451
|
Haage V, Semtner M, Vidal RO, Hernandez DP, Pong WW, Chen Z, Hambardzumyan D, Magrini V, Ly A, Walker J, Mardis E, Mertins P, Sauer S, Kettenmann H, Gutmann DH. Comprehensive gene expression meta-analysis identifies signature genes that distinguish microglia from peripheral monocytes/macrophages in health and glioma. Acta Neuropathol Commun 2019; 7:20. [PMID: 30764877 PMCID: PMC6376799 DOI: 10.1186/s40478-019-0665-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
Monocytes/macrophages have begun to emerge as key cellular modulators of brain homeostasis and central nervous system (CNS) disease. In the healthy brain, resident microglia are the predominant macrophage cell population; however, under conditions of blood-brain barrier leakage, peripheral monocytes/macrophages can infiltrate the brain and participate in CNS disease pathogenesis. Distinguishing these two populations is often challenging, owing to a paucity of universally accepted and reliable markers. To identify discriminatory marker sets for microglia and peripheral monocytes/macrophages, we employed a large meta-analytic approach using five published murine transcriptional datasets. Following hierarchical clustering, we filtered the top differentially expressed genes (DEGs) through a brain cell type-specific sequencing database, which led to the identification of eight microglia and eight peripheral monocyte/macrophage markers. We then validated their differential expression, leveraging a published single cell RNA sequencing dataset and quantitative RT-PCR using freshly isolated microglia and peripheral monocytes/macrophages from two different mouse strains. We further verified the translation of these DEGs at the protein level. As top microglia DEGs, we identified P2ry12, Tmem119, Slc2a5 and Fcrls, whereas Emilin2, Gda, Hp and Sell emerged as the best DEGs for identifying peripheral monocytes/macrophages. Lastly, we evaluated their utility in discriminating monocyte/macrophage populations in the setting of brain pathology (glioma), and found that these DEG sets distinguished glioma-associated microglia from macrophages in both RCAS and GL261 mouse models of glioblastoma. Taken together, this unbiased bioinformatic approach facilitated the discovery of a robust set of microglia and peripheral monocyte/macrophage expression markers to discriminate these monocyte populations in both health and disease.
Collapse
|
452
|
Wu G, Liu G, Li X, Peng Z, Zhou Q, Qi T. A green approach of preparation of fine active alumina with high specific surface area from sodium aluminate solution. RSC Adv 2019; 9:5628-5638. [PMID: 35515928 PMCID: PMC9060783 DOI: 10.1039/c8ra09853k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/31/2019] [Indexed: 11/23/2022] Open
Abstract
Fine active alumina (FAA) with a high specific surface area (SSA) is used in catalysis, adsorbents and other applications. This study presents a novel method of preparing high surface area FAA via a phase evolution from gibbsite through ammonium aluminum carbonate hydroxide (AACH) to FAA. Thermodynamic calculations showed that increasing the pH and (NH4)2CO3 concentration both promoted the transformation of gibbsite to AACH. Fine gibbsite precipitated from a sodium aluminate solution could thus be efficiently changed to AACH and subsequently to FAA. Minimal particle aggregation was achieved from gibbsite to AACH to FAA owing to the filling of capillaries by NH3 and CO2, the formation of boehmite and interfacial hydrophobicity. Furthermore, capillary pressures of 1.25–46.56 MPa during the AACH roasting process prevented the collapse of mesopores. The high capillary pressure, numerous open mesopores, and inhibition of aggregation produced FAA with an extremely high SSA. The SSA of FAA was as high as 1088.72 m2 g−1 following the roasting of AACH at 300 °C for 180 min. This FAA was demonstrated to remove phosphate from wastewater with an adsorption capacity of 300.28 mg g−1. A green preparation of fine active alumina from saturated sodium aluminate solution by phase evolution is presented. High capillary pressure, numerous mesopores, and the inhibition of aggregation produced FAA with an extremely high specific surface area.![]()
Collapse
Affiliation(s)
- Guoyu Wu
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Guihua Liu
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Xiaobin Li
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Zhihong Peng
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Qiusheng Zhou
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| | - Tiangui Qi
- School of Metallurgy and Environment, Central South University Changsha 410083 Hunan China
| |
Collapse
|
453
|
D-2-Hydroxyglutarate and L-2-Hydroxyglutarate Inhibit IL-12 Secretion by Human Monocyte-Derived Dendritic Cells. Int J Mol Sci 2019; 20:ijms20030742. [PMID: 30744183 PMCID: PMC6387367 DOI: 10.3390/ijms20030742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/22/2022] Open
Abstract
Mutations in isocitrate dehydrogenase (IDH) or a reduced expression of L-2-hydroxyglutarate (HG)-dehydrogenase result in accumulation of D-2-HG or L-2-HG, respectively, in tumor tissues. D-2-HG and L-2-HG have been shown to affect T-cell differentiation and activation; however, effects on human myeloid cells have not been investigated so far. In this study we analyzed the impact of D-2-HG and L-2-HG on activation and maturation of human monocyte-derived dendritic cells (DCs). 2-HG was taken up by DCs and had no impact on cell viability but diminished CD83 expression after Lipopolysaccharides (LPS) stimulation. Furthermore, D-2-HG and L-2-HG significantly reduced IL-12 secretion but had no impact on other cytokines such as IL-6, IL-10 or TNF. Gene expression analyses of the IL-12 subunits p35/IL-12A and p40/IL-12B in DCs revealed decreased expression of both subunits. Signaling pathways involved in LPS-induced cytokine expression (NFkB, Akt, p38) were not altered by D-2-HG. However, 2-HG reprogrammed LPS-induced metabolic changes in DCs and increased oxygen consumption. Addition of the ATP synthase inhibitor oligomycin to DC cultures increased IL-12 secretion and was able to partially revert the effect of 2-HG. Our data show that both enantiomers of 2-HG can limit activation of DCs in the tumor environment.
Collapse
|
454
|
Churpek JE, Bresnick EH. Transcription factor mutations as a cause of familial myeloid neoplasms. J Clin Invest 2019; 129:476-488. [PMID: 30707109 DOI: 10.1172/jci120854] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation and evolution of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are driven by genomic events that disrupt multiple genes controlling hematopoiesis. Human genetic studies have discovered germline mutations in single genes that instigate familial MDS/AML. The best understood of these genes encode transcription factors, such as GATA-2, RUNX1, ETV6, and C/EBPα, which establish and maintain genetic networks governing the genesis and function of blood stem and progenitor cells. Many questions remain unanswered regarding how genes and circuits within these networks function in physiology and disease and whether network integrity is exquisitely sensitive to or efficiently buffered from perturbations. In familial MDS/AML, mutations change the coding sequence of a gene to generate a mutant protein with altered activity or introduce frameshifts or stop codons or disrupt regulatory elements to alter protein expression. Each mutation has the potential to exert quantitatively and qualitatively distinct influences on networks. Consistent with this mechanistic diversity, disease onset is unpredictable and phenotypic variability can be considerable. Efforts to elucidate mechanisms and forge prognostic and therapeutic strategies must therefore contend with a spectrum of patient-specific leukemogenic scenarios. Here we illustrate mechanistic advances in our understanding of familial MDS/AML syndromes caused by germline mutations of hematopoietic transcription factors.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
455
|
Morales-Nebreda L, McLafferty FS, Singer BD. DNA methylation as a transcriptional regulator of the immune system. Transl Res 2019; 204:1-18. [PMID: 30170004 PMCID: PMC6331288 DOI: 10.1016/j.trsl.2018.08.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
DNA methylation is a dynamic epigenetic modification with a prominent role in determining mammalian cell development, lineage identity, and transcriptional regulation. Primarily linked to gene silencing, novel technologies have expanded the ability to measure DNA methylation on a genome-wide scale and uncover context-dependent regulatory roles. The immune system is a prototypic model for studying how DNA methylation patterning modulates cell type- and stimulus-specific transcriptional programs. Preservation of host defense and organ homeostasis depends on fine-tuned epigenetic mechanisms controlling myeloid and lymphoid cell differentiation and function, which shape innate and adaptive immune responses. Dysregulation of these processes can lead to human immune system pathology as seen in blood malignancies, infections, and autoimmune diseases. Identification of distinct epigenotypes linked to pathogenesis carries the potential to validate therapeutic targets in disease prevention and management.
Collapse
Affiliation(s)
- Luisa Morales-Nebreda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Fred S McLafferty
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Benjamin D Singer
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
456
|
The role of a monoclonal antibody 11C8B1 as a diagnostic marker of IDH2-mutated sinonasal undifferentiated carcinoma. Mod Pathol 2019; 32:205-215. [PMID: 30206411 PMCID: PMC7429919 DOI: 10.1038/s41379-018-0126-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/20/2018] [Accepted: 07/22/2018] [Indexed: 02/04/2023]
Abstract
IDH2 R172 mutations occur in >80% sinonasal undifferentiated carcinomas ("SNUC") and ~80% of these are R172S and R172T variants. We examined the utility of the monoclonal antibody 11C8B1 to IDH2 R172S in IDH2 R172-mutated tumors to establish an immunohistochemistry protocol as a surrogate method for IDH2 R172S mutation detection. Eighty-eight formalin-fixed paraffin-embedded tumors including 42 sinonasal tumors and a variety of IDH1/2-mutated malignancies were tested by immunohistochemistry. The IDH1/2 mutation status was determined in 86 cases by a targeted massively parallel sequencing MSK-IMPACTTM assay. Interestingly, monoclonal antibody 11C8B1 was reactive with all IDH2 R172S (N = 15) mutated tumors including 12 sinonasal carcinomas, 2 high-grade sarcomas and one intrahepatic cholangiocarcinoma, and with all R172T (N = 3) mutated sinonasal carcinomas displaying a distinct granular cytoplasmic labeling in all R172S/T mutated malignancies. 11C8B1 immunohistochemistry was also positive in 2 of 6 IDH1 R132S-mutated tumors, including one intrahepatic cholangiocarcinoma and one chondrosarcoma showing a smooth homogeneous cytoplasmic staining pattern. All IDH2 R172G/K/M/W (N = 22) and IDH1 132H/C/G/L (N = 15) mutated tumors, and all IDH1/2-wild-type tumors (N = 25), including a histologic variety of 23 sinonasal tumors, were immunonegative. Importantly, 11 sinonasal undifferentiated carcinomas (N = 14, 79%) and 3 (100%) high-grade neuroendocrine carcinomas, large cell type were 11C8B1 immunopositive. Literature search revealed a virtual absence of IDH2 R172 and IDH1 R132S mutations in >1000 cases of 8 different malignancies included in the differential diagnosis of sinonasal undifferentiated carcinoma. Our study suggests that positive IDH2 11C8B1 immunohistochemistry in sinonasal carcinomas would be highly predictive of the presence of IDH2 R172S/T mutations and could serve as a reliable adjunct diagnostic marker of sinonasal undifferentiated carcinomas in >70% cases.
Collapse
|
457
|
Abstract
Our knowledge about the genetics of myelodysplastic syndromes (MDS) and related myeloid disorders has been dramatically improved during the past decade, in which revolutionized sequencing technologies have played a major role. Through intensive efforts of sequencing of a large number of MDS genomes, a comprehensive registry of driver mutations recurrently found in a recognizable fraction of MDS patients has been revealed, and ongoing efforts are being made to clarify their impacts on clinical phenotype and prognosis, as well as their role in the pathogenesis of MDS. Among major mutational targets in MDS are the molecules involved in DNA methylations, chromatin modification, RNA splicing, transcription, signal transduction, cohesin regulation, and DNA repair. Showing substantial overlaps with driver mutations seen in acute myeloid leukemia (AML), as well as age-related clonal hematopoiesis in healthy individuals, these mutations are presumed to have a common clonal origin. Mutations are thought to be acquired and positively selected in a well-organized manner to allow for expansion of the initiating clone to compromise normal hematopoiesis, ultimately giving rise to MDS and subsequent transformation to AML in many patients. Significant correlations between mutations suggest the presence of functional interactions between mutations, which dictate disease progression. Mutations are frequently associated with specific disease phenotype, drug response, and clinical outcomes, and thus, it is essential to be familiar with MDS genetics for better management of patients. This review aims to provide a brief overview of the recent progresses in MDS genetics.
Collapse
|
458
|
Abstract
Clonal hematopoiesis is a common, age-related process in which a somatically mutated hematopoietic precursor gives rise to a genetically distinct subpopulation in the blood. This phenomenon has been observed in populations across the globe and, while virtually non-existent in children is estimated to affect >10% of the 70-and-older age group. The mutations are thought to occur in stem cells, which makes them pre-cancerous, and precursors to cancer stem cells. Many of the genes most commonly mutated in clonal hematopoiesis are also recurrently mutated in leukemia, genes such as DNMT3A, TET2, ASXL1, JAK2, and TP53. However, between 40% and 60% of cases arise from the accumulation of what appear to be random mutations outside of known driver genes. Clonal hematopoiesis is frequently present in otherwise healthy individuals and may persist for many years. Though largely asymptomatic, carrying these somatic mutations confers a small but significantly increased risk of leukemic transformation, affecting 0.5-1% carriers per year; although most genes confer an increased risk of transformation, mutations in TP53 and U2AF1 appear to carry a particularly high risk for transformation. Additionally, a patient's history of prior treatment with cytotoxic chemotherapy and/or radiation are correlated with the development of clonal hematopoiesis; in the setting of chemotherapy treatment of solid tumors, hematopoietic mutations in TP53 and PPM1D appear to contribute to outgrowth of clones that may lead to subsequent malignancy. The presence of a clone also imparts a significantly increased risk of cardiovascular disease, which in some cases appears to be due to increased inflammation and atherosclerosis. Clonal hematopoiesis is correlated with several other diseases as well, including diabetes, chronic pulmonary disease, and aplastic anemia, with other associations probably yet to be uncovered.
Collapse
Affiliation(s)
- Alexander J Silver
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
459
|
Abstract
PURPOSE OF REVIEW Precious few drugs were successfully developed for acute myeloid leukemia (AML) over the past decades, despite a dramatic expansion of our understanding of its molecular underpinnings during this time. Then in 2017, a wave of new drugs suddenly became approved. This review serves to introduce the newly available drugs, discuss their impact upon therapy, and highlight additional novel agents that are waiting in the wings. RECENT FINDINGS Newly approved agents in AML include a tyrosine kinase inhibitor for patients with FMS-like tyrosine kinase 3 (FLT3) mutations, an inhibitor of mutant isocitrate dehydrogenase (IDH2), and two novel agents using antibody-delivered or liposome-delivered cytotoxics. All of these new agents have demonstrable activity in AML and several have improved survival in randomized studies. In addition to these agents, promising data from other inhibitors of FLT3, IDH1, and B-cell lymphoma 2 (BCL2) will be discussed. SUMMARY Response, survival, and symptom burden of AML therapy are all improving through novel agents. As many of the newly approved drugs benefit-specific genetic subsets, a new priority has emerged to increase the speed of diagnostic genomic studies as a means to guide frontline therapy. This will ensure patients are optimally categorized and treated with to the most rational agents.
Collapse
|
460
|
Rautenberg C, Germing U, Haas R, Kobbe G, Schroeder T. Relapse of Acute Myeloid Leukemia after Allogeneic Stem Cell Transplantation: Prevention, Detection, and Treatment. Int J Mol Sci 2019; 20:E228. [PMID: 30626126 PMCID: PMC6337734 DOI: 10.3390/ijms20010228] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a phenotypically and prognostically heterogeneous hematopoietic stem cell disease that may be cured in eligible patients with intensive chemotherapy and/or allogeneic stem cell transplantation (allo-SCT). Tremendous advances in sequencing technologies have revealed a large amount of molecular information which has markedly improved our understanding of the underlying pathophysiology and enables a better classification and risk estimation. Furthermore, with the approval of the FMS-like tyrosine kinase 3 (FLT3) inhibitor Midostaurin a first targeted therapy has been introduced into the first-line therapy of younger patients with FLT3-mutated AML and several other small molecules targeting molecular alterations such as isocitrate dehydrogenase (IDH) mutations or the anti-apoptotic b-cell lymphoma 2 (BCL-2) protein are currently under investigation. Despite these advances, many patients will have to undergo allo-SCT during the course of disease and depending on disease and risk status up to half of them will finally relapse after transplant. Here we review the current knowledge about the molecular landscape of AML and how this can be employed to prevent, detect and treat relapse of AML after allo-SCT.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Hematopoietic Stem Cell Transplantation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/prevention & control
- Leukemia, Myeloid, Acute/therapy
- Mutation/genetics
- Neoplasm, Residual/diagnosis
- Neoplasm, Residual/drug therapy
- Recurrence
- Transplantation, Homologous
Collapse
Affiliation(s)
- Christina Rautenberg
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, University of Duesseldorf, Medical Faculty, 40225 Duesseldorf, Germany.
| |
Collapse
|
461
|
Ryan DG, Murphy MP, Frezza C, Prag HA, Chouchani ET, O'Neill LA, Mills EL. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat Metab 2019; 1:16-33. [PMID: 31032474 PMCID: PMC6485344 DOI: 10.1038/s42255-018-0014-7] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic reprogramming has become a key focus for both immunologists and cancer biologists, with exciting advances providing new insights into underlying mechanisms of disease. Metabolites traditionally associated with bioenergetics or biosynthesis have been implicated in immunity and malignancy in transformed cells, with a particular focus on intermediates of the mitochondrial pathway known as the Krebs cycle. Among these, the intermediates succinate, fumarate, itaconate, 2-hydroxyglutarate isomers (D-2-hydroxyglutarate and L-2-hydroxyglutarate) and acetyl-CoA now have extensive evidence for "non-metabolic" signalling functions in both physiological immune contexts and in disease contexts, such as the initiation of carcinogenesis. This review will describe how metabolic reprogramming, with emphasis placed on these metabolites, leads to altered immune cell and transformed cell function. The latest findings are informative for new therapeutic approaches which could be transformative for a range of diseases.
Collapse
Affiliation(s)
- Dylan G Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Box 197, Cambridge Biomedical Campus, Cambridge CB2 0XZ, UK
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Luke A O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
462
|
Chen J, Du B. Novel positioning from obesity to cancer: FTO, an m 6A RNA demethylase, regulates tumour progression. J Cancer Res Clin Oncol 2019; 145:19-29. [PMID: 30465076 DOI: 10.1007/s00432-018-2796-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 11/13/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE The fat mass- and obesity-associated (FTO) gene on chromosome 16q12.2 shows an intimate association with obesity and body mass index. Recently, research into the FTO gene and its expression product has attracted widespread interest due to the identification of FTO as an N6-methyladenosine (m6A) demethylase. FTO primarily regulates the m6A levels of downstream targets via their 3' untranslated regions. FTO not only plays a critical role in obesity-related diseases but also is involved in the occurrence, development and prognosis of many types of cancer, such as acute myeloid leukaemia, glioblastoma and breast cancer. Currently, studies indicate that FTO is a crucial component of m6A modification, it regulates cancer stem cell function, and promotes the growth, self-renewal and metastasis of cancer cells. In this review, we summarized and analysed the data regarding the structural features and biological functions of FTO as well as its association with different cancers and possible molecular mechanisms. METHODS We systematically reviewed the related literatures regarding FTO and its demethylation activity in many pathologic and physiological processes, especially in cancer-related diseases based on PubMed databases in this article. RESULTS Mounting evidence indicated that FTO plays a critical role in occurrence, progression and treatment of various cancers, even acting as a cancer oncogene in acute myeloid leukaemia, research on which is no longer restricted to metabolic diseases such as obesity and diabetes. CONCLUSION Considering FTO's critical role in many diseases, FTO may become a new promising target for the diagnosis and treatment of various diseases in the near future, especially for specific types of cancers, such as acute myeloid leukaemia, glioblastoma and breast cancer.
Collapse
Affiliation(s)
- JiaLing Chen
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Bin Du
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
463
|
Metabolic Regulations in Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:59-74. [PMID: 31338815 DOI: 10.1007/978-981-13-7342-8_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the bottlenecks of the treatments for malignant hematopoietic disorders is the unavailability of sufficient amount of hematopoietic stem cells (HSCs). HSCs are considered to be originated from the aorta-gonad-mesonephros and gradually migrates into fetal liver and resides in a unique microenvironment/niche of bone marrow. Although many intrinsic and extrinsic factors (niche components) are reported to be involved in the origination, maturation, migration, and localization of HSCs at different developmental stages, the detailed molecular mechanisms still remain largely unknown. Previous studies have shown that intrinsic metabolic networks may be critical for the cell fate determinations of HSCs. For example, HSCs mainly utilize glycolysis as the main energy sources; oxidative phosphorylation is required for the homeostasis of HSCs; lipid or amino acid metabolisms may also sustain HSC stemness. Mechanistically, lots of regulatory pathways, such as MEIS1/HIF1A and PI3K/AKT/mTOR signaling, are found to fine-tune the different nutrient metabolisms and cell fate commitments of HSCs. However, more efforts are required for the optimization and establishment of precise metabolic techniques specific for the HSCs with relatively rare cell frequency and understanding of the basic metabolic properties and their underlying regulatory mechanisms of different nutrients (such as glucose) during the different developmental stages of HSCs.
Collapse
|
464
|
Nassereddine S, Lap CJ, Tabbara IA. Evaluating ivosidenib for the treatment of relapsed/refractory AML: design, development, and place in therapy. Onco Targets Ther 2018; 12:303-308. [PMID: 30643428 PMCID: PMC6314316 DOI: 10.2147/ott.s182443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Improvements in the last decade in understanding the molecular mechanisms underlying acute myeloid leukemia (AML) have emphasized that treatment regimens should be personalized with agents that can selectively target genetic abnormalities if present. Neomorphic mutations in isoform 1 of isocitrate dehydrogenase (IDH1) result in the formation of the onco-metabolite R-2-hydroxyglutarate, which drives leukemic transformation by affecting processes such as chromatin remodeling, the cellular defense against oxidative stress and cell survival. Preclinical studies with small molecule inhibitors have validated mutant IDH1 as a molecular target, and a recent Phase 1 clinical trial with the first mutant IDH1 inhibitor ivosidenib has prompted approval by the US Food and Drug Association for the treatment of patients with IDH1-mutated AML in the relapsed and refractory setting due to impressive results. This approval has given a group of patients, that otherwise has a very poor prognosis and limited options, new hope, and it is to be expected that more indications for ivosidenib will follow soon. These developments highlight the potential of precision medicine in AML, with more agents currently under evaluation in clinical trials. Although the first reports have also already emerged describing acquired resistance for these mutant IDH inhibitors, combination treatment might overcome this problem, which could drastically change the treatment landscape of AML over the next few years.
Collapse
Affiliation(s)
- Samah Nassereddine
- Department of Internal Medicine, The George Washington University School of Medicine, Washington, DC, USA, .,Division of Hematology/Oncology, The George Washington Cancer Center, Washington, DC, USA,
| | - Coen J Lap
- Division of Hematology/Oncology, The George Washington Cancer Center, Washington, DC, USA,
| | - Imad A Tabbara
- Department of Internal Medicine, The George Washington University School of Medicine, Washington, DC, USA, .,Division of Hematology/Oncology, The George Washington Cancer Center, Washington, DC, USA,
| |
Collapse
|
465
|
Chen E, Yang F, He H, Li Q, Zhang W, Xing J, Zhu Z, Jiang J, Wang H, Zhao X, Liu R, Lei L, Dong J, Pei Y, Yang Y, Pan J, Zhang P, Liu S, Du L, Zeng Y, Yang J. Alteration of tumor suppressor BMP5 in sporadic colorectal cancer: a genomic and transcriptomic profiling based study. Mol Cancer 2018; 17:176. [PMID: 30572883 PMCID: PMC6302470 DOI: 10.1186/s12943-018-0925-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Background Although the genetic spectrum of human colorectal cancer (CRC) is mainly characterized by APC, KRAS and TP53 mutations, driver genes in tumor initiation have not been conclusively demonstrated. In this study, we aimed to identify novel markers for CRC. Methods We performed exome analysis of sporadic colorectal cancer (sCRC) coding regions to screen loss of function (LoF) mutation genes, and carried out systems-level approaches to confirm top rank gene in this study. Results We identified loss of BMP5 is an early event in CRC. Deep sequencing identified BMP5 was mutated in 7.7% (8/104) of sCRC samples, with 37.5% truncating mutation frequency. Notably, BMP5 negative expression and its prognostic value is uniquely significant in sCRC but not in other tumor types. Furthermore, BMP5 expression was positively correlated with E-cadherin in CRC patients and its dysregulation play a vital role in epithelial-mesenchymal transition (EMT), thus triggering tumor initiation and development. RNA sequencing identified, independent of BMP/Smads pathway, BMP5 signaled though Jak-Stat pathways to inhibit the activation of oncogene EPSTI1. Conclusions Our result support a novel concept that the importance of BMP5 in sCRC. The tumor suppressor role of BMP5 highlights its crucial role in CRC initiation and development. Electronic supplementary material The online version of this article (10.1186/s12943-018-0925-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erfei Chen
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Fangfang Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Hongjuan He
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Qiqi Li
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Wei Zhang
- Department of Pathology, The Helmholtz Sino-German Laboratory for Cancer Research, Tangdu Hospital, the Fourth Military Medical University, Xian, 710038, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology and Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xian, China
| | - Ziqing Zhu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Jingjing Jiang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Hua Wang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Xiaojuan Zhao
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Ruitao Liu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Lei Lei
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Jing Dong
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Yuchen Pei
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Laboratory of Systems Biology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 100 Haike Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai, 201210, China
| | - Ying Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Junqiang Pan
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Pan Zhang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Shuzhen Liu
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Le Du
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Yuan Zeng
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China
| | - Jin Yang
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, 710069, China. .,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xian, 710069, China.
| |
Collapse
|
466
|
Current and future tools for determination and monitoring of isocitrate dehydrogenase status in gliomas. Curr Opin Neurol 2018; 31:727-732. [DOI: 10.1097/wco.0000000000000617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
467
|
Pollyea DA. Which novel agents for acute myeloid leukemia are likely to change practice? Best Pract Res Clin Haematol 2018; 31:391-395. [DOI: 10.1016/j.beha.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
468
|
Pollyea DA. New drugs for acute myeloid leukemia inspired by genomics and when to use them. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:45-50. [PMID: 30504290 PMCID: PMC6245963 DOI: 10.1182/asheducation-2018.1.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We are several years into the "postdiscovery" era in acute myeloid leukemia (AML) thanks to extensive work involving the sequencing of genomes and exomes of countless patients, which has led to routine comprehensive targeted sequencing in clinical care. The ability to unlock the molecular underpinnings of each patient's disease was supposed to usher in a new treatment era in which each patient was assigned, based on her mutational profile, a personalized cocktail of targeted therapies that would snuff the disease into submission with minimal toxicity. Whether we have fully realized the promise of personalized therapy in AML is unclear. Here, I review those new drugs that have been inspired by genomics, discuss others that might be possible and their potential roles, and consider whether the ability to target genomic mutations in a personalized manner constitutes the future of AML therapeutics or is representative of an era that has already passed.
Collapse
Affiliation(s)
- Daniel A Pollyea
- Division of Hematology, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
469
|
Miyake K, Baba Y, Ishimoto T, Hiyoshi Y, Iwatsuki M, Miyamoto Y, Yoshida N, Watanabe M, Ogata Y, Nagayama M, Silsirivanit A, Kobayashi D, Araki N, Baba H. Isocitrate dehydrogenase gene mutations and 2-hydroxyglutarate accumulation in esophageal squamous cell carcinoma. Med Oncol 2018; 36:11. [PMID: 30506321 DOI: 10.1007/s12032-018-1229-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/18/2018] [Indexed: 12/13/2022]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are key metabolic enzymes that convert isocitrate to α-ketoglutarate. Somatic point mutations in IDH1/2 confer a gain-of-function in cancer cells, resulting in overproduction of an oncometabolite, 2-hydroxyglutarate (2HG). 2HG interferes with cellular metabolism and epigenetic regulation, contributing to oncogenesis. Given that IDH1 and IDH2 are attracting attention as promising therapeutic targets, better evaluation of the incidence of IDH1 and IDH2 mutations and 2HG level in human cancers is clinically important. This is the first study to assess their incidence in esophageal squamous cell carcinomas (ESCCs). First, we established pyrosequencing assays for IDH1 and IDH2 mutations and revealed that these mutations were absent in 10 ESCC cell lines and 96 ESCC tissues. Second, utilizing IDH1 and IDH2 overexpression vectors, we demonstrated that LC-MS/MS assays can accurately evaluate 2HG level and found that some ESCC cases presented a high level of 2HG. In conclusion, IDH1 or IDH2 mutations play a limited role in the development of ESCC. 2HG is potentially synthesized to high levels in the absence of IDH1 and IDH2 mutations, and this may correlate with progression of ESCCs.
Collapse
Affiliation(s)
- Keisuke Miyake
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takatsugu Ishimoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yukiharu Hiyoshi
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuji Miyamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masayuki Watanabe
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Yoko Ogata
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Megumi Nagayama
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Atit Silsirivanit
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Biochemistry, Faculty of Medicine, Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Daiki Kobayashi
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Norie Araki
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
470
|
Picca A, Berzero G, Di Stefano AL, Sanson M. The clinical use of IDH1 and IDH2 mutations in gliomas. Expert Rev Mol Diagn 2018; 18:1041-1051. [PMID: 30427756 DOI: 10.1080/14737159.2018.1548935] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Mutations in the genes isocitrate dehydrogenase (IDH) 1 and 2 have been reported in a limited number of tumors. In gliomas, IDH mutations are primarily detected in WHO grade II-III tumors and represent a major biomarker with diagnostic, prognostic, and predictive implications. The recent development of IDH inhibitors and vaccines suggests that the IDH mutation is also an appealing target for therapy. Areas covered: This review focuses on the role of IDH mutations in diffuse gliomas. Besides discussing their role in gliomagenesis, we will emphasize the role of IDH mutations in clinical practice as a diagnostic, prognostic and predictive biomarker, and as a potential therapeutic target. Noninvasive detection of the IDH mutation by means of liquid biopsy and MR spectroscopy will also be discussed. Expert commentary: While IDH mutation is a consolidated diagnostic and prognostic biomarker in clinical practice, its role in oncogenesis is far from being elucidated, and there are several pending issues. The routine use of noninvasive techniques for detection and monitoring of the IDH status remains challenging. Although the IDH mutation is a very early alteration in gliomagenesis, it may then be omitted during tumor progression. This observation has important implications when designing targeted clinical trials.
Collapse
Affiliation(s)
- Alberto Picca
- a Neuroscience Consortium , University of Pavia , Pavia , Italy
| | - Giulia Berzero
- b Neuroncology Unit , IRCCS Mondino Foundation , Pavia , Italy.,c Biomedical Sciences , University of Pavia , Pavia , Italy
| | - Anna Luisa Di Stefano
- d Sorbonne Universités , Paris , France.,e Department of Neurology , Foch Hospital , Suresnes, Paris , France
| | - Marc Sanson
- d Sorbonne Universités , Paris , France.,f Service de Neurologie 2 , AP-HP, Hôpital de la Pitié-Salpêtrière , Paris , France
| |
Collapse
|
471
|
Seok J, Yoon SH, Lee SH, Jung JH, Lee YM. The oncometabolite d‑2‑hydroxyglutarate induces angiogenic activity through the vascular endothelial growth factor receptor 2 signaling pathway. Int J Oncol 2018; 54:753-763. [PMID: 30483760 DOI: 10.3892/ijo.2018.4649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/12/2018] [Indexed: 11/05/2022] Open
Abstract
The mutation of isocitrate dehydrogenase (IDH)1 (R132H) and IDH2 (R172K) and the induction of hypoxia in various solid tumors results in alterations in metabolic profiles, including the production of the d‑ or l‑forms of 2‑hydroxyglutarate (2HG) from α‑ketoglutarate in aerobic metabolism in the tricarboxylic acid (TCA) cycle. However, it is unclear whether the oncometabolite d‑2HG increases angiogenesis in endothelial cells. Therefore, in this study, we analyzed the levels of various metabolites, including d‑2HG, under hypoxic conditions and in IDH2R172K mutant breast cancer cells by mass spectrometry. We then further evaluated the effects of this metabolite on angiogenesis in breast cancer cells. The results revealed that treatment with d‑2HG increased the levels of secreted vascular endothelial growth factor (VEGF) in cancer cells and enhanced endothelial cell proliferation in a concentration‑dependent manner. Wound healing and cell migration (examined by Transwell assay) were significantly increased by d‑2HG to a level similar to that induced by VEGF. Tube formation was significantly stimulated by d‑2HG, and chick chorioallantoic membrane angiogenesis was also enhanced by d‑2HG. d‑2HG activated VEGF receptor (VEGFR)2 and VEGFR2 downstream signaling, extracellular signal‑regulated kinase 1/2, focal adhesion kinase, AKT and matrix metalloproteinase (MMP)2. Taken together, the findings of this study suggested that d‑2HG induced angiogenic activity via VEGFR2 signaling and increased MMP2 activity.
Collapse
Affiliation(s)
- Jiyoon Seok
- BK21 Plus KNU Multi‑Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo-Hyun Yoon
- BK21 Plus KNU Multi‑Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sun-Hee Lee
- BK21 Plus KNU Multi‑Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong Hwa Jung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - You Mie Lee
- BK21 Plus KNU Multi‑Omics based Creative Drug Research Team, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
472
|
Ramapriyan R, Caetano MS, Barsoumian HB, Mafra ACP, Zambalde EP, Menon H, Tsouko E, Welsh JW, Cortez MA. Altered cancer metabolism in mechanisms of immunotherapy resistance. Pharmacol Ther 2018; 195:162-171. [PMID: 30439456 DOI: 10.1016/j.pharmthera.2018.11.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many metabolic alterations, including the Warburg effect, occur in cancer cells that influence the tumor microenvironment, including switching to glycolysis from oxidative phosphorylation, using opportunistic modes of nutrient acquisition, and increasing lipid biosynthesis. The altered metabolic landscape of the tumor microenvironment can suppress the infiltration of immune cells and other functions of antitumor immunity through the production of immune-suppressive metabolites. Metabolic dysregulation in cancer cells further affects the expression of cell surface markers, which interferes with immune surveillance. Immune checkpoint therapies have revolutionized the standard of care for some patients with cancer, but disease in many others is resistant to immunotherapy. Specific metabolic pathways involved in immunotherapy resistance include PI3K-Akt-mTOR, hypoxia-inducible factor (HIF), adenosine, JAK/STAT, and Wnt/Beta-catenin. Depletion of essential amino acids such as glutamine and tryptophan and production of metabolites like kynurenine in the tumor microenvironment also blunt immune cell function. Targeted therapies against metabolic checkpoints could work in synergy with immune checkpoint therapy. This combined strategy could be refined by profiling patients' mutation status before treatment and identifying the optimal sequencing of therapies. This personalized combinatorial approach, which has yet to be explored, may well pave the way for overcoming resistance to immunotherapy.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Mauricio S Caetano
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hampartsoum B Barsoumian
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ana Carolina P Mafra
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Erika Pereira Zambalde
- Departments of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hari Menon
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Efrosini Tsouko
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, United States
| | - James W Welsh
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Maria Angelica Cortez
- Departments of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
473
|
Haybar H, Shahrabi S, Ghanavat M, Khodadi E. Clonal hematopoiesis: Genes and underlying mechanisms in cardiovascular disease development. J Cell Physiol 2018; 234:8396-8401. [PMID: 30417440 DOI: 10.1002/jcp.27752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 10/23/2018] [Indexed: 11/07/2022]
Abstract
The clonal hematopoiesis when occurring without hematologic abnormalities is defined as clonal hematopoiesis of indeterminate potential (CHIP). Aging causes accumulation of somatic mutations, and hematopoietic stem cells (HSCs) can develop clonal expansion of different lineages by these mutations. CHIP has a correlation with cancer and cardiovascular disease (CVD) through acquired mutations in genes. DNMT3A, TET2, ASXL1, and JAK2 genes as well as other genes are the most common somatic mutations causing CHIP and CVD in an older age. Other factors such as cholesterol level, laboratory tests and indexes also affect CVD. In addition, mutations in adenosine triphosphate-binding cassette transporters and also chronic stress in nervous system can result in HSCs proliferation and CVD. However, laboratory tests and indexes are not sensitive for CVD diagnosis. But the therapeutic interventions can be helpful to prevent CVD cases by targeting somatic mutations, chemokine receptors, and growth factors in HSCs. Also, new drugs can control CVD by targeting of cells and their signaling pathways in HSCs. Therefore, more investigations are needed and more questions should be answered for the relationship between CHIP and CVD as a challenging issue in future.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Ghanavat
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Khodadi
- Research Center of Thalassemia and Hemoglobinopathy, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
474
|
Wang J, Zhang ZG, Ding ZY, Dong W, Liang HF, Chu L, Zhang BX, Chen XP. IDH1 mutation correlates with a beneficial prognosis and suppresses tumor growth in IHCC. J Surg Res 2018; 231:116-125. [PMID: 30278918 DOI: 10.1016/j.jss.2018.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/20/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Isocitrate dehydrogenase 1/2 (IDH1/2) mutations have been reported in intrahepatic cholangiocarcinoma (IHCC). However, the prognosis of a single IDH1 mutation and impact of mutant IDH1 on IHCC tumor growth remain unclear. METHODS A total of 85 IHCC tumor samples were sequenced. Prognosis and clinicopathological correlation were analyzed. The role of mutant IDH1 in IHCC tumor growth was measured by cell proliferation assay, colony formation assay in soft agar, and xenograft tumor models. Akt, ERK, p38 MAPK, and JNK signaling, which commonly affect tumor growth, were examined by Western blotting to explore the potential mechanism. RESULTS IDH1 mutations correlated with a beneficial prognosis and smaller tumor size. Mutant IDH1 exhibited a growth-inhibitory effect on IHCC cell lines in vitro and in vivo. Akt signaling was suppressed in IHCC cell lines expressing a mutant IDH1. The reactivation of Akt signaling by SC79 restored the inhibited growth of cell lines expressing a mutant IDH1 in IHCC. CONCLUSIONS Collectively, we demonstrated that mutant IDH1 correlates with a beneficial prognosis and inhibits tumor growth by suppressing Akt signaling in IHCC. We suggest that patients with IDH1 mutations could be considered for both less-aggressive therapy and therapy tailored to the presence of their mutant enzyme in the future.
Collapse
Affiliation(s)
- Jian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Zhan-Guo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Ze-Yang Ding
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Wei Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery; Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health; Wuhan, China.
| |
Collapse
|
475
|
Alteraciones moleculares en leucemia mieloide aguda y sus implicaciones clínicas y terapéuticas. Med Clin (Barc) 2018; 151:362-367. [DOI: 10.1016/j.medcli.2018.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/04/2018] [Indexed: 11/18/2022]
|
476
|
Fujiwara H, Tateishi K, Kato H, Nakatsuka T, Yamamoto K, Tanaka Y, Ijichi H, Takahara N, Mizuno S, Kogure H, Matsubara S, Nakai Y, Koike K. Isocitrate dehydrogenase 1 mutation sensitizes intrahepatic cholangiocarcinoma to the BET inhibitor JQ1. Cancer Sci 2018; 109:3602-3610. [PMID: 30156013 PMCID: PMC6215870 DOI: 10.1111/cas.13784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022] Open
Abstract
Cholangiocarcinoma is a life-threatening disease with a poor prognosis. Although genome analysis unraveled some genetic mutation profiles in cholangiocarcinoma, it remains unknown whether such genetic abnormalities relate to the effects of anticancer drugs. Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) are exclusively found in almost 20% of intrahepatic cholangiocarcinoma (ICC). Recently, the anticancer effects of BET inhibitors including JQ1 have been shown in various tumors. In the present study, we report that the antigrowth effect of JQ1 differs among ICC cells and IDH1 mutation sensitizes ICC cells to JQ1. RBE cells harboring IDH1 mutation was more sensitive to JQ1 than HuCCT1 or HuH28 cells with wild-type IDH1. JQ1 induced apoptosis only in RBE cells through the upregulation of proapoptotic genes BAX and BIM. We found that the antigrowth effect was not attributed to downregulation of the MYC gene as a well-known target of JQ1 in various cancer cells. Notably, the forced expression of mutant IDH1 successfully sensitized HuCCT1 cells to JQ1. In addition, AGI-5198, a selective inhibitor of mutant IDH1 partially reversed the decrease in viability after JQ1 treatment and also suppressed the JQ1-induced apoptosis in RBE cells. These data suggest that IDH1 mutation contributed to the growth inhibitory effect of JQ1 in RBE cells. Furthermore, given that the effect of mutant IDH1 was not recapitulated in glioblastoma cells, the enhancement of JQ1 sensitivity by IDH1 mutation seems to be specific for ICC cells. Our findings propose a new stratified therapeutic strategy based on IDH1 mutation in ICC.
Collapse
Affiliation(s)
- Hiroaki Fujiwara
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Keisuke Tateishi
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroyuki Kato
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Takuma Nakatsuka
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Keisuke Yamamoto
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yasuo Tanaka
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Hideaki Ijichi
- Department of Clinical Nutrition TherapyThe University of Tokyo HospitalTokyoJapan
| | - Naminatsu Takahara
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Suguru Mizuno
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Hirofumi Kogure
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Saburo Matsubara
- Department of GastroenterologySaitama Medical CenterSaitama Medical UniversityKawagoeJapan
| | - Yousuke Nakai
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Kazuhiko Koike
- Department of GastroenterologyGraduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
477
|
Yang Y, Zhao M, Liu X, Ge P, Zheng F, Chen T, Sun X. Two-way detection of image features and immunolabeling of lymphoma cells with one-step microarray analysis. BIOMICROFLUIDICS 2018; 12:064106. [PMID: 30867867 PMCID: PMC6404911 DOI: 10.1063/1.5063369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/10/2018] [Indexed: 05/04/2023]
Abstract
Detecting the number of pathological lymphoma cells and lymphocyte subtypes in blood is helpful for clinical diagnosis and typing of lymphoma. In the current study, cell type is identified by cell morphological features and immunolabeled lymphocyte subtypes. Red blood cells and leukocytes were separated using a microfluidic cell chip based on physical blood cell parameters, and leukocytes were identified using five characteristic parameters: energy variance, entropy variance, moment of inertia variance, color mean, and cell area individually. The number of red blood cells that could come into contact with the leukocyte membrane was ≤2 based on the microfluidic injection flow rate of microfluidic chips. Anti-CD3 and anti-CD19 antibodies were used for immunofluorescence staining of T-lymphocyte and B-lymphocyte surface antigens, respectively. The results suggested that the microfluidic assay could detect lymphocyte surface antigen markers and intact leukocytes. Therefore, we report a one-step microfluidic chip for classifying hematological lymphoma cells based on the physical parameters of cells, which can simultaneously measure the overall morphology of blood cells and immunolabeling of lymphocyte surface antigens in one step, solving the current problem of detecting subtypes of hematological lymphoma cells based on multiple methods and multi-step detection.
Collapse
Affiliation(s)
- Yu Yang
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, People’s Republic of China
| | - Meng Zhao
- School of Computer Science and Engineering, Tianjin University of Technology, Tianjin 300384, People’s Republic of China
| | - Xiaodan Liu
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, People’s Republic of China
| | - Peng Ge
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, People’s Republic of China
| | - Fang Zheng
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, People’s Republic of China
| | - Tao Chen
- Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, People’s Republic of China
| | - Xuguo Sun
- School of Medical Laboratory, Tianjin Medical University, Tianjin 300203, People’s Republic of China
| |
Collapse
|
478
|
Dexter JP, Ward PS, Dasgupta T, Hosios AM, Gunawardena J, Vander Heiden MG. Lack of evidence for substrate channeling or flux between wildtype and mutant isocitrate dehydrogenase to produce the oncometabolite 2-hydroxyglutarate. J Biol Chem 2018; 293:20051-20061. [PMID: 30381394 DOI: 10.1074/jbc.ra118.004278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/21/2018] [Indexed: 12/31/2022] Open
Abstract
Monoallelic point mutations in the gene encoding the cytosolic, NADP+-dependent enzyme isocitrate dehydrogenase 1 (IDH1) cause increased production of the oncometabolite 2-hydroxyglutarate (2-HG) in multiple cancers. Most IDH1 mutant tumors retain one wildtype (WT) IDH1 allele. Several studies have proposed that retention of this WT allele is protumorigenic by facilitating substrate channeling through a WT-mutant IDH1 heterodimer, with the WT subunit generating a local supply of α-ketoglutarate and NADPH that is then consumed by the mutant subunit to produce 2-HG. Here, we confirmed that coexpression of WT and mutant IDH1 subunits leads to formation of WT-mutant hetero-oligomers and increases 2-HG production. An analysis of a recently reported crystal structure of the WT-R132H IDH1 heterodimer and of in vitro kinetic parameters for 2-HG production, however, indicated that substrate channeling between the subunits is biophysically implausible. We also found that putative carbon-substrate flux between WT and mutant IDH1 subunits is inconsistent with the results of isotope tracing experiments in cancer cells harboring an endogenous monoallelic IDH1 mutation. Finally, using a mathematical model of WT-mutant IDH1 heterodimers, we estimated that the NADPH:NADP+ ratio is higher in the cytosol than in the mitochondria, suggesting that NADPH is unlikely to be limiting for 2-HG production in the cytosol. These findings argue against supply of either substrate being limiting for 2-HG production by a cytosolic IDH1 mutant and suggest that the retention of a WT allele in IDH1 mutant tumors is not due to a requirement for carbon or cofactor flux between WT and mutant IDH1.
Collapse
Affiliation(s)
- Joseph P Dexter
- From the Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Patrick S Ward
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104,; Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Tathagata Dasgupta
- From the Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Aaron M Hosios
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and
| | - Jeremy Gunawardena
- From the Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115,.
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and; Dana-Farber Cancer Institute, Boston, Massachusetts 02115.
| |
Collapse
|
479
|
Harding JJ, Lowery MA, Shih AH, Schvartzman JM, Hou S, Famulare C, Patel M, Roshal M, Do RK, Zehir A, You D, Selcuklu SD, Viale A, Tallman MS, Hyman DM, Reznik E, Finley LWS, Papaemmanuil E, Tosolini A, Frattini MG, MacBeth KJ, Liu G, Fan B, Choe S, Wu B, Janjigian YY, Mellinghoff IK, Diaz LA, Levine RL, Abou-Alfa GK, Stein EM, Intlekofer AM. Isoform Switching as a Mechanism of Acquired Resistance to Mutant Isocitrate Dehydrogenase Inhibition. Cancer Discov 2018; 8:1540-1547. [PMID: 30355724 DOI: 10.1158/2159-8290.cd-18-0877] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/09/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
Somatic mutations in cytosolic or mitochondrial isoforms of isocitrate dehydrogenase (IDH1 or IDH2, respectively) contribute to oncogenesis via production of the metabolite 2-hydroxyglutarate (2HG). Isoform-selective IDH inhibitors suppress 2HG production and induce clinical responses in patients with IDH1- and IDH2-mutant malignancies. Despite the promising activity of IDH inhibitors, the mechanisms that mediate resistance to IDH inhibition are poorly understood. Here, we describe four clinical cases that identify mutant IDH isoform switching, either from mutant IDH1 to mutant IDH2 or vice versa, as a mechanism of acquired clinical resistance to IDH inhibition in solid and liquid tumors. SIGNIFICANCE: IDH-mutant cancers can develop resistance to isoform-selective IDH inhibition by "isoform switching" from mutant IDH1 to mutant IDH2 or vice versa, thereby restoring 2HG production by the tumor. These findings underscore a role for continued 2HG production in tumor progression and suggest therapeutic strategies to prevent or overcome resistance.This article is highlighted in the In This Issue feature, p. 1494.
Collapse
Affiliation(s)
- James J Harding
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maeve A Lowery
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alan H Shih
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan M Schvartzman
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shengqi Hou
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher Famulare
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Minal Patel
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mikhail Roshal
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard K Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ahmet Zehir
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daoqi You
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - S Duygu Selcuklu
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Agnes Viale
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Martin S Tallman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ed Reznik
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elli Papaemmanuil
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Guowen Liu
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Bin Fan
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Sung Choe
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Bin Wu
- Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
| | - Yelena Y Janjigian
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ingo K Mellinghoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Luis A Diaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ross L Levine
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ghassan K Abou-Alfa
- Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eytan M Stein
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew M Intlekofer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York.,Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
480
|
Kayser S, Levis MJ. Clinical implications of molecular markers in acute myeloid leukemia. Eur J Haematol 2018; 102:20-35. [PMID: 30203623 DOI: 10.1111/ejh.13172] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
Abstract
The recently updated World Health Organization (WHO) Classification of myeloid neoplasms and leukemia reflects the fact that research in the underlying pathogenic mechanisms of acute myeloid leukemia (AML) has led to remarkable advances in our understanding of the disease. Gene mutations now allow us to explore the enormous diversity among cytogenetically defined subsets of AML, particularly the large subset of cytogenetically normal AML. Despite the progress in unraveling the tumor genome, only a small number of recurrent mutations have been incorporated into risk-stratification schemes and have been proven to be clinically relevant, targetable lesions. We here discuss the utility of molecular markers in AML in prognostication and treatment decision making, specifically highlighting the aberrations included in the current WHO classification.
Collapse
Affiliation(s)
- Sabine Kayser
- Department of Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark J Levis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
481
|
Avellaneda Matteo D, Wells GA, Luna LA, Grunseth AJ, Zagnitko O, Scott DA, Hoang A, Luthra A, Swairjo MA, Schiffer JM, Sohl CD. Inhibitor potency varies widely among tumor-relevant human isocitrate dehydrogenase 1 mutants. Biochem J 2018; 475:3221-3238. [PMID: 30249606 PMCID: PMC6422176 DOI: 10.1042/bcj20180424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/15/2023]
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) drive most low-grade gliomas and secondary glioblastomas and many chondrosarcomas and acute myeloid leukemia cases. Most tumor-relevant IDH1 mutations are deficient in the normal oxidization of isocitrate to α-ketoglutarate (αKG), but gain the neomorphic activity of reducing αKG to D-2-hydroxyglutarate (D2HG), which drives tumorigenesis. We found previously that IDH1 mutants exhibit one of two reactivities: deficient αKG and moderate D2HG production (including commonly observed R132H and R132C) or moderate αKG and high D2HG production (R132Q). Here, we identify a third type of reactivity, deficient αKG and high D2HG production (R132L). We show that R132Q IDH1 has unique structural features and distinct reactivities towards mutant IDH1 inhibitors. Biochemical and cell-based assays demonstrate that while most tumor-relevant mutations were effectively inhibited by mutant IDH1 inhibitors, R132Q IDH1 had up to a 16 300-fold increase in IC50 versus R132H IDH1. Only compounds that inhibited wild-type (WT) IDH1 were effective against R132Q. This suggests that patients with a R132Q mutation may have a poor response to mutant IDH1 therapies. Molecular dynamics simulations revealed that near the NADP+/NADPH-binding site in R132Q IDH1, a pair of α-helices switches between conformations that are more wild-type-like or more mutant-like, highlighting mechanisms for preserved WT activity. Dihedral angle changes in the dimer interface and buried surface area charges highlight possible mechanisms for loss of inhibitor affinity against R132Q. This work provides a platform for predicting a patient's therapeutic response and identifies a potential resistance mutation that may arise upon treatment with mutant IDH inhibitors.
Collapse
Affiliation(s)
| | - Grace A Wells
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, U.S.A
| | - Lucas A Luna
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, U.S.A
| | - Adam J Grunseth
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, U.S.A
| | - Olga Zagnitko
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, U.S.A
| | - David A Scott
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, U.S.A
| | - An Hoang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, U.S.A
| | - Amit Luthra
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, U.S.A
| | - Manal A Swairjo
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, U.S.A
| | | | - Christal D Sohl
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, U.S.A.
| |
Collapse
|
482
|
Linos K, Tafe LJ. Isocitrate dehydrogenase 1 mutations in melanoma frequently co-occur with NRAS mutations. Histopathology 2018; 73:963-968. [PMID: 30003571 DOI: 10.1111/his.13707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/11/2018] [Indexed: 01/19/2023]
Abstract
AIMS Isocitrate dehydrogenase 1 (IDH1) is a metabolic enzyme that converts isocitrate to α-ketoglutarate. IDH1 mutations are associated with the accumulation of the oncometabolite D-2-hydroxyglutarate, which acts as an epigenetic modifier, and the development of multiple malignancies. METHODS AND RESULTS From May 2013 to June 2017, 252 melanoma samples from 214 patients with advanced or distant metastatic disease were tested for somatic mutations with the 50-gene AmpliSeq version 2 Cancer Hotspot Panel. Two hundred and twenty-six samples were sequenced successfully from 206 patients with 26 samples being characterised as quantity not sufficient. Melanomas from 10 separate patients (4.9%) were positive for IDH1 R132C (nine) or R132S (one). In six cases, the tumours also had a co-existing NRAS mutation (p.Q61R, Q61L and Q61K in two patients each) (P = 0.0044), whereas three patients had BRAF non-V600E mutations (V600K, V600G and V600R). Two cases had a TP53 variant, two cases an ATM variant, one a CDKN2A variant and one had an APC variant. The patients' ages ranged from 45 to 82 years (mean = 65.3, median = 65 years) and three of 10 patients were female (M:F ratio = 2:3). Three patients were stage 3 and seven were stage 4. Two are deceased, five are alive with stable disease (four on pembrolizumab) and three have no evidence of disease. CONCLUSION IDH mutations may define a unique subset of melanoma patients who are eligible for IDH1 targeted therapies or combined therapies, such as MEK inhibitors when there is co-existing NRAS mutations, or immunotherapy.
Collapse
Affiliation(s)
- Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Laura J Tafe
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
483
|
Qiu JG, Shi DY, Liu X, Zheng XX, Wang L, Li Q. Chromatin-regulatory genes served as potential therapeutic targets for patients with urothelial bladder carcinoma. J Cell Physiol 2018; 234:6976-6982. [PMID: 30317582 DOI: 10.1002/jcp.27440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
Abstract
Urothelial bladder carcinoma is the ninth most common cancer in the world, with an estimated 150,000 deaths per year. Two comprehensive analysis based on The Cancer Genome Atlas urothelial bladder carcinoma reported that chromatin modifier gene mutations were common in bladder cancer. We aimed to find how the mutations and transcriptional profiles of the genes involving in chromatin modification affected the prognosis of patients. The data were retrieved from the Genomic Data Commons data portal and the gene list in pathway Chromatin Modifying Enzymes were obtained from Reactome. The expression levels and mutational profiles of the genes involving in the chromatin were utilized altogether to construct a fusion patient similarity network by similarity network fusion. The genes that were differentially expressed in one clustered group or two were identified. Fifty chromatin-regulating genes had nonsilent mutations in at least 10 patients. KMT2D, KDM6A, CREBBP, ARID1A, and ARID2 had enriched inactivating mutations. Among 399 cases where both the single-nucleotide polymorphism information and the messenger RNA expression profiles were available, 326, 23, and 50 patients were clustered into Groups 1, 2, and 3, respectively. The survival analysis suggested that the patients in these three groups had a different prognosis. Thity-one genes were identified as differentially expressed in any group. The Gene Ontology term enrichment showed that the differentially expressed genes were enriched in the immune response especially in the complement activation. Altogether, chromatin-regulatory genes were key in bladder cancer and can serve, with the differentially expressed genes, as potential therapeutic targets.
Collapse
Affiliation(s)
- Jian-Guo Qiu
- Department of Urology, Lianshui County People's Hospital, Huai'an, China
| | - Da-Yan Shi
- Department of Urology, People's Hospital of Funing, Yancheng, China
| | - Xin Liu
- Department of Oncology, The 82 Hospital of People's Liberation Army, Huai'an, China
| | - Xi-Xia Zheng
- Department of Cardiothoracic Surgery, Lianshui County People's Hospital, Huai'an, China
| | - Lei Wang
- Department of Urology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Qian Li
- Department of Urology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
484
|
Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, Long N, Schultz AR, Traer E, Abel M, Agarwal A, Blucher A, Borate U, Bryant J, Burke R, Carlos A, Carpenter R, Carroll J, Chang BH, Coblentz C, d'Almeida A, Cook R, Danilov A, Dao KHT, Degnin M, Devine D, Dibb J, Edwards DK, Eide CA, English I, Glover J, Henson R, Ho H, Jemal A, Johnson K, Johnson R, Junio B, Kaempf A, Leonard J, Lin C, Liu SQ, Lo P, Loriaux MM, Luty S, Macey T, MacManiman J, Martinez J, Mori M, Nelson D, Nichols C, Peters J, Ramsdill J, Rofelty A, Schuff R, Searles R, Segerdell E, Smith RL, Spurgeon SE, Sweeney T, Thapa A, Visser C, Wagner J, Watanabe-Smith K, Werth K, Wolf J, White L, Yates A, Zhang H, Cogle CR, Collins RH, Connolly DC, Deininger MW, Drusbosky L, Hourigan CS, Jordan CT, Kropf P, Lin TL, Martinez ME, Medeiros BC, Pallapati RR, Pollyea DA, Swords RT, Watts JM, Weir SJ, Wiest DL, Winters RM, McWeeney SK, Druker BJ. Functional genomic landscape of acute myeloid leukaemia. Nature 2018; 562:526-531. [PMID: 30333627 PMCID: PMC6280667 DOI: 10.1038/s41586-018-0623-z] [Citation(s) in RCA: 894] [Impact Index Per Article: 127.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023]
Abstract
The implementation of targeted therapies for acute myeloid leukaemia (AML) has been challenging because of the complex mutational patterns within and across patients as well as a dearth of pharmacologic agents for most mutational events. Here we report initial findings from the Beat AML programme on a cohort of 672 tumour specimens collected from 562 patients. We assessed these specimens using whole-exome sequencing, RNA sequencing and analyses of ex vivo drug sensitivity. Our data reveal mutational events that have not previously been detected in AML. We show that the response to drugs is associated with mutational status, including instances of drug sensitivity that are specific to combinatorial mutational events. Integration with RNA sequencing also revealed gene expression signatures, which predict a role for specific gene networks in the drug response. Collectively, we have generated a dataset-accessible through the Beat AML data viewer (Vizome)-that can be leveraged to address clinical, genomic, transcriptomic and functional analyses of the biology of AML.
Collapse
Affiliation(s)
- Jeffrey W Tyner
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Daniel Bottomly
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Beth Wilmot
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Stephen E Kurtz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Samantha L Savage
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Nicola Long
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Anna Reister Schultz
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Melissa Abel
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Aurora Blucher
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Uma Borate
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jade Bryant
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Russell Burke
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Amy Carlos
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Integrated Genomics Laboratories, Oregon Health & Science University, Portland, OR, USA
| | - Richie Carpenter
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Joseph Carroll
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Technology Transfer & Business Development, Oregon Health & Science University, Portland, OR, USA
| | - Bill H Chang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology and Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Cody Coblentz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Amanda d'Almeida
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Rachel Cook
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Alexey Danilov
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Kim-Hien T Dao
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Michie Degnin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Deirdre Devine
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - James Dibb
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - David K Edwards
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Isabel English
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jason Glover
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology and Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Rachel Henson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Integrated Genomics Laboratories, Oregon Health & Science University, Portland, OR, USA
| | - Hibery Ho
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Abdusebur Jemal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology and Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Kara Johnson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ryan Johnson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Brian Junio
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Andy Kaempf
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Biostatistics Shared Resource, Oregon Health & Science University, Portland, OR, USA
| | - Jessica Leonard
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Chenwei Lin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Integrated Genomics Laboratories, Oregon Health & Science University, Portland, OR, USA
| | - Selina Qiuying Liu
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Pierrette Lo
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Marc M Loriaux
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Dapartment of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Samuel Luty
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Tara Macey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jason MacManiman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jacqueline Martinez
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Motomi Mori
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Biostatistics Shared Resource, Oregon Health & Science University, Portland, OR, USA
- Oregon Health & Science University-Portland State University School of Public Health, Portland, OR, USA
| | - Dylan Nelson
- High-Throughput Screening Services Laboratory, Oregon State University, Corvalis, OR, USA
| | - Ceilidh Nichols
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jill Peters
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Justin Ramsdill
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Angela Rofelty
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Robert Schuff
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Robert Searles
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Integrated Genomics Laboratories, Oregon Health & Science University, Portland, OR, USA
| | - Erik Segerdell
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Rebecca L Smith
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Stephen E Spurgeon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Tyler Sweeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Aashis Thapa
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Corinne Visser
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jake Wagner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Kevin Watanabe-Smith
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Kristen Werth
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Joelle Wolf
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology and Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Libbey White
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - Amy Yates
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Haijiao Zhang
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Christopher R Cogle
- Department of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL, USA
| | - Robert H Collins
- Department of Internal Medicine/Hematology Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Denise C Connolly
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- Fox Chase Cancer Center Biosample Repository Facility, Philadelphia, PA, USA
| | - Michael W Deininger
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Leylah Drusbosky
- Department of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL, USA
| | - Christopher S Hourigan
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Denver, CO, USA
| | - Patricia Kropf
- Bone Marrow Transplant Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Tara L Lin
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas, Kansas City, KS, USA
| | - Micaela E Martinez
- Clinical Research Services, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Bruno C Medeiros
- Department of Medicine-Hematology, Stanford University, Stanford, CA, USA
| | - Rachel R Pallapati
- Clinical Research Services, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | | | - Ronan T Swords
- Department of Hematology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Justin M Watts
- Department of Hematology, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Scott J Weir
- Department of Toxicology, Pharmacology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Medicine, Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David L Wiest
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ryan M Winters
- Fox Chase Cancer Center Biosample Repository Facility, Philadelphia, PA, USA
| | - Shannon K McWeeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA.
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA.
- Howard Hughes Medical Institute, Portland, OR, USA.
| |
Collapse
|
485
|
Detection of IDH1 and IDH2 Mutation in Formalin-fixed Paraffin-embedded Gliomas Using Allele-specific COLD-PCR and Probe Melting Curve Analysis. Appl Immunohistochem Mol Morphol 2018; 26:e93-e100. [DOI: 10.1097/pai.0000000000000600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
486
|
Deshmukh RS, Sharma S, Das S. Cyclin F-Dependent Degradation of RBPJ Inhibits IDH1 R132H-Mediated Tumorigenesis. Cancer Res 2018; 78:6386-6398. [PMID: 30254149 DOI: 10.1158/0008-5472.can-18-1772] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/22/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022]
Abstract
Cyclin F is a substrate recognition subunit of Skp1-Cul1-F-box protein (SCF) E3 ubiquitin ligase complex. Although there have been reports describing the role of cyclin F in the genotoxic stress response, its function under conditions of altered metabolic homeostasis remain unexplored. Here we report that cyclin F is induced upon metabolic stress in a FOXO1-dependent manner. Under metabolic stress conditions, cyclin F mediated polyubiquitylation of RBPJ at Lys315, leading to its proteasomal degradation. RBPJ regulated the expression of IDH1, which is often mutated to an oncogenic form IDH1R132H in cancers. Thus, metabolic stress-induced cyclin F attenuated the oncogenic functions of IDH1R132H in an RBPJ-dependent manner. Studies in mouse tumor models indicated that abrogation of cyclin F expression facilitates IDH1R132H-mediated tumorigenesis and metastasis. In addition, increased IDH1R132H levels correlated with reduced cyclin F levels in increasing grades of glioma. These findings highlight a novel aspect of cyclin F functions in inhibiting tumorigenesis and provide mechanistic insights into regulation of IDH1R132H Significance: These findings reveal mechanistic insights into the key role of the cyclin F-RBPJ axis in response to metabolic stress in cancer cells. Cancer Res; 78(22); 6386-98. ©2018 AACR.
Collapse
Affiliation(s)
- Ruhi S Deshmukh
- Molecular Oncology Laboratory, National Institute of Immunology, New Delhi, India
| | - Shalakha Sharma
- Molecular Oncology Laboratory, National Institute of Immunology, New Delhi, India
| | - Sanjeev Das
- Molecular Oncology Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
487
|
Tripathi SC, Fahrmann JF, Vykoukal JV, Dennison JB, Hanash SM. Targeting metabolic vulnerabilities of cancer: Small molecule inhibitors in clinic. Cancer Rep (Hoboken) 2018; 2:e1131. [PMID: 32721114 DOI: 10.1002/cnr2.1131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Altered cell metabolism is an established hallmark of cancer. Advancement in our understanding of dysregulated cellular metabolism has aided drastically in identifying metabolic vulnerabilities that can be exploited therapeutically. Indeed, this knowledge has led to the development of a multitude of agents targeting various aspects of tumor metabolism. RECENT FINDINGS The intent of this review is to provide insight into small molecule inhibitors that target tumor metabolism and that are currently being explored in active clinical trials as either preventive, stand-alone, or adjuvant therapies for various malignancies. For each inhibitor, we outline the mechanism (s) of action, preclinical/clinical findings, and limitations. Sections are divided into three aspects based on the primary target of the small molecule inhibitor (s): those that impact (1) cancer cells directly, (2) immune cells present in the tumor microenvironment, or (3) both cancer cells and immune cells. We highlight small molecule targeting of metabolic pathways including de novo fatty acid synthesis, NAD+ biosynthesis, 2-hydroxyglutarate biosynthesis, polyamine metabolism, the kynurenine pathway, as well as glutamine and arginine metabolism. CONCLUSIONS Use of small molecule inhibitors aimed at exploiting tumor metabolic vulnerabilities continues to be an active area of research. Identifying metabolic dependencies specific to cancer cells and/or constituents of the tumor microenvironment is a viable area of therapeutic intervention that holds considerable clinical potential.
Collapse
Affiliation(s)
- Satyendra C Tripathi
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jody V Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Samir M Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| |
Collapse
|
488
|
Efficient identification of somatic mutations in acute myeloid leukaemia using whole exome sequencing of fingernail derived DNA as germline control. Sci Rep 2018; 8:13751. [PMID: 30213991 PMCID: PMC6137150 DOI: 10.1038/s41598-018-31503-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/06/2018] [Indexed: 11/09/2022] Open
Abstract
Recent advances in next-generation sequencing have made it possible to perform genome wide identification of somatic mutation in cancers. Most studies focus on identifying somatic mutations in the protein coding portion of the genome using whole exome sequencing (WES). Every human genome has around 4 million single nucleotide polymorphisms (SNPs). A sizeable fraction of these germline SNPs is very rare and will not be found in the databases. Thus, in order to unambiguously identify somatic mutation, it is absolutely necessary to know the germline SNPs of the patient. While a blood sample can serve as source of germline DNA from patients with solid tumours, obtaining germline DNA from patients with haematological malignancies is very difficult. Tumor cells often infiltrate the skin, and their DNA can be found in saliva and buccal swab samples. The DNA in the tips of nails stems from keratinocytes that have undergone keratinization several months ago. DNA was successfully extracted from nail clippings of 5 probands for WES. We were able to identify somatic mutations in one tumor exome by using the nail exome as germline reference. Our results demonstrate that nail DNA is a reliable source of germline DNA in the setting of hematological malignancies.
Collapse
|
489
|
Ok CY, Loghavi S, Sui D, Wei P, Kanagal-Shamanna R, Yin CC, Zuo Z, Routbort MJ, Tang G, Tang Z, Jorgensen JL, Luthra R, Ravandi F, Kantarjian HM, DiNardo CD, Medeiros LJ, Wang SA, Patel KP. Persistent IDH1/2 mutations in remission can predict relapse in patients with acute myeloid leukemia. Haematologica 2018; 104:305-311. [PMID: 30171025 PMCID: PMC6355476 DOI: 10.3324/haematol.2018.191148] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/24/2018] [Indexed: 01/23/2023] Open
Abstract
Persistence of IDH1 or IDH2 mutations in remission bone marrow specimens of patients with acute myeloid leukemia has been observed, but the clinical impact of these mutations is not well known. In this study, we evaluated 80 acute myeloid leukemia patients with known IDH1 R132 or IDH2 R140/R172 mutations and assessed their bone marrow at the time of remission to determine the potential impact of persistent IDH1/2 mutations. Approximately 40% of acute myeloid leukemia patients given standard treatment in this cohort had persistent mutations in IDH1/2 Patients with an IDH1/2 mutation had an increased risk of relapse after 1 year of follow-up compared to patients without a detectable IDH1/2 mutation (59% versus 24%; P<0.01). However, a persistent mutation was not associated with a shorter time to relapse. High IDH1/2 mutation burden (mutant allelic frequency ≥10%) did not correlate with relapse rate (77% versus 86% for patients with a low burden, i.e., mutant allelic frequency <10%; P=0.66). Persistent mutations were also observed in NPM1, DNMT3A and FLT3 during remission, but IDH1/2 mutations remained significant in predicting relapse by multivariate analysis. Flow cytometry was comparable and complementary to next-generation sequencing-based assay for predicting relapse. Monitoring for persistent IDH1/2 mutations in patients with acute myeloid leukemia in remission can provide information that could be used to justify early interventions, with the hope of facilitating longer remissions and better outcomes in these patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
490
|
Zhu Y, Dean AE, Horikoshi N, Heer C, Spitz DR, Gius D. Emerging evidence for targeting mitochondrial metabolic dysfunction in cancer therapy. J Clin Invest 2018; 128:3682-3691. [PMID: 30168803 DOI: 10.1172/jci120844] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian cells use a complex network of redox-dependent processes necessary to maintain cellular integrity during oxidative metabolism, as well as to protect against and/or adapt to stress. The disruption of these redox-dependent processes, including those in the mitochondria, creates a cellular environment permissive for progression to a malignant phenotype and the development of resistance to commonly used anticancer agents. An extension of this paradigm is that when these mitochondrial functions are altered by the events leading to transformation and ensuing downstream metabolic processes, they can be used as molecular biomarkers or targets in the development of new therapeutic interventions to selectively kill and/or sensitize cancer versus normal cells. In this Review we propose that mitochondrial oxidative metabolism is altered in tumor cells, and the central theme of this dysregulation is electron transport chain activity, folate metabolism, NADH/NADPH metabolism, thiol-mediated detoxification pathways, and redox-active metal ion metabolism. It is proposed that specific subgroups of human malignancies display distinct mitochondrial transformative and/or tumor signatures that may benefit from agents that target these pathways.
Collapse
Affiliation(s)
- Yueming Zhu
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Angela Elizabeth Dean
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Collin Heer
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - David Gius
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
491
|
Schlenk RF, Jaramillo S, Müller-Tidow C. What's new in consolidation therapy in AML? Semin Hematol 2018; 56:96-101. [PMID: 30926097 DOI: 10.1053/j.seminhematol.2018.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/17/2022]
Abstract
Intensive induction chemotherapy followed by postremission treatment with either high-dose cytarabine-based regimens, autologous or allogeneic hematopoietic stem cell transplantation is still recognized as the main road toward cure in acute myeloid leukemia (AML). Pretreatment risk classification remains a key determinant of type and intensity of post-remission therapy. Still, high-dose cytarabine-based consolidation therapy is a cornerstone of postremission therapy with some recent adjustments regarding dosage and schedule. Current approvals of midostaurin, gemtuzumab ozogamicin, CPX-351, and ivosidenib as well as enasidenib comprise induction as well as consolidation therapy. In recent years measurable residual disease assessment is increasingly used to dynamically fine tune treatment during postremission treatment.
Collapse
Affiliation(s)
- Richard F Schlenk
- NCT-Trial Center, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany; Department of Hematology, Oncology, and Rheumatology at Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany.
| | - Sonia Jaramillo
- Department of Hematology, Oncology, and Rheumatology at Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology, and Rheumatology at Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
492
|
Cai SF, Levine RL. Genetic and epigenetic determinants of AML pathogenesis. Semin Hematol 2018; 56:84-89. [PMID: 30926095 DOI: 10.1053/j.seminhematol.2018.08.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/28/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023]
Abstract
Acute myeloid leukemia (AML) was one of the first cancers to be sequenced at the level of the whole genome. Molecular profiling of AML through targeted sequencing panels and cytogenetics has become a mainstay in risk-stratifying AML patients and guiding clinicians toward optimal therapies for their patients. The extensive high-resolution genomic data generated to characterize AML have been instrumental in revealing the tremendous biological complexity of the disease, dictated in part by mutational, clonal, and epigenetic heterogeneity. This is further complicated by the antecedent nonleukemic state of clonal hematopoiesis that nevertheless is associated with an increased risk of developing a hematologic malignancy and with a greater risk of mortality from ischemic cardiovascular disease. Here in this review, we discuss developments in the field of AML biology and therapeutics, with a focus on advances in our understanding of how genetic and epigenetic determinants of AML have influenced prognostication and recent shifts in treatment paradigms, particularly within the context of precision oncology, for this highly complex group of hematologic malignancies.
Collapse
Affiliation(s)
- Sheng F Cai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.
| | - Ross L Levine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
493
|
Guo X, Zhang M, Cao M, Zhang W, Kang Z, Xu P, Ma C, Gao C. d-2-Hydroxyglutarate dehydrogenase plays a dual role in l-serine biosynthesis and d-malate utilization in the bacterium Pseudomonas stutzeri. J Biol Chem 2018; 293:15513-15523. [PMID: 30131334 DOI: 10.1074/jbc.ra118.003897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/29/2018] [Indexed: 02/03/2023] Open
Abstract
Pseudomonas is a very large bacterial genus in which several species can use d-malate for growth. However, the enzymes that can metabolize d-malate, such as d-malate dehydrogenase, appear to be absent in most Pseudomonas species. d-3-Phosphoglycerate dehydrogenase (SerA) can catalyze the production of d-2-hydroxyglutarate (d-2-HG) from 2-ketoglutarate to support d-3-phosphoglycerate dehydrogenation, which is the initial reaction in bacterial l-serine biosynthesis. In this study, we show that SerA of the Pseudomonas stutzeri strain A1501 reduces oxaloacetate to d-malate and that d-2-HG dehydrogenase (D2HGDH) from P. stutzeri displays d-malate-oxidizing activity. Of note, D2HGDH participates in converting a trace amount of d-malate to oxaloacetate during bacterial l-serine biosynthesis. Moreover, D2HGDH is crucial for the utilization of d-malate as the sole carbon source for growth of P. stutzeri A1501. We also found that the D2HGDH expression is induced by the exogenously added d-2-HG or d-malate and that a flavoprotein functions as a soluble electron carrier between D2HGDH and electron transport chains to support d-malate utilization by P. stutzeri These results support the idea that D2HGDH evolves as an enzyme for both d-malate and d-2-HG dehydrogenation in P. stutzeri In summary, D2HGDH from P. stutzeri A1501 participates in both a core metabolic pathway for l-serine biosynthesis and utilization of extracellular d-malate.
Collapse
Affiliation(s)
- Xiaoting Guo
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Manman Zhang
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Menghao Cao
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Wen Zhang
- the Institute of Medical Sciences, Second Hospital of Shandong University, Jinan 250033, China, and
| | - Zhaoqi Kang
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Ping Xu
- the State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cuiqing Ma
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Chao Gao
- From the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China,
| |
Collapse
|
494
|
Shelar S, Shim EH, Brinkley GJ, Kundu A, Carobbio F, Poston T, Tan J, Parekh V, Benson D, Crossman DK, Buckhaults PJ, Rakheja D, Kirkman R, Sato Y, Ogawa S, Dutta S, Velu SE, Emberley E, Pan A, Chen J, Huang T, Absher D, Becker A, Kunick C, Sudarshan S. Biochemical and Epigenetic Insights into L-2-Hydroxyglutarate, a Potential Therapeutic Target in Renal Cancer. Clin Cancer Res 2018; 24:6433-6446. [PMID: 30108105 DOI: 10.1158/1078-0432.ccr-18-1727] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/09/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Elevation of L-2-hydroxylgutarate (L-2-HG) in renal cell carcinoma (RCC) is due in part to reduced expression of L-2-HG dehydrogenase (L2HGDH). However, the contribution of L-2-HG to renal carcinogenesis and insight into the biochemistry and targets of this small molecule remains to be elucidated. EXPERIMENTAL DESIGN Genetic and pharmacologic approaches to modulate L-2-HG levels were assessed for effects on in vitro and in vivo phenotypes. Metabolomics was used to dissect the biochemical mechanisms that promote L-2-HG accumulation in RCC cells. Transcriptomic analysis was utilized to identify relevant targets of L-2-HG. Finally, bioinformatic and metabolomic analyses were used to assess the L-2-HG/L2HGDH axis as a function of patient outcome and cancer progression. RESULTS L2HGDH suppresses both in vitro cell migration and in vivo tumor growth and these effects are mediated by L2HGDH's catalytic activity. Biochemical studies indicate that glutamine is the predominant carbon source for L-2-HG via the activity of malate dehydrogenase 2 (MDH2). Inhibition of the glutamine-MDH2 axis suppresses in vitro phenotypes in an L-2-HG-dependent manner. Moreover, in vivo growth of RCC cells with basal elevation of L-2-HG is suppressed by glutaminase inhibition. Transcriptomic and functional analyses demonstrate that the histone demethylase KDM6A is a target of L-2-HG in RCC. Finally, increased L-2-HG levels, L2HGDH copy loss, and lower L2HGDH expression are associated with tumor progression and/or worsened prognosis in patients with RCC. CONCLUSIONS Collectively, our studies provide biochemical and mechanistic insight into the biology of this small molecule and provide new opportunities for treating L-2-HG-driven kidney cancers.
Collapse
Affiliation(s)
- Sandeep Shelar
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eun-Hee Shim
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Garrett J Brinkley
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anirban Kundu
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Francesca Carobbio
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tyler Poston
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jubilee Tan
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Vishwas Parekh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel Benson
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Phillip J Buckhaults
- South Carolina College of Pharmacy, University of South Carolina, Columbia, South Calorina
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Richard Kirkman
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yusuke Sato
- Graduate School of Medicine, University of Tokyo, Japan
| | - Seishi Ogawa
- Graduate School of Medicine, University of Tokyo, Japan
| | - Shilpa Dutta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Alison Pan
- Calithera Biosciences, South San Francisco, California
| | - Jason Chen
- Calithera Biosciences, South San Francisco, California
| | - Tony Huang
- Calithera Biosciences, South San Francisco, California
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Anja Becker
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sunil Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
495
|
Chronic immune response dysregulation in MDS pathogenesis. Blood 2018; 132:1553-1560. [PMID: 30104218 DOI: 10.1182/blood-2018-03-784116] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/03/2018] [Indexed: 12/18/2022] Open
Abstract
Chronic innate immune signaling in hematopoietic cells is widely described in myelodysplastic syndromes (MDS), and innate immune pathway activation, predominantly via pattern recognition receptors, increases the risk of developing MDS. An inflammatory component to MDS has been reported for many years, but only recently has evidence supported a more direct role of chronic innate immune signaling and associated inflammatory pathways in the pathogenesis of MDS. Here we review recent findings and discuss relevant questions related to chronic immune response dysregulation in MDS.
Collapse
|
496
|
Waitkus MS, Diplas BH, Yan H. Biological Role and Therapeutic Potential of IDH Mutations in Cancer. Cancer Cell 2018; 34:186-195. [PMID: 29805076 PMCID: PMC6092238 DOI: 10.1016/j.ccell.2018.04.011] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/25/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022]
Abstract
Hotspot mutations in isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) occur in a variety of myeloid malignancies and solid tumors. Mutant IDH proteins acquire a neomorphic enzyme activity to produce the putative oncometabolite D-2-hydroxyglutarate, which is thought to block cellular differentiation by competitively inhibiting α-ketoglutarate-dependent dioxygenases involved in histone and DNA demethylation. Small-molecule inhibitors of mutant IDH1 and IDH2 have been developed and are progressing through pre-clinical and clinical development. In this review, we provide an overview of mutant IDH-targeted therapy and discuss a number of important recent pre-clinical studies using models of IDH-mutant solid tumors.
Collapse
Affiliation(s)
- Matthew S Waitkus
- Department of Pathology, Duke University, Durham, NC, USA; The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Bill H Diplas
- Department of Pathology, Duke University, Durham, NC, USA; The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Hai Yan
- Department of Pathology, Duke University, Durham, NC, USA; The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA.
| |
Collapse
|
497
|
Abstract
Enasidenib is an orally available, selective, potent, small molecule inhibitor of mutant isocitrate dehydrogenase 2 (IDH2). Neomorphic mutations in IDH2 are frequently found in both hematologic malignancies and solid tumors and lead to the production of the oncometabolite (R)-2-hydroxyglutarate. Increased levels of (R)-2-hydroxyglutarate cause histone and DNA hypermethylation associated with blocked differentiation and tumorigenesis. In PDX mice transplanted with human IDH2-mutant acute myeloid leukemia cells, enasidenib treatment led to normalization of (R)-2-hydroxyglutarate serum levels, differentiation of leukemic blasts and increased survival. Early clinical data in patients with relapsed/refractory IDH2-mutant acute myeloid leukemia show that enasidenib is well tolerated and induces durable complete remissions as a single agent in about 20% of cases. One notable drug-related adverse effect is differentiation syndrome. On the basis of these results the compound has recently been approved for the treatment of relapsed/refractory IDH2-mutant acute myeloid leukemia in the USA. Although no data are available yet, clinical trials on the treatment of patients with several types of IDH2-mutant solid tumors including gliomas, chondrosarcomas and cholangiocarcinomas are currently being performed.
Collapse
|
498
|
Gambacorti-Passerini C, Piazza R. How "precise" is precision medicine in hematology? Haematologica 2018; 102:4-6. [PMID: 28040787 DOI: 10.3324/haematol.2016.155267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Rocco Piazza
- Hematology, School of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, Monza, Italy
| |
Collapse
|
499
|
Toth LN, de Abreu FB, Tafe LJ. Non–small cell lung cancers with isocitrate dehydrogenase 1 or 2 ( IDH1/2 ) mutations. Hum Pathol 2018; 78:138-143. [DOI: 10.1016/j.humpath.2018.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/07/2018] [Accepted: 04/20/2018] [Indexed: 02/06/2023]
|
500
|
Gallipoli P, Huntly BJP. Novel epigenetic therapies in hematological malignancies: Current status and beyond. Semin Cancer Biol 2018; 51:198-210. [PMID: 28782607 DOI: 10.1016/j.semcancer.2017.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Over the last decade transcriptional dysregulation and altered epigenetic programs have emerged as a hallmark in the majority of hematological cancers. Several epigenetic regulators are recurrently mutated in many hematological malignancies. In addition, in those cases that lack epigenetic mutations, altered function of epigenetic regulators has been shown to play a central role in the pathobiology of many hematological neoplasms, through mechanisms that are becoming increasingly understood. This, in turn, has led to the development of small molecule inhibitors of dysregulated epigenetic pathways as novel targeted therapies for hematological malignancies. In this review, we will present the most recent advances in our understanding of the role played by dysregulated epigenetic programs in the development and maintenance of hematological neoplasms. We will describe novel therapeutics targeting altered epigenetic programs and outline their mode of action. We will then discuss their use in specific conditions, identify potential limitations and putative toxicities while also providing an update on their current clinical development. Finally, we will highlight the opportunities presented by epigenetically targeted therapies in hematological malignancies and introduce the challenges that need to be tackled by both the research and clinical communities to best translate these novel therapies into clinical practice and to improve patient outcomes.
Collapse
Affiliation(s)
- Paolo Gallipoli
- Department of Hematology, Cambridge Institute for Medical Research and Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK
| | - Brian J P Huntly
- Department of Hematology, Cambridge Institute for Medical Research and Addenbrookes Hospital, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|