. Neuroscience 2010; 167:1044-56. [DOI: 10.1016/j.neuroscience.2010.02.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/26/2010] [Accepted: 02/28/2010] [Indexed: 01/01/2023]
|
480
|
Akhmanova A, Hammer JA. Linking molecular motors to membrane cargo. Curr Opin Cell Biol 2010; 22:479-87. [PMID: 20466533 DOI: 10.1016/j.ceb.2010.04.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/02/2010] [Accepted: 04/16/2010] [Indexed: 12/30/2022]
Abstract
Three types of motors, myosins, kinesins, and cytoplasmic dynein, cooperate to transport intracellular membrane organelles. Transport of each cargo is determined by recruitment of specific sets of motors and their regulation. Targeting of motors to membranes often depends on the formation of large multiprotein assemblies and can be influenced by membrane lipid composition. Motor activity can be regulated by cargo-induced conformational changes such as unfolding or dimerization. The architecture and function of motor: cargo complexes can also be controlled by phosphorylation, calcium signaling, and proteolysis. The complexity of transport systems is further increased by mechanical and functional cross-talk between different types of motors on the same cargo and by participation of the same motor in the movement of different organelles.
Collapse
Affiliation(s)
- Anna Akhmanova
- Department of Cell Biology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
481
|
Koutsopoulos OS, Laine D, Osellame L, Chudakov DM, Parton RG, Frazier AE, Ryan MT. Human Miltons associate with mitochondria and induce microtubule-dependent remodeling of mitochondrial networks. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:564-74. [DOI: 10.1016/j.bbamcr.2010.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 02/23/2010] [Accepted: 03/08/2010] [Indexed: 01/10/2023]
|
482
|
Autret A, Martin SJ. Bcl-2 family proteins and mitochondrial fission/fusion dynamics. Cell Mol Life Sci 2010; 67:1599-606. [PMID: 20143248 PMCID: PMC11115729 DOI: 10.1007/s00018-010-0286-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/20/2010] [Indexed: 01/07/2023]
Abstract
Mitochondria are dynamic organelles and can undergo regulated fission/fragmentation to produce smaller organelles or, alternatively, can undergo fusion to produce tubular or net-like mitochondrial structures. Although some of the molecules that control mitochondrial fission and fusion are known, new molecules and pathways that control this process continue to be discovered, suggesting that this process is more complex than previously appreciated. In addition to their crucial role in the regulation of apoptosis, recent studies have implicated members of the Bcl-2 family in maintenance of the mitochondrial network. Here, we discuss the mechanisms governing mitochondrial fission/fusion and summarize current knowledge concerning the role of Bcl-2 family members in regulating mitochondrial fission/fusion dynamics.
Collapse
Affiliation(s)
- Arnaud Autret
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Seamus J. Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
483
|
Smith KR, Oliver PL, Lumb MJ, Arancibia-Carcamo IL, Revilla-Sanchez R, Brandon NJ, Moss SJ, Kittler JT. Identification and characterisation of a Maf1/Macoco protein complex that interacts with GABAA receptors in neurons. Mol Cell Neurosci 2010; 44:330-41. [PMID: 20417281 DOI: 10.1016/j.mcn.2010.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 03/09/2010] [Accepted: 04/09/2010] [Indexed: 01/16/2023] Open
Abstract
The majority of fast inhibitory synaptic transmission in the mammalian nervous system is mediated by GABA(A) receptors (GABA(A)Rs). Here we report a novel interaction between the protein Maf1 and GABA(A)R beta-subunit intracellular domains. We find Maf1 to be highly expressed in brain and enriched in the hippocampus and cortex. In heterologous cells and neurons we show Maf1 co-localises with GABA(A)Rs in intracellular compartments and at the cell surface. In neurons, Maf1 is found localised in the cytoplasm in dendrites, partially overlapping with GABA(A)Rs and inhibitory synapses and in addition is enriched in the neuronal nucleus. We also report that Maf1 interacts with a novel coiled-coil domain containing protein that we have called Macoco (for Maf1 interacting coiled-coil protein). Like Maf1, Macoco can also be found localised to inhibitory synapses and directly interacts with GABA(A)Rs. Expressing Macoco in neurons increases surface GABA(A)R levels. Our results suggest that Maf1 and Macoco are novel GABA(A)R interacting proteins important for regulating GABA(A)R surface expression and GABA(A)R signalling in the brain.
Collapse
Affiliation(s)
- Katharine R Smith
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | | | | | | |
Collapse
|
484
|
Stephenson FA. Activity-dependent immobilization of mitochondria: the role of miro. Front Mol Neurosci 2010; 3:9. [PMID: 20411050 PMCID: PMC2857456 DOI: 10.3389/fnmol.2010.00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 03/17/2010] [Indexed: 11/13/2022] Open
|
485
|
Spelbrink JN. Functional organization of mammalian mitochondrial DNA in nucleoids: history, recent developments, and future challenges. IUBMB Life 2010; 62:19-32. [PMID: 20014006 DOI: 10.1002/iub.282] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Various proteins involved in replication, repair, and the structural organization of mitochondrial DNA (mtDNA) have been characterized in detail over the past 25 or so years. In addition, in recent years, many proteins were identified with a role in the dynamics of the mitochondrial network. Using advanced imaging and an increasing number of cytological techniques, we have begun to realize that an important aspect to mtDNA maintenance, in both health and disease, is its organization within the dynamic mitochondrial network in discrete protein-DNA complexes usually termed nucleoids. Here, I review recent developments in the study of nucleoid dynamics and proteins. I will discuss the implications of the organization of mtDNA in nucleoids in light of DNA replication, repair, gene expression, segregation, and inheritance.
Collapse
Affiliation(s)
- Johannes N Spelbrink
- FinMIT Centre of Excellence, Institute of Medical Technology and Tampere University Hospital, University of Tampere, Tampere 33014 TAY, Finland.
| |
Collapse
|
486
|
Activity-dependent regulation of mitochondrial motility by calcium and Na/K-ATPase at nodes of Ranvier of myelinated nerves. J Neurosci 2010; 30:3555-66. [PMID: 20219989 DOI: 10.1523/jneurosci.4551-09.2010] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The node of Ranvier is a tiny segment of a myelinated fiber with various types of specializations adapted for generation of high-speed nerve impulses. It is ionically specialized with respect to ion channel segregation and ionic fluxes, and metabolically specialized in ionic pump expression and mitochondrial density augmentation. This report examines the interplay of three important parameters (calcium fluxes, Na pumps, mitochondrial motility) at nodes of Ranvier in frog during normal nerve activity. First, we used calcium dyes to resolve a highly localized elevation in axonal calcium at a node of Ranvier during action potentials, and showed that this calcium elevation retards mitochondrial motility during nerve impulses. Second, we found, surprisingly, that physiologic activation of the Na pumps retards mitochondrial motility. Blocking Na pumps alone greatly prevents action potentials from retarding mitochondrial motility, which reveals that mitochondrial motility is coupled to Na/K-ATPase. In conclusion, we suggest that during normal nerve activity, Ca elevation and activation of Na/K-ATPase act, possibly in a synergistic manner, to recruit mitochondria to a node of Ranvier to match metabolic needs.
Collapse
|
487
|
Schlager MA, Kapitein LC, Grigoriev I, Burzynski GM, Wulf PS, Keijzer N, de Graaff E, Fukuda M, Shepherd IT, Akhmanova A, Hoogenraad CC. Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-D-related protein 1 (BICDR-1) regulates neuritogenesis. EMBO J 2010; 29:1637-51. [PMID: 20360680 PMCID: PMC2876961 DOI: 10.1038/emboj.2010.51] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 03/01/2010] [Indexed: 11/20/2022] Open
Abstract
Membrane and secretory trafficking are essential for proper neuronal development. However, the molecular mechanisms that organize secretory trafficking are poorly understood. Here, we identify Bicaudal-D-related protein 1 (BICDR-1) as an effector of the small GTPase Rab6 and key component of the molecular machinery that controls secretory vesicle transport in developing neurons. BICDR-1 interacts with kinesin motor Kif1C, the dynein/dynactin retrograde motor complex, regulates the pericentrosomal localization of Rab6-positive secretory vesicles and is required for neural development in zebrafish. BICDR-1 expression is high during early neuronal development and strongly declines during neurite outgrowth. In young neurons, BICDR-1 accumulates Rab6 secretory vesicles around the centrosome, restricts anterograde secretory transport and inhibits neuritogenesis. Later during development, BICDR-1 expression is strongly reduced, which permits anterograde secretory transport required for neurite outgrowth. These results indicate an important role for BICDR-1 as temporal regulator of secretory trafficking during the early phase of neuronal differentiation.
Collapse
Affiliation(s)
- Max A Schlager
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
488
|
Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci 2010; 30:4232-40. [PMID: 20335458 PMCID: PMC2852190 DOI: 10.1523/jneurosci.6248-09.2010] [Citation(s) in RCA: 475] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 02/03/2010] [Indexed: 12/25/2022] Open
Abstract
Mitofusins (Mfn1 and Mfn2) are outer mitochondrial membrane proteins involved in regulating mitochondrial dynamics. Mutations in Mfn2 cause Charcot-Marie-Tooth disease (CMT) type 2A, an inherited disease characterized by degeneration of long peripheral axons, but the nature of this tissue selectivity remains unknown. Here, we present evidence that Mfn2 is directly involved in and required for axonal mitochondrial transport, distinct from its role in mitochondrial fusion. Live imaging of neurons cultured from Mfn2 knock-out mice or neurons expressing Mfn2 disease mutants shows that axonal mitochondria spend more time paused and undergo slower anterograde and retrograde movements, indicating an alteration in attachment to microtubule-based transport systems. Furthermore, Mfn2 disruption altered mitochondrial movement selectively, leaving transport of other organelles intact. Importantly, both Mfn1 and Mfn2 interact with mammalian Miro (Miro1/Miro2) and Milton (OIP106/GRIF1) proteins, members of the molecular complex that links mitochondria to kinesin motors. Knockdown of Miro2 in cultured neurons produced transport deficits identical to loss of Mfn2, indicating that both proteins must be present at the outer membrane to mediate axonal mitochondrial transport. In contrast, disruption of mitochondrial fusion via knockdown of the inner mitochondrial membrane protein Opa1 had no effect on mitochondrial motility, indicating that loss of fusion does not inherently alter mitochondrial transport. These experiments identify a role for mitofusins in directly regulating mitochondrial transport and offer important insight into the cell type specificity and molecular mechanisms of axonal degeneration in CMT2A and dominant optic atrophy.
Collapse
Affiliation(s)
| | | | | | - Jeffrey Milbrandt
- Department of Neurology and
- Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert H. Baloh
- Department of Neurology and
- Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
489
|
Twelvetrees AE, Yuen EY, Arancibia-Carcamo IL, MacAskill AF, Rostaing P, Lumb MJ, Humbert S, Triller A, Saudou F, Yan Z, Kittler JT. Delivery of GABAARs to synapses is mediated by HAP1-KIF5 and disrupted by mutant huntingtin. Neuron 2010; 65:53-65. [PMID: 20152113 DOI: 10.1016/j.neuron.2009.12.007] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
Abstract
The density of GABA(A) receptors (GABA(A)Rs) at synapses regulates brain excitability, and altered inhibition may contribute to Huntington's disease, which is caused by a polyglutamine repeat in the protein huntingtin. However, the machinery that delivers GABA(A)Rs to synapses is unknown. We demonstrate that GABA(A)Rs are trafficked to synapses by the kinesin family motor protein 5 (KIF5). We identify the adaptor linking the receptors to KIF5 as the huntingtin-associated protein 1 (HAP1). Disrupting the HAP1-KIF5 complex decreases synaptic GABA(A)R number and reduces the amplitude of inhibitory postsynaptic currents. When huntingtin is mutated, as in Huntington's disease, GABA(A)R transport and inhibitory synaptic currents are reduced. Thus, HAP1-KIF5-dependent GABA(A)R trafficking is a fundamental mechanism controlling the strength of synaptic inhibition in the brain. Its disruption by mutant huntingtin may explain some of the defects in brain information processing occurring in Huntington's disease and provides a molecular target for therapeutic approaches.
Collapse
Affiliation(s)
- Alison E Twelvetrees
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
490
|
Abstract
Mitochondrial dysfunction plays a role in the pathogenesis of a wide range of diseases that involve disordered cellular fuel metabolism and survival/death pathways, including neurodegenerative diseases, cancer and diabetes. Cytokine, virus recognition and cellular stress pathways converging on mitochondria cause apoptotic and/or necrotic cell death of beta-cells in type-1 diabetes. Moreover, since mitochondria generate crucial metabolic signals for glucose stimulated insulin secretion (GSIS), mitochondrial dysfunction underlies both the functional derangement of GSIS and (over-nutrition) stress-induced apoptotic/necrotic beta-cell death, hallmarks of type-2 diabetes. The apparently distinct mechanisms governing beta-cell life/death decisions during the development of diabetes provide a remarkable example where remote metabolic, immune and stress signalling meet with mitochondria mediated apoptotic/necrotic death pathways to determine the fate of the beta-cell. We summarize the main findings supporting such a pivotal role of mitochondria in beta-cell death in the context of current trends in diabetes research.
Collapse
Affiliation(s)
- Gyorgy Szabadkai
- Department of Cell and Developmental Biology, Mitochondrial Biology Group, University College London, Gower Street, WC1E 6BT London, UK.
| | | |
Collapse
|
491
|
Control of mitochondrial integrity in Parkinson’s disease. PROGRESS IN BRAIN RESEARCH 2010; 183:99-113. [DOI: 10.1016/s0079-6123(10)83006-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
492
|
Control of mitochondrial transport and localization in neurons. Trends Cell Biol 2009; 20:102-12. [PMID: 20006503 DOI: 10.1016/j.tcb.2009.11.002] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 11/17/2009] [Accepted: 11/17/2009] [Indexed: 12/18/2022]
Abstract
Mitochondria play an essential role in ATP generation, calcium buffering and apoptotic signalling. In neurons, the transport of mitochondria to specific locations where they are needed has emerged as an important process for correct nerve cell function. Recent studies have shed light on the mechanisms that control mitochondrial transport and localization in neurons. We describe the machinery that is important for constitutive transport of mitochondria throughout the cell, and highlight recent advances in our understanding of how signalling pathways can converge on this machinery and allow for rapid activity-dependent control of mitochondrial trafficking and localization. Regulation of mitochondrial trafficking might work in concert with mitochondrial tethering systems to give precise control of mitochondrial delivery and localization to regions of high energy and calcium buffering requirements within neurons.
Collapse
|
493
|
Mitochondrial mislocalization underlies Abeta42-induced neuronal dysfunction in a Drosophila model of Alzheimer's disease. PLoS One 2009; 4:e8310. [PMID: 20016833 PMCID: PMC2790372 DOI: 10.1371/journal.pone.0008310] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 11/21/2009] [Indexed: 11/19/2022] Open
Abstract
The amyloid-beta 42 (Abeta42) is thought to play a central role in the pathogenesis of Alzheimer's disease (AD). However, the molecular mechanisms by which Abeta42 induces neuronal dysfunction and degeneration remain elusive. Mitochondrial dysfunctions are implicated in AD brains. Whether mitochondrial dysfunctions are merely a consequence of AD pathology, or are early seminal events in AD pathogenesis remains to be determined. Here, we show that Abeta42 induces mitochondrial mislocalization, which contributes to Abeta42-induced neuronal dysfunction in a transgenic Drosophila model. In the Abeta42 fly brain, mitochondria were reduced in axons and dendrites, and accumulated in the somata without severe mitochondrial damage or neurodegeneration. In contrast, organization of microtubule or global axonal transport was not significantly altered at this stage. Abeta42-induced behavioral defects were exacerbated by genetic reductions in mitochondrial transport, and were modulated by cAMP levels and PKA activity. Levels of putative PKA substrate phosphoproteins were reduced in the Abeta42 fly brains. Importantly, perturbations in mitochondrial transport in neurons were sufficient to disrupt PKA signaling and induce late-onset behavioral deficits, suggesting a mechanism whereby mitochondrial mislocalization contributes to Abeta42-induced neuronal dysfunction. These results demonstrate that mislocalization of mitochondria underlies the pathogenic effects of Abeta42 in vivo.
Collapse
|
494
|
Szklarczyk R, Huynen MA. Expansion of the human mitochondrial proteome by intra- and inter-compartmental protein duplication. Genome Biol 2009; 10:R135. [PMID: 19930686 PMCID: PMC3091328 DOI: 10.1186/gb-2009-10-11-r135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 10/09/2009] [Accepted: 11/24/2009] [Indexed: 12/20/2022] Open
Abstract
The human mitochondrial proteome is shown to have expanded due to duplication of protein encoding genes and re-localization of these duplicated proteins. Background Mitochondria are highly complex, membrane-enclosed organelles that are essential to the eukaryotic cell. The experimental elucidation of organellar proteomes combined with the sequencing of complete genomes allows us to trace the evolution of the mitochondrial proteome. Results We present a systematic analysis of the evolution of mitochondria via gene duplication in the human lineage. The most common duplications are intra-mitochondrial, in which the ancestral gene and the daughter genes encode mitochondrial proteins. These duplications significantly expanded carbohydrate metabolism, the protein import machinery and the calcium regulation of mitochondrial activity. The second most prevalent duplication, inter-compartmental, extended the catalytic as well as the RNA processing repertoire by the novel mitochondrial localization of the protein encoded by one of the daughter genes. Evaluation of the phylogenetic distribution of N-terminal targeting signals suggests a prompt gain of the novel localization after inter-compartmental duplication. Relocalized duplicates are more often expressed in a tissue-specific manner relative to intra-mitochondrial duplicates and mitochondrial proteins in general. In a number of cases, inter-compartmental duplications can be observed in parallel in yeast and human lineages leading to the convergent evolution of subcellular compartments. Conclusions One-to-one human-yeast orthologs are typically restricted to their ancestral subcellular localization. Gene duplication relaxes this constraint on the cellular location, allowing nascent proteins to be relocalized to other compartments. We estimate that the mitochondrial proteome expanded at least 50% since the common ancestor of human and yeast.
Collapse
Affiliation(s)
- Radek Szklarczyk
- Centre for Molecular and Biomolecular Informatics, NCMLS, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands.
| | | |
Collapse
|
495
|
Verhey KJ, Hammond JW. Traffic control: regulation of kinesin motors. Nat Rev Mol Cell Biol 2009; 10:765-77. [PMID: 19851335 DOI: 10.1038/nrm2782] [Citation(s) in RCA: 396] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kinesins are a family of molecular motors that use the energy of ATP hydrolysis to move along the surface of, or destabilize, microtubule filaments. Much progress has been made in understanding the mechanics and functions of the kinesin motors that play important parts in cell division, cell motility, intracellular trafficking and ciliary function. How kinesins are regulated in cells to ensure the temporal and spatial fidelity of their microtubule-based activities is less well understood. Recent work has revealed molecular mechanisms that control kinesin autoinhibition and subsequent activation, binding to cargos and microtubule tracks, and localization at specific sites of action.
Collapse
Affiliation(s)
- Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA.
| | | |
Collapse
|
496
|
Abstract
Newly synthesized synaptic proteins and mitochondria are transported along lengthy neuronal processes to assist in the proper assembly of developing synapses and activity-dependent remodeling of mature synapses. Neuronal transport is mediated by motor proteins that associate with their cargoes via adaptors and travel along the cytoskeleton within neuronal processes. Our previous studies in developing hippocampal neurons revealed that syntabulin acts as a KIF5B motor adaptor and mediates anterograde transport of presynaptic cargoes and mitochondria, presynaptic assembly, and activity-induced plasticity. Here, using cultured superior cervical ganglion neurons combined with manipulation of syntabulin expression or interference with its interaction with KIF5B, we uncover a crucial role for syntabulin in the maintenance of presynaptic function. Syntabulin loss-of-function delayed the appearance of synaptic activity in developing neurons and impaired synaptic transmission in mature neurons, including reduced basal activity, accelerated synaptic depression under high-frequency firing, slowed recovery rates after synaptic vesicle depletion, and impaired presynaptic short-term plasticity. These defects correlated with reduced mitochondrial distribution along neuronal processes and were rescued by the application of ATP within presynaptic neurons. These results suggest that syntabulin supports the axonal transport of mitochondria and concomitant ATP production at presynaptic terminals. ATP supply from locally stationed mitochondria is in turn necessary for the efficient mobilization of synaptic vesicles into the readily releasable pool. These findings emphasize the critical role of KIF5B-syntabulin-mediated axonal transport in the maintenance of presynaptic function and regulation of synaptic plasticity.
Collapse
|
497
|
Abstract
Intracellular transport is fundamental for cellular function, survival and morphogenesis. Kinesin superfamily proteins (also known as KIFs) are important molecular motors that directionally transport various cargos, including membranous organelles, protein complexes and mRNAs. The mechanisms by which different kinesins recognize and bind to specific cargos, as well as how kinesins unload cargo and determine the direction of transport, have now been identified. Furthermore, recent molecular genetic experiments have uncovered important and unexpected roles for kinesins in the regulation of such physiological processes as higher brain function, tumour suppression and developmental patterning. These findings open exciting new areas of kinesin research.
Collapse
|
498
|
Rintoul GL, Reynolds IJ. Mitochondrial trafficking and morphology in neuronal injury. Biochim Biophys Acta Mol Basis Dis 2009; 1802:143-50. [PMID: 19747973 DOI: 10.1016/j.bbadis.2009.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 01/05/2023]
Abstract
Alterations in mitochondrial function may have a central role in the pathogenesis of many neurodegenerative diseases. The study of mitochondrial dysfunction has typically focused on ATP generation, calcium homeostasis and the production of reactive oxygen species. However, there is a growing appreciation of the dynamic nature of mitochondria within cells. Mitochondria are highly motile organelles, and also constantly undergo fission and fusion. This raises the possibility that impairment of mitochondrial dynamics could contribute to the pathogenesis of neuronal injury. In this review we describe the mechanisms that govern mitochondrial movement, fission and fusion. The key proteins that are involved in mitochondrial fission and fusion have also been linked to some inherited neurological diseases, including autosomal dominant optic atrophy and Charcot-Marie-Tooth disease 2A. We will discuss the evidence that altered movement, fission and fusion are associated with impaired neuronal viability. There is a growing collection of literature that links impaired mitochondrial dynamics to a number of disease models. Additionally, the concept that the failure to deliver a functional mitochondrion to the appropriate site within a neuron could contribute to neuronal dysfunction provides an attractive framework for understanding the mechanisms underlying neurologic disease. However, it remains difficult to clearly establish that altered mitochondrial dynamics clearly represent a cause of neuronal dysfunction.
Collapse
Affiliation(s)
- Gordon L Rintoul
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| | | |
Collapse
|
499
|
Su KG, Banker G, Bourdette D, Forte M. Axonal degeneration in multiple sclerosis: the mitochondrial hypothesis. Curr Neurol Neurosci Rep 2009; 9:411-7. [PMID: 19664372 DOI: 10.1007/s11910-009-0060-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system, affecting more than 2 million people worldwide. Traditionally considered an inflammatory demyelinating disease, recent evidence now points to axonal degeneration as crucial to the development of irreversible disability. Studies show that axonal degeneration occurs throughout the entire course of MS. Although the specific mechanisms causing axonal damage may differ at various stages, mitochondrial failure seems to be a common underlying theme. This review addresses the mitochondrial hypothesis for axonal degeneration in MS, highlighting the mechanisms by which mitochondrial dysfunction leads to axonal disruption in acute inflammatory lesions and the chronic axonopathy in progressive MS. Emphasis is placed on Ca(2+), free radical production, and permeability transition pore opening as key players in mitochondrial failure, axonal transport impairment, and subsequent axonal degeneration. In addition, the role of mitochondria as therapeutic targets for neuroprotection in MS is addressed.
Collapse
Affiliation(s)
- Kimmy G Su
- Oregon Health & Science University, Vollum Institute, L474, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
500
|
Abstract
Mitochondria in the cell bodies of neurons are transported down neuronal processes in response to changes in local energy and metabolic states. Because of their extreme polarity, neurons require specialized mechanisms to regulate mitochondrial transport and retention in axons. Our previous studies using syntaphilin (snph) knock-out mice provided evidence that SNPH targets to axonal mitochondria and controls their mobility through its static interaction with microtubules (MTs). However, the mechanisms regulating SNPH-mediated mitochondrial docking remain elusive. Here, we report an unexpected role for dynein light chain LC8. Using proteomic biochemical and cell biological assays combined with time-lapse imaging in live snph wild-type and mutant neurons, we reveal that LC8 regulates axonal mitochondrial mobility by binding to SNPH, thus enhancing the SNPH-MT docking interaction. Using mutagenesis assays, we mapped a seven-residue LC8-binding motif. Through this specific interaction, SNPH recruits LC8 to axonal mitochondria; such colocalization is abolished when neurons express SNPH mutants lacking the LC8-binding motif. Transient LC8 expression reduces mitochondrial mobility in snph (+/+) but not (-/-) neurons, suggesting that the observed effect of LC8 depends on the SNPH-mediated docking mechanism. In contrast, deleting the LC8-binding motif impairs the ability of SNPH to immobilize axonal mitochondria. Furthermore, circular dichroism spectrum analysis shows that LC8 stabilizes an alpha-helical coiled-coil within the MT-binding domain of SNPH against thermal unfolding. Thus, our study provides new mechanistic insights into controlling mitochondrial mobility through a dynamic interaction between the mitochondrial docking receptor and axonal cytoskeleton.
Collapse
|