451
|
Mendelsohn AR, Larrick JW, Lei JL. Rejuvenation by Partial Reprogramming of the Epigenome. Rejuvenation Res 2017; 20:146-150. [PMID: 28314379 DOI: 10.1089/rej.2017.1958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Epigenetic variation with age is one of the most important hallmarks of aging. Resetting or repairing the epigenome of aging cells in intact animals may rejuvenate the cells and perhaps the entire organism. In fact, differentiated adult cells, which by definition have undergone some epigenetic changes, are capable of being rejuvenated and reprogrammed to create pluripotent stem cells and viable cloned animals. Apparently, such reprogramming is capable of completely resetting the epigenome. However, attempts to fully reprogram differentiated cells in adult animals have failed in part because reprogramming leads to the formation of teratomas. A preliminary method to partially reprogram adult cells in mature Hutchinson-Gilford Progeria Syndrome (HGPS) mice by transient induction of the Yamanaka factors OSKM (Oct4/Sox2/Klf4/c-Myc) appears to ameliorate aging-like phenotypes in HGPS mice, and promote youthful regenerative capability in middle-aged wild-type individuals exposed to beta cell and muscle cell-specific toxins. However, whatever epigenetic repair is induced by transient reprogramming does not endure and may be due to the induction of key homeostatic regulators instead. Some of the effect of transient reprogramming may result from increased proliferation and enhanced function of adult stem cells. Partial reprogramming may point the way to new antiaging and proregenerative therapeutics. Redifferentiation of cells into their preexisting phenotype with simultaneous epigenomic rejuvenation is an interesting variation that also should be pursued. However, discovery of methods to more precisely repair the epigenome is the most likely avenue to the development of powerful new antiaging agents.
Collapse
Affiliation(s)
- Andrew R Mendelsohn
- 1 Regenerative Sciences Institute , Sunnyvale, California.,2 Panorama Research Institute , Sunnyvale, California
| | - James W Larrick
- 1 Regenerative Sciences Institute , Sunnyvale, California.,2 Panorama Research Institute , Sunnyvale, California
| | - Jennifer L Lei
- 1 Regenerative Sciences Institute , Sunnyvale, California
| |
Collapse
|
452
|
Neves J, Sousa-Victor P, Jasper H. Rejuvenating Strategies for Stem Cell-Based Therapies in Aging. Cell Stem Cell 2017; 20:161-175. [PMID: 28157498 DOI: 10.1016/j.stem.2017.01.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent advances in our understanding of tissue regeneration and the development of efficient approaches to induce and differentiate pluripotent stem cells for cell replacement therapies promise exciting avenues for treating degenerative age-related diseases. However, clinical studies and insights from model organisms have identified major roadblocks that normal aging processes impose on tissue regeneration. These new insights suggest that specific targeting of environmental niche components, including growth factors, ECM, and immune cells, and intrinsic stem cell properties that are affected by aging will be critical for the development of new strategies to improve stem cell function and optimize tissue repair processes.
Collapse
Affiliation(s)
- Joana Neves
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Pedro Sousa-Victor
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Heinrich Jasper
- Paul F. Glenn Center for Biology of Aging Research, Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA; Leibniz Institute on Aging - Fritz Lipmann Institute, Jena 07745, Germany.
| |
Collapse
|
453
|
Gasset-Rosa F, Chillon-Marinas C, Goginashvili A, Atwal RS, Artates JW, Tabet R, Wheeler VC, Bang AG, Cleveland DW, Lagier-Tourenne C. Polyglutamine-Expanded Huntingtin Exacerbates Age-Related Disruption of Nuclear Integrity and Nucleocytoplasmic Transport. Neuron 2017; 94:48-57.e4. [PMID: 28384474 DOI: 10.1016/j.neuron.2017.03.027] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/11/2017] [Accepted: 03/20/2017] [Indexed: 11/26/2022]
Abstract
Onset of neurodegenerative disorders, including Huntington's disease, is strongly influenced by aging. Hallmarks of aged cells include compromised nuclear envelope integrity, impaired nucleocytoplasmic transport, and accumulation of DNA double-strand breaks. We show that mutant huntingtin markedly accelerates all of these cellular phenotypes in a dose- and age-dependent manner in cortex and striatum of mice. Huntingtin-linked polyglutamine initially accumulates in nuclei, leading to disruption of nuclear envelope architecture, partial sequestration of factors essential for nucleocytoplasmic transport (Gle1 and RanGAP1), and intranuclear accumulation of mRNA. In aged mice, accumulation of RanGAP1 together with polyglutamine is shifted to perinuclear and cytoplasmic areas. Consistent with findings in mice, marked alterations in nuclear envelope morphology, abnormal localization of RanGAP1, and nuclear accumulation of mRNA were found in cortex of Huntington's disease patients. Overall, our findings identify polyglutamine-dependent inhibition of nucleocytoplasmic transport and alteration of nuclear integrity as a central component of Huntington's disease.
Collapse
Affiliation(s)
- Fatima Gasset-Rosa
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Carlos Chillon-Marinas
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Alexander Goginashvili
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ranjit Singh Atwal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jonathan W Artates
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ricardos Tabet
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Vanessa C Wheeler
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anne G Bang
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
454
|
Abstract
Human pluripotent stem cells (hPSCs) provide a model to study early neural development, model pathological processes, and develop therapeutics. The generation of functionally specialized neural subtypes from hPSCs relies on fundamental developmental principles learned from animal studies. Manipulation of these principles enables production of highly enriched neural types with functional attributes that resemble those in the brain. Further development to promote faster maturation or aging as well as circuit integration will help realize the potential of hPSC-derived neural cells in disease modeling and cell therapy.
Collapse
Affiliation(s)
- Yunlong Tao
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
455
|
Gascón S, Masserdotti G, Russo GL, Götz M. Direct Neuronal Reprogramming: Achievements, Hurdles, and New Roads to Success. Cell Stem Cell 2017; 21:18-34. [DOI: 10.1016/j.stem.2017.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
456
|
Abstract
Millions of individuals suffer from age-related cognitive decline, defined by impaired memory precision. Increased understanding of hippocampal circuit mechanisms underlying memory formation suggests a role for computational processes such as pattern separation and pattern completion in memory precision. We describe evidence implicating the dentate gyrus-CA3 circuit in pattern separation and completion, and examine alterations in dentate gyrus-CA3 circuit structure and function with aging. We discuss the role of adult hippocampal neurogenesis in memory precision in adulthood and aging, as well as the circuit mechanisms underlying the integration and encoding functions of adult-born dentate granule cells. We posit that understanding these circuit mechanisms will permit generation of circuit-based endophenotypes that will edify new therapeutic strategies to optimize hippocampal encoding during aging.
Collapse
Affiliation(s)
- Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- BROAD Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
457
|
Nagy J, Kobolák J, Berzsenyi S, Ábrahám Z, Avci HX, Bock I, Bekes Z, Hodoscsek B, Chandrasekaran A, Téglási A, Dezső P, Koványi B, Vörös ET, Fodor L, Szél T, Németh K, Balázs A, Dinnyés A, Lendvai B, Lévay G, Román V. Altered neurite morphology and cholinergic function of induced pluripotent stem cell-derived neurons from a patient with Kleefstra syndrome and autism. Transl Psychiatry 2017; 7:e1179. [PMID: 28742076 PMCID: PMC5538124 DOI: 10.1038/tp.2017.144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to establish an in vitro Kleefstra syndrome (KS) disease model using the human induced pluripotent stem cell (hiPSC) technology. Previously, an autism spectrum disorder (ASD) patient with Kleefstra syndrome (KS-ASD) carrying a deleterious premature termination codon mutation in the EHMT1 gene was identified. Patient specific hiPSCs generated from peripheral blood mononuclear cells of the KS-ASD patient were differentiated into post-mitotic cortical neurons. Lower levels of EHMT1 mRNA as well as protein expression were confirmed in these cells. Morphological analysis on neuronal cells differentiated from the KS-ASD patient-derived hiPSC clones showed significantly shorter neurites and reduced arborization compared to cells generated from healthy controls. Moreover, density of dendritic protrusions of neuronal cells derived from KS-ASD hiPSCs was lower than that of control cells. Synaptic connections and spontaneous neuronal activity measured by live cell calcium imaging could be detected after 5 weeks of differentiation, when KS-ASD cells exhibited higher sensitivity of calcium responses to acetylcholine stimulation indicating a lower nicotinic cholinergic tone at baseline condition in KS-ASD cells. In addition, gene expression profiling of differentiated neuronal cells from the KS-ASD patient revealed higher expression of proliferation-related genes and lower mRNA levels of genes involved in neuronal maturation and migration. Our data demonstrate anomalous neuronal morphology, functional activity and gene expression in KS-ASD patient-specific hiPSC-derived neuronal cultures, which offers an in vitro system that contributes to a better understanding of KS and potentially other neurodevelopmental disorders including ASD.
Collapse
Affiliation(s)
- J Nagy
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary,Laboratory of Molecular Cell Biology, Gedeon Richter Plc. Gyömrői út 19-21., Budapest 1103, Hungary. E-mail:
| | | | - S Berzsenyi
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Z Ábrahám
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - H X Avci
- BioTalentum Ltd., Gödöllő, Hungary
| | - I Bock
- BioTalentum Ltd., Gödöllő, Hungary
| | - Z Bekes
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - B Hodoscsek
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | | | | | - P Dezső
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - B Koványi
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - E T Vörös
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - L Fodor
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - T Szél
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - K Németh
- Autism Foundation, Budapest, Hungary
| | - A Balázs
- Autism Foundation, Budapest, Hungary
| | | | - B Lendvai
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - G Lévay
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - V Román
- Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| |
Collapse
|
458
|
Comprehensive investigation of temporal and autism-associated cell type composition-dependent and independent gene expression changes in human brains. Sci Rep 2017. [PMID: 28646201 PMCID: PMC5482876 DOI: 10.1038/s41598-017-04356-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The functions of human brains highly depend on the precise temporal regulation of gene expression, and the temporal brain transcriptome profile across lifespan has been observed. The substantial transcriptome alteration in neural disorders like autism has also been observed and is thought to be important for the pathology. While the cell type composition is known to be variable in brains, it remains unclear how it contributes to the temporal and pathological transcriptome changes in brains. Here, we applied a transcriptome deconvolution procedure to an age series RNA-seq dataset of healthy and autism samples, to quantify the contribution of cell type composition in shaping the temporal and autism pathological transcriptome in human brains. We estimated that composition change was the primary factor of both types of transcriptome changes. On the other hand, genes with substantial composition-independent expression changes were also observed in both cases. Those temporal and autism pathological composition-independent changes, many of which are related to synaptic functions, indicate the important intracellular regulatory changes in human brains in both processes.
Collapse
|
459
|
Shiels PG, McGuinness D, Eriksson M, Kooman JP, Stenvinkel P. The role of epigenetics in renal ageing. Nat Rev Nephrol 2017. [PMID: 28626222 DOI: 10.1038/nrneph.2017.78] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects.
Collapse
Affiliation(s)
- Paul G Shiels
- Section of Epigenetics, Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Dagmara McGuinness
- Section of Epigenetics, Institute of Cancer Sciences, Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Maria Eriksson
- Department of Biosciences and Nutrition (BioNut), H2, Eriksson, Novum 141, 83 Huddinge, Sweden
| | - Jeroen P Kooman
- Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center, PO Box 5800, 6202 AZ Maastrich, Netherlands
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Huddinge, Karolinska Institutet, SE-14157 Stockholm, Sweden
| |
Collapse
|
460
|
Arber C, Lovejoy C, Wray S. Stem cell models of Alzheimer's disease: progress and challenges. ALZHEIMERS RESEARCH & THERAPY 2017; 9:42. [PMID: 28610595 PMCID: PMC5470327 DOI: 10.1186/s13195-017-0268-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/22/2017] [Indexed: 02/08/2023]
Abstract
A major challenge to our understanding of the molecular mechanisms of Alzheimer’s disease (AD) has been the lack of physiologically relevant in vitro models which capture the precise patient genome, in the cell type of interest, with physiological expression levels of the gene(s) of interest. Induced pluripotent stem cell (iPSC) technology, together with advances in 2D and 3D neuronal differentiation, offers a unique opportunity to overcome this challenge and generate a limitless supply of human neurons for in vitro studies. iPSC-neuron models have been widely employed to model AD and we discuss in this review the progress that has been made to date using patient-derived neurons to recapitulate key aspects of AD pathology and how these models have contributed to a deeper understanding of AD molecular mechanisms, as well as addressing the key challenges posed by using this technology and what progress is being made to overcome these. Finally, we highlight future directions for the use of iPSC-neurons in AD research and highlight the potential value of this technology to neurodegenerative research in the coming years.
Collapse
Affiliation(s)
- Charles Arber
- Department of Molecular Neuroscience, UCL Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Christopher Lovejoy
- Department of Molecular Neuroscience, UCL Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Selina Wray
- Department of Molecular Neuroscience, UCL Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK.
| |
Collapse
|
461
|
Nijssen J, Comley LH, Hedlund E. Motor neuron vulnerability and resistance in amyotrophic lateral sclerosis. Acta Neuropathol 2017; 133:863-885. [PMID: 28409282 PMCID: PMC5427160 DOI: 10.1007/s00401-017-1708-8] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/11/2022]
Abstract
In the fatal disease-amyotrophic lateral sclerosis (ALS)-upper (corticospinal) motor neurons (MNs) and lower somatic MNs, which innervate voluntary muscles, degenerate. Importantly, certain lower MN subgroups are relatively resistant to degeneration, even though pathogenic proteins are typically ubiquitously expressed. Ocular MNs (OMNs), including the oculomotor, trochlear and abducens nuclei (CNIII, IV and VI), which regulate eye movement, persist throughout the disease. Consequently, eye-tracking devices are used to enable paralysed ALS patients (who can no longer speak) to communicate. Additionally, there is a gradient of vulnerability among spinal MNs. Those innervating fast-twitch muscle are most severely affected and degenerate first. MNs innervating slow-twitch muscle can compensate temporarily for the loss of their neighbours by re-innervating denervated muscle until later in disease these too degenerate. The resistant OMNs and the associated extraocular muscles (EOMs) are anatomically and functionally very different from other motor units. The EOMs have a unique set of myosin heavy chains, placing them outside the classical characterization spectrum of all skeletal muscle. Moreover, EOMs have multiple neuromuscular innervation sites per single myofibre. Spinal fast and slow motor units show differences in their dendritic arborisations and the number of myofibres they innervate. These motor units also differ in their functionality and excitability. Identifying the molecular basis of cell-intrinsic pathways that are differentially activated between resistant and vulnerable MNs could reveal mechanisms of selective neuronal resistance, degeneration and regeneration and lead to therapies preventing progressive MN loss in ALS. Illustrating this, overexpression of OMN-enriched genes in spinal MNs, as well as suppression of fast spinal MN-enriched genes can increase the lifespan of ALS mice. Here, we discuss the pattern of lower MN degeneration in ALS and review the current literature on OMN resistance in ALS and differential spinal MN vulnerability. We also reflect upon the non-cell autonomous components that are involved in lower MN degeneration in ALS.
Collapse
|
462
|
An update on stem cell biology and engineering for brain development. Mol Psychiatry 2017; 22:808-819. [PMID: 28373686 DOI: 10.1038/mp.2017.66] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 02/07/2023]
Abstract
Two recent technologies, induced-pluripotent stem cells (iPSCs) and direct somatic reprogramming, have shown enormous potential for cell-based therapies against intractable diseases such as those that affect the central nervous system. Already, methods that generate most major cell types of the human brain exist. Whether the cell types are directly reprogrammed from human somatic cells or differentiated from an iPSC intermediate, the overview presented here demonstrates how these protocols vary greatly in their efficiencies, purity and maturation of the resulting cells. Possible solutions including micro-RNA switch technologies that purify target cell types are also outlined. Further, an update on the transition from 2D to 3D cultures and current organoid (mini-brain) cultures are reviewed to give the stem cell and developmental engineering communities an up-to-date account of the progress and future perspectives for modeling of central nervous system disease and brain development in vitro.
Collapse
|
463
|
Kaminski MM, Tosic J, Pichler R, Arnold SJ, Lienkamp SS. Engineering kidney cells: reprogramming and directed differentiation to renal tissues. Cell Tissue Res 2017; 369:185-197. [PMID: 28560692 DOI: 10.1007/s00441-017-2629-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022]
Abstract
Growing knowledge of how cell identity is determined at the molecular level has enabled the generation of diverse tissue types, including renal cells from pluripotent or somatic cells. Recently, several in vitro protocols involving either directed differentiation or transcription-factor-based reprogramming to kidney cells have been established. Embryonic stem cells or induced pluripotent stem cells can be guided towards a kidney fate by exposing them to combinations of growth factors or small molecules. Here, renal development is recapitulated in vitro resulting in kidney cells or organoids that show striking similarities to mammalian embryonic nephrons. In addition, culture conditions are also defined that allow the expansion of renal progenitor cells in vitro. Another route towards the generation of kidney cells is direct reprogramming. Key transcription factors are used to directly impose renal cell identity on somatic cells, thus circumventing the pluripotent stage. This complementary approach to stem-cell-based differentiation has been demonstrated to generate renal tubule cells and nephron progenitors. In-vitro-generated renal cells offer new opportunities for modelling inherited and acquired renal diseases on a patient-specific genetic background. These cells represent a potential source for developing novel models for kidney diseases, drug screening and nephrotoxicity testing and might represent the first steps towards kidney cell replacement therapies. In this review, we summarize current approaches for the generation of renal cells in vitro and discuss the advantages of each approach and their potential applications.
Collapse
Affiliation(s)
- Michael M Kaminski
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Jelena Tosic
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstrasse 19a, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Roman Pichler
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany
| | - Sebastian J Arnold
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany.,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106, Freiburg, Germany. .,BIOSS Centre of Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany.
| |
Collapse
|
464
|
Inak G, Lorenz C, Lisowski P, Zink A, Mlody B, Prigione A. Concise Review: Induced Pluripotent Stem Cell-Based Drug Discovery for Mitochondrial Disease. Stem Cells 2017; 35:1655-1662. [PMID: 28544378 DOI: 10.1002/stem.2637] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/31/2017] [Accepted: 04/20/2017] [Indexed: 01/23/2023]
Abstract
High attrition rates and loss of capital plague the drug discovery process. This is particularly evident for mitochondrial disease that typically involves neurological manifestations and is caused by nuclear or mitochondrial DNA defects. This group of heterogeneous disorders is difficult to target because of the variability of the symptoms among individual patients and the lack of viable modeling systems. The use of induced pluripotent stem cells (iPSCs) might significantly improve the search for effective therapies for mitochondrial disease. iPSCs can be used to generate patient-specific neural cell models in which innovative compounds can be identified or validated. Here we discuss the promises and challenges of iPSC-based drug discovery for mitochondrial disease with a specific focus on neurological conditions. We anticipate that a proper use of the potent iPSC technology will provide critical support for the development of innovative therapies against these untreatable and detrimental disorders. Stem Cells 2017;35:1655-1662.
Collapse
Affiliation(s)
- Gizem Inak
- Max Delbrueck Center for Molecular Medicine (MDC), Mitochondrial and Cell Fate Reprogramming, Department of Neuroproteomics, Berlin, Germany
| | - Carmen Lorenz
- Max Delbrueck Center for Molecular Medicine (MDC), Mitochondrial and Cell Fate Reprogramming, Department of Neuroproteomics, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Pawel Lisowski
- Max Delbrueck Center for Molecular Medicine (MDC), Mitochondrial and Cell Fate Reprogramming, Department of Neuroproteomics, Berlin, Germany.,Institute of Genetics and Animal Breeding, Department of Molecular Biology, Polish Academy of Sciences, Jastrzebiec, Magdalenka, Poland
| | - Annika Zink
- Max Delbrueck Center for Molecular Medicine (MDC), Mitochondrial and Cell Fate Reprogramming, Department of Neuroproteomics, Berlin, Germany.,Charité - Universitätsmedizin, Berlin, Germany
| | - Barbara Mlody
- Max Delbrueck Center for Molecular Medicine (MDC), Mitochondrial and Cell Fate Reprogramming, Department of Neuroproteomics, Berlin, Germany
| | - Alessandro Prigione
- Max Delbrueck Center for Molecular Medicine (MDC), Mitochondrial and Cell Fate Reprogramming, Department of Neuroproteomics, Berlin, Germany
| |
Collapse
|
465
|
Qiang L, Rao AN, Mostoslavsky G, James MF, Comfort N, Sullivan K, Baas PW. Reprogramming cells from Gulf War veterans into neurons to study Gulf War illness. Neurology 2017; 88:1968-1975. [PMID: 28507260 PMCID: PMC5444312 DOI: 10.1212/wnl.0000000000003938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/23/2017] [Indexed: 12/28/2022] Open
Abstract
Gulf War illness (GWI), which afflicts at least 25% of veterans who served in the 1990-1991 war in the Persian Gulf, is thought to be caused by deployment exposures to various neurotoxicants, including pesticides, anti-nerve gas pills, and low-level nerve agents including sarin/cyclosarin. GWI is a multisymptom disorder characterized by fatigue, joint pain, cognitive problems, and gastrointestinal complaints. The most prominent symptoms of GWI (memory problems, poor attention/concentration, chronic headaches, mood alterations, and impaired sleep) suggest that the disease primarily affects the CNS. Development of urgently needed treatments depends on experimental models appropriate for testing mechanistic hypotheses and for screening therapeutic compounds. Rodent models have been useful thus far, but are limited by their inability to assess the contribution of genetic or epigenetic background to the disease, and because disease-vulnerable proteins and pathways may be different in humans relative to rodents. As of yet, no postmortem tissue from the veterans has become available for research. We are moving forward with a paradigm shift in the study of GWI, which utilizes contemporary stem cell technology to convert somatic cells from Gulf War veterans into pluripotent cell lines that can be differentiated into various cell types, including neurons, glia, muscle, or other relevant cell types. Such cell lines are immortal and will be a resource for GWI researchers to pursue mechanistic hypotheses and therapeutics.
Collapse
Affiliation(s)
- Liang Qiang
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA
| | - Anand N Rao
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA
| | - Gustavo Mostoslavsky
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA
| | - Marianne F James
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA
| | - Nicole Comfort
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA
| | - Kimberly Sullivan
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA
| | - Peter W Baas
- From the Department of Neurobiology and Anatomy (L.Q., A.N.R., P.W.B.), Drexel University, Philadelphia, PA; and Center for Regenerative Medicine (G.M., M.F.J.) and School of Public Health (N.C., K.S.), Boston University, Boston, MA.
| |
Collapse
|
466
|
Sakuma S, D'Angelo MA. The roles of the nuclear pore complex in cellular dysfunction, aging and disease. Semin Cell Dev Biol 2017; 68:72-84. [PMID: 28506892 DOI: 10.1016/j.semcdb.2017.05.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022]
Abstract
The study of the Nuclear Pore Complex (NPC), the proteins that compose it (nucleoporins), and the nucleocytoplasmic transport that it controls have revealed an unexpected layer to pathogenic disease onset and progression. Recent advances in the study of the regulation of NPC composition and function suggest that the precise control of this structure is necessary to prevent diseases from arising or progressing. Here we discuss the role of nucleoporins in a diverse set of diseases, many of which directly or indirectly increase in occurrence and severity as we age, and often shorten the human lifespan. NPC biology has been shown to play a direct role in these diseases and therefore in the process of healthy aging.
Collapse
Affiliation(s)
- Stephen Sakuma
- Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maximiliano A D'Angelo
- Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
467
|
Abstract
Alzheimer’s disease (AD) is a fatal neurodegenerative disease which is on the rise worldwide. Despite a wealth of information, genetic factors contributing to the emergence of AD still remain incompletely understood. Sporadic AD is polygenetic in nature and is associated with various environmental risks. Epigenetic mechanisms are well-recognized in the mediation of gene environment interactions, and analysis of epigenetic changes at the genome scale can offer new insights into the relationship between brain epigenomes and AD. In fact, recent epigenome-wide association studies (EWAS) indicate that changes in DNA methylation are an early event preceding clinical manifestation and are tightly associated with AD neuropathology. Further, candidate genes from EWAS interact with those from genome-wide association studies (GWAS) that can undergo epigenetic changes in their upstream gene regulatory elements. Functionally, AD-associated DNA methylation changes partially influence transcription of candidate genes involved in pathways relevant to AD. The timing of epigenomic changes in AD together with the genes affected indicate a critical role, however, further mechanistic insight is required to corroborate this hypothesis. In this respect, recent advances in neuronal reprogramming of patient-derived cells combined with new genome-editing techniques offer unprecedented opportunities to dissect the functional and mechanistic role of epigenomic changes in AD.
Collapse
|
468
|
Ardhanareeswaran K, Mariani J, Coppola G, Abyzov A, Vaccarino FM. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat Rev Neurol 2017; 13:265-278. [PMID: 28418023 DOI: 10.1038/nrneurol.2017.45] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We currently have a poor understanding of the pathogenesis of neurodevelopmental disorders, owing to the fact that postmortem and imaging studies can only measure the postnatal status quo and offer little insight into the processes that give rise to the observed outcomes. Human induced pluripotent stem cells (hiPSCs) should, in principle, prove powerful for elucidating the pathways that give rise to neurodevelopmental disorders. hiPSCs are embryonic-stem-cell-like cells that can be derived from somatic cells. They retain the unique genetic signature of the individual from whom they were derived, and thus enable researchers to recapitulate that individual's idiosyncratic neural development in a dish. In the case of individuals with disease, we can re-enact the disease-altered trajectory of brain development and examine how and why phenotypic and molecular abnormalities arise in these diseased brains. Here, we review hiPSC biology and possible experimental designs when using hiPSCs to model disease. We then discuss existing hiPSC models of neurodevelopmental disorders. Our hope is that, as some studies have already shown, hiPSCs will illuminate the pathophysiology of developmental disorders of the CNS and lead to therapeutic options for the millions that are affected by these conditions.
Collapse
Affiliation(s)
- Karthikeyan Ardhanareeswaran
- Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA
| | - Jessica Mariani
- Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA
| | - Gianfilippo Coppola
- Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA.,Department of Neuroscience, Yale Kavli Institute for Neuroscience, Yale University School of Medicine, 200 South Frontage Road, New Haven, Connecticut 06510, USA
| |
Collapse
|
469
|
Rinaldi F, Motti D, Ferraiuolo L, Kaspar BK. High content analysis in amyotrophic lateral sclerosis. Mol Cell Neurosci 2017; 80:180-191. [PMID: 27965018 PMCID: PMC5393940 DOI: 10.1016/j.mcn.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 12/05/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease characterized by the progressive loss of motor neurons. Neurons, astrocytes, oligodendrocytes and microglial cells all undergo pathological modifications in the onset and progression of ALS. A number of genes involved in the etiopathology of the disease have been identified, but a complete understanding of the molecular mechanisms of ALS has yet to be determined. Currently, people affected by ALS have a life expectancy of only two to five years from diagnosis. The search for a treatment has been slow and mostly unsuccessful, leaving patients in desperate need of better therapies. Until recently, most pre-clinical studies utilized the available ALS animal models. In the past years, the development of new protocols for isolation of patient cells and differentiation into relevant cell types has provided new tools to model ALS, potentially more relevant to the disease itself as they directly come from patients. The use of stem cells is showing promise to facilitate ALS research by expanding our understanding of the disease and help to identify potential new therapeutic targets and therapies to help patients. Advancements in high content analysis (HCA) have the power to contribute to move ALS research forward by combining automated image acquisition along with digital image analysis. With modern HCA machines it is possible, in a period of just a few hours, to observe changes in morphology and survival of cells, under the stimulation of hundreds, if not thousands of drugs and compounds. In this article, we will summarize the major molecular and cellular hallmarks of ALS, describe the advancements provided by the in vitro models developed in the last few years, and review the studies that have applied HCA to the ALS field to date.
Collapse
Affiliation(s)
- Federica Rinaldi
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Dario Motti
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura Ferraiuolo
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neuroscience, Sheffield Institute of Translational Neuroscience, University of Sheffield, UK
| | - Brian K Kaspar
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA; Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
470
|
Wahlestedt M, Erlandsson E, Kristiansen T, Lu R, Brakebusch C, Weissman IL, Yuan J, Martin-Gonzalez J, Bryder D. Clonal reversal of ageing-associated stem cell lineage bias via a pluripotent intermediate. Nat Commun 2017; 8:14533. [PMID: 28224997 PMCID: PMC5322498 DOI: 10.1038/ncomms14533] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
Ageing associates with significant alterations in somatic/adult stem cells and therapies to counteract these might have profound benefits for health. In the blood, haematopoietic stem cell (HSC) ageing is linked to several functional shortcomings. However, besides the recent realization that individual HSCs might be preset differentially already from young age, HSCs might also age asynchronously. Evaluating the prospects for HSC rejuvenation therefore ultimately requires approaching those HSCs that are functionally affected by age. Here we combine genetic barcoding of aged murine HSCs with the generation of induced pluripotent stem (iPS) cells. This allows us to specifically focus on aged HSCs presenting with a pronounced lineage skewing, a hallmark of HSC ageing. Functional and molecular evaluations reveal haematopoiesis from these iPS clones to be indistinguishable from that associating with young mice. Our data thereby provide direct support to the notion that several key functional attributes of HSC ageing can be reversed.
Collapse
Affiliation(s)
- Martin Wahlestedt
- Lund University, Medical Faculty, Institution for Laboratory Medicine, Division of Molecular Hematology, Klinikgatan 26, BMC B12, 221 84 Lund, Sweden
| | - Eva Erlandsson
- Lund University, Medical Faculty, Institution for Laboratory Medicine, Division of Molecular Hematology, Klinikgatan 26, BMC B12, 221 84 Lund, Sweden
| | - Trine Kristiansen
- Lund University, Medical Faculty, Institution for Laboratory Medicine, Division of Molecular Hematology, Klinikgatan 26, BMC B12, 221 84 Lund, Sweden
| | - Rong Lu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Cord Brakebusch
- Biotech Research and Innovation Centre, Biomedical Institute, University of Copenhagen, 2200 Copenhagen, Denmark.,Core Facility for Transgenic Mice, Department of Biomedical Sciences University of Copenhagen, The Panum Institute, 6.4, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Irving L Weissman
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford University, Palo Alto, California 94305, USA
| | - Joan Yuan
- Lund University, Medical Faculty, Institution for Laboratory Medicine, Division of Molecular Hematology, Klinikgatan 26, BMC B12, 221 84 Lund, Sweden.,StemTherapy, Lund University
| | - Javier Martin-Gonzalez
- Core Facility for Transgenic Mice, Department of Biomedical Sciences University of Copenhagen, The Panum Institute, 6.4, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - David Bryder
- Lund University, Medical Faculty, Institution for Laboratory Medicine, Division of Molecular Hematology, Klinikgatan 26, BMC B12, 221 84 Lund, Sweden.,StemTherapy, Lund University
| |
Collapse
|
471
|
Hung SSC, Khan S, Lo CY, Hewitt AW, Wong RCB. Drug discovery using induced pluripotent stem cell models of neurodegenerative and ocular diseases. Pharmacol Ther 2017; 177:32-43. [PMID: 28223228 DOI: 10.1016/j.pharmthera.2017.02.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The revolution of induced pluripotent stem cell (iPSC) technology provides a platform for development of cell therapy, disease modeling and drug discovery. Recent technological advances now allow us to reprogram a patient's somatic cells into induced pluripotent stem cells (iPSCs). Together with methods to differentiate these iPSCs into disease-relevant cell types, we are now able to model disease in vitro using iPSCs. Importantly, this represents a robust in vitro platform using patient-specific cells, providing opportunity for personalized precision medicine. Here we provide a review of advances using iPSC for drug development, and discuss the potential and limitations of iPSCs for drug discovery in neurodegenerative and ocular diseases. Emerging technologies that can facilitate the search for new drugs by assessment using in vitro disease models will also be discussed, including organoid differentiation, organ-on-chip, direct reprogramming and humanized animal models.
Collapse
Affiliation(s)
- Sandy S C Hung
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia
| | - Shahnaz Khan
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia
| | - Camden Y Lo
- Monash Micro Imaging, Monash University, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia; Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia & Ophthalmology, Department of Surgery, University of Melbourne, Australia.
| |
Collapse
|
472
|
Torper O, Götz M. Brain repair from intrinsic cell sources: Turning reactive glia into neurons. PROGRESS IN BRAIN RESEARCH 2017; 230:69-97. [PMID: 28552236 DOI: 10.1016/bs.pbr.2016.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The replacement of lost neurons in the brain due to injury or disease holds great promise for the treatment of neurological disorders. However, logistical and ethical hurdles in obtaining and maintaining viable cells for transplantation have proven difficult to overcome. In vivo reprogramming offers an alternative, to bypass many of the restrictions associated with an exogenous cell source as it relies on a source of cells already present in the brain. Recent studies have demonstrated the possibility to target and reprogram glial cells into functional neurons with high efficiency in the murine brain, using virally delivered transcription factors. In this chapter, we explore the different populations of glial cells, how they react to injury and how they can be exploited for reprogramming purposes. Further, we review the most significant publications and how they have contributed to the understanding of key aspects in direct reprogramming needed to take into consideration, like timing, cell type targeted, and regional differences. Finally, we discuss future challenges and what remains to be explored in order to determine the potential of in vivo reprogramming for future brain repair.
Collapse
Affiliation(s)
- Olof Torper
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany.
| |
Collapse
|
473
|
Abstract
Limited access to human neurons has posed a significant barrier to progress in biological and preclinical studies of the human nervous system. The advent of cell reprogramming technologies has widely disclosed unprecedented opportunities to generate renewable sources of human neural cells for disease modeling, drug discovery, and cell therapeutics. Both somatic reprogramming into induced pluripotent stem cells (iPSCs) and directly induced Neurons (iNeurons) rely on transcription factor-based cellular conversion processes. Nevertheless, they rely on very distinct mechanisms, biological barriers, technical limitations, different levels of efficiency, and generate neural cells with distinctive properties. Human iPSCs represent a long-term renewable source of neural cells, but over time genomic aberrations might erode the quality of the cultures and the in vitro differentiation process requires extensive time. Conversely, direct neuronal reprogramming ensures a fast and straightforward generation of iNeurons endowed with functional properties. However, in this last case, conversion efficiency is reduced when starting from adult human cells, and the molecular and functional fidelity of iNeurons with respect to their corresponding native neuronal subtype is yet to be fully ascertained in many cases. For any biomedical research application, it should be carefully pondered the reprogramming method to use for generating reprogrammed human neuronal subtypes that best fit with the following analysis considering the existing limitations and gap of knowledge still present in this young field of investigation.
Collapse
Affiliation(s)
- Vania Broccoli
- San Raffaele Scientific Institute, Milan, Italy; CNR-Institute of Neuroscience, Milan, Italy.
| |
Collapse
|
474
|
Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov 2017; 16:115-130. [PMID: 27980341 PMCID: PMC6416143 DOI: 10.1038/nrd.2016.245] [Citation(s) in RCA: 921] [Impact Index Per Article: 131.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the advent of induced pluripotent stem cell (iPSC) technology a decade ago, enormous progress has been made in stem cell biology and regenerative medicine. Human iPSCs have been widely used for disease modelling, drug discovery and cell therapy development. Novel pathological mechanisms have been elucidated, new drugs originating from iPSC screens are in the pipeline and the first clinical trial using human iPSC-derived products has been initiated. In particular, the combination of human iPSC technology with recent developments in gene editing and 3D organoids makes iPSC-based platforms even more powerful in each area of their application, including precision medicine. In this Review, we discuss the progress in applications of iPSC technology that are particularly relevant to drug discovery and regenerative medicine, and consider the remaining challenges and the emerging opportunities in the field.
Collapse
Affiliation(s)
- Yanhong Shi
- Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, California 91010, USA
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive, Room G1120B, Stanford, California 94305-5454, USA
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94158, USA
| |
Collapse
|
475
|
Xu Z, Chu X, Jiang H, Schilling H, Chen S, Feng J. Induced dopaminergic neurons: A new promise for Parkinson's disease. Redox Biol 2017; 11:606-612. [PMID: 28110217 PMCID: PMC5256671 DOI: 10.1016/j.redox.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/28/2022] Open
Abstract
Motor symptoms that define Parkinson’s disease (PD) are caused by the selective loss of nigral dopaminergic (DA) neurons. Cell replacement therapy for PD has been focused on midbrain DA neurons derived from human fetal mesencephalic tissue, human embryonic stem cells (hESC) or human induced pluripotent stem cells (iPSC). Recent development in the direct conversion of human fibroblasts to induced dopaminergic (iDA) neurons offers new opportunities for transplantation study and disease modeling in PD. The iDA neurons are generated directly from human fibroblasts in a short period of time, bypassing lengthy differentiation process from human pluripotent stem cells and the concern for potentially tumorigenic mitotic cells. They exhibit functional dopaminergic neurotransmission and relieve locomotor symptoms in animal models of Parkinson’s disease. In this review, we will discuss this recent development and its implications to Parkinson’s disease research and therapy. Fibroblasts can be directly converted to induced dopaminergic neurons by transcription factors. Many different types of cells can be converted to induced neurons in vitro and in vivo. Appropriate cell culture conditions enhance the direct conversion to induced neurons. The conversion to induced neurons is enhanced by G1 arrest and p53 attenuation. iDA neurons is a promising tool for PD research and therapy.
Collapse
Affiliation(s)
- Zhimin Xu
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA; Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Science and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xingkun Chu
- Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Science and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Houbo Jiang
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Haley Schilling
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Shengdi Chen
- Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Science and Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Feng
- Veterans Affairs Western New York Healthcare System, Buffalo, NY 14215, USA; Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
476
|
Lieberman R, Kranzler HR, Levine ES, Covault J. Examining FKBP5 mRNA expression in human iPSC-derived neural cells. Psychiatry Res 2017; 247:172-181. [PMID: 27915167 PMCID: PMC5191911 DOI: 10.1016/j.psychres.2016.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/03/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
Abstract
In peripheral blood leukocytes, FKBP5 mRNA expression is upregulated following glucocorticoid receptor activation. The single nucleotide polymorphism rs1360780 in FKBP5 is associated with psychiatric illness and has functional molecular effects. However, examination of FKBP5 regulation has largely been limited to peripheral cells, which may not reflect regulation in neural cells. We used 27 human induced pluripotent stem cell lines (iPSCs) derived from 20 subjects to examine FKBP5 mRNA expression following GR activation. Following differentiation into forebrain-lineage neural cultures, cells were exposed to 1μM dexamethasone and mRNA expression of FKBP5 and NR3C1 analyzed. Results from the iPSC-derived neural cells were compared with those from 15 donor matched fibroblast lines. Following dexamethasone treatment, there was a 670% increase in FKBP5 expression in fibroblasts, mimicking findings in peripheral blood-derived cells, but only a 23% increase in iPSC-derived neural cultures. FKBP5 rs1360780 genotype did not affect the induction of FKBP5 mRNA in either fibroblasts or neural cells. These results suggest that iPSC-derived forebrain-lineage neurons may not be an optimal neural cell type in which to examine relationships between GR activation, FKBP5 expression, and genetic variation in human subjects. Further, FKBP5 induction following GR activation may differ between cell types derived from the same individual.
Collapse
Affiliation(s)
- Richard Lieberman
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington 06030-1410, CT, USA
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia 19104, PA, USA; VISN4 MIRECC, Crescenz Philadelphia VAMC, Philadelphia 19104, PA, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington 06030, CT, USA
| | - Jonathan Covault
- Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington 06030-1410, CT, USA.
| |
Collapse
|
477
|
Prasad A, Teh DBL, Shah Jahan FR, Manivannan J, Chua SM, All AH. Direct Conversion Through Trans-Differentiation: Efficacy and Safety. Stem Cells Dev 2016; 26:154-165. [PMID: 27796171 DOI: 10.1089/scd.2016.0174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Direct conversion through transdifferentiation is a promising cell reprogramming approach that induces a cell lineage conversion among adult cells without passing through an intermediate pluripotent phase. However, there is a need to critically evaluate the efficacy and safety of direct conversion to establish its feasibility as a clinically viable cell reprogramming technique. This review article aims to delineate some critical constraints of direct conversion as a cellular reprogramming approach. We report the most important challenges of lineage reprogramming through direct conversion and divide them into two major sections. The first section explores the obstacles that limit the efficiency of the direct conversion process. In this study, we discuss challenges such as lack of understanding of molecular mechanism and transcriptional control of direct conversion, low proliferative capacity of converted cells, and senescence and apoptosis as critical barriers of direct conversion. The second section focuses on addressing concerns of safety of directly converted cells. We describe issues of transgene load and epigenetic memory retention along with the constraints of currently available validation tools to characterize reprogrammed cells. Each issue mentioned above is evaluated in view of their origin, implications, progress made toward their resolution and scope for development of new strategies to address the constraints of the present technique.
Collapse
Affiliation(s)
- Ankshita Prasad
- 1 Department of Biomedical Engineering, National University of Singapore , Singapore, Singapore
| | - Daniel Boon Loong Teh
- Department of Singapore Institute of Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Fathima R Shah Jahan
- Department of Orthopaedic Surgery, National University of Singapore , Singapore, Singapore
| | - Janani Manivannan
- Department of Orthopaedic Surgery, National University of Singapore , Singapore, Singapore
| | - Soo Min Chua
- Department of Singapore Institute of Neurotechnology, National University of Singapore , Singapore, Singapore
| | - Angelo H All
- Department of Orthopaedic Surgery, National University of Singapore , Singapore, Singapore .,4 Department of Biomedical Engineering, Johns Hopkins School of Medicine , Baltimore, Maryland.,5 Department of Neurology, Johns Hopkins School of Medicine , Baltimore, Maryland
| |
Collapse
|
478
|
Myszczynska M, Ferraiuolo L. New In Vitro Models to Study Amyotrophic Lateral Sclerosis. Brain Pathol 2016; 26:258-65. [PMID: 26780562 DOI: 10.1111/bpa.12353] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex multifactorial disorder, characterized by motor neuron loss with involvement of several other cell types, including astrocytes, oligodendrocytes and microglia. Studies in vivo and in in vitro models have highlighted that the contribution of non-neuronal cells to the disease is a primary event and ALS pathogenesis is driven by both cell-autonomous and non-cell autonomous mechanisms. The advancements in genetics and in vitro modeling of the past 10 years have dramatically changed the way we investigate the pathogenic mechanisms involved in ALS. The identification of mutations in transactive response DNA-binding protein gene (TARDBP), fused in sarcoma (FUS) and, more recently, a GGGGCC-hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9ORF72) and their link with familial ALS have provided new avenues of investigation and hypotheses on the pathophysiology of this devastating disease. In the same years, from 2007 to present, in vitro technologies to model neurological disorders have also undergone impressive developments. The advent of induced pluripotent stem cells (iPSCs) gave the field of ALS the opportunity to finally model in vitro not only familial, but also the larger part of ALS cases affected by sporadic disease. Since 2008, when the first human iPS-derived motor neurons from patients were cultured in a petri dish, several different techniques have been developed to produce iPSC lines through genetic reprogramming and multiple direct conversion methods have been optimised. In this review, we will give an overview of how human in vitro models have been used so far, what discoveries they have led to since 2007, and how the recent advances in technology combined with the genetic discoveries, have tremendously widened the horizon of ALS research.
Collapse
Affiliation(s)
- Monika Myszczynska
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| | - Laura Ferraiuolo
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, UK
| |
Collapse
|
479
|
Abstract
Defined genetic models based on human pluripotent stem cells have opened new avenues for understanding disease mechanisms and drug screening. Many of these models assume cell-autonomous mechanisms of disease but it is possible that disease phenotypes or drug responses will only be evident if all cellular and extracellular components of a tissue are present and functionally mature. To derive optimal benefit from such models, complex multicellular structures with vascular components that mimic tissue niches will thus likely be necessary. Here we consider emerging research creating human tissue mimics and provide some recommendations for moving the field forward.
Collapse
|
480
|
Devine H, Patani R. The translational potential of human induced pluripotent stem cells for clinical neurology : The translational potential of hiPSCs in neurology. Cell Biol Toxicol 2016; 33:129-144. [PMID: 27915387 PMCID: PMC5325844 DOI: 10.1007/s10565-016-9372-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022]
Abstract
The induced pluripotent state represents a decade-old Nobel prize-winning discovery. Human-induced pluripotent stem cells (hiPSCs) are generated by the nuclear reprogramming of any somatic cell using a variety of established but evolving methods. This approach offers medical science unparalleled experimental opportunity to model an individual patient’s disease “in a dish.” HiPSCs permit developmentally rationalized directed differentiation into any cell type, which express donor cell mutation(s) at pathophysiological levels and thus hold considerable potential for disease modeling, drug discovery, and potentially cell-based therapies. This review will focus on the translational potential of hiPSCs in clinical neurology and the importance of integrating this approach with complementary model systems to increase the translational yield of preclinical testing for the benefit of patients. This strategy is particularly important given the expected increase in prevalence of neurodegenerative disease, which poses a major burden to global health over the coming decades.
Collapse
Affiliation(s)
- Helen Devine
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N3BG, UK.,Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Rickie Patani
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N3BG, UK. .,National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK. .,Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK. .,Euan MacDonald Centre for MND, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
481
|
Smith DK, Yang J, Liu ML, Zhang CL. Small Molecules Modulate Chromatin Accessibility to Promote NEUROG2-Mediated Fibroblast-to-Neuron Reprogramming. Stem Cell Reports 2016; 7:955-969. [PMID: 28157484 PMCID: PMC5106529 DOI: 10.1016/j.stemcr.2016.09.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022] Open
Abstract
Pro-neural transcription factors and small molecules can induce the reprogramming of fibroblasts into functional neurons; however, the immediate-early molecular events that catalyze this conversion have not been well defined. We previously demonstrated that neurogenin 2 (NEUROG2), forskolin (F), and dorsomorphin (D) can reprogram fibroblasts into functional neurons with high efficiency. Here, we used this model to define the genetic and epigenetic events that initiate an acquisition of neuronal identity. We demonstrate that NEUROG2 is a pioneer factor, FD enhances chromatin accessibility and H3K27 acetylation, and synergistic transcription activated by these factors is essential to successful reprogramming. CREB1 promotes neuron survival and acts with NEUROG2 to upregulate SOX4, which co-activates NEUROD1 and NEUROD4. In addition, SOX4 targets SWI/SNF subunits and SOX4 knockdown results in extensive loss of open chromatin and abolishes reprogramming. Applying these insights, adult human glioblastoma cell and skin fibroblast reprogramming can be improved using SOX4 or chromatin-modifying chemicals. NEUROG2 acts as a pioneer factor to drive neuronal reprogramming ATAC-, ChIP-, and RNA-seq profiling reveals genome-wide mechanisms for reprogramming SOX4 is a critical mediator of chromatin remodeling during reprogramming SOX4 or FK228 can enhance adult human glioblastoma and skin fibroblast reprogramming
Collapse
Affiliation(s)
- Derek K Smith
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Jianjing Yang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Meng-Lu Liu
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9148, USA.
| |
Collapse
|
482
|
Poly(GR) in C9ORF72-Related ALS/FTD Compromises Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived Motor Neurons. Neuron 2016; 92:383-391. [PMID: 27720481 DOI: 10.1016/j.neuron.2016.09.015] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/15/2016] [Accepted: 09/07/2016] [Indexed: 12/14/2022]
Abstract
GGGGCC repeat expansions in C9ORF72 are the most common genetic cause of both ALS and FTD. To uncover underlying pathogenic mechanisms, we found that DNA damage was greater, in an age-dependent manner, in motor neurons differentiated from iPSCs of multiple C9ORF72 patients than control neurons. Ectopic expression of the dipeptide repeat (DPR) protein (GR)80 in iPSC-derived control neurons increased DNA damage, suggesting poly(GR) contributes to DNA damage in aged C9ORF72 neurons. Oxidative stress was also increased in C9ORF72 neurons in an age-dependent manner. Pharmacological or genetic reduction of oxidative stress partially rescued DNA damage in C9ORF72 neurons and control neurons expressing (GR)80 or (GR)80-induced cellular toxicity in flies. Moreover, interactome analysis revealed that (GR)80 preferentially bound to mitochondrial ribosomal proteins and caused mitochondrial dysfunction. Thus, poly(GR) in C9ORF72 neurons compromises mitochondrial function and causes DNA damage in part by increasing oxidative stress, revealing another pathogenic mechanism in C9ORF72-related ALS and FTD.
Collapse
|
483
|
Engineering cell fate: Spotlight on cell-activation and signaling-directed lineage conversion. Tissue Cell 2016; 48:475-87. [DOI: 10.1016/j.tice.2016.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/13/2016] [Accepted: 07/25/2016] [Indexed: 12/23/2022]
|
484
|
Zhang Q, Chen W, Tan S, Lin T. Stem Cells for Modeling and Therapy of Parkinson's Disease. Hum Gene Ther 2016; 28:85-98. [PMID: 27762639 DOI: 10.1089/hum.2016.116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disease after Alzheimer's disease, which is characterized by a low level of dopamine being expressing in the striatum and a deterioration of dopaminergic neurons (DAn) in the substantia nigra pars compacta. Generation of PD-derived DAn, including differentiation of human embryonic stem cells, human neural stem cells, human-induced pluripotent stem cells, and direct reprogramming, provides an ideal tool to model PD, creating the possibility of mimicking key essential pathological processes and charactering single-cell changes in vitro. Furthermore, thanks to the understanding of molecular neuropathogenesis of PD and new advances in stem-cell technology, it is anticipated that optimal functionally transplanted DAn with targeted correction and transgene-free insertion will be generated for use in cell transplantation. This review elucidates stem-cell technology for modeling PD and offering desired safe cell resources for cell transplantation therapy.
Collapse
Affiliation(s)
- Qingxi Zhang
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Wanling Chen
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Sheng Tan
- 2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Tongxiang Lin
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,3 Stem Cell Research Center, Fujian Agriculture and Forestry University , Fuzhou, China
| |
Collapse
|
485
|
Multitasking Microglia and Alzheimer's Disease: Diversity, Tools and Therapeutic Targets. J Mol Neurosci 2016; 60:390-404. [PMID: 27660215 DOI: 10.1007/s12031-016-0825-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 08/17/2016] [Indexed: 01/08/2023]
Abstract
Given the importance of microglia to inflammatory, phagocytic and synaptic modulatory processes, their function is vital in physiological and pathological brain. The impairment of microglia in Alzheimer's disease has been demonstrated on genetic, epigenetic, transcriptional and functional levels using unbiased systems level approaches. Recent studies have highlighted the immense phenotypic diversity of microglia, including the ability to adopt distinct and dynamic phenotypes in ageing and disease. We review the origins and functions of healthy microglia and the established and emerging models and techniques available for their study. Furthermore, we highlight recent advances on the role, heterogeneity and dysfunction of microglia in Alzheimer's disease and discuss the potential for therapeutic interventions targeting microglia. Microglia-selective molecular fingerprints will guide detailed functional analysis of microglial subsets and may aid in the development of therapies specifically targeting microglia.
Collapse
|
486
|
Huh CJ, Zhang B, Victor MB, Dahiya S, Batista LF, Horvath S, Yoo AS. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. eLife 2016; 5. [PMID: 27644593 PMCID: PMC5067114 DOI: 10.7554/elife.18648] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/15/2016] [Indexed: 12/19/2022] Open
Abstract
Aging is a major risk factor in many forms of late-onset neurodegenerative disorders. The ability to recapitulate age-related characteristics of human neurons in culture will offer unprecedented opportunities to study the biological processes underlying neuronal aging. Here, we show that using a recently demonstrated microRNA-based cellular reprogramming approach, human fibroblasts from postnatal to near centenarian donors can be efficiently converted into neurons that maintain multiple age-associated signatures. Application of an epigenetic biomarker of aging (referred to as epigenetic clock) to DNA methylation data revealed that the epigenetic ages of fibroblasts were highly correlated with corresponding age estimates of reprogrammed neurons. Transcriptome and microRNA profiles reveal genes differentially expressed between young and old neurons. Further analyses of oxidative stress, DNA damage and telomere length exhibit the retention of age-associated cellular properties in converted neurons from corresponding fibroblasts. Our results collectively demonstrate the maintenance of age after neuronal conversion.
Collapse
Affiliation(s)
- Christine J Huh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States.,Program in Molecular and Cellular Biology, Washington University School of Medicine, St. Louis, United States
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Matheus B Victor
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States.,Program in Neuroscience, Washington University School of Medicine, St. Louis, United States
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, United States
| | - Luis Fz Batista
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States.,Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States.,Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, United States
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
487
|
Abstract
Why do cells age? Recent advances show that the cytoplasm is organized into many membrane‐less compartments via a process known as phase separation, which ensures spatiotemporal control over diffusion‐limited biochemical reactions. Although phase separation is a powerful mechanism to organize biochemical reactions, it comes with the trade‐off that it is extremely sensitive to changes in physical‐chemical parameters, such as protein concentration, pH, or cellular energy levels. Here, we highlight recent findings showing that age‐related neurodegenerative diseases are linked to aberrant phase transitions in neurons. We discuss how these aberrant phase transitions could be tied to a failure to maintain physiological physical‐chemical conditions. We generalize this idea to suggest that the process of cellular aging involves a progressive loss of the organization of phase‐separated compartments in the cytoplasm.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
488
|
Abstract
Modeling human neuronal aging at a cellular level remains challenging. Human neurons are accessible from iPSCs, but during reprogramming age-associated traits of somatic cells get lost. In this issue of Cell Stem Cell, Mertens et al. (2015) demonstrate that neurons obtained by direct cell conversion retain age-associated transcriptional traits and functional deficits of the donor cell population.
Collapse
Affiliation(s)
- Philipp Koch
- Institute of Reconstructive Neurobiology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany.
| |
Collapse
|
489
|
Modeling ALS with motor neurons derived from human induced pluripotent stem cells. Nat Neurosci 2016; 19:542-53. [PMID: 27021939 DOI: 10.1038/nn.4273] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/22/2016] [Indexed: 02/08/2023]
Abstract
Directing the differentiation of induced pluripotent stem cells into motor neurons has allowed investigators to develop new models of amyotrophic lateral sclerosis (ALS). However, techniques vary between laboratories and the cells do not appear to mature into fully functional adult motor neurons. Here we discuss common developmental principles of both lower and upper motor neuron development that have led to specific derivation techniques. We then suggest how these motor neurons may be matured further either through direct expression or administration of specific factors or coculture approaches with other tissues. Ultimately, through a greater understanding of motor neuron biology, it will be possible to establish more reliable models of ALS. These in turn will have a greater chance of validating new drugs that may be effective for the disease.
Collapse
|
490
|
Schultz MB, Sinclair DA. When stem cells grow old: phenotypes and mechanisms of stem cell aging. Development 2016; 143:3-14. [PMID: 26732838 DOI: 10.1242/dev.130633] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
All multicellular organisms undergo a decline in tissue and organ function as they age. An attractive theory is that a loss in stem cell number and/or activity over time causes this decline. In accordance with this theory, aging phenotypes have been described for stem cells of multiple tissues, including those of the hematopoietic system, intestine, muscle, brain, skin and germline. Here, we discuss recent advances in our understanding of why adult stem cells age and how this aging impacts diseases and lifespan. With this increased understanding, it is feasible to design and test interventions that delay stem cell aging and improve both health and lifespan.
Collapse
Affiliation(s)
- Michael B Schultz
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David A Sinclair
- Paul F. Glenn Center for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
491
|
Abstract
The ability to reprogram somatic cells into induced pluripotent stem cells (iPSCs) using defined factors provides new tools for biomedical research. However, some iPSC clones display tumorigenic and immunogenic potential, thus raising concerns about their utility and safety in the clinical setting. Furthermore, variability in iPSC differentiation potential has also been described. Here we discuss whether these therapeutic obstacles are specific to transcription-factor-mediated reprogramming or inherent to every cellular reprogramming method. Finally, we address whether a better understanding of the mechanism underlying the reprogramming process might improve the fidelity of reprogramming and, therefore, the iPSC quality.
Collapse
Affiliation(s)
- Natalia Tapia
- Institute of Biomedicine of Valencia, Spanish National Research Council, Jaime Roig 11, 46010 Valencia, Spain.
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany; Medical Faculty, University of Münster, Domagkstraße 3, 48149 Münster, Germany.
| |
Collapse
|
492
|
ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks. Nat Neurosci 2016; 19:1256-67. [PMID: 27428653 PMCID: PMC5003654 DOI: 10.1038/nn.4345] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/17/2016] [Indexed: 02/07/2023]
Abstract
Modeling Amyotrophic Lateral Sclerosis (ALS) with human induced pluripotent stem cells (iPSCs) aims to reenact embryogenesis, maturation, and aging of spinal motor neurons (spMNs) in vitro. As the maturity of spMNs grown in vitro compared to spMNs in vivo remains largely unaddressed, it is unclear to what extent this in vitro system captures critical aspects of spMN development and molecular signatures associated with ALS. Here, we compared transcriptomes among iPSC-derived spMNs, fetal, and adult spinal tissues. This approach produced a maturation scale revealing that iPSC-derived spMNs were more similar to fetal spinal tissue than to adult spMNs. Additionally, we resolved gene networks and pathways associated with spMN maturation and aging. These networks enriched for pathogenic familial ALS genetic variants and were disrupted in sporadic ALS spMNs. Altogether, our findings suggest that developing strategies to further mature and age iPSC-derived spMNs will provide more effective iPSC models of ALS pathology.
Collapse
|
493
|
Masserdotti G, Gascón S, Götz M. Direct neuronal reprogramming: learning from and for development. Development 2016; 143:2494-510. [DOI: 10.1242/dev.092163] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The key signalling pathways and transcriptional programmes that instruct neuronal diversity during development have largely been identified. In this Review, we discuss how this knowledge has been used to successfully reprogramme various cell types into an amazing array of distinct types of functional neurons. We further discuss the extent to which direct neuronal reprogramming recapitulates embryonic development, and examine the particular barriers to reprogramming that may exist given a cell's unique developmental history. We conclude with a recently proposed model for cell specification called the ‘Cook Islands’ model, and consider whether it is a fitting model for cell specification based on recent results from the direct reprogramming field.
Collapse
Affiliation(s)
- Giacomo Masserdotti
- Institute of Stem Cell Research, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg/Munich D-85764, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Großhadernerstrasse 9, Martinsried 82154, Germany
| | - Sergio Gascón
- Institute of Stem Cell Research, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg/Munich D-85764, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Großhadernerstrasse 9, Martinsried 82154, Germany
| | - Magdalena Götz
- Institute of Stem Cell Research, Helmholtz Center Munich, Ingolstädter Landstrasse 1, Neuherberg/Munich D-85764, Germany
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Großhadernerstrasse 9, Martinsried 82154, Germany
- Excellence Cluster of Systems Neurology, Großhadernerstrasse 9, Martinsried 82154, Germany
| |
Collapse
|
494
|
Ocampo A, Reddy P, Belmonte JCI. Anti-Aging Strategies Based on Cellular Reprogramming. Trends Mol Med 2016; 22:725-738. [PMID: 27426043 DOI: 10.1016/j.molmed.2016.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Aging can be defined as the progressive decline in the ability of a cell or organism to resist stress and disease. Recent advances in cellular reprogramming technologies have enabled detailed analyses of the aging process, often involving cell types derived from aged individuals, or patients with premature aging syndromes. In this review we discuss how cellular reprogramming allows the recapitulation of aging in a dish, describing novel experimental approaches to investigate the aging process. Finally, we explore the role of epigenetic dysregulation as a driver of aging, discussing how epigenetic reprogramming may be harnessed to ameliorate aging hallmarks, both in vitro and in vivo. A better understanding of the reprogramming process may indeed assist the development of novel therapeutic strategies to extend a healthy lifespan.
Collapse
Affiliation(s)
- Alejandro Ocampo
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pradeep Reddy
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
495
|
FoxO3 regulates neuronal reprogramming of cells from postnatal and aging mice. Proc Natl Acad Sci U S A 2016; 113:8514-9. [PMID: 27402759 DOI: 10.1073/pnas.1607079113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We and others have shown that embryonic and neonatal fibroblasts can be directly converted into induced neuronal (iN) cells with mature functional properties. Reprogramming of fibroblasts from adult and aged mice, however, has not yet been explored in detail. The ability to generate fully functional iN cells from aged organisms will be particularly important for in vitro modeling of diseases of old age. Here, we demonstrate production of functional iN cells from fibroblasts that were derived from mice close to the end of their lifespan. iN cells from aged mice had apparently normal active and passive neuronal membrane properties and formed abundant synaptic connections. The reprogramming efficiency gradually decreased with fibroblasts derived from embryonic and neonatal mice, but remained similar for fibroblasts from postnatal mice of all ages. Strikingly, overexpression of a transcription factor, forkhead box O3 (FoxO3), which is implicated in aging, blocked iN cell conversion of embryonic fibroblasts, whereas knockout or knockdown of FoxO3 increased the reprogramming efficiency of adult-derived but not of embryonic fibroblasts and also enhanced functional maturation of resulting iN cells. Hence, FoxO3 has a central role in the neuronal reprogramming susceptibility of cells, and the importance of FoxO3 appears to change during development.
Collapse
|
496
|
Pistollato F, Ohayon EL, Lam A, Langley GR, Novak TJ, Pamies D, Perry G, Trushina E, Williams RS, Roher AE, Hartung T, Harnad S, Barnard N, Morris MC, Lai MC, Merkley R, Chandrasekera PC. Alzheimer disease research in the 21st century: past and current failures, new perspectives and funding priorities. Oncotarget 2016; 7:38999-39016. [PMID: 27229915 PMCID: PMC5129909 DOI: 10.18632/oncotarget.9175] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
Much of Alzheimer disease (AD) research has been traditionally based on the use of animals, which have been extensively applied in an effort to both improve our understanding of the pathophysiological mechanisms of the disease and to test novel therapeutic approaches. However, decades of such research have not effectively translated into substantial therapeutic success for human patients. Here we critically discuss these issues in order to determine how existing human-based methods can be applied to study AD pathology and develop novel therapeutics. These methods, which include patient-derived cells, computational analysis and models, together with large-scale epidemiological studies represent novel and exciting tools to enhance and forward AD research. In particular, these methods are helping advance AD research by contributing multifactorial and multidimensional perspectives, especially considering the crucial role played by lifestyle risk factors in the determination of AD risk. In addition to research techniques, we also consider related pitfalls and flaws in the current research funding system. Conversely, we identify encouraging new trends in research and government policy. In light of these new research directions, we provide recommendations regarding prioritization of research funding. The goal of this document is to stimulate scientific and public discussion on the need to explore new avenues in AD research, considering outcome and ethics as core principles to reliably judge traditional research efforts and eventually undertake new research strategies.
Collapse
Affiliation(s)
| | - Elan L. Ohayon
- Green Neuroscience Laboratory, Neurolinx Research Institute, San Diego, CA, USA
| | - Ann Lam
- Physicians Committee for Responsible Medicine, Washington, DC, USA
- Green Neuroscience Laboratory, Neurolinx Research Institute, San Diego, CA, USA
| | - Gillian R. Langley
- Research and Toxicology Department, Humane Society International, London, UK
| | | | - David Pamies
- CAAT, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - Robin S.B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Alex E. Roher
- Division of Clinical Education, Midwestern University, Glendale, AZ, USA
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Thomas Hartung
- CAAT, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stevan Harnad
- Department of Psychology, University of Quebec/Montreal, Montreal, Canada
| | - Neal Barnard
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | - Martha Clare Morris
- Section of Nutrition and Nutritional Epidemiology, Department of Internal Medicine, Rush University, Chicago, IL, USA
| | - Mei-Chun Lai
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | - Ryan Merkley
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | | |
Collapse
|
497
|
Jovičić A, Paul JW, Gitler AD. Nuclear transport dysfunction: a common theme in amyotrophic lateral sclerosis and frontotemporal dementia. J Neurochem 2016; 138 Suppl 1:134-44. [PMID: 27087014 DOI: 10.1111/jnc.13642] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/03/2016] [Accepted: 04/08/2016] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases with overlapping genetic factors and pathology. On the cellular level, a majority of ALS and FTD cases are characterized by nuclear clearance and cytoplasmic aggregation of otherwise nuclear proteins, TAR DNA-binding protein 43 (TDP-43), or fused in sarcoma. Recent studies investigating cellular pathways perturbed by genetic risk factors for ALS/FTD converge on nucleocytoplasmic transport dysfunction as a mechanism leading to disease pathophysiology. We propose that mutations in FUS and hexanucleotide expansions in C9orf72 and aging all converge on the impairment of nucleocytoplasmic transport, which results in the hallmark pathological feature of ALS/FTD - cytoplasmic aggregation of TDP-43 or FUS.
Collapse
Affiliation(s)
- Ana Jovičić
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Joseph W Paul
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
498
|
Todd TW, Petrucelli L. Insights into the pathogenic mechanisms of Chromosome 9 open reading frame 72 (C9orf72) repeat expansions. J Neurochem 2016; 138 Suppl 1:145-62. [PMID: 27016280 DOI: 10.1111/jnc.13623] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/04/2016] [Accepted: 03/21/2016] [Indexed: 12/12/2022]
Abstract
The identification of a hexanucleotide repeat expansion in a non-coding region of C9orf72 as a major cause of both frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) drastically changed the field of research on both of these conditions. Yet, despite the vast amount of work aimed at elucidating the molecular mechanisms underlying the role of this repeat in disease, the exact pathomechanisms are still unclear. A reduction in the expression of the C9orf72 gene is observed in patients, but a gain-of-function model is now preferred. The hexanucleotide repeat expansion forms RNA foci in the central nervous system (CNS) of repeat-positive FTD and ALS patients, and these foci are believed to sequester RNA-binding proteins (RBPs) and impair their function in RNA processing. At the same time, the repeat undergoes repeat-associated non-ATG translation to produce dipeptide repeat proteins that also form inclusions in the patient CNS. Studies from cells and flies suggest that these proteins may also be an important factor in the disease. Finally, the hexanucleotide repeat also induces the mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43) through an as yet unknown mechanism. This review covers the different potential pathogenic factors that have been put forth for C9orf72-repeat-associated FTD and ALS (C9-FTD/ALS), while highlighting some remaining questions. A repeat expansion in C9orf72 is a common cause of both frontal temporal dementia and amyotrophic lateral sclerosis. Although there is a decrease in C9orf72 expression in patients, this repeat is believed to induce disease primarily through an unknown gain-of-function mechanism involving the RNA, repeat-associated non-AUG translation, or both. This review summarizes and discusses current knowledge on C9orf72 repeat-associated pathophysiology. This article is part of the Frontotemporal Dementia special issue.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | |
Collapse
|
499
|
Wüllner U, Kaut O, deBoni L, Piston D, Schmitt I. DNA methylation in Parkinson's disease. J Neurochem 2016; 139 Suppl 1:108-120. [DOI: 10.1111/jnc.13646] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/21/2016] [Accepted: 04/15/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Ullrich Wüllner
- German Center for Neurodegenerative Diseases (DZNE) and Department of Neurology; University of Bonn; Bonn Germany
| | - Oliver Kaut
- German Center for Neurodegenerative Diseases (DZNE) and Department of Neurology; University of Bonn; Bonn Germany
| | - Laura deBoni
- German Center for Neurodegenerative Diseases (DZNE) and Department of Neurology; University of Bonn; Bonn Germany
| | - Dominik Piston
- German Center for Neurodegenerative Diseases (DZNE) and Department of Neurology; University of Bonn; Bonn Germany
| | - Ina Schmitt
- German Center for Neurodegenerative Diseases (DZNE) and Department of Neurology; University of Bonn; Bonn Germany
| |
Collapse
|
500
|
Soria-Valles C, López-Otín C. iPSCs: On the Road to Reprogramming Aging. Trends Mol Med 2016; 22:713-724. [PMID: 27286740 DOI: 10.1016/j.molmed.2016.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 01/01/2023]
Abstract
Aging is characterized by irreversible loss of physiological integrity, often accompanied by an organism's loss of function and increased vulnerability to death. Defects in the mechanisms preserving cellular homeostasis over time may give rise to accelerated aging. Somatic cell reprogramming of aged cells can be associated with rejuvenation, erasing certain age-associated features, and illustrating the reversibility potential of aging. Here, we focus on recent advances in the generation of human induced pluripotent stem cells from progeroid syndromes and late-onset diseases such as Alzheimer's or Parkinson's. These cellular models have contributed to a better understanding of such pathologies, as well as to the development of novel therapeutic approaches. We also discuss different strategies to identify and target age-associated reprogramming barriers to facilitate the treatment of age-related disorders.
Collapse
Affiliation(s)
- Clara Soria-Valles
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|