451
|
Bacelo DE, Binning RC. Computational study of iron(II) and -(III) complexes with a simple model human H ferritin ferroxidase center. Inorg Chem 2007; 45:10263-9. [PMID: 17140234 DOI: 10.1021/ic060388k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interaction of iron ions with a six-amino acid model of the ferroxidase center of human H chain ferritin has been examined in density functional theory calculations. The model, based on experimental studies of oxidation of Fe2+ at the center, consists of Glu27, Glu62, His65, Glu107, Gln141, and Ala144. Reasonable structures are obtained in a survey of types of iron complexes inferred to occur in the ferroxidase reaction. Structures of complexes of the model center with one and two Fe2+ ions, with diiron(III) bridged by peroxide and bridged by oxide-peroxide combinations, have been optimized. Calculations on diiron(III) complexes confirm that stable peroxide-bridged complexes can form and that the Fe-Fe distance in at least one is consistent with the experimental Fe-Fe distance observed in the blue peroxodiferric complex of ferritin.
Collapse
Affiliation(s)
- Daniel E Bacelo
- Department of Sciences and Technology, Universidad Metropolitana, San Juan, Puerto Rico 00928-1150
| | | |
Collapse
|
452
|
Min KS, DiPasquale AG, Golen JA, Rheingold AL, Arif AM, Miller JS. Synthesis, structure, and magnetic properties of valence ambiguous dinuclear antiferromagnetically coupled cobalt and ferromagnetically coupled iron complexes containing the chloranilate(2-) and the significantly stronger coupling chloranilate(*3-) radical trianion. J Am Chem Soc 2007; 129:2360-8. [PMID: 17269771 DOI: 10.1021/ja067208q] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dinuclear [(TPyA)MII(CA2-)MII(TPyA)]2+ [TPyA=tris(2-pyridylmethyl)amine; CA2-=chloranilate dianion; M=Co (1(2+)), Fe (2(2+))] complexes have been prepared by the reaction of M(BF4)(2).6H2O, TPyA, H2CA, and triethylamine in MeOH solution. Their reduced forms [(TPyA)MII(CA*3-)MII(TPyA)]+ [M=Co(1+), Fe (2+)] have been synthesized by using cobaltocene, and oxidized forms of 1, [(TPyA)CoIII(CAn)CoIII(TPyA)]z+ [z=3, n=3- (1(3+)); z=4, n=2- (1(4+))], have been obtained by using FcBF4 and ThianBF4 (Fc=ferrocenium; Thian=thianthrinium), respectively. The dinuclear compound bridged chloranilates (CA2- or CA*3-) were isolated and characterized by X-ray crystallography, electrochemistry, magnetism, and EPR spectroscopy. Unlike the other redox products, valence ambiguous 13+ forms via a complex redox-induced valence electron rearrangement whereby the one-electron oxidation of the [CoIICA2-CoII]2+ core forms [CoIIICA*3-CoIII]3+, not the expected simple 1-e- transfer mixed-valent [CoIICA2-CoIII]3+ core. The M ions in 1 and 2 have a distorted octahedral geometry by coordination with four nitrogens of a TPyA, two oxygens of a chloranilate. Due to the interdimer offset face-to-face pi-pi and/or herringbone interactions, all complexes show extended 1-D and/or 2-D supramolecular structures. The existence of CA*3- in 1(3+) is confirmed from both solid-state magnetic and solution EPR data. Co-based 1n+ exhibit antiferromagnetic interactions [1(2+): g=2.24, J/kB=-0.65 K (-0.45 cm-1); 1+: g=2.36, J/kB=-75 K (52 cm-1)], while Fe-based 2n+ exhibit ferromagnetic interactions [2(2+): g=2.08, J/kB=1.0 K (0.70 cm-1); 2+: g=2.03, J/kB=28 K (19 cm-1)] [H=-2JS1.S2 for 12+ and 2(2+); H=-2J(S1.S2+S2.S3) for 1+ and 2+]. Thus, due to direct spin exchange CA*3- is a much strong spin coupling linkage than the superexchange spin-coupling pathway provided by CA2-.
Collapse
Affiliation(s)
- Kil Sik Min
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, USA
| | | | | | | | | | | |
Collapse
|
453
|
Duban EA, Bryliakov KP, Talsi EP. The Active Intermediates of Non-Heme-Iron-Based Systems for Catalytic Alkene Epoxidation with H2O2/CH3COOH. Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200600895] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
454
|
Dutta SK, Ghosh M, Biswas P, Flörke U, Saal C, Haase W, Nag K. Formation of oxo-bridged tetrairon(iii) complexes mediated by oxygen activation. Structure, spectroscopy, magnetism and electrochemistry. NEW J CHEM 2007. [DOI: 10.1039/b610649h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
455
|
Foxon S, Xu JY, Turba S, Leibold M, Hampel F, Heinemann FW, Walter O, Würtele C, Holthausen M, Schindler S. Syntheses, Characterization and Reactivity of Iron(II), Nickel(II), Copper(II) and Zinc(II) Complexes of the LigandN,N,N′,N′-Tetrakis(2-pyridylmethyl)benzene-1,3-diamine (1,3-tpbd) and Its Phenol Derivative 2,6-Bis[bis(2-pyridylmethyl)amino]-p-cresol (2,6-tpcd). Eur J Inorg Chem 2007. [DOI: 10.1002/ejic.200600944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
456
|
Kastrup CJ, Ismagilov RF. A physical organic mechanistic approach to understanding the complex reaction network of hemostasis (blood clotting). J PHYS ORG CHEM 2007. [DOI: 10.1002/poc.1242] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
457
|
Carvalho NMF, Antunes OAC, Horn A. Electrochemical behaviour of mononuclear Fe(iii) complexes as models for oxygenases: reactivity of Fe(ii) species electrochemically formed in situ toward dioxygen. Dalton Trans 2007:1023-7. [PMID: 17325776 DOI: 10.1039/b616377g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we report the electrochemical study of a family of mononuclear Fe(III) complexes [Fe(BMPA)Cl(3)] 1, [Fe(MPBMPA)Cl(3)] 2, [Fe(PBMPA)Cl(2)]3 and [Fe(PABMPA)Cl(2)](ClO(4)) 4, where the ligand BMPA is bis-(2-pyridylmethyl)amine, and MPBMPA, PBMPA and PABMPA are the N-methylpropanoate, N-propanoate and N-propanamide BMPA-derivatives, respectively. It was possible to verify the influence of the different ligands on the redox properties of the complexes and from this to classify the complexes according to their Lewis acidity through the Fe(III)/Fe(II) redox process, resulting in the following decreasing order in CH(3)CN solution: 4> 2> 1> 3. The effect of the solvents CH(3)CN and DMSO on their electrochemical properties was also determined. Furthermore, we investigated the reactivity of the electrochemically-generated Fe(II) complexes toward dioxygen and of the Fe(III) complexes toward superoxide through cyclic voltammetry. All the complexes reacted with dioxygen and superoxide in DMSO solution. Redox processes attributed to oxygenated species were observed in a more cathodic potential than those of the original compounds. According to the data, the new species Fe(II)-O(2) converts itself to Fe(III)-O(2)(-), which presents a new redox wave attributed to the process Fe(III)-O(2)(-) + e(-) --> Fe(II)-O(2)(-). The same species Fe(III)-O(2)(-) is formed from the reaction of the Fe(III) form of the complexes and KO(2).
Collapse
Affiliation(s)
- Nakédia M F Carvalho
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária CT Bloco A-641, Rio de Janeiro, 21945-970, RJ, Brazil
| | | | | |
Collapse
|
458
|
Bhattacharyya J, Das S, Mukhopadhyay S. Mechanistic studies on oxidation of l-ascorbic acid by an oxo-bridged diiron complex in aqueous acidic media. Dalton Trans 2007:1214-20. [PMID: 17353953 DOI: 10.1039/b615593f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
[Fe2(micro-O)(phen)4(H2O)2]4+ (1) (Fig. 1, phen = 1,10-phenanthroline) equilibrates with [Fe2(micro-O)(phen)4(H2O)(OH)]3+ (2) and [Fe2(micro-O)(phen)4(OH)2]2+ (3) in aqueous solution in the presence of excess phen, where no phen-releasing equilibria from 1, 2 and 3 exist. 1 quantitatively oxidizes ascorbic acid (H2A) to dehydroascorbic acid (A) in the pH range 3.00-5.50 in the presence of excess phen, which buffers the reaction within 0.05 pH units and ensures complete formation of end iron product ferroin, [Fe(phen)3]2+. The reactive species are 1, 2 and HA- and the reaction proceeds through an initial 1 : 1 inner-sphere adduct formation between 1 and 2 with HA-, followed by a rate limiting outer-sphere one electron one proton (electroprotic) transfer from a second HA- to the ascorbate-unbound iron(III).
Collapse
|
459
|
Yamashita M, Furutachi H, Tosha T, Fujinami S, Saito W, Maeda Y, Takahashi K, Tanaka K, Kitagawa T, Suzuki M. Regioselective Arene Hydroxylation Mediated by a (μ-Peroxo)diiron(III) Complex: A Functional Model for Toluene Monooxygenase. J Am Chem Soc 2006; 129:2-3. [PMID: 17199259 DOI: 10.1021/ja063987z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mai Yamashita
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
460
|
Nehru K, Seo MS, Kim J, Nam W. Oxidative N-Dealkylation Reactions by Oxoiron(IV) Complexes of Nonheme and Heme Ligands. Inorg Chem 2006; 46:293-8. [PMID: 17198439 DOI: 10.1021/ic0614014] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonheme and heme iron monooxygenases participate in oxidative N-dealkylation reactions in nature, and high-valent oxoiron(IV) species have been invoked as active oxidants that effect the oxygenation of organic substrates. The present study describes the first example of the oxidative N-dealkylation of N,N-dialkylamines by synthetic nonheme oxoiron(IV) complexes and the reactivity comparisons of nonheme and heme oxoiron(IV) complexes. Detailed mechanistic studies were performed with various N,N-dialkylaniline substrates such as para-substituted N,N-dimethylanilines, para-chloro-N-ethyl-N-methylaniline, para-chloro-N-cyclopropyl-N-isopropylaniline, and deuteriated N,N-dimethylanilines. The results of a linear free-energy correlation, inter- and intramolecular kinetic isotope effects, and product analysis studied with the mechanistic probes demonstrate that the oxidative N-dealkylation reactions by nonheme and heme oxoiron(IV) complexes occur via an electron transfer-proton transfer (ET-PT) mechanism.
Collapse
Affiliation(s)
- Kasi Nehru
- Department of Chemistry, Division of Nano Sciences, and Center for Biomimetic Systems, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | |
Collapse
|
461
|
McCormick MS, Sazinsky MH, Condon KL, Lippard SJ. X-ray crystal structures of manganese(II)-reconstituted and native toluene/o-xylene monooxygenase hydroxylase reveal rotamer shifts in conserved residues and an enhanced view of the protein interior. J Am Chem Soc 2006; 128:15108-10. [PMID: 17117860 PMCID: PMC1761687 DOI: 10.1021/ja064837r] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the X-ray crystal structures of native and manganese(II)-reconstituted toluene/o-xylene monooxygenase hydroxylase (ToMOH) from Pseudomonas stutzeri OX1 to 1.85 and 2.20 A resolution, respectively. The structures reveal that reduction of the dimetallic active site is accompanied by a carboxylate shift and alteration of the coordination environment for dioxygen binding and activation. A rotamer shift in a strategically placed asparagine 202 accompanies dimetallic center reduction and is proposed to influence protein component interactions. This rotamer shift is conserved between ToMOH and the corresponding residue in methane monooxygenase hydroxylase (MMOH). Previously unidentified hydrophobic pockets similar to those present in MMOH are assigned.
Collapse
Affiliation(s)
- Michael S. McCormick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 E-mail:
| | - Matthew H. Sazinsky
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 E-mail:
| | - Karen L. Condon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 E-mail:
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 E-mail:
| |
Collapse
|
462
|
Collman JP, Yan YL, Lei J, Dinolfo PH. Efficient synthesis of trisimidazole and glutaric acid bearing porphyrins: ligands for active-site models of bacterial nitric oxide reductase. Org Lett 2006; 8:923-6. [PMID: 16494475 PMCID: PMC2042138 DOI: 10.1021/ol053118z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligands (1) for active-site models of bacterial nitric oxide reductase (NOR) have been efficiently synthesized. These compounds (1) feature three imidazolyl moieties and one carboxylic acid residue at the FeB site, which represent the closest available synthetic model ligands of NOR active center. The stereo conformations of these ligands are established on the basis of steric effects and 1H NMR chemical shifts under the ring current effect of the porphyrin.
Collapse
Affiliation(s)
- James P Collman
- Department of Chemistry, Stanford University, California 94305-5080, USA.
| | | | | | | |
Collapse
|
463
|
Taktak S, Kryatov SV, Haas TE, Rybak-Akimova EV. Diiron(III) oxo-bridged complexes with BPMEN and additional monodentate or bidentate ligands: Synthesis and reactivity in olefin epoxidation with H2O2. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcata.2006.05.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
464
|
Kastrup CJ, Runyon MK, Shen F, Ismagilov RF. Modular chemical mechanism predicts spatiotemporal dynamics of initiation in the complex network of hemostasis. Proc Natl Acad Sci U S A 2006; 103:15747-52. [PMID: 17043240 PMCID: PMC1635074 DOI: 10.1073/pnas.0605560103] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This article demonstrates that a simple chemical model system, built by using a modular approach, may be used to predict the spatiotemporal dynamics of initiation of blood clotting in the complex network of hemostasis. Microfluidics was used to create in vitro environments that expose both the complex network and the model system to surfaces patterned with patches presenting clotting stimuli. Both systems displayed a threshold response, with clotting initiating only on isolated patches larger than a threshold size. The magnitude of the threshold patch size for both systems was described by the Damköhler number, measuring competition of reaction and diffusion. Reaction produces activators at the patch, and diffusion removes activators from the patch. The chemical model made additional predictions that were validated experimentally with human blood plasma. These experiments show that blood can be exposed to significant amounts of clot-inducing stimuli, such as tissue factor, without initiating clotting. Overall, these results demonstrate that such chemical model systems, implemented with microfluidics, may be used to predict spatiotemporal dynamics of complex biochemical networks.
Collapse
Affiliation(s)
- Christian J. Kastrup
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, 929 West 57th Street, Chicago, IL 60637
| | - Matthew K. Runyon
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, 929 West 57th Street, Chicago, IL 60637
| | - Feng Shen
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, 929 West 57th Street, Chicago, IL 60637
| | - Rustem F. Ismagilov
- Department of Chemistry and Institute for Biophysical Dynamics, University of Chicago, 929 West 57th Street, Chicago, IL 60637
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
465
|
Friese SJ, Kucera BE, Que L, Tolman WB. Self-assembly of the 2-His-1-carboxylate facial triad in mononuclear iron(II) and zinc(II) models of metalloenzyme active sites. Inorg Chem 2006; 45:8003-5. [PMID: 16999395 DOI: 10.1021/ic061564s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A synthetic strategy involving the use of sterically hindered N-donor and terphenylcarboxylate ligands has been used to prepare complexes of iron(II) and zinc(II) that feature N2(carboxylate) donors. X-ray crystallographic and NMR data show that the 2-His-1-carboxylate facial triad found in metalloenzyme active sites is closely modeled by the mononuclear complexes. In addition, by virtue of the flexibility of the ligands used, the geometries and coordination environments of the complexes display carboxylate binding mode differences such as those seen in the enzymes.
Collapse
Affiliation(s)
- Seth J Friese
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
466
|
Carvalho NM, Horn A, Faria RB, Bortoluzzi AJ, Drago V, Antunes O. Synthesis, characterization, X-ray molecular structure and catalase-like activity of a non-heme iron complex: Dichloro[N-propanoate-N,N-bis-(2-pyridylmethyl)amine]iron(III). Inorganica Chim Acta 2006. [DOI: 10.1016/j.ica.2006.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
467
|
Mas-Ballesté R, Costas M, van den Berg T, Que L. Ligand Topology Effects on Olefin Oxidations by Bio-Inspired [FeII(N2Py2)] Catalysts. Chemistry 2006; 12:7489-500. [PMID: 16871511 DOI: 10.1002/chem.200600453] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Linear tetradentate N2Py2 ligands can coordinate to an octahedral FeII center in three possible topologies (cis-alpha, cis-beta, and trans). While for the N,N'-bis(2-pyridylmethyl)-1,2-diaminoethane (bpmen) complex, only the cis-alpha topology has been observed, for N,N'-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (bpmcn) both cis-alpha and cis-beta isomers have been reported. To date, no facile interconversion between cis-alpha and cis-beta topologies has been observed for ironII complexes even at high temperatures. However, this work provides evidence for facile interconversion in solution of cis-alpha, cis-beta, and trans topologies for [Fe(bpmpn)X2] (bpmpn=N,N'-bis(2-pyridylmethyl)-1,3-diaminopropane; X=triflate, CH3CN) complexes. As reported previously, the catalytic behavior of cis-alpha and cis-beta isomers of [Fe(bpmcn)(OTf)2] with respect to olefin oxidation depends dramatically on the geometry adopted by the iron complex. To establish a general pattern of the catalysis/topology dependence, this work presents an extended comparison of the catalytic behavior for oxidation of olefins of a family of [Fe(N2py2)] complexes that present different topologies. 18O labeling experiments provide evidence for a complex mechanistic landscape in which several pathways should be considered. Complexes with a trans topology catalyze only non-water-assisted epoxidation. In contrast, complexes with a cis-alpha topology, such as [Fe(bpmen)X2] and [Fe(alpha-bpmcn)(OTf)2], can catalyze both epoxidation and cis-dihydroxylation through a water-assisted mechanism. Surprisingly, [Fe(bpmpn)X2] and [Fe(beta-bpmcn)(OTf)2] catalyze epoxidation via a water-assisted pathway and cis-dihydroxylation via a non-water-assisted mechanism, a result that requires two independent and distinct oxidants.
Collapse
Affiliation(s)
- Rubén Mas-Ballesté
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
468
|
Mukherjee R, Bijayi Dhar B, Banerjee R, Mukhopadhyay S. Kinetics of oxidation of phenylhydrazine by aμ-oxo diiron(III,III) complex in acidic aqueous media. J COORD CHEM 2006. [DOI: 10.1080/00958970500410614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ritam Mukherjee
- a Department of Chemistry , Jadavpur University , Calcutta 700 032, India
| | - Basab Bijayi Dhar
- a Department of Chemistry , Jadavpur University , Calcutta 700 032, India
| | | | | |
Collapse
|
469
|
Yoneda K, Adachi K, Nishio K, Yamasaki M, Fuyuhiro A, Katada M, Kaizaki S, Kawata S. An [FeII3O]4+ Core Wrapped by Two [FeIIL3]− Units. Angew Chem Int Ed Engl 2006; 45:5459-61. [PMID: 16892469 DOI: 10.1002/anie.200602067] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ko Yoneda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | |
Collapse
|
470
|
Yoneda K, Adachi K, Nishio K, Yamasaki M, Fuyuhiro A, Katada M, Kaizaki S, Kawata S. An [FeII3O]4+ Core Wrapped by Two [FeIIL3]− Units. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200602067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
471
|
Wade H, Stayrook SE, DeGrado WF. The Structure of a Designed Diiron(III) Protein: Implications for Cofactor Stabilization and Catalysis. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
472
|
Jullien J, Juhász G, Mialane P, Dumas E, Mayer CR, Marrot J, Rivière E, Bominaar EL, Münck E, Sécheresse F. Structure and Magnetic Properties of a Non-Heme Diiron Complex Singly Bridged by a Hydroxo Group. Inorg Chem 2006; 45:6922-7. [PMID: 16903750 DOI: 10.1021/ic0604009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of the first singly bridged non-heme diiron complex with a mu-hydroxo bridging ligand, [{(salten)Fe}2(OH)][B(C6H5)4].(CH3CN)x.(H2O)y (1) [H2salten = 4-azaheptane-1,7-bis(salicylideneiminate)], is reported. The complex has been characterized with X-ray crystallography, FTIR, magnetic susceptibility measurements, and Mössbauer spectroscopy. The data have been compared with the results of DFT calculations on both 1 and a model with an unsupported mu-oxo bridge (2) to verify the formulation of the complex as a mu-hydroxo-bridged species. The X-ray structure [Fe-O(H) = 1.997(1) A and Fe-O(H)-Fe = 159 degrees ] is consistent with the DFT-optimized geometry of 1 [Fe-O(H) = 2.02 A and Fe-O(H)-Fe = 151 degrees ]; the Fe-O(H) distance in 1 is about 0.2 A longer than the Fe-O separations in the optimized geometry of 2 (1.84 A) and in the crystallographic structures of diiron(III) compounds with unsupported mu-oxo bridges (1.77-1.81 A). The formulation of 1 as a hydroxo-bridged compound is also supported by the presence of an O-H stretch band in the FTIR spectrum of the complex. The magnetic susceptibility measurements of 1 reveal antiferromagnetic exchange (J = 42 cm(-1) and H(ex) = JS(1).S(2)). Nearly the same J value is obtained by analyzing the temperature dependence of the Mössbauer spectra (J = 43 cm(-1); other parameters: delta = 0.49 mm s(-1), DeltaE(Q) = -0.97 mm s(-1), and eta = 0.45 at 4.2 K). The experimental J values and Mössbauer parameters agree very well with those obtained from DFT calculations for the mu-hydroxo-bridged compound (J = 46 cm(-1), delta = 0.48 mm s(-1), DeltaE(Q) = -1.09 mm s(-1), and eta = 0.35). The exchange coupling constant in 1 is distinctly different from the value J approximately 200 cm(-1) calculated for the optimized mu-oxo-bridged species, 2. The increased exchange-coupling in 2 arises primarily from a decrease in the Fe-O bond length.
Collapse
Affiliation(s)
- Josseline Jullien
- Institut Lavoisier de Versailles, UMR-CNRS 8180, University of Versailles, 78035 Versailles Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
473
|
Abstract
The development of an enantioselective sulfide oxidation involving a chiral iron catalyst and aqueous hydrogen peroxide as oxidant is described. In the presence of a simple carboxylic acid, or a carboxylate salt, the reaction affords sulfoxides with remarkable enantioselectivities (up to 96 % ee) in moderate to good yields. The influence of the structure of the additive on the reaction outcome is reported. In the sulfoxide-to-sulfone oxidation a kinetic resolution (with s = 4.8) occurs, which, however, plays only a negligible role in the overall enantioselective process. Furthermore, a positive nonlinear relationship between the ee of the product and that of the catalyst has been found. On the basis of these observations, a possible catalyst structure is proposed.
Collapse
Affiliation(s)
- Julien Legros
- Institut für Organische Chemie, Rheinisch-Westfälische Technische Hochschule, Professor-Pirlet-Strasse 1, 52056 Aachen, Germany
| | | |
Collapse
|
474
|
Yoon S, Lippard SJ. Mechanistic studies of the oxidative N-dealkylation of a substrate tethered to carboxylate-bridged diiron(II) complexes, [Fe2(mu-O2CAr(Tol))2(O2CAr(Tol))2(N,N-Bn2en)2]. Inorg Chem 2006; 45:5438-46. [PMID: 16813407 PMCID: PMC2587132 DOI: 10.1021/ic060307k] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carboxylate-bridged diiron(II) centers activate dioxygen for the selective oxidation of hydrocarbon substrates in bacterial multicomponent monooxygenases. Synthetic analogues of these systems exist in which substrate fragments tethered to the diiron(II) core through attachment to an N-donor ligand are oxidized by transient species that arise following the introduction of O2 into the system. The present study describes the results of experiments designed to probe mechanistic details of these oxidative N-dealkylation reactions. A series of diiron(II) complexes with ligands N,N-(4-R-Bn)Bnen, where en is ethylenediamine, Bn is benzyl, and R-Bn is benzyl with a para-directing group R = Cl, F, CH3, t-Bu, or OCH3, were prepared. A Hammett plot of the oxygenation product distributions of these complexes, determined by gas chromatographic analysis, reveals a small positive slope of rho = +0.48. Kinetic isotope effect (KIE(intra)) values for oxygenation of [Fe2(mu-O2CAr(Tol))2(O2CAr(Tol))2(N,N-(C6H5CDH)2en)2] and [Fe2(mu-O2CAr(Tol))2(O2CAr(Tol))2(N,N-(C6H5CD2)(C6H5CH2)en)2] are 1.3(1) and 2.2(2) at 23 degrees C, respectively. The positive slope rho and low KIE(intra) values are consistent with a mechanism involving one-electron transfer from the dangling nitrogen atom in N,N-Bn2en to a transient electrophilic diiron intermediate, followed by proton transfer and rearrangement to eliminate benzaldehyde.
Collapse
Affiliation(s)
- Sungho Yoon
- Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Stephen J. Lippard
- Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
475
|
Konar S, Bhuvanesh N, Clearfield A. Oxo-, Hydroxo-, and Peroxo-Bridged Fe(III) Phosphonate Cages. J Am Chem Soc 2006; 128:9604-5. [PMID: 16866494 DOI: 10.1021/ja063388s] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of five Fe(III) phosphonate clusters with four different topologies is reported. The choice of coligand carboxylate plays an important role in directing the structure of the molecule. [Fe9(O)4(O2CCMe3)13(C10P)3] (1) and [Fe9(O)2(OH)(CO2Ph)10(C10P)6(H2O)2](CH3CN)7 (2; camphyl phosphonic acid, C10H17PO3H2 = C10PH2) represent two unprecedented nonanuclear Fe(III) cages having Fe9O4 and Fe9(O)2(OH) core structures, respectively. Whereas [Fe6O2(O)2(O2CCMe3)8(C10P)2 (H2O)2](CH3CN)4 (3) is a peroxo-bridged hexameric compound with an Fe6(O)2(O2) core. [Fe4(O)(O2CCMe3)4(C10P)3(Py)4](CH3CN)3 (4) and [Fe4(O)(O2CPh)4(C10P)3(Py)4](Py)3(CH3CN)2 (5; Py = pyridine) represents two tetranuclear clusters with the same Fe4O core structure.
Collapse
Affiliation(s)
- Sanjit Konar
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA
| | | | | |
Collapse
|
476
|
Denisova TO, Amel’chenkova EV, Pruss IV, Dobrokhotova ZV, Fialkovskii OP, Nefedov SE. Copper(II) trimethylacetate complexes with 3,5-dimethylpyrazole. RUSS J INORG CHEM+ 2006. [DOI: 10.1134/s0036023606070084] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
477
|
Xing G, Hoffart LM, Diao Y, Prabhu KS, Arner RJ, Reddy CC, Krebs C, Bollinger JM. A coupled dinuclear iron cluster that is perturbed by substrate binding in myo-inositol oxygenase. Biochemistry 2006; 45:5393-401. [PMID: 16634620 DOI: 10.1021/bi0519607] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
myo-Inositol oxygenase (MIOX) uses iron as its cofactor and dioxygen as its cosubstrate to effect the unique, ring-cleaving, four-electron oxidation of its cyclohexan-(1,2,3,4,5,6-hexa)-ol substrate to d-glucuronate. The nature of the iron cofactor and its interaction with the substrate, myo-inositol (MI), have been probed by electron paramagnetic resonance (EPR) and Mössbauer spectroscopies. The data demonstrate the formation of an antiferromagnetically coupled, high-spin diiron(III/III) cluster upon treatment of solutions of Fe(II) and MIOX with excess O(2) or H(2)O(2) and the formation of an antiferromagnetically coupled, valence-localized, high-spin diiron(II/III) cluster upon treatment with either limiting O(2) or excess O(2) in the presence of a mild reductant (e.g., ascorbate). Marked changes to the spectra of both redox forms upon addition of MI and analogy to changes induced by binding of phosphate to the diiron(II/III) cluster of the protein phosphatase, uteroferrin, suggest that MI coordinates directly to the diiron cluster, most likely in a bridging mode. The addition of MIOX to the growing family of non-heme diiron oxygenases expands the catalytic range of the family beyond the two-electron oxidation (hydroxylation and dehydrogenation) reactions catalyzed by its more extensively studied members such as methane monooxygenase and stearoyl acyl carrier protein Delta(9)-desaturase.
Collapse
Affiliation(s)
- Gang Xing
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
478
|
The Coordination Chemistry of Iron with the 1,4-Bis(2-pyridyl-methyl)piperazine Ligand. Z Anorg Allg Chem 2006. [DOI: 10.1002/zaac.200600003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
479
|
Lindsay Smith JR, Iamamoto Y, Vinhado FS. Oxidation of alkanes by iodosylbenzene (PhIO) catalysed by supported Mn(III) porphyrins: Activity and mechanism. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcata.2006.01.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
480
|
Paredes-García V, Venegas-Yazigi D, Latorre R, Spodine E. Electronic properties of mixed valence iron(II,III) dinuclear complexes with carboxylate bridges. Polyhedron 2006. [DOI: 10.1016/j.poly.2006.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
481
|
Biswas P, Ghosh M, Dutta SK, Flörke U, Nag K. Synthesis, Reactivities, and Magnetostructural Properties of FeIII, FeIII−O−FeIII, and ZnIIFeIII−O−FeIIIZnII Complexes of a Tetraiminodiphenolate Macrocycle. Inorg Chem 2006; 45:4830-44. [PMID: 16749848 DOI: 10.1021/ic060183b] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mononuclear iron(III) complexes [Fe(LH2)(H2O)Cl](ClO4)2.2H2O (1) and [Fe(LH2)(H2O)2](ClO4)3.H2O (2) have been prepared by reacting [Pb(LH(2))](ClO4)2 with FeCl3.6H2O and Fe(ClO(4))(3).6H(2)O, respectively. Complex 2 upon treatment with 1 equiv of alkali produces the oxo-bridged dimer [{Fe(LH2)(H2O)}2(mu-O)](ClO4)4.2H2O (3). In these compounds, LH2 refers to the tetraiminodiphenol macrocycle in the zwitterionic form whose two uncoordinated imine nitrogens are protonated and hydrogen-bonded to the metal-bound phenolate oxygens. The aqua ligands of complexes 1-3 get exchanged in acetonitrile. Reaction equilibria involving binding and exchange of the terminal ligands (Cl-/H2O/CH3CN) in these complexes have been studied spectrophotometrically. The equilibrium constant for the aquation reaction (K(aq)) [1]2+ + H2O <==> [2]3+ + Cl- in acetonitrile is 8.65(5) M, and the binding constant (K(Cl)-) for the reaction [1]2+ + Cl- [1Cl]+ + CH3CN is 4.75(5) M. The pK(D) value for the dimerization reaction 2[2]3+ + 2OH- <==> [3]4+ + 3H(2)O in 1:1 acetonitrile-water is 9.38(10). Complexes 1-3 upon reaction with Zn(ClO4)(2).6H(2)O and sodium acetate (OAc), pivalate (OPiv), or bis(4-nitrophenyl)phosphate (BNPP) produce the heterobimetallic complexes [{FeLZn(mu-X)}2(mu-O)](ClO4)2, where X = OAc (4), OPiv (5), and BNPP (6). The pseudo-first-order rate constant (k(obs)) for the formation of 4 at 25 degrees C from either 1 or 3 with an excess of Zn(OAc)2.2H2O in 1:1 acetonitrile-water at pH 6.6 is found to be the same with k(obs) = 1.6(2) x 10(-4) s(-1). The X-ray crystal structures of 3, 4, and 6 have been determined, although the structure determination of 3 was severely affected because of heavy disordering. In 3, the Fe-O-Fe angle is 168.6(6) degrees, while it is exactly 180.0 degrees in 4 and 6. Cyclic and square-wave voltammetric (CV and SWV) measurements have been carried out for complexes 1-4 in acetonitrile. The variation of the solvent composition (acetonitrile-water) has a profound effect on the E(1/2) and DeltaE(p) values. The binding of an additional chloride ion to an iron(III) center in 1-3 is accompanied by a remarkable shift of E(1/2) to more negative values. The observation of quasi-reversible CV for complexes containing a Fe(III)-O-Fe(III) unit (3 and 4) indicates that in the electrochemical time scale unusual Fe(III)-O-Fe(II) is produced. The 1H NMR spectra of complexes 3-6 exhibit hyperfine-shifted signals in the range 0-90 ppm with similar features. The metal-hydrogen distances obtained from T(1) measurements are in good agreement with the crystallographic data. Variable-temperature (2-300 K) magnetic susceptibility measurements carried out for 3 and 4 indicate strong antiferromagnetic exchange interaction (H = -2JS1.S2) between the high-spin iron(III) centers in the Fe-O-Fe unit with J = -114 cm(-1) (3) and -107 cm(-1) (4).
Collapse
Affiliation(s)
- Papu Biswas
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | | | | | | |
Collapse
|
482
|
Chemistry and reactivity of dinuclear manganese oxamate complexes: Aerobic catechol oxidation catalyzed by high-valent bis(oxo)-bridged dimanganese(IV) complexes with a homologous series of binucleating 4,5-disubstituted-o-phenylenedioxamate ligands. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.molcata.2006.01.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
483
|
|
484
|
|
485
|
Trettenhahn G, Nagl M, Neuwirth N, Arion VB, Jary W, Pöchlauer P, Schmid W. Ein sechskerniges Eisen(III)-carboxylat mit [Fe6(μ3-O)3(μ2-OH)]11+-Kernstruktur als effizienter Katalysator zur Oxidation von Cycloalkanen. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200504406] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
486
|
Trettenhahn G, Nagl M, Neuwirth N, Arion VB, Jary W, Pöchlauer P, Schmid W. A Hexanuclear Iron(III) Carboxylate with an [Fe6(μ3-O)3(μ2-OH)]11+ Core as an Efficient Catalyst for Cycloalkane Oxidation. Angew Chem Int Ed Engl 2006; 45:2794-8. [PMID: 16548047 DOI: 10.1002/anie.200504406] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Günter Trettenhahn
- Institute of Physical Chemistry, Faculty of Chemistry, University of Vienna, Waehringerstrasse 42, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
487
|
Zhong C, Zhao M, Goslinski T, Stern C, Barrett AGM, Hoffman BM. Porphyrazines Peripherally Functionalized with Hybrid Ligands as Molecular Scaffolds for Bimetallic Metal-Ion Coordination. Inorg Chem 2006; 45:3983-9. [PMID: 16676958 DOI: 10.1021/ic052169p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis and physical characterization of a new family of peripherally functionalized porphyrazine (pz) compounds, denoted 1[M1, M2], where metal ion M1 is incorporated into the pz core and metal ion M2 is bound to a salicylidene/picolinamide "hybrid" chelate built onto two nitrogen atoms attached to the pz periphery. The complexes 1[MnCl, Cu], 1[VO, Cu], and 1[Cu, Cu] have been prepared, and crystal structures show 1[MnCl, Cu] and 1[VO, Cu] to be isostructural. These complexes have been subjected to electron paramagnetic resonance and temperature-dependent magnetic susceptibility measurements. The variation of the ligand-mediated exchange splittings (delta) in these complexes is striking: delta/k(B) values for 1[MnCl, Cu] and 1[VO, Cu] are 22 and 40 K, respectively, while delta/k(B) for 1[Cu, Cu] is only 1 K. These coupling results are explained in terms of the relative orientation of the M1 and M2 orbitals and reflect the fact that the ligand set of M2 in the periphery is rotated in-plane by 45 degrees relative to the effectively coplanar pz ligand set of M1. The exchange couplings are essentially the same as those we determined for the Schiff base porphyrazines (pzs). Thus, the hybrid ligand has eliminated the dimerization found to occur when Cu(II) is bound to the periphery of bis(picolinamido) pzs and has created a more robust ligand system than the Schiff base pzs while retaining the ability they show to promote spin coupling between M1 and M2.
Collapse
Affiliation(s)
- Chang Zhong
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | | | | | | | | | | |
Collapse
|
488
|
Estiu G, Merz KM. Catalyzed decomposition of urea. Molecular dynamics simulations of the binding of urea to urease. Biochemistry 2006; 45:4429-43. [PMID: 16584179 PMCID: PMC2505355 DOI: 10.1021/bi052020p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the results of molecular dynamics simulations on the urea/urease system. The starting structure was prepared from the 2.0 A crystal structure of Benini et al. [(1999) Struct. Folding Des. 7, 205-216] of DAP-inhibited urease (PDB code ), and the trimeric structure (2479 residues) resulted in 180K atoms after solvation by water. The force field parameters were derived using the bonded model approach described by Hoops et al. [(1991) J. Am. Chem. Soc. 113, 8262-8270]. Three different systems were analyzed, each one modeling a different protonation pattern for the His320 and His219 residues. In each case, the three monomers of urease have been analyzed separately. The time-averaged structures observed in the three monomers suggest that urease could follow two different competitive mechanisms. A "protein-assisted proton transfer" mechanism points to Asp221 as crucial for catalysis. An "Asp-mediated proton transfer" involves the transfer of a proton from the bridging OH to an NH2 moiety of urea, assisted by Asp360 in the active site. The impact of the simulation results on our understanding of urease catalysis is discussed in detail.
Collapse
Affiliation(s)
- Guillermina Estiu
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
489
|
Xing G, Diao Y, Hoffart LM, Barr EW, Prabhu KS, Arner RJ, Reddy CC, Krebs C, Bollinger JM. Evidence for C-H cleavage by an iron-superoxide complex in the glycol cleavage reaction catalyzed by myo-inositol oxygenase. Proc Natl Acad Sci U S A 2006; 103:6130-5. [PMID: 16606846 PMCID: PMC1458843 DOI: 10.1073/pnas.0508473103] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
myo-Inositol oxygenase (MIOX) activates O2 at a mixed-valent nonheme diiron(II/III) cluster to effect oxidation of its cyclohexan-(1,2,3,4,5,6-hexa)-ol substrate [myo-inositol (MI)] by four electrons to d-glucuronate. Abstraction of hydrogen from C1 by a formally (superoxo)diiron(III/III) intermediate was previously proposed. Use of deuterium-labeled substrate, 1,2,3,4,5,6-[2H]6-MI (D6-MI), has now permitted initial characterization of the C-H-cleaving intermediate. The MIOX.1,2,3,4,5,6-[2H]6-MI complex reacts rapidly and reversibly with O2 to form an intermediate, G, with a g = (2.05, 1.98, 1.90) EPR signal. The rhombic g-tensor and observed hyperfine coupling to 57Fe are rationalized in terms of a (superoxo)diiron(III/III) structure with coordination of the superoxide to a single iron. G decays to H, the intermediate previously detected in the reaction with unlabeled substrate. This step is associated with a kinetic isotope effect of > or =5, showing that the superoxide-level complex does indeed cleave a C-H(D) bond of MI.
Collapse
Affiliation(s)
- Gang Xing
- *Departments of Biochemistry and Molecular Biology
| | - Yinghui Diao
- *Departments of Biochemistry and Molecular Biology
| | | | - Eric W. Barr
- *Departments of Biochemistry and Molecular Biology
| | | | | | | | - Carsten Krebs
- *Departments of Biochemistry and Molecular Biology
- Chemistry, Pennsylvania State University, University Park, PA 16802
- To whom correspondence may be addressed. E-mail:
or
| | - J. Martin Bollinger
- *Departments of Biochemistry and Molecular Biology
- Chemistry, Pennsylvania State University, University Park, PA 16802
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
490
|
Nakai M, Funabiki T, Ohtsuki C, Harada M, Ichimura A, Tanaka R, Kinoshita I, Mikuriya M, Benten H, Ohkita H, Ito S, Obata M, Yano S. Structure and photochemical properties of (mu-alkoxo)bis(mu-carboxylato)diruthenium complexes with naphthylacetate ligands. Inorg Chem 2006; 45:3048-56. [PMID: 16562961 DOI: 10.1021/ic051582u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two new dinuclear Ru(III) complexes containing naphthalene moieties, K[Ru2(dhpta)(mu-O2CCH2-1-naph)2] (1) and K[Ru2(dhpta)(mu-O2CCH2-2-naph)2] (2) (H5dhpta = 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid, naph-1-CH2CO2H = 1-naphthylacetic acid, naph-2-CH2CO2H = 2-naphthylacetic acid), were synthesized. Complex 2 crystallized as an orthorhombic system having a space group of Pbca with unit cell parameters a = 10.6200(5) A, b = 20.270(1) A, c = 35.530(2) A, and Z = 8. EXAFS analysis of 1 and 2 in the solid states and in solution clarified that the dinuclear structures of 1 and 2 were kept in DMSO solutions. Variable-temperature magnetic susceptibility data indicated that the two Ru(III) centers are strongly antiferromagnetically coupled as shown by the large coupling constants, J = -581 cm(-1) (1) and -378 cm(-1) (2). In the cyclic voltammograms of 1 and 2, one oxidation peak and two reduction peaks which were assigned to the redox reaction of the ruthenium moieties were observed in DMF. The large conproportionation constants estimated from the reduction potentials of Ru(III)Ru(III) and Ru(III)Ru(II) indicated the great stability of the mixed-valent state. The mixed-valent species [Ru(III)Ru(II)(dhpta)(mu-O2CCH2-R)2](2-) (R = 1-naph (6) and R = 2-naph (7)) were prepared by controlled potential electrolysis of 1 and 2 in DMF. The electronic absorption spectra of 6 and 7 were similar to that of [Ru(III)Ru(II) (dhpta)(mu-O2CCH3)2](2-) which is a typical Class II type mixed-valent complex. The fluorescence decay of 1 and 2 indicated that there are two quenching processes which come from the excimer and monomer states. The short excimer lifetimes of 1 and 2 were ascribed to the energy transfer from the naphthyl moieties to the Ru centers. The different excimer ratio between 1 and 2 suggested that the excimer formation is affected by the conformation of the naphthyl moieties in the diruthenium(III) complexes.
Collapse
Affiliation(s)
- Misaki Nakai
- Division of Material Science, Graduate School of Humanities and Sciences, Nara Women's University, Kitauoyanishimachi, Nara 630-8506, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
491
|
Groves JT. High-valent iron in chemical and biological oxidations. J Inorg Biochem 2006; 100:434-47. [PMID: 16516297 DOI: 10.1016/j.jinorgbio.2006.01.012] [Citation(s) in RCA: 457] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Accepted: 01/16/2006] [Indexed: 11/26/2022]
Abstract
Various aspects of the reactivity of iron(IV) in chemical and biological systems are reviewed. Accumulated evidence shows that the ferryl species [Fe(IV)O](2+) can be formed under a variety of conditions including those related to the ferrous ion-hydrogen peroxide system known as Fenton's reagent. Early evidence that such a species could hydroxylate typical aliphatic C-H bonds included regioselectivities and stereospecificities for cyclohexanol hydroxylation that could not be accounted for by a freely diffusing hydroxyl radical. Iron(IV) porphyrin complexes are also found in the catalytic cycles of cytochrome P450 and chloroperoxidase. Model oxo-iron(IV) porphyrin complexes have shown reactivity similar to the proposed enzymatic intermediates. Mechanistic studies using mechanistically diagnostic substrates have implicated a radical rebound scenario for aliphatic hydroxylation by cytochrome P450. Likewise, several non-heme diiron hydroxylases, AlkB (Omega-hydroxylase), sMMO (soluble methane monooxygenase), XylM (xylene monooxygenase) and T4moH (toluene monooxygenase) all show clear indications of radical rearranged products indicating that the oxygen rebound pathway is a ubiquitous mechanism for hydrocarbon oxygenation by both heme and non-heme iron enzymes.
Collapse
Affiliation(s)
- John T Groves
- Department of Chemistry, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
492
|
Kim YS, Kang KR, Wolff EC, Bell JK, McPhie P, Park MH. Deoxyhypusine hydroxylase is a Fe(II)-dependent, HEAT-repeat enzyme. Identification of amino acid residues critical for Fe(II) binding and catalysis [corrected]. J Biol Chem 2006; 281:13217-13225. [PMID: 16533814 PMCID: PMC1868894 DOI: 10.1074/jbc.m601081200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deoxyhypusine hydroxylase (DOHH) catalyzes the final step in the post-translational synthesis of hypusine (N(epsilon)-(4-amino-2-hydroxybutyl)lysine) in eIF5A. DOHH is a HEAT-repeat protein with eight tandem helical hairpins in a symmetrical dyad. It contains two potential iron coordination sites (one on each dyad) composed of two strictly conserved His-Glu motifs. The purified human recombinant DOHH was a mixture of active holoenzyme containing 2 mol of iron/mol of DOHH and inactive metal-free apoenzyme. The two species could be distinguished by their different mobilities upon native gel electrophoresis. The DOHH apoenzyme exhibited markedly reduced levels of iron and activity. DOHH activity could be restored only by the addition of Fe2+ to the apoenzyme but not by other metals including Cd2+,Co2+,Cr2+,Cu2+,Mg2+,Mn2+,Ni2+, and Zn2+. The role of the strictly conserved His-Glu residues was evaluated by site-directed mutagenesis. Substitution of any single amino acid in the four His-Glu motifs with alanine abolished the enzyme activity. Of these eight alanine substitutions, six, including H56A, H89A, E90A, H207A, H240A, and E241A, caused a severe reduction in the iron content. Our results provide strong evidence that Fe(II) is the active-site-bound metal critical for DOHH catalysis and that the strictly conserved His-Glu motifs are essential for iron binding and catalysis. Furthermore, the iron to DOHH stoichiometry and dependence of iron binding on each of the four conserved His-Glu motifs suggest a binuclear iron mediated reaction mechanism, distinct from that of other Fe(II)-dependent protein hydroxylases, such as prolyl 4-hydroxylase or lysyl hydroxylases.
Collapse
Affiliation(s)
- Yeon Sook Kim
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Kee Ryeon Kang
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Edith C Wolff
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Jessica K Bell
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Peter McPhie
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
493
|
Cho J, Furutachi H, Fujinami S, Tosha T, Ohtsu H, Ikeda O, Suzuki A, Nomura M, Uruga T, Tanida H, Kawai T, Tanaka K, Kitagawa T, Suzuki M. Sequential Reaction Intermediates in Aliphatic C−H Bond Functionalization Initiated by a Bis(μ-oxo)dinickel(III) Complex. Inorg Chem 2006; 45:2873-85. [PMID: 16562943 DOI: 10.1021/ic0514243] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reaction of [Ni2(OH)2(Me2-tpa)2]2+ (1) (Me2-tpa = bis(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine) with H2O2 causes oxidation of a methylene group on the Me2-tpa ligand to give an N-dealkylated ligand and oxidation of a methyl group to afford a ligand-based carboxylate and an alkoxide as the final oxidation products. A series of sequential reaction intermediates produced in the oxidation pathways, a bis(mu-oxo)dinickel(III) ([Ni2(O)2(Me2-tpa)2]2+ (2)), a bis(mu-superoxo)dinickel(II) ([Ni2(O2)2(Me2-tpa)2]2+ (3)), a (mu-hydroxo)(mu-alkylperoxo)dinickel(II) ([Ni2(OH)(Me2-tpa)(Me-tpa-CH2OO)]2+ (4)), and a bis(mu-alkylperoxo)dinickel(II) ([Ni2(Me-tpa-CH2OO)2]2+ (5)), was isolated and characterized by various physicochemical measurements including X-ray crystallography, and their oxidation pathways were investigated. Reaction of 1 with H2O2 in methanol at -40 degrees C generates 2, which is extremely reactive with H2O2, producing 3. Complex 2 was isolated only from disproportionation of the superoxo ligands in 3 in the absence of H2O2 at -40 degrees C. Thermal decomposition of 2 under N2 generated an N-dealkylated ligand Me-dpa ((6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine) and a ligand-coupling dimer (Me-tpa-CH2)2. The formation of (Me-tpa-CH2)2 suggests that a ligand-based radical Me-tpa-CH2* is generated as a reaction intermediate, probably produced by H-atom abstraction by the oxo group. An isotope-labeling experiment revealed that intramolecular coupling occurs for the formation of the coupling dimer. The results indicate that the rebound of oxygen to Me-tpa-CH2* is slower than that observed for various high-valence bis(mu-oxo)dimetal complexes. In contrast, the decomposition of 2 and 3 in the presence of O2 gave carboxylate and alkoxide ligands, respectively (Me-tpa-COO- and Me-tpa-CH2O-), instead of (Me-tpa-CH2)2, indicating that the reaction of Me-tpa-CH2* with O2 is faster than the coupling of Me-tpa-CH2* to generate ligand-based peroxyl radical Me-tpa-CH2OO*. Although there is a possibility that the Me-tpa-CH2OO* species could undergo various reactions, one of the possible reactive intermediates, 4, was isolated from the decomposition of 3 under O2 at -20 degrees C. The alkylperoxo ligands in 4 and 5 can be converted to a ligand-based aldehyde by either homolysis or heterolysis of the O-O bond, and disproportionation of the aldehyde gives a carboxylate and an alkoxide via the Cannizzaro reaction.
Collapse
Affiliation(s)
- Jaeheung Cho
- Department of Chemistry, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
494
|
Kulkarni PP, She YM, Smith SD, Roberts EA, Sarkar B. Proteomics of Metal Transport and Metal-Associated Diseases. Chemistry 2006; 12:2410-22. [PMID: 16134204 DOI: 10.1002/chem.200500664] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Proteomics technology has the potential to identify groups of proteins that have similar biological function. However, few attempts have been made to identify and characterize metal-binding proteins by using proteomics strategies. Many transition metals are essential to sustain life. Copper, iron, and zinc are the most abundant transition metals relevant to biological systems. In addition to their important biological functions, metals can also catalyze the formation of damaging free radical species. Hence, their intracellular transport is tightly regulated. Despite recent insights into the intracellular transport of copper and other metals, our overall understanding of intracellular metal metabolism remains incomplete and it is likely that many metal-binding proteins remain undiscovered. Furthermore, the protein targets for metals during metal-associated disease states or during exposure to toxic levels of environmental metals are yet to be unravelled. A proteomics strategy for the analysis of metal-transporting or metal-binding proteins has the potential to uncover how a large number of proteins function in normal or metal-associated diseased states. Here we discuss the principal aspects of metal metabolism, and the recent developments in the area of the proteomics of metal transport.
Collapse
Affiliation(s)
- Prasad P Kulkarni
- Department of Biochemistry, University of Toronto, Medical Sciences Building, Toronto, ON, M5S 1A8, Canada
| | | | | | | | | |
Collapse
|
495
|
Kato M, Tanase T, Mikuriya M. Dinuclear Copper(II) Complexes with {Cu2(μ-hydroxo)bis(μ-carboxylato)}+ Cores and Their Reactions with Sugar Phosphate Esters: A Substrate Binding Model of Fructose-1,6-bisphosphatase. Inorg Chem 2006; 45:2925-41. [PMID: 16562948 DOI: 10.1021/ic051942d] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactions of CuX2.nH2O with the biscarboxylate ligand XDK (H2XDK = m-xylenediamine bis(Kemp's triacid imide)) in the presence of N-donor auxiliary ligands yielded a series of dicopper(II) complexes, [Cu2(mu-OH)(XDK)(L)2]X (L = N,N,N',N'-tetramethylethylenediamine (tetmen), X = NO3 (1a), Cl (1b); L = N,N,N'-trimethylethylenediamine (tmen), X = NO3 (2a), Cl (2b); L =2,2'-bipyridine (bpy), X = NO3 (3); L = 1,10-phenanthroline (phen), X = NO3 (4); L = 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), X = NO3 (5); L = 4-methyl-1,10-phenanthroline (Mephen), X = NO3 (6)). Complexes 1-6 were characterized by X-ray crystallography (Cu...Cu = 3.1624(6)-3.2910(4) A), and the electrochemical and magnetic properties were also examined. Complexes 3 and 4 readily reacted with diphenyl phosphoric acid (HDPP) or bis(4-nitrophenyl) phosphoric acid (HBNPP) to give [Cu2(mu-phosphate)(XDK)(L)2]NO3 (L = bpy, phosphate = DPP (11); L = phen, phosphate = DPP (12), BNPP (13)), where the phsophate diester bridges the two copper ions in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.268(3)-4.315(1) A). Complexes 4 and 6 with phen and Mephen have proven to be good precursors to accommodate a series of sugar monophosphate esters (Sugar-P) onto the biscarboxylate-bridged dicopper centers, yielding [Cu2(mu-Sugar-P)(XDK)(L)2] (Sugar-P = alpha-D-Glc-1-P (23a and b), D-Glc-6-P (24a and b), D-Man-6-P (25a), D-Fru-6-P (26a and b); L = phen (a), Mephen (b)) and [Cu2(mu-Gly-n-P)(XDK)(Mephen)2] (Gly-n-P = glycerol n-phosphate; n = 2 (21), 3 (22)), where Glc, Man, and Fru are glucose, mannose, and fructose, respectively. The structure of [Cu2(mu-MNPP)(XDK)(phen)2(CH3OH)] (20) was characterized as a reference compound (H2MNPP = 4-nitrophenyl phosphoric acid). Complexes 4 and 6 also reacted with d-fructose 1,6-bisphosphate (D-Fru-1,6-P2) to afford the tetranuclear copper(II) complexes formulated as [Cu4(mu-D-Fru-1,6-P2)(XDK)2(L)4] (L = phen (27a), Mephen (27b)). The detailed structure of 27a was determined by X-ray crystallography to involve two different tetranuclear complexes with alpha- and beta-anomers of D-Fru-1,6-P2, [Cu4(mu-alpha-D-Fru-1,6-P2)(XDK)2(phen)4] and [Cu4(mu-beta-D-Fru-1,6-P2)(XDK)2(phen)4], in which the D-Fru-1,6-P2 tetravalent anion bridges the two [Cu2(XDK)(phen)2]2+ units through the C1 and C6 phosphate groups in a mu-1,3-O,O' bidentate fashion (Cu...Cu = 4.042(2)-4.100(2) A). Notably, the structure with alpha-D-Fru-1,6-P2 demonstrated the presence of a strong hydrogen bond between the C2 hydroxyl group and the C1 phosphate oxygen atom, which may support the previously proposed catalytic mechanism in the active site of fructose-1,6-bisphosphatase.
Collapse
Affiliation(s)
- Merii Kato
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya-higashi-machi, Nara 630-8285, Japan
| | | | | |
Collapse
|
496
|
Mechanistic Studies on the Oxidation of Hydroquinone by an Oxo-bridged Diiron(III,III) Complex in Weakly Acidic Aqueous Media. TRANSIT METAL CHEM 2006. [DOI: 10.1007/s11243-005-6387-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
497
|
Wei PP, Skulan AJ, Wade H, DeGrado WF, Solomon EI. Spectroscopic and computational studies of the de novo designed protein DF2t: correlation to the biferrous active site of ribonucleotide reductase and factors that affect O2 reactivity. J Am Chem Soc 2006; 127:16098-106. [PMID: 16287296 DOI: 10.1021/ja053661a] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DF2t, a de novo designed protein that mimics the active-site structure of many non-heme biferrous enzymes, has been studied using a combination of circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature variable-field (VTVH) MCD. The active site of DF2t is found to have one five-coordinate iron and one four-coordinate iron, which are weakly antiferromagnetically coupled through a mu-1,3 carboxylate bridge. These results bear a strong resemblance to the spectra of Escherichia coli ribonucleotide reductase (R2), and density functional theory calculations were conducted on the W48F/D84E R2 mutant in order to determine the energetics of formation of a monodentate end-on-bound O2 to one iron in the binuclear site. The mu-1,3 carboxylate bridges found in O2-activating enzymes lack efficient superexchange pathways for the second electron transfer (i.e., the OH/oxo bridge in hemerythrin), and simulations of the binding of O2 in a monodentate end-on manner revealed that the bridging carboxylate ligands do not appear capable of transferring an electron to O2 from the remote Fe. Comparison of the results from previous studies of the mu-1,2 biferric-peroxo structure, which bridges both irons, finds that the end-on superoxide mixed-valent species is considerably higher in energy than the bridging peroxo-diferric species. Thus, one of the differences between O2-activating and O2-binding proteins appears to be the ability of O2 to bridge both Fe centers to generate a peroxo intermediate capable of further reactivity.
Collapse
Affiliation(s)
- Pin-Pin Wei
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
498
|
Park MJ, Lee J, Suh Y, Kim J, Nam W. Reactivities of Mononuclear Non-Heme Iron Intermediates Including Evidence that Iron(III)−Hydroperoxo Species Is a Sluggish Oxidant. J Am Chem Soc 2006; 128:2630-4. [PMID: 16492048 DOI: 10.1021/ja055709q] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is an intriguing, current controversy on the involvement of iron(III)-hydroperoxo species as a "second electrophilic oxidant" in oxygenation reactions by heme and non-heme iron enzymes and their model compounds. In the present work, we have performed reactivity studies of the iron-hydroperoxo species in nucleophilic and electrophilic reactions, with in situ-generated mononuclear non-heme iron(III)-hydroperoxo complexes that have been well characterized with various spectroscopic techniques. The intermediates did not show any reactivities in the nucleophilic (e.g., aldehyde deformylation) and electrophilic (e.g., oxidation of sulfide and olefin) reactions. These results demonstrate that non-heme iron(III)-hydroperoxo species are sluggish oxidants and that the oxidizing power of the intermediates cannot compete with that of high-valent iron(IV)-oxo complexes. We have also reported reactivities of mononuclear non-heme iron(III)-peroxo and iron(IV)-oxo complexes in the aldehyde deformylation and the oxidation of sulfides, respectively.
Collapse
Affiliation(s)
- Mi Joo Park
- Department of Chemistry, Ewha Womans University, Seoul, Korea
| | | | | | | | | |
Collapse
|
499
|
Shul’pin GB, Kudinov AR, Shul’pina LS, Petrovskaya EA. Oxidations catalyzed by osmium compounds. Part 1: Efficient alkane oxidation with peroxides catalyzed by an olefin carbonyl osmium(0) complex. J Organomet Chem 2006. [DOI: 10.1016/j.jorganchem.2005.10.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
500
|
Carson EC, Lippard SJ. Synthesis and oxidation of carboxylate-bridged diiron(II) complexes with substrates tethered to primary alkyl amine ligands. J Inorg Biochem 2006; 100:1109-17. [PMID: 16439023 DOI: 10.1016/j.jinorgbio.2005.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/24/2005] [Accepted: 11/04/2005] [Indexed: 11/27/2022]
Abstract
The synthesis and crystallographic characterization of a series of diiron(II) complexes with sterically hindered terphenyl carboxylate ligands and alkyl amine donors are presented. The compounds [Fe(2)(mu-O(2)CAr(Tol))(4)(L)(2)] (L=NH(2)(CH(2))(2)SBn (1); NH(2)(CH(2))(3)SMe (2); NH(2)(CH(2))(3)CCH (3)), where (-)O(2)CAr(Tol) is 2,6-di(p-tolyl)benzoate, and [Fe(2)(mu-O(2)CAr(Xyl))(2)(O(2)CAr(Xyl))(2)(L)(2)] (L=NH(2)(CH(2))(3)SMe (4); NH(2)(CH(2))(3)CCH (5)), where (-)O(2)CAr(Xyl) is 2,6-di(3,5-dimethylphenyl)benzoate, were prepared as small molecule mimics of the catalytic sites of carboxylate-bridged non-heme diiron enzymes. The compounds with the (-)O(2)CAr(Tol) carboxylate form tetrabridged structures, but those containing the more sterically demanding (-)O(2)CAr(Xyl) ligand have only two bridging ligands. The ancillary nitrogen ligands in these carboxylate-rich complexes incorporate potential substrates for the reactive metal centers. Their oxygenation chemistry was studied by product analysis of the organic fragments following decomposition. Compound 1 reacts with dioxygen to afford PhCHO in approximately 30% yield, attributed to oxidative dealkylation of the pendant benzyl group. Compound 3 decomposes to form Fe(II)Fe(III) and Fe(III)Fe(IV) mixed-valence species by established bimolecular pathways upon exposure to dioxygen at low temperatures. Upon decomposition, the alkyne-substituted amine ligand was recovered quantitatively. When the (-)O(2)CAr(Tol) carboxylate was replaced by the (-)O(2)CAr(Xyl) ligand in 5, different behavior was observed. The six-coordinate iron(III) complex with one bidentate and two monodentate carboxylate ligands, [Fe(O(2)CAr(Xyl))(3)(NH(2)(CH(2))(3)CCH)(2)] (6), was isolated from the reaction mixture following oxidation.
Collapse
Affiliation(s)
- Emily C Carson
- Department of Chemistry, Massachusetts Institute of Technology, Room 18-498, Cambridge, MA 02139, USA
| | | |
Collapse
|