451
|
Manning EE, Ahmari SE. How can preclinical mouse models be used to gain insight into prefrontal cortex dysfunction in obsessive-compulsive disorder? Brain Neurosci Adv 2018; 2:2398212818783896. [PMID: 32166143 PMCID: PMC7058260 DOI: 10.1177/2398212818783896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/18/2018] [Indexed: 01/09/2023] Open
Abstract
Obsessive-compulsive disorder is a debilitating psychiatric disorder that is characterised by perseverative thoughts and behaviours. Cognitive and affective disturbances play a central role in this illness, and it is therefore not surprising that clinical neuroimaging studies have demonstrated widespread alterations in prefrontal cortex functioning in patients. Preclinical mouse experimental systems provide the opportunity to gain mechanistic insight into the neurobiological changes underlying prefrontal cortex dysfunction through new technologies that allow measurement and manipulation of activity in discrete neural populations in awake, behaving mice. However, recent preclinical research has focused on striatal dysfunction, and has therefore provided relatively little insight regarding the role of the prefrontal cortex in obsessive-compulsive disorder-relevant behaviours. Here, we will discuss a number of translational prefrontal cortex-dependent paradigms, including obsessive-compulsive disorder-relevant tasks that produce compulsive responding, and how they can be leveraged in this context. Drawing on recent examples that have led to mechanistic insight about specific genes, cell types and circuits that mediate prefrontal cortex contributions to distinct aspects of cognition, we will provide a framework for applying similar strategies to identify neural mechanisms underlying obsessive-compulsive disorder-relevant behavioural domains. We propose that research using clinically relevant paradigms will accelerate translation of findings from preclinical mouse models, thus supporting the development of novel therapeutics targeted to specific pathophysiological mechanisms.
Collapse
Affiliation(s)
| | - Susanne E. Ahmari
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
452
|
Turtaev S, Leite IT, Altwegg-Boussac T, Pakan JMP, Rochefort NL, Čižmár T. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. LIGHT, SCIENCE & APPLICATIONS 2018; 7:92. [PMID: 30479758 PMCID: PMC6249210 DOI: 10.1038/s41377-018-0094-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 05/06/2023]
Abstract
Progress in neuroscience relies on new techniques for investigating the complex dynamics of neuronal networks. An ongoing challenge is to achieve minimally invasive and high-resolution observations of neuronal activity in vivo inside deep brain areas. Recently introduced methods for holographic control of light propagation in complex media enable the use of a hair-thin multimode optical fibre as an ultranarrow imaging tool. Compared to endoscopes based on graded-index lenses or fibre bundles, this new approach offers a footprint reduction exceeding an order of magnitude, combined with a significant enhancement in resolution. We designed a compact and high-speed system for fluorescent imaging at the tip of a fibre, achieving a resolution of 1.18 ± 0.04 µm across a 50-µm field of view, yielding 7-kilopixel images at a rate of 3.5 frames/s. Furthermore, we demonstrate in vivo observations of cell bodies and processes of inhibitory neurons within deep layers of the visual cortex and hippocampus of anaesthetised mice. This study paves the way for modern microscopy to be applied deep inside tissues of living animal models while exerting a minimal impact on their structural and functional properties.
Collapse
Affiliation(s)
- Sergey Turtaev
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena, 07745 Germany
- School of Life Sciences, University of Dundee, Nethergate, Dundee, DD1 4HN UK
| | - Ivo T. Leite
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena, 07745 Germany
- School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN UK
| | - Tristan Altwegg-Boussac
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building 15, George Square, Edinburgh, EH8 9XD UK
| | - Janelle M. P. Pakan
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building 15, George Square, Edinburgh, EH8 9XD UK
- Center for Behavioral Brain Sciences, Institute of Cognitive Neurology and Dementia Research, German Center for Neurodegenerative Diseases, Leipziger Straße 44, Haus 64, Magdeburg, 39120 Germany
| | - Nathalie L. Rochefort
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building 15, George Square, Edinburgh, EH8 9XD UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD UK
| | - Tomáš Čižmár
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena, 07745 Germany
- School of Science and Engineering, University of Dundee, Nethergate, Dundee, DD1 4HN UK
- Institute of Scientific Instruments of CAS, Kralovopolska 147, Brno, 612 64 Czech Republic
| |
Collapse
|
453
|
Durand-de Cuttoli R, Mondoloni S, Mourot A. [Optically dissecting brain nicotinic receptor function with photo-controllable designer receptors]. Biol Aujourdhui 2017; 211:173-188. [PMID: 29236669 DOI: 10.1051/jbio/2017022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Indexed: 06/07/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels widely expressed in the central nervous system and the periphery. They play an important modulatory role in learning, memory and attention, and have been implicated in various diseases such as Alzheimer's disease, Parkinson's disease, epilepsy, schizophrenia and addiction. These receptors are activated by the endogenous neurotransmitter acetylcholine, or by nicotine, the alkaloid found in tobacco leaves. Both molecules open the ion channel and cause the movement of cations across the membrane, which directly affects neuronal excitability and synaptic plasticity. nAChRs are very heterogeneous in their subunit composition (α2-10 et β2-4), in their brain distribution (cortex, midbrain, striatum…) and in their sub-cellular localization (pre- vs post-synaptic, axonal, dendritic…). This heterogeneity highly contributes to the very diverse roles these receptors have in health and disease. The ability to activate or block a specific nAChR subtype, at a defined time and space within the brain, would greatly help obtaining a clearer picture of these various functions. To this aim, we are developing novel optogenetic pharmacology strategies for optically controlling endogenous nAChR isoforms within the mouse brain. The idea is to tether a chemical photoswitch on the surface of a cysteine-modified nAChR, and use light for rapidly and reversibly turning that receptor mutant on and off. Here we will discuss the history of optogenetic pharmacology, and the recent advances for the optical control of brain nicotinic receptors in vivo.
Collapse
Affiliation(s)
- Romain Durand-de Cuttoli
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Sarah Mondoloni
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| | - Alexandre Mourot
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), 75005 Paris, France
| |
Collapse
|
454
|
Huang TH, Niesman P, Arasu D, Lee D, De La Cruz AL, Callejas A, Hong EJ, Lois C. Tracing neuronal circuits in transgenic animals by transneuronal control of transcription ( TRACT). eLife 2017; 6:32027. [PMID: 29231171 PMCID: PMC5777821 DOI: 10.7554/elife.32027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/02/2017] [Indexed: 12/20/2022] Open
Abstract
Understanding the computations that take place in brain circuits requires identifying how neurons in those circuits are connected to one another. We describe a technique called TRACT (TRAnsneuronal Control of Transcription) based on ligand-induced intramembrane proteolysis to reveal monosynaptic connections arising from genetically labeled neurons of interest. In this strategy, neurons expressing an artificial ligand (‘donor’ neurons) bind to and activate a genetically-engineered artificial receptor on their synaptic partners (‘receiver’ neurons). Upon ligand-receptor binding at synapses the receptor is cleaved in its transmembrane domain and releases a protein fragment that activates transcription in the synaptic partners. Using TRACT in Drosophila we have confirmed the connectivity between olfactory receptor neurons and their postsynaptic targets, and have discovered potential new connections between neurons in the circadian circuit. Our results demonstrate that the TRACT method can be used to investigate the connectivity of neuronal circuits in the brain. One of the main obstacles to understanding how the brain works is that we know relatively little about how its nerve cells or neurons are connected to one another. These connections make up the brain’s wiring diagram. Current methods for revealing this wiring all have limitations. The most popular method – serial electron microscopy – can reveal the connections in a small region of the brain in great detail, but it cannot show connections between neurons that are far apart. Huang et al. have now created a genetic system for visualizing these connections. For neurons to communicate, one neuron must produce a signal called a ligand. This ligand can then bind to and activate its partner neuron. Huang et al. modified the DNA of neurons so that every time those cells produced a specific ligand, they also produced a red fluorescent protein. Similar modifications ensured that every time the ligand activated a partner neuron, the activated neuron produced a green fluorescent protein. Viewing the red and green neurons under a microscope enabled Huang et al. to see which cells were communicating with which others. While these experiments took place in fruit flies, the same approach should also work in other laboratory animals, including fish, mice and rats. Once we know the wiring diagram of the brain, the next step is to investigate the role of the various connections. To understand how a computer works, for example, we might change the connections between its circuit components and look at how this affects the computer’s output. With this new method, we can change how neurons communicate with one another in the brain, and then look at the effects on behavior. This should provide insights into the workings of the human brain, and clues to what goes wrong in disorders like schizophrenia and autism.
Collapse
Affiliation(s)
- Ting-Hao Huang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Peter Niesman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Deepshika Arasu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Donghyung Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Aubrie L De La Cruz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Antuca Callejas
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.,Department of Cell Biology, School of Science, University of Extremadura, Badajoz, Spain
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Carlos Lois
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
455
|
Nihongaki Y, Otabe T, Sato M. Emerging Approaches for Spatiotemporal Control of Targeted Genome with Inducible CRISPR-Cas9. Anal Chem 2017; 90:429-439. [DOI: 10.1021/acs.analchem.7b04757] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yuta Nihongaki
- Graduate School
of Arts and
Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Takahiro Otabe
- Graduate School
of Arts and
Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Moritoshi Sato
- Graduate School
of Arts and
Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
456
|
Abstract
Bacteria represent one of the most evolutionarily successful groups of organisms to inhabit Earth. Their world is awash with mechanical cues, probably the most ancient form of which are osmotic forces. As a result, they have developed highly robust mechanosensors in the form of bacterial mechanosensitive (MS) channels. These channels are essential in osmoregulation, and in this setting, provide one of the simplest paradigms for the study of mechanosensory transduction. We explore the past, present, and future of bacterial MS channels, including the alternate mechanosensory roles that they may play in complex microbial communities. Central to all of these functions is their ability to change conformation in response to mechanical stimuli. We discuss their gating according to the force-from-lipids principle and its applicability to eukaryotic MS channels. This includes the new paradigms emerging for bilayer-mediated channel mechanosensitivity and how this molecular detail may provide advances in both industry and medicine.
Collapse
Affiliation(s)
- Charles D Cox
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Navid Bavi
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Sydney, New South Wales 2010, Australia; , , .,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia
| |
Collapse
|
457
|
In Vivo Imaging of CNS Injury and Disease. J Neurosci 2017; 37:10808-10816. [PMID: 29118209 DOI: 10.1523/jneurosci.1826-17.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023] Open
Abstract
In vivo optical imaging has emerged as a powerful tool with which to study cellular responses to injury and disease in the mammalian CNS. Important new insights have emerged regarding axonal degeneration and regeneration, glial responses and neuroinflammation, changes in the neurovascular unit, and, more recently, neural transplantations. Accompanying a 2017 SfN Mini-Symposium, here, we discuss selected recent advances in understanding the neuronal, glial, and other cellular responses to CNS injury and disease with in vivo imaging of the rodent brain or spinal cord. We anticipate that in vivo optical imaging will continue to be at the forefront of breakthrough discoveries of fundamental mechanisms and therapies for CNS injury and disease.
Collapse
|
458
|
Greenbaum A, Jang MJ, Challis C, Gradinaru V. Q&A: How can advances in tissue clearing and optogenetics contribute to our understanding of normal and diseased biology? BMC Biol 2017; 15:87. [PMID: 28946882 PMCID: PMC5613628 DOI: 10.1186/s12915-017-0421-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mammalian organs comprise a variety of cells that interact with each other and have distinct biological roles. Access to evaluate and perturb intact biological systems at the cellular and molecular levels is essential to fully understand their functioning in normal and diseased conditions, yet technical limitations have constrained most research to small pieces of tissue. Tissue clearing and optogenetics can help overcome this hurdle: tissue clearing affords optical interrogation of whole organs at the molecular level, and optogenetics enables the scalable control and measurement of cellular activity with light. In this Q&A, we delineate recent advances and practical challenges associated with these two techniques when applied body-wide.
Collapse
Affiliation(s)
- Alon Greenbaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Min J Jang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Collin Challis
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
459
|
Abstract
PURPOSE OF REVIEW This is an era where we have significantly advanced the understanding of the genetic architecture of schizophrenia. In this review, we consider how this knowledge may translate into advances that will improve patient care. RECENT FINDINGS Large-scale genome-wide association studies (GWAS) have identified more than a hundred loci each making a small contribution to illness risk. Meta-analysis of copy number variants (CNVs) in the Psychiatric Genomics Consortium (PGC) dataset has confirmed that some variants have a moderate or large impact on risk, although these are rare in the population. Genome sequencing advances allow a much more comprehensive evaluation of genomic variation. We describe the key findings from whole exome studies to date. These studies are happening against a backdrop of growing understanding of the regulation and expression of genes and better functional tools to investigate molecular mechanisms in model systems. We provide an overview of how recent approaches in schizophrenia genetics are converging and consider how they could impact on diagnostics, the development of personalized medicine, and drug discovery.
Collapse
Affiliation(s)
- Claire Foley
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity College Dublin, Dublin, Ireland
| | - Aiden Corvin
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity College Dublin, Dublin, Ireland.
| | - Shigeki Nakagome
- Department of Psychiatry and Neuropsychiatric Genetics Research Group, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
460
|
Krook-Magnuson E. Illuminating seizures: optogenetic approaches to studying networks in epilepsy. J Neurosci Res 2017; 95:2323-2324. [PMID: 28836289 DOI: 10.1002/jnr.24147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 11/07/2022]
|
461
|
Shigemoto R, Joesch M. The genetic encoded toolbox for electron microscopy and connectomics. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [DOI: 10.1002/wdev.288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/02/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022]
|
462
|
Jiang J, Cui H, Rahmouni K. Optogenetics and pharmacogenetics: principles and applications. Am J Physiol Regul Integr Comp Physiol 2017; 313:R633-R645. [PMID: 28794102 DOI: 10.1152/ajpregu.00091.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/18/2017] [Accepted: 08/05/2017] [Indexed: 12/29/2022]
Abstract
Remote and selective spatiotemporal control of the activity of neurons to regulate behavior and physiological functions has been a long-sought goal in system neuroscience. Identification and subsequent bioengineering of light-sensitive ion channels (e.g., channelrhodopsins, halorhodopsin, and archaerhodopsins) from the bacteria have made it possible to use light to artificially modulate neuronal activity, namely optogenetics. Recent advance in genetics has also allowed development of novel pharmacological tools to selectively and remotely control neuronal activity using engineered G protein-coupled receptors, which can be activated by otherwise inert drug-like small molecules such as the designer receptors exclusively activated by designer drug, a form of chemogenetics. The cutting-edge optogenetics and pharmacogenetics are powerful tools in neuroscience that allow selective and bidirectional modulation of the activity of defined populations of neurons with unprecedented specificity. These novel toolboxes are enabling significant advances in deciphering how the nervous system works and its influence on various physiological processes in health and disease. Here, we discuss the fundamental elements of optogenetics and chemogenetics approaches and some of the applications that yielded significant advances in various areas of neuroscience and beyond.
Collapse
Affiliation(s)
- Jingwei Jiang
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and
| | - Huxing Cui
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and.,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa; .,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa; and.,Obesity Research and Educational Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
463
|
[Network disorders in neurology]. DER NERVENARZT 2017; 88:837-838. [PMID: 28676944 DOI: 10.1007/s00115-017-0372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
464
|
Deisseroth K. Optical and chemical discoveries recognized for impact on biology and psychiatry. EMBO Rep 2017; 18:859-860. [PMID: 28566521 PMCID: PMC5452044 DOI: 10.15252/embr.201744405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Karl Deisseroth was awarded the 2017 quadrennial 4 million euro Else
Kröner Fresenius Prize today for the “discoveries of optogenetics and of
hydrogel‐tissue chemistry, and for developing circuit‐level insight into depression”.
In this opinion, he was invited to discuss the impact of optogenetics and
hydrogel‐tissue chemistry 1,
2, 3, 4, 5, 6, 7, 8, 9, 10 on understanding the
structure and function of the brain in health and disease.
Collapse
Affiliation(s)
- Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|