451
|
Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J 2004; 22:5501-10. [PMID: 14532122 PMCID: PMC213768 DOI: 10.1093/emboj/cdg513] [Citation(s) in RCA: 485] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The tumour suppressor PTEN is a PtdIns(3,4,5)P(3) phosphatase that regulates many cellular processes through direct antagonism of PI 3-kinase signalling. Here we show that oxidative stress activates PI 3-kinase-dependent signalling via the inactivation of PTEN. We use two assay systems to show that cellular PTEN phosphatase activity is inhibited by oxidative stress induced by 1 mM hydrogen peroxide. PTEN inactivation by oxidative stress also causes an increase in cellular PtdIns(3,4,5)P(3) levels and activation of the downstream PtdIns(3,4,5)P(3) target, PKB/Akt, that does not occur in cells lacking PTEN. We then show that endogenous oxidant production in RAW264.7 macrophages inactivates a fraction of the cellular PTEN, and that this is associated with an oxidant-dependent activation of downstream signalling. These results show that oxidants, including those produced by cells, can activate downstream signalling via the inactivation of PTEN. This demonstrates a novel mechanism of regulation of the activity of this important tumour suppressor and the signalling pathways it regulates. These results may have significant implications for the many cellular processes in which PtdIns(3,4,5)P(3) and oxidants are produced concurrently.
Collapse
Affiliation(s)
- Nick R Leslie
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | | | | | | | | | |
Collapse
|
452
|
Wan X, Helman LJ. Levels of PTEN protein modulate Akt phosphorylation on serine 473, but not on threonine 308, in IGF-II-overexpressing rhabdomyosarcomas cells. Oncogene 2003; 22:8205-11. [PMID: 14603261 DOI: 10.1038/sj.onc.1206878] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Constitutive activation of Akt has been found in many types of human cancer, and is believed to promote proliferation and increased cell survival thereby contributing to cancer progression. In this study, we examined Akt phosphorylation on Ser473 and Thr308 in seven IGF-II-overexpressing rhabdomyosarcomas (RMS) cells. All the RMS cell lines tested had high levels of Akt phosphorylation on Thr308, whereas three cell lines (Rh5, Rh18, and CTR) had a much lower level of Akt phosphorylation on Ser473. To determine whether the difference in Akt phosphorylation on Ser473, but not on Thr308, observed among cell lines is a cell-specific phenomenon or due to other factors, which possibly downregulate Akt phosphorylation, we examined expression of PTEN protein, which acts as a negative regulator of the PI3K/Akt signaling pathway through its ability to dephosphorylate phosphatidylinositol 3,4,5-triphosphate (PIP3). The levels of PTEN expression inversely correlate with Akt phosphorylation on Ser473, but not on Thr308. Consistent with this finding, transfection of wild-type PTEN into RMS and mouse myoblast C2C12 cells resulted in reduced Akt phosphorylation on Ser473, but not on Thr308. Our data suggest that Ser473 may be a key target residue for PTEN to modulate the effects of IGF-II on activating the PI3K/Akt pathway in RMS cells. A better understanding of the pathway in RMS will likely contribute to insights into the biology of the RMS tumorigenesis and hopefully lead to novel therapeutic options.
Collapse
Affiliation(s)
- Xiaolin Wan
- Molecular Oncology Section, Pediatric Oncology Branch, NCI, National Institutes of Health, Bethesda, MD 20892-1928, USA
| | | |
Collapse
|
453
|
Phosphoinositide 3-kinase cascade facilitates mu-opioid desensitization in sensory neurons by altering G-protein-effector interactions. J Neurosci 2003. [PMID: 14614088 DOI: 10.1523/jneurosci.23-32-10292.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Signaling via G-protein-coupled receptors undergoes desensitization after prolonged agonist exposure. Here we investigated the role of phosphoinositide 3-kinase (PI3K) and its downstream pathways in desensitization of micro-opioid inhibition of neuronal Ca2+ channels. In cultured mouse dorsal root ganglion neurons, two mechanistically different forms of desensitization were observed after acute or chronic treatment with the micro agonist [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin (DAMGO). Chronic DAMGO desensitization was heterologous in nature and significantly attenuated by blocking the activity of PI3K or mitogen-activated protein kinase (MAPK). A combined application of PI3K and MAPK inhibitors showed no additive effect, suggesting that these two kinases act in a common pathway to facilitate chronic desensitization. Acute DAMGO desensitization, however, was not affected by the inhibitors. Furthermore, upregulation of the PI3K-Akt pathway in mutant mice lacking phosphatase and tensin homolog, a lipid phosphatase counteracting PI3K, selectively enhanced chronic desensitization in a PI3K- and MAPK-dependent manner. Using the prepulse facilitation (PPF) test, we further examined changes in the voltage-dependent component of DAMGO action that requires direct interactions between betagamma subunits of G-proteins and Ca2+ channels. DAMGO-induced PPF was diminished after chronic treatment, suggesting disruption of G-protein-channel interactions. Such disruption could occur at the postreceptor level, because chronic DAMGO also reduced GTPgammaS-induced PPF that was independent of receptor activation. Again, inhibition of PI3K or MAPK reduced desensitization of PPF. Our data suggest that the PI3Kcascade involving MAPK and Akt enhances micro-opioid desensitization via postreceptor modifications that interfere with G-protein-effector interactions.
Collapse
|
454
|
Lévy P, Robin H, Bertrand F, Kornprobst M, Capeau J. Butyrate-treated colonic Caco-2 cells exhibit defective integrin-mediated signaling together with increased apoptosis and differentiation. J Cell Physiol 2003; 197:336-47. [PMID: 14566963 DOI: 10.1002/jcp.10345] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We previously reported that the enterocytic differentiation of human colonic Caco-2 cells correlated with alterations in integrin signaling. We now investigated whether differentiation and apoptosis of Caco-2 cells induced by the short-chain fatty acid butyrate (NaBT) was associated with alterations in the integrin-mediated signaling pathway with special interest in the expression and activity of focal adhesion kinase (FAK), of the downstream phosphatidylinositol 3'-kinase (PI 3-kinase)-Akt pathway and in the role of the nuclear factor kappaB (NF-kappaB). NaBT increased the level of sucrase. It induced apoptosis as shown by: (1) decreased Bcl-2 and Bcl-X(L) proteins and increased Bax protein; (2) activation of caspase-3; and (3) increased shedding of apoptotic cells in the medium. This effect was associated with defective integrin-mediated signaling as shown by: (1) down-regulation of beta1 integrin expression; 2) decreased FAK expression and tyrosine phosphorylation; (3) concerted alterations in cytoskeletal and structural focal adhesions proteins (talin, ezrin); and (4) decreased FAK ability to associate with PI 3-kinase. However, in Caco-2 cells, beta1-mediated signaling failed to be activated downstream of FAK and PI 3-kinase at the level of Akt. Transfection studies show that NaBT treatment of Caco-2 cells promoted a significant activation of the NF-kappaB which was probably involved in the NaBT-induced apoptosis. Our results indicate that the prodifferentiating agent NaBT induced apoptosis of Caco-2 cells probably through NF-kappaB activation together with a defective beta1 integrin-FAK-PI 3-kinase pathways signaling.
Collapse
Affiliation(s)
- Peggy Lévy
- INSERM U. 402, Faculté de Médecine Saint-Antoine, rue Chaligny, Paris Cedex, France.
| | | | | | | | | |
Collapse
|
455
|
Shin Lee J, Seok Kim H, Bok Kim Y, Cheol Lee M, Soo Park C. Expression of PTEN in renal cell carcinoma and its relation to tumor behavior and growth. J Surg Oncol 2003; 84:166-72. [PMID: 14598361 DOI: 10.1002/jso.10302] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES PTEN is a candidate tumor suppressor gene in a variety of malignant tumors, including renal cell carcinoma (RCC). PTEN regulates cell cycle progression and cell survival in vivo. However, the role of PTEN alterations and their association with tumor growth and behavior in patients with RCC has not been well established. The aim of our study was to evaluate PTEN expression in RCC and its correlation with clinicopathologic features, cell proliferation, and apoptosis. METHODS Sixty-seven RCC specimens were examined immunohistochemically with anti-PTEN antibody. The apoptotic cells were visualized by terminal deoxynucleotidyl transferase (TdT) mediated dUTP nick-end labeling (TUNEL) and proliferative cells were visualized by staining with Ki-67 antibody. RESULTS Twenty-one (31.3%) of the 67 RCCs showed reduced PTEN expression. The apoptotic index (AI) varied from 0.2 to 25.5%, and the Ki-67 index (KI) ranged from 1.6 to 69.8%. Reduced PTEN expression correlated with TNM stage (P < 0.05) and nuclear grade (P < 0.05). Tumors with reduced PTEN expression had a significantly higher KI than those with normal PTEN expression (P < 0.01). By univariate analysis, nuclear grade (P = 0.0005), TNM stage (P < 0.0001), AI (P = 0.0220), KI (P = 0.0002), and reduced PTEN expression (P < 0.0001) were associated with shortened survival. However, TNM stage was the only independent prognostic factors by multivariate analysis (P = 0.0007). CONCLUSIONS Our results suggest that PTEN expression is frequently reduced in advanced RCC. The PTEN gene seems to be important for the growth suppression of RCC, by inhibiting cell proliferation.
Collapse
Affiliation(s)
- Ji Shin Lee
- Department of Pathology, Seonam University, College of Medicine, Namwon, Korea.
| | | | | | | | | |
Collapse
|
456
|
Affiliation(s)
- Heiko Hermeking
- Molecular Oncology, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Germany.
| |
Collapse
|
457
|
Zhao S, Konopleva M, Cabreira-Hansen M, Xie Z, Hu W, Milella M, Estrov Z, Mills GB, Andreeff M. Inhibition of phosphatidylinositol 3-kinase dephosphorylates BAD and promotes apoptosis in myeloid leukemias. Leukemia 2003; 18:267-75. [PMID: 14628071 DOI: 10.1038/sj.leu.2403220] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT protein kinase pathway is involved in cell growth, proliferation, and apoptosis. The functional activation of PI3K/AKT provides survival signals and blockade of this pathway may facilitate cell death. Downstream targets of PI3K-AKT include the proapoptotic protein BAD, caspase-9, NF-kappaB, and Forkhead. We have previously reported that BAD is constitutively phosphorylated in primary acute myeloid leukemia (AML) cells, a post-transcriptional modification, which inactivates its proapoptotic function. In this study, we tested the hypothesis that the inhibition of PI3K by LY294002 results in the dephosphorylation of AKT and BAD, and thus promote leukemia cell apoptosis. We investigated the effects of LY294002 in megakaryocytic leukemia-derived MO7E cells, primary AML and normal bone marrow progenitor cells. In MO7E cells, LY294002 reduced AKT kinase activity, induced dephosphorylation of AKT and BAD, and increased apoptosis. Concomitant inhibition of mitogen-activated protein kinase signaling or combination with all-trans retinoic acid further enhanced apoptosis of leukemic cells. In primary AML samples, clonogenic cell growth was significantly reduced. Normal hematopoietic progenitors were less affected, suggesting preferential targeting of leukemia cells. In conclusion, the data suggest that the inhibition of the PI3K/AKT signaling pathway restores apoptosis in AML and may be explored as a novel target for molecular therapeutics in AML.
Collapse
Affiliation(s)
- S Zhao
- Section of Molecular Hematology and Therapy, Department of Blood and Marrow Transplantation, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
458
|
Tan M, Groszer M, Tan AM, Pandya A, Liu X, Xie CW. Phosphoinositide 3-kinase cascade facilitates mu-opioid desensitization in sensory neurons by altering G-protein-effector interactions. J Neurosci 2003; 23:10292-301. [PMID: 14614088 PMCID: PMC6741018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Signaling via G-protein-coupled receptors undergoes desensitization after prolonged agonist exposure. Here we investigated the role of phosphoinositide 3-kinase (PI3K) and its downstream pathways in desensitization of micro-opioid inhibition of neuronal Ca2+ channels. In cultured mouse dorsal root ganglion neurons, two mechanistically different forms of desensitization were observed after acute or chronic treatment with the micro agonist [D-Ala2, N-MePhe4, Gly-ol5]-enkephalin (DAMGO). Chronic DAMGO desensitization was heterologous in nature and significantly attenuated by blocking the activity of PI3K or mitogen-activated protein kinase (MAPK). A combined application of PI3K and MAPK inhibitors showed no additive effect, suggesting that these two kinases act in a common pathway to facilitate chronic desensitization. Acute DAMGO desensitization, however, was not affected by the inhibitors. Furthermore, upregulation of the PI3K-Akt pathway in mutant mice lacking phosphatase and tensin homolog, a lipid phosphatase counteracting PI3K, selectively enhanced chronic desensitization in a PI3K- and MAPK-dependent manner. Using the prepulse facilitation (PPF) test, we further examined changes in the voltage-dependent component of DAMGO action that requires direct interactions between betagamma subunits of G-proteins and Ca2+ channels. DAMGO-induced PPF was diminished after chronic treatment, suggesting disruption of G-protein-channel interactions. Such disruption could occur at the postreceptor level, because chronic DAMGO also reduced GTPgammaS-induced PPF that was independent of receptor activation. Again, inhibition of PI3K or MAPK reduced desensitization of PPF. Our data suggest that the PI3Kcascade involving MAPK and Akt enhances micro-opioid desensitization via postreceptor modifications that interfere with G-protein-effector interactions.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Cells, Cultured
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enzyme Inhibitors/pharmacology
- GTP-Binding Proteins/metabolism
- Ganglia, Spinal/cytology
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- PTEN Phosphohydrolase
- Patch-Clamp Techniques
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoinositide-3 Kinase Inhibitors
- Phosphoric Monoester Hydrolases/deficiency
- Phosphoric Monoester Hydrolases/genetics
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tumor Suppressor Proteins/deficiency
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Miao Tan
- Department of Psychiatry and Biobehavioral Sciences, Neuropsychiatric Institute, University of California, Los Angeles, Los Angeles, California 90024-1759, USA
| | | | | | | | | | | |
Collapse
|
459
|
Keeshan K, Cotter TG, McKenna SL. Bcr-Abl upregulates cytosolic p21WAF-1/CIP-1 by a phosphoinositide-3-kinase (PI3K)-independent pathway. Br J Haematol 2003; 123:34-44. [PMID: 14510940 DOI: 10.1046/j.1365-2141.2003.04538.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic myeloid leukaemia invariably progresses from a drug-sensitive to a drug-resistant, aggressive acute leukaemia. The mechanisms responsible for this are unknown, although loss of p53 has been reported in approximately 25% of cases. Elevated expression of Bcr-Abl is also associated with disease progression. We have shown that cells expressing high levels of Bcr-Abl also express elevated levels of p53 and the cell cycle inhibitor, p21WAF-1. Despite this, cells continue to cycle and are drug resistant. As p21WAF-1 inhibitory activity is associated with nuclear localization, we investigated its localization in Bcr-Abl-expressing cells, and found that it is predominantly cytoplasmic. We have also shown that it associates physically with the serine/threonine kinase AKT, but this association and the cytosolic location of p21WAF-1 are phosphinositide-3-kinase (PI3K) independent. Cytosolic p21WAF-1 has been reported to have a prosurvival role in other transformed cells. In Bcr-Abl-expressing cells, p21WAF-1 rapidly diminishes as the cells are sensitized to apoptosis, using the inhibitor STI571. It is possible therefore that p21WAF-1 could also have a positive, prosurvival role in these cells. This study suggests that, by retaining p21WAF-1 in a cytosolic location, Bcr-Abl can evade the cell cycle arrest normally induced by nuclear p21WAF-1 and therefore also enable the cells to negate an important feature of a tumour suppressor response.
Collapse
Affiliation(s)
- Karen Keeshan
- Department of Pathology, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
460
|
Ciechomska I, Pyrzynska B, Kazmierczak P, Kaminska B. Inhibition of Akt kinase signalling and activation of Forkhead are indispensable for upregulation of FasL expression in apoptosis of glioma cells. Oncogene 2003; 22:7617-27. [PMID: 14576824 DOI: 10.1038/sj.onc.1207137] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activation of Akt signalling pathway is frequently found in glioma cells and may contribute to their resistance to undergo apoptosis in response to conventional therapies. We found that cyclosporin A (CsA) induces apoptosis of C6 glioma cells, which is associated with transcriptional activation of fasL. In the present paper, we investigated an involvement of Akt signalling in the regulation of FasL expression in CsA-induced apoptosis. We demonstrated that the level of active Akt decreases significantly after CsA treatment, which results in the decrease of Forkhead phosphorylation and its translocation to the nucleus. It correlated with an increase of binding to the Forkhead-responsive element FHRE from the FasL promoter, as demonstrated by gel-shift assays. Although treatment with LY294002, a specific inhibitor of PI3 K, decreased the phosphorylation of Akt and increased Fkhr translocation to the nucleus, these events were not sufficient to induce FasL expression and apoptosis of C6 glioma cells. Interference with Akt/Forkhead signalling by membrane-targeted Akt or removal of the FKHR-binding sites from the FasL promoter significantly abolished its activation. These results indicate that downregulation of Akt signalling and activation of Forkhead is a prerequisite for the induction of FasL promoter. It may be clinically important for pharmacological intervention in gliomas.
Collapse
Affiliation(s)
- Iwona Ciechomska
- Laboratory of Transcription Regulation, Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Str., 02-093 Warsaw, Poland
| | | | | | | |
Collapse
|
461
|
Orchiston EA, Bennett D, Leslie NR, Clarke RG, Winward L, Downes CP, Safrany ST. PTEN M-CBR3, a versatile and selective regulator of inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5). Evidence for Ins(1,3,4,5,6)P5 as a proliferative signal. J Biol Chem 2003; 279:1116-22. [PMID: 14561749 DOI: 10.1074/jbc.m310933200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumor suppressor is a phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) 3-phosphatase that plays a crucial role in regulating many cellular processes by antagonizing the phosphoinositide 3-kinase signaling pathway. Although able to metabolize soluble inositol phosphates in vitro, the question of their significance as physiological substrates is unresolved. We show that inositol phosphates are not regulated by wild type PTEN, but that a synthetic mutant, PTEN M-CBR3, previously thought to be inactive toward inositides, can selectively regulate inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P5). Transfection of U87-MG cells with PTEN M-CBR3 lowered Ins(1,3,4,5,6)P5 levels by 60% without detectable effect on PtdInsP3. Although PTEN M-CBR3 is a 3-phosphatase, levels of myo-inositol 1,4,5,6-tetrakisphosphate were not increased, whereas myo-inositol 1,3,4,6-tetrakisphospate levels increased by 80%. We have used PTEN M-CBR3 to study the physiological function of Ins(1,3,4,5,6)P5 and have found that Ins(1,3,4,5,6)P5 does not modulate PKB phosphorylation, nor does it regulate clathrin-mediated epidermal growth factor receptor internalization. By contrast, PTEN M-CBR3 expression, and the subsequent lowering of Ins(1,3,4,5,6)P5, are associated with reduced anchorage-independent colony formation and anchorage-dependent proliferation in U87-MG cells. Our results, together with previously published data, suggest that Ins(1,3,4,5,6)P5 has a role in proliferation.
Collapse
Affiliation(s)
- Elaine A Orchiston
- Division of Cell Signalling, Faculty of Life Sciences, MSI/WTB Complex, Dow St., The University of Dundee, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
462
|
Merlot S, Meili R, Pagliarini DJ, Maehama T, Dixon JE, Firtel RA. A PTEN-related 5-phosphatidylinositol phosphatase localized in the Golgi. J Biol Chem 2003; 278:39866-73. [PMID: 12878591 DOI: 10.1074/jbc.m306318200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Phosphoinositides play important roles as signaling molecules in different cell compartments by regulating the localization and activity of proteins through their interaction with specific domains. The activity of these lipids depends on which sites on the inositol ring are phosphorylated. Signaling pathways dependent on phosphoinositides phosphorylated at the D3 position of this ring (3-phosphoinositides) are negatively regulated by 3-phosphoinositide-specific phosphatases that include PTEN and myotubularin. Using the conserved PTEN catalytic core motif, we have identified a new protein in the Dictyostelium genome called phospholipid-inositol phosphatase (PLIP), which defines a new subfamily of phosphoinositide phosphatases clearly distinct from PTEN or other closely related proteins. We show that PLIP is able to dephosphorylate a broad spectrum of phosphoinositides, including 3-phosphoinositides. In contrast to previously characterized phosphoinositide phosphatases, PLIP has a preference for phosphatidylinositol 5-phosphate, a newly discovered phosphoinositide. We found that PLIP is localized in the Golgi, with its phosphatase domain facing the cytoplasmic compartment. PLIP null cells created via homologous recombination are unable to effectively aggregate to form multicellular organisms at low cell densities. The presence of PLIP in the Golgi suggests that it may be involved in membrane trafficking.
Collapse
Affiliation(s)
- Sylvain Merlot
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0634, USA
| | | | | | | | | | | |
Collapse
|
463
|
Abstract
The inherited hamartoma polyposis syndromes encompass several distinct clinical syndromes with different genetic bases, Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome (BRRS), juvenile polyposis syndrome (JPS), and Peutz-Jeghers syndrome (PJS). Germline mutations in PTEN, encoding a tumor suppressor phosphatase on 10q23.3, is associated with 80% of CS and 60% of BRRS. JPS is caused by mutations in MADH4 and BMPR1A, encoding two members of the TGFB superfamily. Germline mutations in LKB1 (STK11) are associated with a subset of PJS. The number, distribution, and histologic type of polyps differ amongst these syndromes as do component cancer risks. While rare, usually asymptomatic, hamartomatous polyps are felt to be component to CS. Hamartomatous polyposis is usually prominent and symptomatic in BRRS. Polyposis, which can be quite symptomatic, is a cardinal component feature of PJS and JPS. Interestingly, glycogenic acanthosis of the esophagus is highly predictive of CS and the presence of PTEN mutation. PTEN mutation positive CS have been shown to be at increased risk of breast, thyroid, and endometrial cancer. PTEN mutation positive BRRS are at increased risk of at least breast cancer, possibly that of the thyroid as well. In contrast, JPS and PJS have increased risk of gastrointestinal cancers in particular. Thus, molecular-based diagnoses to differentiate each of these syndromes are important for medical management.
Collapse
Affiliation(s)
- Charis Eng
- Clinical Cancer Genetics Program and Human Cancer Genetics Program, Comprehensive Cancer Center, Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
464
|
Radu A, Neubauer V, Akagi T, Hanafusa H, Georgescu MM. PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1. Mol Cell Biol 2003; 23:6139-49. [PMID: 12917336 PMCID: PMC180959 DOI: 10.1128/mcb.23.17.6139-6149.2003] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PTEN is a tumor suppressor frequently inactivated in brain, prostate, and uterine cancers that acts as a phosphatase on phosphatidylinositol-3,4,5-trisphosphate, antagonizing the activity of the phosphatidylinositol 3'-OH kinase. PTEN manifests its tumor suppressor function in most tumor cells by inducing G(1)-phase cell cycle arrest. To study the mechanism of cell cycle arrest, we established a tetracycline-inducible expression system for PTEN in cell lines lacking this gene. Expression of wild-type PTEN but not of mutant forms unable to dephosphorylate phosphoinositides reduced the expression of cyclin D1. Cyclin D1 reduction was accompanied by a marked decrease in endogenous retinoblastoma (Rb) protein phosphorylation on cyclin D/CDK4-specific sites, showing an early negative effect of PTEN on Rb inactivation. PTEN expression also prevented cyclin D1 from localizing to the nucleus during the G(1)- to S-phase cell cycle transition. The PTEN-induced localization defect and the cell growth arrest could be rescued by the expression of a nucleus-persistent mutant form of cyclin D1, indicating that an important effect of PTEN is at the level of nuclear availability of cyclin D1. Constitutively active Akt/PKB kinase counteracted the effect of PTEN on cyclin D1 translocation. The data are consistent with an oncogenesis model in which a lack of PTEN fuels the cell cycle by increasing the nuclear availability of cyclin D1 through the Akt/PKB pathway.
Collapse
Affiliation(s)
- Aurelian Radu
- Carl C. Icahn Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, New York,USA
| | | | | | | | | |
Collapse
|
465
|
Abstract
PTEN, on 10q23.3, encodes a major lipid phosphatase which signals down the phosphoinositol-3-kinase/Akt pathway and effects G1 cell cycle arrest and apoptosis. Germline PTEN mutations have been found to occur in 80% of classic Cowden syndrome (CS), 60% of Bannayan-Riley-Ruvalcaba syndrome (BRRS), up to 20% of Proteus syndrome (PS), and approximately 50% of a Proteus-like syndrome (PSL). CS is a heritable multiple hamartoma syndrome with a high risk of breast, thyroid, and endometrial carcinomas. BRRS is a congenital autosomal dominant disorder characterized by megencephaly, developmental delay, lipomatosis, and speckled penis. PS and PSL had never been associated with risk of malignancy. Finding germline PTEN mutations in patients with BRRS, PS, and PSL suggests equivalent risks of developing malignancy as in CS with implications for medical management. The mutational spectra of CS and BRRS overlap, with many of the mutations occurring in exons 5, 7, and 8. Genotype-phenotype association analyses have revealed that the presence of germline PTEN mutations is associated with breast tumor development, and that mutations occurring within and 5' of the phosphatase motif were associated with multi-organ involvement. Pooled analysis of PTEN mutation series of CS and BRRS occurring in the last five years reveals that 65% of CS-associated mutations occur in the first five exons encoding the phosphatase domain and the promoter region, while 60% of BRRS-associated mutations occur in the 3' four exons encoding mainly the C2 domain. Somatic PTEN mutations occur with a wide distribution of frequencies in sporadic primary tumors, with the highest frequencies in endometrial carcinomas and glioblastoma multiform. Several mechanisms of PTEN inactivation occur in primary malignancies derived from different tissues, but a favored mechanism appears to occur in a tissue-specific manner. Inappropriate subcellular compartmentalization and increased/decreased proteosome degradation may be two novel mechanisms of PTEN inactivation. Further functional work could reveal more effective means of molecular-directed therapy and prevention.
Collapse
Affiliation(s)
- Charis Eng
- Clinical Cancer Genetics Program and Human Cancer Genetics Program, Comprehensive Cancer Center, Division of Human Genetics, Department of Internal Medicine, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
466
|
Wang S, Gao J, Lei Q, Rozengurt N, Pritchard C, Jiao J, Thomas GV, Li G, Roy-Burman P, Nelson PS, Liu X, Wu H. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 2003; 4:209-21. [PMID: 14522255 DOI: 10.1016/s1535-6108(03)00215-0] [Citation(s) in RCA: 838] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The murine Pten prostate cancer model described in this study recapitulates the disease progression seen in humans: initiation of prostate cancer with prostatic intraepithelial neoplasia (PIN), followed by progression to invasive adenocarcinoma, and subsequent metastasis with defined kinetics. Furthermore, while Pten null prostate cancers regress after androgen ablation, they are capable of proliferating in the absence of androgen. Global assessment of molecular changes caused by homozygous Pten deletion identified key genes known to be relevant to human prostate cancer, including those "signature" genes associated with human cancer metastasis. This murine prostate cancer model provides a unique tool for both exploring the molecular mechanism underlying prostate cancer and for development of new targeted therapies.
Collapse
Affiliation(s)
- Shunyou Wang
- Howard Hughes Medical Institute, University of California Los Angeles School of Medicine, 90095, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
467
|
Abstract
The RAF-1 serine-threonine kinase plays a central role in signal transduction pathways involved in cell survival and proliferation. The concept of RAF-1-targeted disruption of cell signaling for therapeutic purposes was first advanced in 1989 with the demonstration of tumor growth inhibition in athymic mice and radiosensitization of human squamous carcinoma cells transfected with a vector expressing antisense cDNA. However, the clinical application of antisense strategies has awaited the development of improved antisense oligonucleotide technologies and drug delivery methods. Nuclease-resistant phosphorothioated antisense oligonucleotides have been the focus of pharmaceutical industry attention. In vivo delivery of nuclease-sensitive, natural backbone/phosphodiester oligonucleotides has remained a formidable challenge. Liposomal encapsulation of antisense oligonucleotides protects them from degradation and enhances drug delivery. Here, we review the importance of targeting RAF-1 signaling in cancer therapy and the preclinical and clinical experiences with a liposomal formulation of a nuclease-sensitive, ends-modified antisense RAF oligonucleotide.
Collapse
Affiliation(s)
- Usha Kasid
- Department of Radiation Medicine, Lombardi Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| | | |
Collapse
|
468
|
Wohlfahrt JG, Kunzmann S, Menz G, Kneist W, Akdis CA, Blaser K, Schmidt-Weber CB. T cell phenotype in allergic asthma and atopic dermatitis. Int Arch Allergy Immunol 2003; 131:272-82. [PMID: 12915770 DOI: 10.1159/000072139] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Accepted: 04/07/2003] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND T cells are key regulators of immunologic disease parameters. However, their contribution to the process of tissue remodeling is ill defined. In the present study, we investigated gene expression of allergy-characteristic, IL-4-rich T cell cDNAs to monitor expression of genes that might participate in the pathogenesis of allergic diseases. METHODS cDNAs of freshly isolated and restimulated CD4+ T cells from patients with allergic asthma (AA) or atopic dermatitis (AD) and healthy subjects were analyzed on Nylon membrane-based DNA arrays. Three patients were selected for an allergy-characteristic T cell phenotype with high IL-4 expression (AA) or IL-13 expression (AD). RESULTS Several gene families such as the TGF-beta family, chemokines and chemokine receptors were found to be upregulated. Matrix metalloproteinases and their inhibitors were also found to be expressed in an enhanced manner. Furthermore, factors regulating tissue turnover such as fibroblast growth factors and neurotrophic as well as vasoactive factors were found be expressed at a higher level in allergic patient compared to healthy donors. CONCLUSION The present study reveals and confirms genes relevant for allergy and highlights an approach to applying a DNA array technique for diagnostic discrimination of allergic diseases.
Collapse
Affiliation(s)
- Jan G Wohlfahrt
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | | | | | | | | | | | | |
Collapse
|
469
|
Paez J, Sellers WR. PI3K/PTEN/AKT pathway. A critical mediator of oncogenic signaling. Cancer Treat Res 2003. [PMID: 12613196 DOI: 10.1007/0-306-48158-8_6] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Juan Paez
- Department of Adult Oncology, Dana-Farber Cancer Institute, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
470
|
Affiliation(s)
- William G Nelson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.
| | | | | |
Collapse
|
471
|
Lee HY, Srinivas H, Xia D, Lu Y, Superty R, LaPushin R, Gomez-Manzano C, Gal AM, Walsh GL, Force T, Ueki K, Mills GB, Kurie JM. Evidence that phosphatidylinositol 3-kinase- and mitogen-activated protein kinase kinase-4/c-Jun NH2-terminal kinase-dependent Pathways cooperate to maintain lung cancer cell survival. J Biol Chem 2003; 278:23630-8. [PMID: 12714585 DOI: 10.1074/jbc.m300997200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cancer cells in which the PTEN lipid phosphatase gene is deleted have constitutively activated phosphatidylinositol 3-kinase (PI3K)-dependent signaling and require activation of this pathway for survival. In non-small cell lung cancer (NSCLC) cells, PI3K-dependent signaling is typically activated through mechanisms other than PTEN gene loss. The role of PI3K in the survival of cancer cells that express wild-type PTEN has not been defined. Here we provide evidence that H1299 NSCLC cells, which express wild-type PTEN, underwent proliferative arrest following treatment with an inhibitor of all isoforms of class I PI3K catalytic activity (LY294002) or overexpression of the PTEN lipid phosphatase. In contrast, overexpression of a dominant-negative mutant of the p85alpha regulatory subunit of PI3K (Deltap85) induced apoptosis. Whereas PTEN and Delta85 both inhibited activation of AKT/protein kinase B, only Deltap85 inhibited c-Jun NH2-terminal kinase (JNK) activity. Cotransfection of the constitutively active mutant Rac-1 (Val12), an upstream activator of JNK, abrogated Deltap85-induced lung cancer cell death, whereas constitutively active mutant mitogen-activated protein kinase kinase (MKK)-1 (R4F) did not. Furthermore, LY294002 induced apoptosis of MKK4-null but not wild-type mouse embryo fibroblasts. Therefore, we propose that, in the setting of wild-type PTEN, PI3K- and MKK4/JNK-dependent pathways cooperate to maintain cell survival.
Collapse
Affiliation(s)
- Ho-Young Lee
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
472
|
Abstract
Prostate cancer is a common malignancy that has a heterogeneous etiology and a variable outcome. Nearly all prostatic adenocarcinoma results from androgen-dependent tumor promotion. However, the cause of prostate cancer initiation is not well understood and only a few of the target oncogenes activated during prostate cancer initiation have been identified. Prostate cancer risk is strongly influenced by family history. Several genetic loci have been found to cosegregate with prostate cancer occurrence in high-risk families. Some candidate oncogenes that map to these loci have been implicated by the identification of mutations in high-risk kindreds. However, the roles of the putative oncogene products in the biochemical pathways that mediate carcinogenesis remain obscure and their influence on cancer etiology has yet to be supported by gene targeting experiments in mice. Moreover, the genes that have been implicated in hereditary prostate cancers do not appear to be mutated in sporadic cancers. Karyotypic and loss of heterozygosity analysis of sporadic prostate cancers have identified 8p, 10q, and 17p as the loci most often disrupted. Candidate oncogenes have been identified at each of these regions. Additional genes with pathogenic significance in prostate cancer have been identified by analysis of cDNA microarrays comparing benign and malignant prostate tissue, by differential genetic analysis of benign and malignant prostatic epithelium, and by induction of experimental prostate cancer in genetically engineered mice.
Collapse
Affiliation(s)
- Edward P Gelmann
- Department of Oncology, Lombardi Cancer Center, Georgetown University School of Medicine, 3800 Reservoir Rd NW, 20007-2197, Washington, DC, USA.
| |
Collapse
|
473
|
Klingler-Hoffmann M, Bukczynska P, Tiganis T. Inhibition of phosphatidylinositol 3-kinase signaling negates the growth advantage imparted by a mutant epidermal growth factor receptor on human glioblastoma cells. Int J Cancer 2003; 105:331-9. [PMID: 12704666 DOI: 10.1002/ijc.11085] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In de novo glioblastoma multiforme, loss of the tumour suppressor protein PTEN can coincide with the expression of a naturally occurring mutant epidermal growth factor receptor known as deltaEGFR. DeltaEGFR signals constitutively via the phosphatidylinositol 3-kinase (PI3K)/protein kinase Akt and mitogen-activated protein kinase pathways. In human U87MG glioblastoma cells that lack PTEN, deltaEGFR expression enhances tumourigenicity by increasing cellular proliferation. Inhibition of PI3K signaling with the pharmacologic inhibitor wortmannin, or by the reconstitution of physiological levels of PTEN to dephosphorylate the lipid products of PI3K, negated the growth advantage imparted by deltaEGFR on U87MG cells. PTEN reconstitution suppressed the elevated PI3K signaling, without affecting mitogen-activated protein kinase signaling and caused a delay in G1 cell cycle progression that was concomitant with increased cyclin-dependent protein kinase inhibitor p21CIP1/WAF1 protein levels. Our study provides insight into the mechanism by which deltaEGFR may contribute to glioblastoma development.
Collapse
|
474
|
Kim KY, Shin YW, Kim SO, Lim H, Yoo SE, Hong KW. Antiangiogenic effect of KR-31372 by apoptosis via mediation of mitochondrial KATP channel opening and the phosphatase and tensin homolog deleted from chromosome 10 phosphorylation. J Pharmacol Exp Ther 2003; 305:1142-9. [PMID: 12626642 DOI: 10.1124/jpet.103.048819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antiangiogenic action of (2R,3R,4S)-N"-cyano-N-(6-nitro-3,4-dihydro-hydroxy-2-methyl-2-dimethoxymethyl-2H-1-benzopyran-4yl)-N'-benzyl guanidine (KR-31372) was examined with its proapoptotic action in human umbilical vein endothelial cells (HUVECs) compared with diazoxide. KR-31372 as well as diazoxide significantly suppressed the neovascularization in mice induced by the Matrigel-containing recombinant human vascular endothelial growth factor (VEGF)165 in vivo and the basal tube formation of HUVECs in vitro with suppression of proliferation of HUVECs stimulated by VEGF165. KR-31372 and diazoxide enhanced DNA fragmentation associated with increase in phosphatase and tensin homolog deleted from chromosome 10 (PTEN) and decrease in serine/threonine kinase phosphorylation, which were accompanied by augmented Bax and cytochrome c release, and suppressed Bcl-2 in HUVECs. In the U87-MG cells, when transfected with expression vectors for sense PTEN, KR-31372 enhanced DNA fragmentation, but not in naive U87-MG cells. The suppression by KR-31372 and diazoxide of these variables was significantly antagonized by 5-hydroxydecanoic acid, a mitochondrial KATP channel blocker. Taken together, KR-31372 strongly inhibited angiogenesis in HUVECs by proapoptotic mechanism via mediation of 5-hydroxydecanoic acid-inhibitable mitochondrial KATP channel opening and PTEN phosphorylation.
Collapse
Affiliation(s)
- Ki Young Kim
- Department of Pharmacology, College of Medicine, Pusan National University, 10 Ami-Dong, 1-Ga, Seo-Gu Busan 602-739, Korea
| | | | | | | | | | | |
Collapse
|
475
|
Takahashi K, Mitsui K, Yamanaka S. Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature 2003; 423:541-5. [PMID: 12774123 DOI: 10.1038/nature01646] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2003] [Accepted: 04/01/2003] [Indexed: 01/09/2023]
Abstract
Embryonic stem (ES) cells are pluripotent cells derived from early mammalian embryos. Their immortality and rapid growth make them attractive sources for stem cell therapies; however, they produce tumours (teratomas) when transplanted, which could preclude their therapeutic usage. Why ES cells, which lack chromosomal abnormalities, possess tumour-like properties is largely unknown. Here we show that mouse ES cells specifically express a Ras-like gene, which we have named ERas. We show that human HRasp, which is a recognized pseudogene, does not contain reported base substitutions and instead encodes the human orthologue of ERas. This protein contains amino-acid residues identical to those present in active mutants of Ras and causes oncogenic transformation in NIH 3T3 cells. ERas interacts with phosphatidylinositol-3-OH kinase but not with Raf. ERas-null ES cells maintain pluripotency but show significantly reduced growth and tumorigenicity, which are rescued by expression of ERas complementary DNA or by activated phosphatidylinositol-3-OH kinase. We conclude that the transforming oncogene ERas is important in the tumour-like growth properties of ES cells.
Collapse
Affiliation(s)
- Kazutoshi Takahashi
- Laboratory of Animal Molecular Technology, Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | |
Collapse
|
476
|
Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N, Tsurutani J, Dennis PA, Mills GB, Arteaga CL. Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 2003; 22:2812-22. [PMID: 12743604 DOI: 10.1038/sj.onc.1206388] [Citation(s) in RCA: 336] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have examined the possible mechanisms of resistance to the epidermal growth factor receptor (EGFR) inhibitors in tumor cells with variable levels of EGFR. ZD1839 (Iressa) is a small-molecular-weight, ATP-mimetic that specifically inhibits the EGFR tyrosine kinase. A431 cell growth was markedly inhibited by ZD1839 (IC(50)< or =0.1 microM) whereas the MDA-468 cells were relatively resistant (IC(50)2 microM). Low doses of ZD1839 delayed cell cycle progression and induced apoptosis in A431 cells but not in MDA-468 cells. In both cell lines, 0.1 microM ZD1839 eliminated EGFR phosphorylation. However, the basal activity of the phosphatidylinositol-3 kinase (PI3 K) target Akt was eliminated in A431 but not in MDA-468 cells, implying that their Akt activity is independent of EGFR signals. A431 cells express PTEN/MMAC1/TEP, a phosphatase that can dephosphorylate position D3 of phosphatidylinositol-3,4,5 trisphosphate, the site that recruits the plecstrin-homology domain of Akt to the cell membrane. On the contrary, MDA-468 cells lack the phosphatase and tensin homolog (PTEN), potentially setting Akt activity at a high threshold that is unresponsive to EGFR inhibition alone. Therefore, we reintroduced (PTEN) by retroviral infection in MDA-468 cells. In MDA-468/PTEN but not in vector controls, treatment with ZD1839 inhibited P-Akt levels, induced relocalization of the Forkhead factor FKHRL1 to the cell nucleus, and increased FKHRL1-dependent transcriptional activity. ZD1839 induced a greater degree of apoptosis and cell cycle delay in PTEN-reconstituted than in control cells. These data suggest that loss of PTEN, by permitting a high level of Akt activity independent of receptor tyrosine kinase inputs, can temporally dissociate the inhibition of the EGFR with that of Akt induced by EGFR inhibitors. Thus, in EGFR-expressing tumor cells with concomitant amplification(s) of PI3K-Akt signaling, combined blockade of the EGFR tyrosine kinase and Akt should be considered as a therapeutic approach.
Collapse
Affiliation(s)
- Roberto Bianco
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
477
|
McConnachie G, Pass I, Walker SM, Downes CP. Interfacial kinetic analysis of the tumour suppressor phosphatase, PTEN: evidence for activation by anionic phospholipids. Biochem J 2003; 371:947-55. [PMID: 12534371 PMCID: PMC1223325 DOI: 10.1042/bj20021848] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Revised: 01/09/2003] [Accepted: 01/20/2003] [Indexed: 02/04/2023]
Abstract
We investigated the kinetic behaviour and substrate specificity of PTEN (phosphatase and tensin homologue deleted on chromosome 10) using unilamellar vesicles containing substrate lipids in a background of phosphatidylcholine. PTEN displays the characteristics expected of an interfacial enzyme, since the rate of enzyme activity is dependent on the surface concentration of the substrate lipids used (mol fraction), as well as the bulk concentration. Surface-dilution analysis revealed the catalytic efficiency of PTEN for PtdIns(3,4,5) P (3) to be 200-fold greater than for either PtdIns(3,4) P (2) or PtdIns(3,5) P (2), and 1000-fold greater than for PtdIns3 P. The interfacial K (m) value of PTEN for PtdIns(3,4,5) P (3) was very low, reflecting the small proportions of this lipid that are present in cellular membranes. The catalytic-centre activity ( k (cat)) for PtdIns(3,4,5) P (3) was at least 200-fold greater than that for the water-soluble substrate Ins(1,3,4,5) P (4). The preference for lipid substrates may result from an interfacial activation of the enzyme, rather than processive catalysis of vesicular substrates. Moreover, both PtdIns(4,5) P (2) and univalent salts stimulated the activity of PTEN for PtdIns(3,4,5) P (3), but profoundly inhibited activity against Ins(1,3,4,5) P (4). The stimulatory effect of PtdIns(4,5) P (2) was greater in magnitude and more potent in comparison with other anionic phospholipid species. A mutation in the lipid-binding C2 domain (M-CBR3) that is biologically inactive did not alter overall catalytic efficiency in this model, but decreased the efficiency of the interfacial binding step, demonstrating its importance in the catalytic mechanism of PTEN.
Collapse
Affiliation(s)
- George McConnachie
- Division of Cell Signalling, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | | | | | | |
Collapse
|
478
|
Abstract
Lung cancer is the leading cause of cancer-related mortality in the United States. Only 15% of patients with this disease survive 5 years or longer. Early metastatic spread is the single most important reason for this poor outcome. The survival of patients with pathological stage I disease, that is, no evidence for metastatic spread, and molecular aberrations on chromosome 11p15.5 is equal to that of patients with stage II disease, that is, metastatic spread to hilar lymph nodes. RRM1 is a gene in this region, and it is haploinsufficient in at least 34% stage I patients. Here, we show that overexpression of RRM1 in human and mouse lung cancer cell lines induced PTEN expression, reduced phosphorylation of focal adhesion kinase (FAK), suppressed migration, invasion, and metastasis formation, and increased survival in an animal model. Increased PTEN expression was required for the RRM1-induced suppression of cell motility and FAK phosphorylation. We conclude that RRM1 functions as a metastasis suppressor gene through induction of PTEN expression.
Collapse
Affiliation(s)
- Ashish Gautam
- Lung Cancer Program, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | |
Collapse
|
479
|
Byun DS, Cho K, Ryu BK, Lee MG, Park JI, Chae KS, Kim HJ, Chi SG. Frequent monoallelic deletion of PTEN and its reciprocal associatioin with PIK3CA amplification in gastric carcinoma. Int J Cancer 2003; 104:318-27. [PMID: 12569555 DOI: 10.1002/ijc.10962] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutational alterations of PTEN and PIK3CA, which negatively and positively regulate PI3-kinase activity, respectively, have been observed in many types of human cancer. To explore the implication of PTEN and PIK3CA mutations in gastric tumorigenesis, we characterized the expression and mutation status of the genes in 126 gastric tissues and 15 cell lines. Expression of PTEN transcript was abnormally low in 5 of 15 (33%) cell lines and 20 of 55 (36%) primary carcinomas, whereas 0 of 71 noncancerous tissues including 16 benign tumors showed altered expression. Allelotyping analysis using an intragenic polymorphism (IVS4+109) revealed that 14 of 30 (47%) informative cases carried LOH of the gene, which is closely linked to low expression. The LOH rate was significantly higher in advanced tumors [12 of 19 (63%)] compared to early-stage tumors [2 of 11 (18%)] and more frequent in poorly differentiated tumors [9 of 13 (69%)] than well- or moderately differentiated tumors [5 of 17 (29%)]. Interestingly, however, none of the LOH tumors carried mutational disruption of the remaining allele, suggesting haploinsufficiency of PTEN in gastric tumorigenesis. Methylation studies revealed that PTEN pseudogene, but not PTEN, is methylated in cell lines and primary tumors, indicating that PTEN is not a target of epigenetic silencing in gastric cancers and that the pseudogene should be considered more carefully in methylation analysis of the PTEN promoter. Genomic amplification of PIK3CA was found in 9 of 15 (60%) cell lines and 20 of 55 (36.4%) primary tumors but in no noncancerous tissues. Furthermore, PIK3CA amplification was predominantly detected in tumors with no PTEN alterations, suggesting that mutations of PTEN and PIK3CA are mutually exclusive events in gastric tumorigenesis. Amplification of PIK3CA was strongly associated with increased expression of PIK3CA transcript and elevated levels of phospho-AKT. Collectively, our data reveal that 13 of 15 (87%) gastric cell lines and 31 of 55 (56%) primary carcinomas harbored either amplification of PIK3CA or abnormal reduction of PTEN. Mutually exclusive alterations of PTEN and PIK3CA also suggest that mutations of either gene could activate the PI3-kinase/AKT signaling pathway, which is directly linked to the malignant progression of gastric tumor cells.
Collapse
Affiliation(s)
- Do-Sun Byun
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
480
|
Kwak YG, Song CH, Yi HK, Hwang PH, Kim JS, Lee KS, Lee YC. Involvement of PTEN in airway hyperresponsiveness and inflammation in bronchial asthma. J Clin Invest 2003; 111:1083-92. [PMID: 12671058 PMCID: PMC152583 DOI: 10.1172/jci16440] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phosphatase and tensin homologue deleted on chromosome ten (PTEN) is part of a complex signaling system that affects a variety of important cell functions. PTEN blocks the action of PI3K by dephosphorylating the signaling lipid phosphatidylinositol 3,4,5-triphosphate. We have used a mouse model for asthma to determine the effect of PI3K inhibitors and PTEN on allergen-induced bronchial inflammation and airway hyperresponsiveness. PI3K activity increased significantly after allergen challenge. PTEN protein expression and PTEN activity were decreased in OVA-induced asthma. Immunoreactive PTEN localized in epithelial layers around the bronchioles in control mice. However, this immunoreactive PTEN dramatically disappeared in allergen-induced asthmatic lungs. The increased IL-4, IL-5, and eosinophil cationic protein levels in bronchoalveolar lavage fluids after OVA inhalation were significantly reduced by the intratracheal administration of PI3K inhibitors or adenoviruses carrying PTEN cDNA (AdPTEN). Intratracheal administration of PI3K inhibitors or AdPTEN remarkably reduced bronchial inflammation and airway hyperresponsiveness. These findings indicate that PTEN may play a pivotal role in the pathogenesis of the asthma phenotype.
Collapse
Affiliation(s)
- Yong-Geun Kwak
- Department of Pharmacology, Institute of Cardiovascular Research, Research Center for Allergic Immune Diseases, Chonbuk National University Medical School, Chonju, South Korea
| | | | | | | | | | | | | |
Collapse
|
481
|
Kimura T, Suzuki A, Fujita Y, Yomogida K, Lomeli H, Asada N, Ikeuchi M, Nagy A, Mak TW, Nakano T. Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development 2003; 130:1691-700. [PMID: 12620992 DOI: 10.1242/dev.00392] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The tumor suppressor gene PTEN, which is frequently mutated in human cancers, encodes a lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3] and antagonizes phosphatidylinositol 3 kinase. Primordial germ cells (PGCs), which are the embryonic precursors of gametes, are the source of testicular teratoma. To elucidate the intracellular signaling mechanisms that underlie germ cell differentiation and proliferation, we have generated mice with a PGC-specific deletion of the Pten gene. Male mice that lacked PTEN exhibited bilateral testicular teratoma, which resulted from impaired mitotic arrest and outgrowth of cells with immature characters. Experiments with PTEN-null PGCs in culture revealed that these cells had greater proliferative capacity and enhanced pluripotent embryonic germ (EG) cell colony formation. PTEN appears to be essential for germ cell differentiation and an important factor in testicular germ cell tumor formation.
Collapse
Affiliation(s)
- Tohru Kimura
- Department of Molecular Cell Biology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
482
|
Hallmann D, Trümper K, Trusheim H, Ueki K, Kahn CR, Cantley LC, Fruman DA, Hörsch D. Altered signaling and cell cycle regulation in embryonal stem cells with a disruption of the gene for phosphoinositide 3-kinase regulatory subunit p85alpha. J Biol Chem 2003; 278:5099-108. [PMID: 12435753 PMCID: PMC3205087 DOI: 10.1074/jbc.m208451200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p85alpha regulatory subunit of class I(A) phosphoinositide 3-kinases (PI3K) is derived from the Pik3r1 gene, which also yields alternatively spliced variants p50alpha and p55alpha. It has been proposed that excess monomeric p85 competes with functional PI3K p85-p110 heterodimers. We examined embryonic stem (ES) cells with heterozygous and homozygous disruptions in the Pik3r gene and found that wild type ES cells express virtually no monomeric p85alpha. Although, IGF-1-stimulated PI3K activity associated with insulin receptor substrates was unaltered in all cell lines, p85alpha-null ES cells showed diminished protein kinase B activation despite increased PI3K activity associated with the p85beta subunit. Furthermore, p85alpha-null cells demonstrated growth retardation, increased frequency of apoptosis, and altered cell cycle regulation with a G(0)/G(1) cell cycle arrest and up-regulation of p27(KIP), whereas signaling through CREB and MAPK was enhanced. These phenotypes were reversed by re-expression of p85alpha via adenoviral gene transfer. Surprisingly, all ES cell lines could be differentiated into adipocytes. In these differentiated ES cells, however, compensatory p85beta signaling was lost in p85alpha-null cells while increased signaling by CREB and MAPK was still observed. Thus, loss of p85alpha in ES cells induced alterations in IGF-1 signaling and regulation of apoptosis and cell cycle but no defects in differentiation. However, differentiated ES cells partially lost their ability for compensatory signaling at the level of PI3K, which may explain some of the defects observed in mice with homozygous deletion of the Pik3r1 gene.
Collapse
Affiliation(s)
- Daniel Hallmann
- Department of Internal Medicine, Division of Gastroenterology and Metabolism, Philipps-University, D-35033 Marburg, Germany
| | - Katja Trümper
- Department of Internal Medicine, Division of Gastroenterology and Metabolism, Philipps-University, D-35033 Marburg, Germany
| | - Heidi Trusheim
- Department of Internal Medicine, Division of Gastroenterology and Metabolism, Philipps-University, D-35033 Marburg, Germany
| | - Kohjiro Ueki
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - C. Ronald Kahn
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Lewis C. Cantley
- Department of Signal Transduction, Harvard Medical School, Boston, Massachusetts 02215
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Dieter Hörsch
- Department of Internal Medicine, Division of Gastroenterology and Metabolism, Philipps-University, D-35033 Marburg, Germany
- To whom correspondence should be addressed: Dept. of Internal Medicine, Division of Gastroenterology and Metabolism, Philipps-University, Baldingerstrasse, D-35033 Marburg, Germany. Tel.: 49-6421-2862780; Fax: 49-6421-2868922;
| |
Collapse
|
483
|
Miyakawa M, Tsushima T, Murakami H, Wakai K, Isozaki O, Takano K. Increased expression of phosphorylated p70S6 kinase and Akt in papillary thyroid cancer tissues. Endocr J 2003; 50:77-83. [PMID: 12733712 DOI: 10.1507/endocrj.50.77] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although a number of abnormalities in oncogenes have been reported in thyroid neoplasms, little information is available on the signal transduction pathway involved in neoplastic thyroid cell growth. Both p70S6 kinase (p70S6K) and Akt are kinases downstream of phosphatidylinositol 3 kinase (PI3K). These kinases are phosphorylated and activated by growth factors including IGF-1, EGF/TGF-alpha, and HGF in thyroid cells. Since the receptors for these growth factors are reportedly overexpressed in human thyroid cancer, we hypothesized that the PI3K-mediated signalings are overactivated in thyroid cancers. Tumorous and adjacent normal tissues of 20 patients with papillary thyroid cancer were obtained at surgery, and expression of p70S6K and Akt were measured by Western blot. Expression of the protein levels of p70S6K was increased in tumor tissues (T) compared to normal thyroid tissues (N), and expression of phosphorylated p70S6K was also significantly increased in tumor than in surrounding normal tissues. Overexpression of p70S6K in tumor tissues was further confirmed by immunohistochemistry. Strong immunoreactivity in the cytoplasm of thyroid cancer cells was seen in the majority of cases, whereas little immunoreactivity was found in the surrounding normal portion. Expression of phosphorylated Akt (pAkt) was also significantly higher in tumor tissues. Phosphorylation of Bad (pBad), a substrate of Akt, was also increased in the tumor tissues in association with activation of Akt, and the T/N ratio for pAkt positively correlated to the T/N ratio for pBad. The data presented here demonstrate that both p70S6K and Akt are activated in the majority of human papillary cancer cells. Activation of these signalings may be involved in the progression of papillary carcinoma by stimulating cell proliferation and/or preventing apoptosis.
Collapse
Affiliation(s)
- Megumi Miyakawa
- Department of Internal Medicine, Miyakawa Hospital, 2-13-13, Kawasaki, 210-0802, Kanagawa, Japan
| | | | | | | | | | | |
Collapse
|
484
|
Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R, Whale AD, Martinez-Diaz H, Rozengurt N, Cardiff RD, Liu X, Wu H. PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and -independent mechanisms. Cancer Cell 2003; 3:117-30. [PMID: 12620407 DOI: 10.1016/s1535-6108(03)00021-7] [Citation(s) in RCA: 390] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We show in this study that PTEN regulates p53 protein levels and transcriptional activity through both phosphatase-dependent and -independent mechanisms. The onset of tumor development in p53(+/-);Pten(+/-) mice is similar to p53(-/-) animals, and p53 protein levels are dramatically reduced in Pten(-/-) cells and tissues. Reintroducing wild-type or phosphatase-dead PTEN mutants leads to a significant increase in p53 stability. PTEN also physically associates with endogenous p53. Finally, PTEN regulates the transcriptional activity of p53 by modulating its DNA binding activity. This study provides a novel mechanism by which the loss of PTEN can functionally control "two" hits in the course of tumor development by concurrently modulating p53 activity.
Collapse
Affiliation(s)
- Daniel J Freeman
- Howard Hughes Medical Institute, Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
485
|
Karan D, Lin MF, Johansson SL, Batra SK. Current status of the molecular genetics of human prostatic adenocarcinomas. Int J Cancer 2003; 103:285-93. [PMID: 12471610 DOI: 10.1002/ijc.10813] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular genetic mechanisms involved in the progression of prostate cancer are not well understood due to extensive tumor heterogeneity and lack of suitable models. New methods such as fluorescence in-situ hybridization (FISH), comparative genomic hybridization (CGH) and microsatellite analysis have documented losses or gains on various chromosomes. Altered chromosomal regions have been associated with the activation of oncogenes and the inactivation of tumor suppressor genes or defects in mismatch repair (MMR) genes. It is suggested that increased genomic instability is associated with decreased androgen-responsive and progressive behavior of human prostate tumors, but it remains unclear whether this genomic instability is causing the progression of cancer or is the consequence of cancer. Extended studies on hereditary prostate cancer have identified 7 prostate cancer susceptibility loci on several chromosomes, but no specific gene has been confined for a large proportion of susceptibility. In this review we summarize the ongoing molecular genetic events associated with the sporadic and hereditary prostate cancer development and progression.
Collapse
Affiliation(s)
- Dev Karan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha 68198, USA
| | | | | | | |
Collapse
|
486
|
Yang L, Kuang LG, Zheng HC, Li JY, Wu DY, Zhang SM, Xin Y. PTEN encoding product: A marker for tumorigenesis and progression of gastric carcinoma. World J Gastroenterol 2003; 9:35-9. [PMID: 12508347 PMCID: PMC4728244 DOI: 10.3748/wjg.v9.i1.35] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of PTEN encoding product in normal mucosa, intestinal metaplasia (IM), dysplasia and carcinoma of the stomach, and to investigate its clinical implication in tumorigenesis and progression of gastric carcinoma.
METHODS: Formalin-fixed paraffin embedded specimens from 184 cases of gastric carcinoma, their adjacent normal mucosa, IM and dysplasia were evaluated for PTEN protein expression by SABC immunohistochemistry. PTEN expression was compared with tumor stage, lymph node metastasis, Lauren’s and WHO’s histological classification of gastric carcinoma. Expression of VEGF was also detected in 60 cases of gastric carcinoma and its correlation with PTEN was concerned.
RESULTS: The positive rates of PTEN protein were 100% (102/102), 98.5% (65/66), 66.7% (4/6) and 47.8% (88/184) in normal mucosa, IM, dysplasia and carcinoma of the stomach, respectively. The positive rates in dysplasia and carcinoma were lower than in normal mucosa and IM (P < 0.01). Advanced gastric cancers expressed less frequent PTEN than early gastric cancer (42.9% vs 67.6%, P < 0.01). The positive rate of PTEN protein was lower in gastric cancer with than without lymph node metastasis (40.3% vs 63.3%, P < 0.01). PTEN was less expressed in diffuse-type than in intestinal-type gastric cancer (41.5% vs 57.8%, P < 0.05). Signet ring cell carcinoma showed the expression of PTEN at the lowest level (25.0%, 7/28); less than well and moderately differentiated ones (P < 0.01). Expression of PTEN was not correlated with expression of VEGF (P > 0.05).
CONCLUSION: Loss or reduced expression of PTEN protein occures commonly in tumorigenesis and progression of gastric carcinoma. It is suggested that PTEN can be an objective marker for pathologically biological behaviors of gastric carcinoma.
Collapse
Affiliation(s)
- Lin Yang
- No.4 Lab, Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang 110001, China.
| | | | | | | | | | | | | |
Collapse
|
487
|
Shingu T, Yamada K, Hara N, Moritake K, Osago H, Terashima M, Uemura T, Yamasaki T, Tsuchiya M. Growth inhibition of human malignant glioma cells induced by the PI3-K-specific inhibitor. J Neurosurg 2003; 98:154-61. [PMID: 12546364 DOI: 10.3171/jns.2003.98.1.0154] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECT The phosphatase and tensin homolog deleted from chromosome 10 (PTEN) functions as a tumor suppressor by negatively regulating the growth/survival signals of the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. The PI3-K/Akt pathway in PTEN-deficient tumors may be one of the key targets for anticancer therapy. The authors examined the effects of the PI3-K inhibitor 2-(4-morpholinyl)-8-phenylchromone (LY294002) on human malignant glioma cells, and compared these effects on PTEN-deficient cells with those on PTEN-wild-type (PTEN-wt) cells. METHODS Using human malignant glioma cell lines, including the PTEN-deficient cells A172 and U87MG and the PTEN-wt cells LN18 and LN229, the effects of LY294002 on cell growth, apoptosis, and chemotherapeutic agent-induced cytotoxicity were evaluated. The LY294002 inhibited the growth of U87MG cells associated with reduced phosphatidylinositol 3,4,5,-trisphosphate and phosphorylated Akt, and also induced growth inhibition in three other cell lines. Although LY294002 caused apoptosis in all four cell lines, apoptosis seemed to contribute to only a small portion of growth inhibition induced by LY294002. There was no link between the status of PTEN and the median inhibitory concentration values for LY294002 or between the gene status and the extent of LY294002-induced apoptosis. The LY294002 significantly augmented the cytotoxicity induced by etoposide in PTEN-deficient cells, but not in PTEN-wt cells. Enhancement of 1,3-bis(2-chloroethyl)-1-nitrosourea- and cisplatin-induced cytotoxicity by LY294002 was not linked to the status of PTEN. No marked difference in the amounts of phosphorylated Akt was found between PTEN-deficient and PTEN-wt cells. CONCLUSIONS The findings show that PI3-K is a possible target for therapy in patients with gliomas, and PI3-K inhibitors in combination with chemotherapeutic agents could be potent therapeutic modalities for patients with malignant gliomas.
Collapse
Affiliation(s)
- Takashi Shingu
- Department of Biochemistry and Neurosurgery, Shimane Medical University, Izumo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
488
|
Clarke RB. p27KIP1 phosphorylation by PKB/Akt leads to poor breast cancer prognosis. Breast Cancer Res 2003; 5:162-3. [PMID: 12793899 PMCID: PMC165008 DOI: 10.1186/bcr596] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Robert B Clarke
- Breast Biology Group, Clinical Research Department, Christie Hospital NHS Trust, Wilmslow Road, Withington, Manchester, UK.
| |
Collapse
|
489
|
Modur V, Nagarajan R, Evers BM, Milbrandt J. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem 2002; 277:47928-37. [PMID: 12351634 DOI: 10.1074/jbc.m207509200] [Citation(s) in RCA: 286] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mutations in PTEN occur in 60-80% of prostate cancers and lead to a constitutive activation of the phosphatidylinositol 3-kinase pathway and a resultant loss of activity of the FOXO family of forkhead transcription factors FKHRL1 and FKHR. To provide insight into the role of PTEN mutations in prostate cancer, we used microarrays to identify genes regulated by FKHRL1 and FKHR in LAPC4 prostate carcinoma cells. These studies revealed that adenoviral overexpression of FKHRL1 and FKHR in the LAPC4 prostate cancer cell line resulted in apoptosis and induced the expression of many genes that affect cellular proliferation or survival. The expression of one of these FOXO-regulated genes, TRAIL, a pro-apoptotic member of the tumor necrosis factor family, was decreased in human metastatic prostate tumors. The altered expression of TRAIL in these tumors correlated directly with decreased PTEN expression and the resultant loss of FKHRL1 and FKHR activity. Analysis of the effects of FOXO proteins on the TRAIL promoter localized the FKHRL1 responsive element of the TRAIL promoter to nucleotides -138 to -121 and demonstrated that TRAIL is a direct target of FKHRL1. These findings suggest that the decreased activity of FKHRL1 and FKHR in prostate cancers resulting from loss of PTEN leads to a decrease in TRAIL expression that may contribute to increased survival of the tumor cells.
Collapse
Affiliation(s)
- Vijayanand Modur
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
490
|
Yeo EJ, Park SC. Age-dependent agonist-specific dysregulation of membrane-mediated signal transduction: emergence of the gate theory of aging. Mech Ageing Dev 2002; 123:1563-78. [PMID: 12470894 DOI: 10.1016/s0047-6374(02)00092-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although a general mechanism for the limited responsiveness of senescent cells has yet to be established, reduced responsiveness may in part be ascribed to deficits in the apparatus required for cell surface receptor-mediated signal transduction. Age-related changes of receptor-mediated signal transduction occur at many levels, and are known to include quantitative and qualitative changes in growth factor receptors, G-protein coupled receptors, and many other downstream signaling molecules. Here, we emphasize the prime role of the cellular surface in the perception and transmission of external stimuli in response to the aging process. As major means of cellular signal transduction, the receptor tyrosine kinase (RTK) system and the G protein-coupled receptor (GPCR) system of senescent cells were investigated. We observed that the RTK system was severely damaged, while the GPCR system was only partially inactivated by aging. These results suggest that the agonist-dependent dysregulation of and imbalance of signal transduction pathways might be responsible for the functional deterioration of senescent cells, and indicate a possibility of the functional recovery of senescent cells through agonist-specific signal system activation. Moreover, those data evoke the emerging concept that the senescent phenotype may be modulated by the membrance-associated signal system, implying the gate theory of aging.
Collapse
Affiliation(s)
- Eui-Ju Yeo
- Department of Biochemistry, Gachon Medical School, Inchon 417-840, South Korea.
| | | |
Collapse
|
491
|
Kandel ES, Skeen J, Majewski N, Di Cristofano A, Pandolfi PP, Feliciano CS, Gartel A, Hay N. Activation of Akt/protein kinase B overcomes a G(2)/m cell cycle checkpoint induced by DNA damage. Mol Cell Biol 2002; 22:7831-41. [PMID: 12391152 PMCID: PMC134727 DOI: 10.1128/mcb.22.22.7831-7841.2002] [Citation(s) in RCA: 228] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of Akt, or protein kinase B, is frequently observed in human cancers. Here we report that Akt activation via overexpression of a constitutively active form or via the loss of PTEN can overcome a G(2)/M cell cycle checkpoint that is induced by DNA damage. Activated Akt also alleviates the reduction in CDC2 activity and mitotic index upon exposure to DNA damage. In addition, we found that PTEN null embryonic stem (ES) cells transit faster from the G(2)/M to the G(1) phase of the cell cycle when compared to wild-type ES cells and that inhibition of phosphoinositol-3-kinase (PI3K) in HEK293 cells elicits G(2) arrest that is alleviated by activated Akt. Furthermore, the transition from the G(2)/M to the G(1) phase of the cell cycle in Akt1 null mouse embryo fibroblasts (MEFs) is attenuated when compared to that of wild-type MEFs. These results indicate that the PI3K/PTEN/Akt pathway plays a role in the regulation of G(2)/M transition. Thus, cells expressing activated Akt continue to divide, without being eliminated by apoptosis, in the presence of continuous exposure to mutagen and accumulate mutations, as measured by inactivation of an exogenously expressed herpes simplex virus thymidine kinase (HSV-tk) gene. This phenotype is independent of p53 status and cannot be reproduced by overexpression of Bcl-2 or Myc and Bcl-2 but seems to counteract a cell cycle checkpoint mediated by DNA mismatch repair (MMR). Accordingly, restoration of the G(2)/M cell cycle checkpoint and apoptosis in MMR-deficient cells, through reintroduction of the missing component of MMR, is alleviated by activated Akt. We suggest that this new activity of Akt in conjunction with its antiapoptotic activity may contribute to genetic instability and could explain its frequent activation in human cancers.
Collapse
Affiliation(s)
- Eugene S Kandel
- Department of Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | | | |
Collapse
|
492
|
Gupta R, Ting JTL, Sokolov LN, Johnson SA, Luan S. A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. THE PLANT CELL 2002; 14:2495-507. [PMID: 12368500 PMCID: PMC151231 DOI: 10.1105/tpc.005702] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2002] [Accepted: 07/29/2002] [Indexed: 05/18/2023]
Abstract
Although it is well known that Tyr phosphatases play a critical role in signal transduction in animal cells, little is understood of the functional significance of Tyr phosphatases in higher plants. Here, we describe the functional analysis of an Arabidopsis gene (AtPTEN1) that encodes a Tyr phosphatase closely related to PTEN, a tumor suppressor in animals. The recombinant AtPTEN1 protein, like its homologs in animals, is an active phosphatase that dephosphorylates phosphotyrosine and phosphatidylinositol substrates. RNA gel blot analysis and examination of promoter-reporter constructs in transgenic Arabidopsis plants revealed that the AtPTEN1 gene is expressed exclusively in pollen grains during the late stage of development. Suppression of AtPTEN1 gene expression by RNA interference caused pollen cell death after mitosis. We conclude that AtPTEN1 is a pollen-specific phosphatase and is essential for pollen development.
Collapse
Affiliation(s)
- Rajeev Gupta
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
493
|
Abstract
The ability to sense and respond to shallow gradients of extracellular signals is remarkably similar in Dictyostelium discoideum amoebae and mammalian leukocytes. Chemoattractant receptors and G proteins are fairly evenly distributed along the cell surface. Receptor occupancy generates local excitatory and global inhibitory processes that balance to control the chemotactic response. Uniform stimuli transiently recruit PI3Ks to, and release PTEN from, the plasma membrane, while gradients of chemoattractant cause the two enzymes to bind to the membrane at the front and back of the cell, respectively. Interference with PI3Ks alters chemotaxis, and disruption of PTEN broadens PI localization and actin polymerization in parallel. Thus, counteracting signals from the upstream elements of the pathway converge to regulate the key enzymes of PI metabolism, localize these lipids, and direct pseudopod formation.
Collapse
Affiliation(s)
- Miho Iijima
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
494
|
Abstract
The PTEN tumor suppressor gene is a lipid phosphatase that negatively regulates cell survival mediated by the phosphatidyl inositol 3' kinase-protein kinase B/Akt signaling pathway. Recent in vivo studies have revealed a novel role for PTEN in the size control of neurons. Dysregulation of cell growth control by PTEN is associated with the neurological disorder Lhermitte-Duclos disease. PTEN may regulate cell size through effects on protein translation.
Collapse
Affiliation(s)
- Stéphanie Backman
- Department of Medical Biophysics, University of Toronto and Ontario Cancer Institute, 610 University Avenue, Toronto, Canada.
| | | | | |
Collapse
|
495
|
Wang Q, Wang X, Hernandez A, Hellmich MR, Gatalica Z, Evers BM. Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells. J Biol Chem 2002; 277:36602-10. [PMID: 12140294 DOI: 10.1074/jbc.m206306200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The intestinal mucosa is a rapidly-renewing tissue characterized by cell proliferation, differentiation, and eventual apoptosis with progression up the vertical gut axis. The inhibition of phosphatidylinositol (PI) 3-kinase by specific chemical inhibitors or overexpression of the lipid phosphatase PTEN enhances enterocyte-like differentiation in human colon cancer cell models of intestinal differentiation. In this report, we examined the role of PI 3-kinase inhibition in the regulation of apoptotic gene expression in human colon cancer cell lines HT29, HCT-116, and Caco-2. Inhibition of PI 3-kinase with the chemical inhibitor wortmannin increased TNF-related apoptosis-inducing ligand (TRAIL; Apo2) mRNA and protein expression. Similarly, overexpression of the tumor suppressor protein PTEN, an antagonist of PI 3-kinase signaling, resulted in the increased expression of TRAIL. Activation of PI 3-kinase by pretreatment with IGF-1, a gut trophic factor, markedly attenuated the induction of TRAIL by wortmannin. Moreover, overexpression of active Akt, a downstream target of PI 3-kinase, or inhibition of GSK-3, a downstream target of active Akt, completely blocked the induction of TRAIL by wortmannin. Consistent with findings that TRAIL is induced by agents that enhance intestinal cell differentiation, TRAIL expression was specifically localized to the differentiated cells of the colon and small bowel. Adenovirus-mediated overexpression of TRAIL increased DNA fragmentation of HCT-116 cells, demonstrating the functional activity of TRAIL induction. Taken together, our findings demonstrate induction of the TRAIL by inhibition of PI 3-kinase in colon cancer cell lines. These results identify TRAIL, a novel TNF family member, as a downstream target of the PI 3-kinase/Akt/GSK-3 pathway and may have important implications for better understanding the role of the PI 3-kinase pathway in intestinal cell homeostasis.
Collapse
Affiliation(s)
- Qingding Wang
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | |
Collapse
|
496
|
Abstract
Pluripotent mouse embryonic stem (ES) cells can be expanded in large numbers in vitro owing to a process of symmetrical self-renewal. Self-renewal entails proliferation with a concomitant suppression of differentiation. Here we describe how the cytokine leukaemia inhibitory factor (LIF) sustains self-renewal through activation of the transcription factor STAT3, and how two other signals - extracellular-signal-related kinase (ERK) and phosphatidylinositol-3-OH kinase (PI3K) - can influence differentiation and propagation, respectively. We relate these observations to the unusual cell-cycle properties of ES cells and speculate on the role of the cell cycle in maintaining pluripotency.
Collapse
Affiliation(s)
- Tom Burdon
- Department of Gene Expression and Development, Roslin Institute, Midlothian, EH25 9PS, Roslin, UK
| | | | | |
Collapse
|
497
|
Li G, Robinson GW, Lesche R, Martinez-Diaz H, Jiang Z, Rozengurt N, Wagner KU, Wu DC, Lane TF, Liu X, Hennighausen L, Wu H. Conditional loss of PTEN leads to precocious development and neoplasia in the mammary gland. Development 2002; 129:4159-70. [PMID: 12163417 DOI: 10.1242/dev.129.17.4159] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PTEN tumor suppressor is frequently mutated in human cancers, including breast cancers. Female patients with inherited PTEN mutations suffer from virginal hypertrophy of the breast with high risk of malignant transformation. However, the exact mechanisms of PTEN in controlling mammary gland development and tumorigenesis are unclear. In this study, we generated mice with a mammary-specific deletion of the Pten gene. Mutant mammary tissue displayed precocious lobulo-alveolar development, excessive ductal branching, delayed involution and severely reduced apoptosis. Pten null mammary epithelial cells were disregulated and hyperproliferative. Mutant females developed mammary tumors early in life. Similar phenotypes were observed in Pten-null mammary epithelia that had been transplanted into wild-type stroma, suggesting that PTEN plays an essential and cell-autonomous role in controlling the proliferation, differentiation and apoptosis of mammary epithelial cells.
Collapse
Affiliation(s)
- Gang Li
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, 650 Circle Drive South, 90095-1735, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
498
|
Mercapide J, Zhang SY, Fan X, Furió-Bacete V, Schneider J, López de la Osa I, Patchefsky AS, Klein-Szanto AJP, Castresana JS. CCND1- and ERBB2-gene deregulation and PTEN mutation analyses in invasive lobular carcinoma of the breast. Mol Carcinog 2002; 35:6-12. [PMID: 12203362 DOI: 10.1002/mc.10069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Because of the relatively low incidence of lobular breast carcinoma, there are very few studies on the molecular characteristics of this breast cancer. In an attempt to improve its characterization, we investigated in a large collection of invasive lobular carcinomas (ILCs) the status of markers known to be involved in the better-studied invasive ductal carcinomas (IDC). In the current study we disposed of 80 well-characterized ILC cases. Gene amplification of cyclin D1 (CCND1) and c-erbB2-encoding gene (ERBB2) and expression of their gene products were studied by differential polymerase chain reaction (PCR) and immunohistochemistry, respectively. A comprehensive point mutation study of the phosphatase and tensin homolog tumor suppressor gene (PTEN) was pursued by single strand conformation polymorphism (SSCP)/sequencing analysis. The CCND1 gene was rarely amplified in ILC in spite of showing overexpression of the protein in 41% of tumors. Hence, unlike IDC, increase in gene dosage did not account for the protein excess. PTEN mutations were detected in ILC (truncating mutations) in around 2% of the tumors. Unlike IDC, ILC did not display ERBB2 overexpression and expression of the transcription factor E2F1 correlated inversely with tumor grade. The observed discrepancy in the pattern of the human oncogenes CCND1 and ERBB2, which are involved in the process of carcinogenesis of ductal tumors, appears to suggest a different molecular basis for development and progression of ILC.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Cycle Proteins
- Cyclin D1/genetics
- DNA Mutational Analysis
- DNA-Binding Proteins
- E2F Transcription Factors
- E2F1 Transcription Factor
- Female
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Ki-67 Antigen/metabolism
- Neoplasm Invasiveness/genetics
- PTEN Phosphohydrolase
- Phosphoric Monoester Hydrolases/genetics
- Point Mutation
- Polymorphism, Single-Stranded Conformational
- Receptor, ErbB-2/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Javier Mercapide
- Departamento de Genética, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
499
|
Abstract
The PTEN tumor suppressor gene encodes a phosphatidylinositol 3'-phosphatase that is inactivated in a high percentage of human tumors, particularly glioblastoma, melanoma, and prostate and endometrial carcinoma. Previous studies showed that PTEN is a seryl phosphoprotein and a substrate of protein kinase CK2 (CK2). However, the sites in PTEN that are phosphorylated in vivo have not been identified directly, nor has the effect of phosphorylation on PTEN catalytic activity been reported. We used mass spectrometric methods to identify Ser(370) and Ser(385) as in vivo phosphorylation sites of PTEN. These sites also are phosphorylated by CK2 in vitro, and phosphorylation inhibits PTEN activity towards its substrate, PIP3. We also identify a novel in vivo phosphorylation site, Thr(366). Following transient over-expression, a fraction of CK2 and PTEN co-immunoprecipitate. Moreover, pharmacological inhibition of CK2 activity leads to decreased Akt activation in PTEN+/+ but not PTEN-/- fibroblasts. Our results contrast with previous assignments of PTEN phosphorylation sites based solely on mutagenesis approaches, suggest that CK2 is a physiologically relevant PTEN kinase, and raise the possibility that CK2-mediated inhibition of PTEN plays a role in oncogenesis.
Collapse
Affiliation(s)
- Susan J Miller
- Cancer Biology Program, Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
500
|
Jirmanova L, Afanassieff M, Gobert-Gosse S, Markossian S, Savatier P. Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene 2002; 21:5515-28. [PMID: 12165850 DOI: 10.1038/sj.onc.1205728] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2002] [Revised: 04/25/2002] [Accepted: 06/07/2002] [Indexed: 12/21/2022]
Abstract
Mouse embryonic stem (ES) cells are known to express D-type cyclins at very low levels and these levels increase dramatically during in vitro and in vivo differentiation. Here, we investigate some of the signalling pathways regulating expression of cyclin D1 and progression to S phase, the Ras/Extracellular signal-regulated protein kinase (ERK) pathway and the phosphatidylinositol 3-kinase (PI3-kinase) pathway. We demonstrate that ERK phosphorylation is fully dispensable for the regulation of cyclin D1 level and for the progression from G1 to S phase in ES cells. By contrast, PI3-kinase activity is required for both. Differentiation induced by retinoic acid results in the gain of ERK-dependent control of cyclin D1 expression and of S phase progression. Differentiation is also paralleled by an increase in PI3-kinase activity. This leads (a) to an increase in the p70 S6 kinase-dependent regulation of the steady-state level of cyclin D1, and (b) to a concomitant decrease in the GSK3beta-dependent rate of cyclin D1 degradation. Altogether, these multiple pathways account for the dramatic increase in the level of cyclin D1 protein which parallels ES cell differentiation. Our studies suggest that PI3-kinase is an important regulator of the ES cell cycle and that its activity is not regulated by mitogen stimulation.
Collapse
Affiliation(s)
- Ludmila Jirmanova
- Laboratoire de Biologie Moléculaire et Cellulaire, CNRS UMR 5665, INRA LA913, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|