451
|
Jinquan T, Anting L, Jacobi HH, Glue C, Jing C, Ryder LP, Madsen HO, Svejgaard A, Skov PS, Malling HJ, Poulsen LK. CXCR3 expression on CD34(+) hemopoietic progenitors induced by granulocyte-macrophage colony-stimulating factor: II. Signaling pathways involved. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4405-13. [PMID: 11591765 DOI: 10.4049/jimmunol.167.8.4405] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CXCR3, known to have four ligands (IFN-gamma inducible protein 10 (gamma IP-10), monokine induced by IFN-gamma (Mig), I-TAC, and 6Ckine), is predominantly expressed on memory/activated T lymphocytes. We recently reported that GM-CSF induces CXCR3 expression on CD34(+) hemopoietic progenitors, in which gamma IP-10 and Mig induce chemotaxis and adhesion. Here we further report that stimulation with GM-CSF causes phosphorylation of Syk protein kinase, but neither Casitas B-lineage lymphoma (Cbl) nor Cbl-b in CD34(+) hemopoietic progenitors can be blocked by anti-CD116 mAb. Specific Syk blocking generated by PNA antisense completely inhibits GM-CSF-induced CXCR3 expression in CD34(+) progenitors at both mRNA and protein as well as at functional levels (chemotaxis and adhesion). Cbl and Cbl-b blocking have no such effects. Thus, GM-CSF binds to its receptor CD116, and consequently activates Syk phosphorylation, which leads to induce CXCR3 expression. gamma IP-10 and Mig can induce Syk, Cbl, and Cbl-b phosphorylation in CD34(+) progenitors by means of CXCR3. gamma IP-10 or Mig has induced neither chemotaxis nor adhesion in GM-CSF-stimulated Cbl-b-blocked CD34(+) hemopoietic progenitors, whereas SDF-1alpha induces both chemotaxis and adhesion in these cells. Interestingly, gamma IP-10 and Mig can induce chemotaxis and adhesion in GM-CSF-stimulated Syk- or Cbl-blocked CD34(+) hemopoietic progenitors. Thus, Cbl-b, but not Syk and Cbl phosphorylation, is essential for gamma IP-10- and Mig-induced chemotaxis and adhesion in CD34(+) hemopoietic progenitors. This study provides a useful insight into novel signaling transduction pathways of the functions of CXCR3/gamma IP-10 and Mig, which may be especially important in the cytokine/chemokine environment for mobilization, homing, and recruitment during proliferation, differentiation, and maturation of hemopoietic progenitor cells.
Collapse
Affiliation(s)
- T Jinquan
- Laboratory of Medical Allergology, Allergy Unit, Department of Clinical Immunology, National University Hospital, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
452
|
Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R. CD4+CD28- costimulation-independent T cells in multiple sclerosis. J Clin Invest 2001; 108:1185-94. [PMID: 11602626 PMCID: PMC209525 DOI: 10.1172/jci12516] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Multiple lines of evidence suggest that CD4+ lymphocytes initiate autoimmune responses against myelin antigens in multiple sclerosis (MS). The increased frequency of activated myelin-specific cells in MS patients indicates that the activation of autoreactive cells represents a central event in the pathogenesis of the disease. We identified a CD4+ subpopulation that is characterized phenotypically by the persistent absence of surface CD28 expression and functionally by CD28-independent activation and Th1 cytokine secretion. Owing to their costimulation-independent activation and their expression of a full agonist signaling activation pattern, CD4+CD28- cells have the potential to initiate autoimmune responses in the central nervous system, a compartment devoid of professional antigen presenting cells. Long-term memory CD4+CD28- cells produce high amounts of IFN-gamma and maximally upregulate IFN-gamma and IL-12Rbeta2 chain expression in the absence of costimulation. They exhibit prominent growth characteristics and increased survival after activation, likely related to their persistent lack of CTLA-4 surface expression. The CD4+CD28- population is expanded in a subgroup of MS patients. Myelin basic protein-specific cells detected in this cell subset may play an important role in the inflammatory response within the central nervous system.
Collapse
MESH Headings
- Adult
- Antigens, CD
- CD28 Antigens/genetics
- CD28 Antigens/metabolism
- CD4-Positive T-Lymphocytes/immunology
- Female
- Gene Expression
- Glycoproteins/genetics
- Humans
- Immunoglobulins/genetics
- In Vitro Techniques
- Interferon-gamma/biosynthesis
- Interferon-gamma/genetics
- Lymphocyte Activation
- Male
- Middle Aged
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Myelin Basic Protein/immunology
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Cell Surface
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin/genetics
- Receptors, Interleukin-12
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Family Member 1
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- S Markovic-Plese
- Neuroimmunology Branch, National Institute of Neurological Diseases and Stroke (NINDS), NIH, 10 Center Drive, Bethesda, MD 20892-1400, USA
| | | | | | | | | |
Collapse
|
453
|
Markovic-Plese S, Cortese I, Wandinger KP, McFarland HF, Martin R. CD4+CD28– costimulation-independent T cells in multiple sclerosis. J Clin Invest 2001. [DOI: 10.1172/jci200112516] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
454
|
|
455
|
Tsygankov AY, Teckchandani AM, Feshchenko EA, Swaminathan G. Beyond the RING: CBL proteins as multivalent adapters. Oncogene 2001; 20:6382-402. [PMID: 11607840 DOI: 10.1038/sj.onc.1204781] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Following discovery of c-Cbl, a cellular form of the transforming retroviral protein v-Cbl, multiple Cbl-related proteins have been identified in vertebrate and invertebrate organisms. c-Cbl and its homologues are capable of interacting with numerous proteins involved in cell signaling, including various molecular adapters and protein tyrosine kinases. It appears that Cbl proteins play several functional roles, acting both as multivalent adapters and inhibitors of various protein tyrosine kinases. The latter function is linked, to a substantial extent, to the E3 ubiquitin-ligase activity of Cbl proteins. Experimental evidence for these functions, interrelations between them, and their biological significance are addressed in this review, with the main accent placed on the adapter functions of Cbl proteins.
Collapse
Affiliation(s)
- A Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania, PA 19140, USA.
| | | | | | | |
Collapse
|
456
|
Abstract
In the past decade, advances in genetic engineering and mouse knockout technology have transformed our understanding of the immune system. In particular, new perspectives on T-cell development, co-stimulation and activation have emerged from the study of single and multiple gene-knockout animals, as well as from conditional knockout and 'knock-in' mutants. Analysis of these animals has clarified important intracellular signalling pathways and has shed light on the regulatory mechanisms that govern normal immune responses and autoimmunity.
Collapse
Affiliation(s)
- T W Mak
- Amgen Research Institute, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
457
|
Abstract
The immune receptors of lymphocytes are able to sense the nature of bound ligands. Through coupled signaling pathways the generated signals are appropriately delivered to the intracellular machinery, allowing specific functional responses. A central issue in contemporary immunology is how the fate of B lymphocytes is determined at the successive developmental stages and how the B cell receptor distinguishes between signals that induce immune response or tolerance. Experiments with mice expressing transgenes or lacking signal transduction molecules that lead to abnormal lymphocyte development and/or response are providing important clues to the mechanisms that regulate signaling thresholds at different developmental stages. The studies are also revealing novel potential mechanisms of induction of autoimmunity, which may have a bearing on the understanding of human diseases.
Collapse
Affiliation(s)
- P Hasler
- Rheumatologische Universitätsklinik Basel, Felix Platter-Spital, CH-4055 Basel, Switzerland
| | | |
Collapse
|
458
|
Fang D, Liu YC. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nat Immunol 2001; 2:870-5. [PMID: 11526404 DOI: 10.1038/ni0901-870] [Citation(s) in RCA: 231] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cbl-b, a ring-type E3 ubiquitin protein ligase, is implicated in setting the threshold of T lymphocyte activation. The p85 regulatory subunit of phosphatidylinositol 3 kinase (PI3K) was identified as a substrate for Cbl-b. We have shown that Cbl-b negatively regulated p85 in a proteolysis-independent manner. Cbl-b is involved in the recruitment of p85 to CD28 and T cell antigen receptor zeta through its E3 ubiquitin ligase activity. The enhanced activation of Cbl-b(-/-) T cells was suppressed by the inhibition of PI3K. The results suggest a proteolysis-independent function for Cbl-b in the modification of protein recruitment.
Collapse
Affiliation(s)
- D Fang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
459
|
Magnan A, Di Bartolo V, Mura AM, Boyer C, Richelme M, Lin YL, Roure A, Gillet A, Arrieumerlou C, Acuto O, Malissen B, Malissen M. T cell development and T cell responses in mice with mutations affecting tyrosines 292 or 315 of the ZAP-70 protein tyrosine kinase. J Exp Med 2001; 194:491-505. [PMID: 11514605 PMCID: PMC2193493 DOI: 10.1084/jem.194.4.491] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
After stimulation of the T cell receptor (TCR), the tyrosine residues 292 and 315 in interdomain B of the protein tyrosine kinase ZAP-70 become phosphorylated and plausibly function as docking sites for Cbl and Vav1, respectively. The two latter proteins have been suggested to serve as substrates for ZAP-70 and to fine-tune its function. To address the role of these residues in T cell development and in the function of primary T cells, we have generated mice that express ZAP-70 molecules with Tyr to Phe substitution at position 292 (Y292F) or 315 (Y315F). When analyzed in a sensitized TCR transgenic background, the ZAP-70 Y315F mutation reduced the rate of positive selection and delayed the occurrence of negative selection. Furthermore, this mutation unexpectedly affected the constitutive levels of the CD3-zeta p21 phosphoisoform. Conversely, the ZAP-70 Y292F mutation upregulated proximal events in TCR signaling and allowed more T cells to produce interleukin 2 and interferon gamma in response to a given dose of antigen. The observation that ZAP-70 Y292F T cells have a slower rate of ligand-induced TCR downmodulation suggests that Y292 is likely involved in regulating the duration activated TCR reside at the cell surface. Furthermore, we showed that Y292 and Y315 are dispensable for the TCR-induced tyrosine phosphorylation of Cbl and Vav1, respectively. Therefore, other molecules present in the TCR signaling cassette act as additional adaptors for Cbl and Vav1. The present in vivo analyses extend previous data based on transformed T cell lines and suggest that residue Y292 plays a role in attenuation of TCR signaling, whereas residue Y315 enhances ZAP-70 function.
Collapse
Affiliation(s)
- Antoine Magnan
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | | | - Anne-Marie Mura
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Claude Boyer
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Mireille Richelme
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Yea-Lih Lin
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Agnès Roure
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Anne Gillet
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Cécile Arrieumerlou
- Laboratoire d'Immuno-Pharmacologie, CNRS UPR 415, Institute Cochin de Génètique Moléculaire, 75014 Paris, France
| | - Oreste Acuto
- Molecular Immunology Unit, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| | - Marie Malissen
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Univ.Med., Parc Scientifique de Luminy, 13288 Marseille Cedex 9, France
| |
Collapse
|
460
|
Arron JR, Vologodskaia M, Wong BR, Naramura M, Kim N, Gu H, Choi Y. A positive regulatory role for Cbl family proteins in tumor necrosis factor-related activation-induced cytokine (trance) and CD40L-mediated Akt activation. J Biol Chem 2001; 276:30011-7. [PMID: 11406619 DOI: 10.1074/jbc.m100414200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor (TNF)-related activation-induced cytokine (TRANCE) is a TNF family member essential for osteoclast differentiation, and it induces the activation and survival of osteoclasts and mature dendritic cells. We recently demonstrated that TRANCE activates Akt via a mechanism involving TRANCE receptor (TRANCE-R)/RANK, TRAF6, and c-Src. Here, we show that TRANCE-R and CD40 recruit TRAF6, Cbl family-scaffolding proteins, and the phospholipid kinase phosphatidylinositol 3-kinase in a ligand-dependent manner. The recruitment of Cbl-b and c-Cbl to TRANCE-R is dependent upon the activity of Src-family kinases. TRANCE and CD40L-mediated Akt activation is defective in Cbl-b -/- dendritic cells, and CD40L-mediated Akt activation is defective in c-Cbl -/- B cells. These findings implicate Cbl family proteins as not only negative regulators of signaling but as positive modulators of TNF receptor superfamily signaling as well.
Collapse
Affiliation(s)
- J R Arron
- Laboratory of Immunology and Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
461
|
Le LQ, Kabarowski JH, Weng Z, Satterthwaite AB, Harvill ET, Jensen ER, Miller JF, Witte ON. Mice lacking the orphan G protein-coupled receptor G2A develop a late-onset autoimmune syndrome. Immunity 2001; 14:561-71. [PMID: 11371358 DOI: 10.1016/s1074-7613(01)00145-5] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mice with a targeted disruption of the gene encoding a lymphoid-expressed orphan G protein-coupled receptor, G2A, demonstrate a normal pattern of T and B lineage differentiation through young adulthood. As G2A-deficient animals age, they develop secondary lymphoid organ enlargement associated with abnormal expansion of both T and B lymphocytes. Older G2A-deficient mice (>1 year) develop a slowly progressive wasting syndrome, characterized by lymphocytic infiltration into various tissues, glomerular immune complex deposition, and anti-nuclear autoantibodies. G2A-deficient T cells are hyperresponsive to TCR stimulation, exhibiting enhanced proliferation and a lower threshold for activation. Our findings demonstrate that G2A plays a critical role in controlling peripheral lymphocyte homeostasis and that its ablation results in the development of a novel, late-onset autoimmune syndrome.
Collapse
Affiliation(s)
- L Q Le
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
462
|
Ettenberg SA, Magnifico A, Cuello M, Nau MM, Rubinstein YR, Yarden Y, Weissman AM, Lipkowitz S. Cbl-b-dependent Coordinated Degradation of the Epidermal Growth Factor Receptor Signaling Complex. J Biol Chem 2001; 276:27677-84. [PMID: 11375397 DOI: 10.1074/jbc.m102641200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cbl proteins function as ubiquitin protein ligases for the activated epidermal growth factor receptor and, thus, negatively regulate its activity. Here we show that Cbl-b is ubiquitinated and degraded upon activation of the receptor. Epidermal growth factor (EGF)-induced Cbl-b degradation requires intact RING finger and tyrosine kinase binding domains and requires binding of the Cbl-b protein to the activated EGF receptor (EGFR). Degradation of both the EGFR and the Cbl-b protein is blocked by lysosomal and proteasomal inhibitors. Other components of the EGFR-signaling complex (i.e. Grb2 and Shc) are also degraded in an EGF-induced Cbl-b-dependent fashion. Our results suggest that the ubiquitin protein ligase function of Cbl-b is regulated by coordinated degradation of the Cbl-b protein along with its substrate. Furthermore, the data demonstrate that Cbl-b mediates degradation of multiple proteins in the EGFR-signaling complex.
Collapse
Affiliation(s)
- S A Ettenberg
- Genetics Department of the Medicine Branch and the Laboratory of Immune Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20889, USA
| | | | | | | | | | | | | | | |
Collapse
|
463
|
Lanzavecchia A, Sallusto F. Antigen decoding by T lymphocytes: from synapses to fate determination. Nat Immunol 2001; 2:487-92. [PMID: 11376334 DOI: 10.1038/88678] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Naïve T lymphocytes sense foreign antigens by establishing contacts with dendritic cells (DCs). At the immunological synapse between the T cell and a DC, T cell receptors (TCRs) are serially engaged and triggered by specific ligands. The amount and duration of TCR triggering and the efficiency of signal amplification determine T cell commitment to proliferation and differentiation. The nature and availability of DCs bearing antigen and costimulatory molecules shape the T cell response, giving rise to distinct functional outputs such as effector and memory T cell generation or T cell tolerance.
Collapse
Affiliation(s)
- A Lanzavecchia
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland.
| | | |
Collapse
|
464
|
Tartare-Deckert S, Monthouel MN, Charvet C, Foucault I, Van Obberghen E, Bernard A, Altman A, Deckert M. Vav2 activates c-fos serum response element and CD69 expression but negatively regulates nuclear factor of activated T cells and interleukin-2 gene activation in T lymphocyte. J Biol Chem 2001; 276:20849-57. [PMID: 11262396 DOI: 10.1074/jbc.m010588200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vav1 and Vav2 are members of the Dbl family of guanine nucleotide exchange factors for the Rho family of small GTPases. Although the role of Vav1 during lymphocyte development and activation is well characterized, the function of Vav2 is still unclear. In this study, we compared the signaling pathways regulated by Vav1 and Vav2 following engagement of the T cell receptor (TCR). We show that Vav2 is tyrosine-phosphorylated upon TCR stimulation and by co-expressed Src and Syk family kinases. Using glutathione S-transferase fusion proteins, we observed that the Src homology 2 domain of Vav2 binds tyrosine-phosphorylated proteins from TCR-stimulated Jurkat T cell lysates, including c-Cbl and SLP-76. Like Vav1, Vav2 cooperated with TCR stimulation to increase extracellular signal-regulated kinase activation and to promote c-fos serum response element transcriptional activity. Moreover, both proteins displayed a similar action in increasing the expression of the early activation marker CD69 in Jurkat T cells. However, in contrast to Vav1, Vav2 dramatically suppressed TCR signals leading to nuclear factor of activated T cells (NF-AT)-dependent transcription and induction of the interleukin-2 promoter. Vav2 appears to act upstream of the phosphatase calcineurin because a constitutively active form of calcineurin rescued the effect of Vav2 by restoring TCR-induced NF-AT activation. Interestingly, the Dbl homology and Src homology 2 domains of Vav2 were necessary for its inhibitory effect on NF-AT activation and for induction of serum response element transcriptional activity. Taken together, our results indicate that Vav1 and Vav2 exert overlapping but nonidentical functions in T cells. The negative regulatory pathway elicited by Vav2 might play an important role in regulating lymphocyte activation processes.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/physiology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/physiology
- Cell Cycle Proteins
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation
- Genes, fos
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Jurkat Cells
- Lectins, C-Type
- Lymphocyte Activation
- NFATC Transcription Factors
- Nuclear Proteins/metabolism
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-vav
- Receptors, Antigen, T-Cell/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- Serum Response Factor
- T-Lymphocytes/immunology
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- S Tartare-Deckert
- INSERM Unité 343, IFR50, Hôpital de l'Archet, 06202 Nice, Cédex 3, France
| | | | | | | | | | | | | | | |
Collapse
|
465
|
Abstract
Adapter proteins are well recognised as important molecular switches connecting immunoreceptors with intracellular signalling pathways. However, recent data suggest that homeostasis within the lymphatic system also depends on the coordinated activities of negative regulatory adapter proteins. These prevent activation of lymphocytes in the absence of externally applied signals and regulate termination/limitation of ongoing immune responses via different mechanisms.
Collapse
Affiliation(s)
- A Leo
- Blood Bank and Immunomodulation Laboratory, Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120, Heidelberg, Germany.
| | | |
Collapse
|
466
|
de Melker AA, van der Horst G, Calafat J, Jansen H, Borst J. c-Cbl ubiquitinates the EGF receptor at the plasma membrane and remains receptor associated throughout the endocytic route. J Cell Sci 2001; 114:2167-78. [PMID: 11493652 DOI: 10.1242/jcs.114.11.2167] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cbl family members have an evolutionarily conserved role in attenuating receptor tyrosine kinase function. Their negative regulatory capacity depends on a Ring finger domain that interacts with ubiquitin conjugating enzymes. Cbl molecules constitute a novel type of E3 or ubiquitin ligase family that is recruited to phosphotyrosine motifs. Ubiquitination of the receptor system is coupled to its downregulation, but it is unclear at which point in the endocytic pathway Cbl molecules come into play. Using low temperature and a dynamin mutant, we find that c-Cbl associates with and ubiquitinates the activated epidermal growth factor (EGF) receptor at the plasma membrane in the absence of endocytosis. With the aid of confocal microscopy and immunogold electron microscopy, we could demonstrate that c-Cbl associates with the EGF receptor at the plasma membrane prior to receptor recruitment into clathrin-coated pits and remains associated throughout the clathrin-mediated endocytic pathway. c-Cbl and the EGF receptor also colocalize in internal vesicles of multivesicular endosomes. Our data are consistent with a role for c-Cbl in clathrin-mediated endocytosis of tyrosine kinase receptors, as well as their intracellular sorting.
Collapse
Affiliation(s)
- A A de Melker
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
467
|
Abstract
Modulation of T-cell receptor (TCR) signaling is essential for the regulation of T-cell responses to infectious agents. Recently, many laboratories have suggested that TCR triggering might be compartmentalized in plasma membrane microdomains called rafts. Results on the role of lipid rafts as signaling units in TCR triggering suggest that rafts might be used by T cells to fine-tune their immune responsiveness.
Collapse
Affiliation(s)
- A Viola
- Dept of Biomedical Sciences, University of Padova, via G. Colombo 3, 35121, Padova, Italy.
| |
Collapse
|
468
|
Abstract
Cellular organization of the cytoskeleton, assembly of intracellular signaling complexes and movement of membrane receptors into supramolecular activation complexes (SMACs) are crucial prerequisites for lymphocyte activation and function. Full T-cell activation requires costimulatory signals in addition to antigen-mediated signals. Costimulatory signals facilitate T-cell activation by inducing SMAC formation, resulting in sustained signal transduction, cell-cycle progression and cytokine production. The guanine nucleotide exchange factor Vav1 and the Wiscott-Aldrich syndrome protein (WASP) regulate the actin cytoskeleton in T cells and also regulate SMAC formation. In mice lacking the E3 ubiquitin ligase Cbl-b, the Vav-WASP signaling pathway is active in the absence of costimulation resulting in deregulated cytoskeletal reorganization, enhanced priming and expansion of autoreactive T cells, and the development of autoimmunity. This review discusses the role of Cbl-b, Vav and WASP in the regulation of SMAC formation and the implications for the maintenance of tolerance and the development of autoimmunity.
Collapse
Affiliation(s)
- C Krawczyk
- Dept of Medical Biophysics, Amgen Institute/Ontario Cancer Institute, University of Toronto, 620 University Avenue, M5G 2C1, Toronto, Ontario, Canada
| | | |
Collapse
|
469
|
Abstract
Responses to extracellular stimuli are often transduced from cell-surface receptors to protein tyrosine kinases which, when activated, initiate the formation of protein complexes that transmit signals throughout the cell. A prominent component of these complexes is the product of the proto-oncogene c-Cbl, which specifically targets activated protein tyrosine kinases and regulates their signalling. How, then, does this multidomain protein shape the responses generated by these signalling complexes?
Collapse
Affiliation(s)
- C B Thien
- Department of Pathology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| | | |
Collapse
|
470
|
Miceli MC, Moran M, Chung CD, Patel VP, Low T, Zinnanti W. Co-stimulation and counter-stimulation: lipid raft clustering controls TCR signaling and functional outcomes. Semin Immunol 2001; 13:115-28. [PMID: 11308295 DOI: 10.1006/smim.2000.0303] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T cell receptor (TCR) antigen recognition induces the formation of a specialized 'immunological synapse' at the T cell : antigen presenting cell (APC) junction. This junction is generated by the recruitment and exclusion of particular proteins from the contact area and is required for T cell activation. We and others have hypothesized that lipid raft/non-raft partitioning provides a molecular basis for protein sorting which organizes the TCR, co-stimulators, signal transducers and the actin cytoskeleton at the T cell : APC interface. Here we discuss the emerging paradigm that co-stimulators induce the directional transport and clustering of lipid rafts at the T cell : APC interface, thus generating platform(s) specialized for processive and sustained TCR signal transduction and T cell activation. We also discuss recent data implicating the involvement of 'counter-stimulators' and other negative regulators which prevent optimal raft clustering at the TCR contact site and, thus, facilitate T cell inactivation and tolerance induction.
Collapse
Affiliation(s)
- M C Miceli
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, Los Angeles, CA 90095-1570, USA.
| | | | | | | | | | | |
Collapse
|
471
|
Krawczyk C, Penninger JM. Molecular motors involved in T cell receptor clusterings. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.3.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Connie Krawczyk
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| | - Josef M. Penninger
- Amgen Institute/Ontario Cancer Institute, Departments of Medical Biophysics and Immunology, University of Toronto, Ontario, Canada
| |
Collapse
|
472
|
Fang D, Wang HY, Fang N, Altman Y, Elly C, Liu YC. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J Biol Chem 2001; 276:4872-8. [PMID: 11087752 DOI: 10.1074/jbc.m008901200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cbl-b is implicated in setting the threshold of T lymphocyte activation. In Cbl-b-deficient T cells, the activation of Vav, a guanine nucleotide exchange factor, is significantly enhanced. The molecular mechanism underlying Cbl-b-regulated Vav activation was unclear. Here it is shown that Cbl-b interacts with and induces ubiquitin conjugation to the p85 regulatory subunit of phosphatidylinositol 3-kinase, an upstream regulator of Vav. A functional RING finger of Cbl-b was essential for p85 ubiquitination. However, a loss of function mutation at the well-conserved amino-terminal variant src homology (SH) 2 domain of Cbl-b did not affect its ligase activity. A distal carboxyl-terminal proline-rich region in Cbl-b was mapped to contain the primary binding sequences for the SH3 domain of p85. Deletion of either the distal proline-rich region in Cbl-b or the SH3 domain of p85 severely reduced ubiquitin conjugation to p85. The data suggest a molecular link for Cbl-b-mediated negative regulation of Vav, with phosphatidylinositol 3-kinase as a direct target for Cbl-b E3 ubiquitin ligase.
Collapse
Affiliation(s)
- D Fang
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | | | | | |
Collapse
|
473
|
Winer S, Astsaturov I, Cheung R, Gunaratnam L, Kubiak V, Cortez MA, Moscarello M, O'Connor PW, McKerlie C, Becker DJ, Dosch HM. Type I diabetes and multiple sclerosis patients target islet plus central nervous system autoantigens; nonimmunized nonobese diabetic mice can develop autoimmune encephalitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:2831-41. [PMID: 11160351 DOI: 10.4049/jimmunol.166.4.2831] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Type I diabetes and multiple sclerosis (MS) are distinct autoimmune diseases where T cells target either islet or CNS self-proteins. Unexpectedly, we found that autoreactive T cells in diabetic patients, relatives with high diabetes risk, nonobese diabetic (NOD) mice, and MS patients routinely target classical islet as well as CNS autoantigens. The pathogenic potential of CNS autoreactivity was testable in NOD mice. Pertussis holotoxin, without additional Ags or adjuvants, allowed development of an NOD mouse-specific, autoimmune encephalitis with variable primary-progressive, monophasic, and relapsing-remitting courses. T cells from diabetic donors transferred CNS disease to pertussis toxin-pretreated NOD.scid mice, with accumulation of CD3/IFN-gamma transcripts in the brain. Diabetes and MS appear more closely related than previously perceived. NOD mouse-specific, autoimmune encephalitis provides a new MS model to identify factors that determine alternative disease outcomes in hosts with similar autoreactive T cell repertoires.
Collapse
MESH Headings
- Acute Disease
- Adoptive Transfer
- Adult
- Amino Acid Sequence
- Animals
- Autoantigens/immunology
- Cell Division/immunology
- Cytokines/biosynthesis
- Cytokines/genetics
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/immunology
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Follow-Up Studies
- Humans
- Islets of Langerhans/immunology
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Inbred NZB
- Mice, SCID
- Molecular Sequence Data
- Multiple Sclerosis/immunology
- Myelin Basic Protein/immunology
- Organ Specificity/immunology
- Prospective Studies
- Recurrence
- Species Specificity
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- S Winer
- The Hospital For Sick Children, St. Michael's Hospital, University of Toronto, Sunnybrook and Women's College Health Sciences Center, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
474
|
Fiore F, Ollendorff V, Birnbaum D. Characterization of the mouse Cblc/Cbl3 gene. Biochem Biophys Res Commun 2001; 280:182-7. [PMID: 11162497 DOI: 10.1006/bbrc.2000.4116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse Cblc/Cbl3 gene was cloned and characterized. It comprises 12 exons and encodes a putative protein of 496 amino acid residues which shares an overall 67% identity with its human ortholog; it also shares 70% of amino acid identity with mouse CBL over their conserved SH2 and Ring finger domains. Mouse Cblc mRNA is expressed in embryo and adult tissues and has a rather ubiquitous distribution.
Collapse
Affiliation(s)
- F Fiore
- Laboratoire d'Oncologie Moléculaire, U.119 Inserm, IFR57, 27 Boulevard Leï Roure, 13009 Marseille, France
| | | | | |
Collapse
|
475
|
Yi Y, McNerney M, Datta SK. Regulatory defects in Cbl and mitogen-activated protein kinase (extracellular signal-related kinase) pathways cause persistent hyperexpression of CD40 ligand in human lupus T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6627-34. [PMID: 11086108 DOI: 10.4049/jimmunol.165.11.6627] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To identify intrinsic defects in lupus, we studied short-term, CD4(+) T cell lines that were established from 16 lupus patients (active or inactive) and 15 normal subjects by stimulating once with anti-CD3, anti-CD28, and IL-2. After resting, the pure CD4(+) T cells were exposed to anergy-inducing stimulation with plate-bound anti-CD3 mAb in the absence of APC. Lupus T cells showed prolonged high level expression of CD40 ligand (CD40L, CD154) even in the face of anergy protocol, which shut down CD40L expression in normal T cells. The sustained CD40L expression in lupus T cells did not correlate with memory status or Th deviation, and was relatively independent of IL-2 or other autocrine or paracrine signals via CD28 or CTLA-4. Cyclosporin A could block CD40L expression by lupus T cells when added early during the anti-CD3 stimulation period, but only partially when added later, indicating that another mechanism regulates the prolonged hyperexpression of CD40L besides the Ca(2+) --> calcineurin-dependent NF-AT pathway. When exposed to the anergy protocol, lupus T cells, in marked contrast to normal T cells, did not phosphorylate Cbl/Cbl-b but continued to express strongly phosphorylated extracellular signal-regulated kinase (ERK); U0126, a specific inhibitor of mitogen-activated protein kinase kinase --> ERK, could block both the early and the prolonged hyperexpression of CD40L. Thus, pathways regulating the activities of Cbl and one particular mitogen-activated protein kinase, ERK, are involved in the prolonged hyperexpression of CD40L in lupus T cells.
Collapse
Affiliation(s)
- Y Yi
- Department of Medicine, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
476
|
Tomlinson MG, Lin J, Weiss A. Lymphocytes with a complex: adapter proteins in antigen receptor signaling. IMMUNOLOGY TODAY 2000; 21:584-91. [PMID: 11094263 DOI: 10.1016/s0167-5699(00)01716-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Adapters can be defined as proteins that mediate intermolecular interactions within a signal transduction pathway and that lack both intrinsic enzymatic and transcriptional activity. Their essential role in lymphocyte signaling was revealed by recent analyses of mice and cell lines deficient in LAT, SLP-76 and BLNK. These and other adapters nucleate signaling complexes and facilitate coupling of antigen receptor triggering to functional responses in lymphocytes.
Collapse
Affiliation(s)
- M G Tomlinson
- Dept of Medicine and the Howard Hughes Medical Institute, University of California at San Francisco, CA 94143-0795, USA
| | | | | |
Collapse
|
477
|
Jacobs H. TCR-independent T cell development mediated by gain-of-oncogene function or loss-of-tumor-suppressor gene function. Semin Immunol 2000; 12:487-502. [PMID: 11085181 DOI: 10.1006/smim.2000.0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms that govern differentiation of T cell precursors during intrathymic development bridge an interdisciplinary research field of immunology, oncology and developmental biology. Critical checkpoints controlling early thymic T cell development and homeostasis are set by the proper signaling function of the IL-7 receptor, c-Kit receptor, and the pre-T cell antigen receptor (pre-TCR). Given the intimate link between cell cycle control and differentiation in T cell development, proto-oncogenes and tumor suppressors participate as physiological effectors downstream of these receptors not only to influence the cell cycle but also to determine differentiation and survival. Gain- or loss-of-function mutations of these downstream effectors uncouples partially or completely T cell precursors from these checkpoints, providing a selective advantage and enabling aberrant development. These effectors can be identified by provirus tagging in normal mice and more readily by complementation tagging in mice with a predefined block in T cell differentiation.
Collapse
Affiliation(s)
- H Jacobs
- Basel Institute for Immunology, Switzerland
| |
Collapse
|
478
|
Krawczyk C, Bachmaier K, Sasaki T, Jones RG, Snapper SB, Bouchard D, Kozieradzki I, Ohashi PS, Alt FW, Penninger JM. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 2000; 13:463-73. [PMID: 11070165 DOI: 10.1016/s1074-7613(00)00046-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stimulation of T cells via the antigen and costimulatory receptors leads to the organization of a supramolecular activation cluster called the immune synapse. We report that loss of the molecular adaptor Cbl-b in T cells frees antigen receptor-triggered receptor clustering, lipid raft aggregation, and sustained tyrosine phosphorylation from the requirement for CD28 costimulation. Introduction of the cbl-b mutation into a vav1-/- background relieved the functional defects of vav1-/- T cells and caused spontaneous autoimmunity. Wiscott Aldrich Syndrome protein (WASP) was found to be essential for deregulated proliferation and membrane receptor reorganization of cbl-b mutant T cells. Antigen receptor-triggered Ca2+ mobilization, cytokine production, and receptor clustering can be genetically uncoupled in cbl-b mutant T cells. Thus, Cbl-b functions as a negative regulator of receptor clustering and raft aggregation in T cells.
Collapse
Affiliation(s)
- C Krawczyk
- Amgen Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
479
|
Wülfing C, Bauch A, Crabtree GR, Davis MM. The vav exchange factor is an essential regulator in actin-dependent receptor translocation to the lymphocyte-antigen-presenting cell interface. Proc Natl Acad Sci U S A 2000; 97:10150-5. [PMID: 10963677 PMCID: PMC27768 DOI: 10.1073/pnas.97.18.10150] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2000] [Indexed: 11/18/2022] Open
Abstract
During the interaction of a T cell with an antigen-presenting cell (APC), several receptor ligand pairs, including the T cell receptor (TCR)/major histocompatibility complex (MHC), accumulate at the T cell/APC interface in defined geometrical patterns. This accumulation depends on a movement of the T cell cortical actin cytoskeleton toward the interface. Here we study the involvement of the guanine nucleotide exchange factor vav in this process. We crossed 129 vav(-/-) mice with B10/BR 5C.C7 TCR transgenic mice and used peptide-loaded APCs to stimulate T cells from the offspring. We found that the accumulation of TCR/MHC at the T cell/APC interface and the T cell actin cytoskeleton rearrangement were clearly defective in these vav(+/-) mice. A comparable defect in superantigen-mediated T cell activation of T cells from non-TCR transgenic 129 mice was also observed, although in this case it was more apparent in vav(-/-) mice. These data indicate that vav is an essential regulator of cytoskeletal rearrangements during T cell activation.
Collapse
Affiliation(s)
- C Wülfing
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
480
|
Lucas B, Germain RN. Opening a window on thymic positive selection: developmental changes in the influence of cosignaling by integrins and CD28 on selection events induced by TCR engagement. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1889-95. [PMID: 10925269 DOI: 10.4049/jimmunol.165.4.1889] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
How TCR and non-TCR signals are integrated by thymocytes to generate a decision to undergo either positive or negative selection remains incompletely understood. Recent evidence suggests that TCR signal transduction changes its quality during thymocyte maturation, but whether the contributions of various cosignaling or costimulatory pathways to thymocyte selection also are modified during development is unclear. Questions also remain about the possible selective roles of specific costimulatory pathways in induction of differentiation vs death among thymocytes at any given stage of maturity. To address these issues, a quantitative in vitro analysis of initiation of CD4+CD8+ thymocyte differentiation as measured by CD69 up-regulation/coreceptor down-modulation was conducted in parallel with an analysis of induction of death. Using transfected cells varying in their surface display of ICAM-1 or B7.1 along with antibody blocking experiments, we demonstrate here that ICAM-1 provides a selective boost to signaling for differentiation without substantially affecting induction of death among CD4+CD8+ cells, a property that is lost as thymocytes mature further. In contrast, B7 engagement enhances both cell activation and death in parallel. Based on these data, we propose that the high level of ICAM-1 on cortical epithelial cells plays a special role in opening a window between TCR signaling for differentiation vs death, permitting efficient initiation of positive selection on epithelial ligands. In contrast, late CD28-dependent cosignaling on hemopoietic cells in the medulla would help enforce negative selection by augmenting the effects of TCR engagement by low levels of high affinity ligands.
Collapse
Affiliation(s)
- B Lucas
- Institut National de la Santé et de la Recherche Médicale, Unité 345, Institut Necker, Paris, France
| | | |
Collapse
|
481
|
Sawasdikosol S, Pratt JC, Meng W, Eck MJ, Burakoff SJ. Adapting to multiple personalities: Cbl is also a RING finger ubiquitin ligase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1471:M1-M12. [PMID: 11004605 DOI: 10.1016/s0304-419x(00)00013-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- S Sawasdikosol
- Department of Pediatric Oncology, Harvard Medical School, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MS 02115, USA.
| | | | | | | | | |
Collapse
|
482
|
Abstract
Multiple sclerosis is a complex trait of unknown etiology. Epidemiological data have shown that susceptibility to multiple sclerosis is determined by both genetic and environmental factors. It is unknown whether the clinical subcategories of multiple sclerosis are separate diseases with separate etiologies and causes. Recent theories of the pathogenesis of multiple sclerosis and candidate genes are discussed. Other potential nonchromosomal factors involved in multiple sclerosis susceptibility such as mitochondrial DNA and viral factors such as Chlamydia pneumoniae are reviewed.
Collapse
Affiliation(s)
- C J Willer
- University Department of Clinical Neurology, Radcliffe Infirmary, Oxford, UK
| | | |
Collapse
|
483
|
Abstract
Cbl, a negative regulator of immune signaling, has recently been shown to act as a ubiquitin-protein ligase. Further, two new papers describing Cbl-b-deficient mice suggest that Cbl-b sets the threshold of signaling in T and B cells and prevents the development of autoimmunity.
Collapse
Affiliation(s)
- C E Rudd
- Division of Tumor Immunology, Department of Cancer Immunology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02115, USA.
| | | |
Collapse
|
484
|
Affiliation(s)
- M K Slifka
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
485
|
Graham LJ, DeBell KE, Verí M, Stoica B, Mostowski H, Bonvini E, Rellahan B. Differential effects of Cbl and 70Z/3 Cbl on T cell receptor-induced phospholipase Cgamma-1 activity. FEBS Lett 2000; 470:273-80. [PMID: 10745081 DOI: 10.1016/s0014-5793(00)01341-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate that the differential effects Cbl and oncogenic 70Z/3 Cbl have on Ca(2+)/Ras-sensitive NF-AT reporters is partially due to their opposing ability to regulate phospholipase Cgamma1 (PLCgamma1) activation as demonstrated by analysis of the activation of an NF-AT reporter construct and PLCgamma1-mediated inositol phospholipid (PI) hydrolysis. Cbl over-expression resulted in reduced T cell receptor-induced PI hydrolysis, in the absence of any effect on PLCgamma1 tyrosine phosphorylation. In contrast, expression of 70Z/3 Cbl led to an increase in basal and OKT3-induced PLCgamma1 phosphorylation and PI hydrolysis. These data indicate that Cbl and 70Z/3 Cbl differentially regulate PLCgamma1 phosphorylation and activation. The implications of these data on the mechanism of Cbl-mediated signaling regulation are discussed.
Collapse
Affiliation(s)
- L J Graham
- Laboratory of Immunobiology, Division of Monoclonal Antibodies, Center for Biologics Evaluation and Research, HFM-564, Building 29B, Room 3NN10, 29 Lincoln Drive MSC 4555, Bethesda, MD 20892-4555, USA
| | | | | | | | | | | | | |
Collapse
|
486
|
Bachmaier K, Krawczyk C, Kozieradzki I, Kong YY, Sasaki T, Oliveira-dos-Santos A, Mariathasan S, Bouchard D, Wakeham A, Itie A, Le J, Ohashi PS, Sarosi I, Nishina H, Lipkowitz S, Penninger JM. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 2000; 403:211-6. [PMID: 10646608 DOI: 10.1038/35003228] [Citation(s) in RCA: 524] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The signalling thresholds of antigen receptors and co-stimulatory receptors determine immunity or tolerance to self molecules. Changes in co-stimulatory pathways can lead to enhanced activation of lymphocytes and autoimmunity, or the induction of clonal anergy. The molecular mechanisms that maintain immunotolerance in vivo and integrate co-stimulatory signals with antigen receptor signals in T and B lymphocytes are poorly understood. Members of the Cbl/Sli family of molecular adaptors function downstream from growth factor and antigen receptors. Here we show that gene-targeted mice lacking the adaptor Cbl-b develop spontaneous autoimmunity characterized by auto-antibody production, infiltration of activated T and B lymphocytes into multiple organs, and parenchymal damage. Resting cbl-b(-/-) lymphocytes hyperproliferate upon antigen receptor stimulation, and cbl-b(-/-) T cells display specific hyperproduction of the T-cell growth factor interleukin-2, but not interferon-gamma or tumour necrosis factor-alpha. Mutation of Cbl-b uncouples T-cell proliferation, interleukin-2 production and phosphorylation of the GDP/GTP exchange factor Vav1 from the requirement for CD28 co-stimulation. Cbl-b is thus a key regulator of activation thresholds in mature lymphocytes and immunological tolerance and autoimmunity.
Collapse
Affiliation(s)
- K Bachmaier
- Amgen Institute, Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|