451
|
Yuan L, Lin W, Tan L, Zheng K, Huang W. Fluoreszenzsonden zur Messung von Kohlenmonoxid in lebenden Zellen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201208346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
452
|
Yuan L, Lin W, Tan L, Zheng K, Huang W. Lighting up Carbon Monoxide: Fluorescent Probes for Monitoring CO in Living Cells. Angew Chem Int Ed Engl 2012; 52:1628-30. [DOI: 10.1002/anie.201208346] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Indexed: 11/10/2022]
|
453
|
Rahman MN, Vukomanovic D, Vlahakis JZ, Szarek WA, Nakatsu K, Jia Z. Structural insights into human heme oxygenase-1 inhibition by potent and selective azole-based compounds. J R Soc Interface 2012; 10:20120697. [PMID: 23097500 DOI: 10.1098/rsif.2012.0697] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of heme oxygenase (HO) inhibitors, especially those that are isozyme-selective, promises powerful pharmacological tools to elucidate the regulatory characteristics of the HO system. It is already known that HO has cytoprotective properties and may play a role in several disease states, making it an enticing therapeutic target. Traditionally, the metalloporphyrins have been used as competitive HO inhibitors owing to their structural similarity with the substrate, heme. However, given heme's important role in several other proteins (e.g. cytochromes P450, nitric oxide synthase), non-selectivity is an unfortunate side-effect. Reports that azalanstat and other non-porphyrin molecules inhibited HO led to a multi-faceted effort to develop novel compounds as potent, selective inhibitors of HO. This resulted in the creation of non-competitive inhibitors with selectivity for HO, including a subset with isozyme selectivity for HO-1. Using X-ray crystallography, the structures of several complexes of HO-1 with novel inhibitors have been elucidated, which provided insightful information regarding the salient features required for inhibitor binding. This included the structural basis for non-competitive inhibition, flexibility and adaptability of the inhibitor binding pocket, and multiple, potential interaction subsites, all of which can be exploited in future drug-design strategies.
Collapse
Affiliation(s)
- Mona N Rahman
- 1Department of Biomedical and Molecular Sciences, and 2Department of Chemistry, Queen’s University, Kingston, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
454
|
Reboul C, Thireau J, Meyer G, André L, Obert P, Cazorla O, Richard S. Carbon monoxide exposure in the urban environment: An insidious foe for the heart? Respir Physiol Neurobiol 2012; 184:204-12. [DOI: 10.1016/j.resp.2012.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/05/2012] [Accepted: 06/06/2012] [Indexed: 12/20/2022]
|
455
|
Olson KR, Donald JA, Dombkowski RA, Perry SF. Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respir Physiol Neurobiol 2012; 184:117-29. [DOI: 10.1016/j.resp.2012.04.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/09/2012] [Accepted: 04/15/2012] [Indexed: 12/13/2022]
|
456
|
Dallas ML, Yang Z, Boyle JP, Boycott HE, Scragg JL, Milligan CJ, Elies J, Duke A, Thireau J, Reboul C, Richard S, Bernus O, Steele DS, Peers C. Carbon monoxide induces cardiac arrhythmia via induction of the late Na+ current. Am J Respir Crit Care Med 2012; 186:648-56. [PMID: 22822026 PMCID: PMC3622900 DOI: 10.1164/rccm.201204-0688oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/10/2012] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Clinical reports describe life-threatening cardiac arrhythmias after environmental exposure to carbon monoxide (CO) or accidental CO poisoning. Numerous case studies describe disruption of repolarization and prolongation of the QT interval, yet the mechanisms underlying CO-induced arrhythmias are unknown. OBJECTIVES To understand the cellular basis of CO-induced arrhythmias and to identify an effective therapeutic approach. METHODS Patch-clamp electrophysiology and confocal Ca(2+) and nitric oxide (NO) imaging in isolated ventricular myocytes was performed together with protein S-nitrosylation to investigate the effects of CO at the cellular and molecular levels, whereas telemetry was used to investigate effects of CO on electrocardiogram recordings in vivo. MEASUREMENTS AND MAIN RESULTS CO increased the sustained (late) component of the inward Na(+) current, resulting in prolongation of the action potential and the associated intracellular Ca(2+) transient. In more than 50% of myocytes these changes progressed to early after-depolarization-like arrhythmias. CO elevated NO levels in myocytes and caused S-nitrosylation of the Na(+) channel, Na(v)1.5. All proarrhythmic effects of CO were abolished by the NO synthase inhibitor l-NAME, and reversed by ranolazine, an inhibitor of the late Na(+) current. Ranolazine also corrected QT variability and arrhythmias induced by CO in vivo, as monitored by telemetry. CONCLUSIONS Our data indicate that the proarrhythmic effects of CO arise from activation of NO synthase, leading to NO-mediated nitrosylation of Na(V)1.5 and to induction of the late Na(+) current. We also show that the antianginal drug ranolazine can abolish CO-induced early after-depolarizations, highlighting a novel approach to the treatment of CO-induced arrhythmias.
Collapse
Affiliation(s)
- Mark L. Dallas
- Division of Cardiovascular Medicine, Faculty of Medicine and Health, and
| | - Zhaokang Yang
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - John P. Boyle
- Division of Cardiovascular Medicine, Faculty of Medicine and Health, and
| | - Hannah E. Boycott
- Division of Cardiovascular Medicine, Faculty of Medicine and Health, and
| | - Jason L. Scragg
- Division of Cardiovascular Medicine, Faculty of Medicine and Health, and
| | - Carol J. Milligan
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jacobo Elies
- Division of Cardiovascular Medicine, Faculty of Medicine and Health, and
| | - Adrian Duke
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Jérôme Thireau
- Inserm U1046, Physiologie et Médecine Expérimentale du Coeur et des Muscles, CHU Arnaud de Villeneuve, Montpellier, France; and
| | - Cyril Reboul
- Laboratoire de Pharm-écologie Cardiovasculaire, Faculté des Sciences, Avignon, France
| | - Sylvain Richard
- Inserm U1046, Physiologie et Médecine Expérimentale du Coeur et des Muscles, CHU Arnaud de Villeneuve, Montpellier, France; and
| | - Olivier Bernus
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Derek S. Steele
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Chris Peers
- Division of Cardiovascular Medicine, Faculty of Medicine and Health, and
| |
Collapse
|
457
|
Michel BW, Lippert AR, Chang CJ. A Reaction-Based Fluorescent Probe for Selective Imaging of Carbon Monoxide in Living Cells Using a Palladium-Mediated Carbonylation. J Am Chem Soc 2012; 134:15668-71. [DOI: 10.1021/ja307017b] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Brian W. Michel
- Department
of Chemistry and ‡Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Alexander R. Lippert
- Department
of Chemistry and ‡Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department
of Chemistry and ‡Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
458
|
Microsatellite polymorphism in the heme oxygenase-1 gene promoter and the risk of psoriasis in Taiwanese. Arch Dermatol Res 2012; 304:739-44. [PMID: 22965812 DOI: 10.1007/s00403-012-1289-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 08/02/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
Psoriasis is a chronic disease characterized by inflammation of the skin. The expression of heme oxygenase-1 (HO-1), the rate-limiting enzyme involved in heme degradation, correlates well with the severity of psoriasis, and is a heritable trait. This study aimed to assess the role of (GT)(n) dinucleotide repeat polymorphisms in the promoter region of the HO-1 gene in Chinese-Taiwanese patients with psoriasis. In total, 288 patients with psoriasis and 542 control subjects were analyzed for the presence of the HO-1 microsatellite polymorphism by using polymerase chain reaction. The alleles were classified as the S and L alleles according to the number of (GT)(n) repeats, with the alleles with ≤26 repeats designated as S and alleles with ≥27 repeats designated as L alleles. The subjects were then classified as having S/S, S/L, or L/L genotypes according to each of their HO-1 alleles. No significant difference was observed in either the genotype or allele distribution between the patients and healthy controls. However, the average number of repeats of both alleles in psoriasis patients with late disease onset was lower than that of psoriasis patients with early disease onset (26.7 ± 3.2 vs. 27.5 ± 3.4; P = 0.043, adjusted for age and sex), but the difference was not significant after additional adjustment for body mass index, smoking, diabetes, and hypertension (P = 0.189). Our results suggest that the HO-1 microsatellite polymorphism may not contribute to the genetic background of psoriasis in Chinese-Taiwanese patients.
Collapse
|
459
|
Giles TD, Sander GE, Nossaman BD, Kadowitz PJ. Impaired vasodilation in the pathogenesis of hypertension: focus on nitric oxide, endothelial-derived hyperpolarizing factors, and prostaglandins. J Clin Hypertens (Greenwich) 2012; 14:198-205. [PMID: 22458740 DOI: 10.1111/j.1751-7176.2012.00606.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Under resting conditions the arterial vasculature exists in a vasoconstricted state referred to as vascular tone. Physiological dilatation in response to increased flow, a function of normal endothelium is necessary to maintain normal blood pressure. Endothelial dysfunction in vascular smooth muscle cells thus results in loss of normal vasorelaxant function and the inability of arteries to appropriately dilate in response to increased blood flow in either a systemic or regional vascular bed, resulting in increased blood pressure, a sequence that may represent a common pathway to hypertension. Normal vasorelaxation is mediated by a number of endothelial systems including nitric oxide (NO), prostaglandins (PGI2 and PGE2), and a family of endothelial-derived hyperpolarizing factors (EDHF). In response to hemodynamic shear stress, endothelium continuously releases NO, EDHF, and PGI2 to provide vasodilatation. EDHF, not a single molecule but rather a group of molecules that includes epoxyeicosatrienoic acids, hydrogen peroxide, carbon monoxide, hydrogen sulfide, C-natriuretic peptide, and K+ itself, causes vasodilatation by activation of vascular smooth muscle cell K+ channels, resulting in hyperpolarization and thus vasorelaxation. The understanding and effective management of blood pressure requires an understanding of both physiologic and pathophysiologic regulation of vascular tone. This review describes molecular mechanisms underlying normal endothelial regulation and pathological states, such as increased oxidative stress, which cause loss of vasorelaxation. Possible pharmacological interventions to restore normal function are suggested.
Collapse
Affiliation(s)
- Thomas D Giles
- Heart & Vascular Institute, Tulane University Medical Center, New Orleans, LA, USA.
| | | | | | | |
Collapse
|
460
|
Lancel S, Montaigne D, Marechal X, Marciniak C, Hassoun SM, Decoster B, Ballot C, Blazejewski C, Corseaux D, Lescure B, Motterlini R, Neviere R. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PLoS One 2012; 7:e41836. [PMID: 22870253 PMCID: PMC3411569 DOI: 10.1371/journal.pone.0041836] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/26/2012] [Indexed: 11/18/2022] Open
Abstract
AIMS Metabolic syndrome induces cardiac dysfunction associated with mitochondria abnormalities. As low levels of carbon monoxide (CO) may improve myocardial and mitochondrial activities, we tested whether a CO-releasing molecule (CORM-3) reverses metabolic syndrome-induced cardiac alteration through changes in mitochondrial biogenesis, dynamics and autophagy. METHODS AND RESULTS Mice were fed with normal diet (ND) or high-fat diet (HFD) for twelve weeks. Then, mice received two intraperitoneal injections of CORM-3 (10 mg x kg(-1)), with the second one given 16 hours after the first. Contractile function in isolated hearts and mitochondrial parameters were evaluated 24 hours after the last injection. Mitochondrial population was explored by electron microscopy. Changes in mitochondrial dynamics, biogenesis and autophagy were assessed by western-blot and RT-qPCR. Left ventricular developed pressure was reduced in HFD hearts. Mitochondria from HFD hearts presented reduced membrane potential and diminished ADP-coupled respiration. CORM-3 restored both cardiac and mitochondrial functions. Size and number of mitochondria increased in the HFD hearts but not in the CORM-3-treated HFD group. CORM-3 modulated HFD-activated mitochondrial fusion and biogenesis signalling. While autophagy was not activated in the HFD group, CORM-3 increased the autophagy marker LC3-II. Finally, ex vivo experiments demonstrated that autophagy inhibition by 3-methyladenine abolished the cardioprotective effects of CORM-3. CONCLUSION CORM-3 may modulate pathways controlling mitochondrial quality, thus leading to improvements of mitochondrial efficiency and HFD-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Steve Lancel
- EA4484, Physiology Department, Lille 2 University, Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
461
|
Tavares AFN, Nobre LS, Saraiva LM. A role for reactive oxygen species in the antibacterial properties of carbon monoxide-releasing molecules. FEMS Microbiol Lett 2012; 336:1-10. [PMID: 22774863 DOI: 10.1111/j.1574-6968.2012.02633.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 12/24/2022] Open
Abstract
Carbon monoxide-releasing molecules (CO-RMs) are, in general, transition metal carbonyl complexes that liberate controlled amounts of CO. In animal models, CO-RMs have been shown to reduce myocardial ischaemia, inflammation and vascular dysfunction, and to provide a protective effect in organ transplantation. Moreover, CO-RMs are bactericides that kill both Gram-positive and Gram-negative bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. Herein are reviewed the microbial genetic and biochemical responses associated with CO-RM-mediated cell death. Particular emphasis is given to the data revealing that CO-RMs induce the generation of reactive oxygen species (ROS), which contribute to the antibacterial activity of these compounds.
Collapse
Affiliation(s)
- Ana Filipa N Tavares
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | |
Collapse
|
462
|
Schultz HD, Del Rio R, Ding Y, Marcus NJ. Role of neurotransmitter gases in the control of the carotid body in heart failure. Respir Physiol Neurobiol 2012; 184:197-203. [PMID: 22842006 DOI: 10.1016/j.resp.2012.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/11/2012] [Accepted: 07/13/2012] [Indexed: 02/06/2023]
Abstract
The peripheral arterial chemoreflex, arising primarily from the carotid body in most species, plays an important role in the control of breathing and in autonomic control of cardiovascular function. The peripheral chemoreflex is enhanced in heart failure patients and animal models of heart failure and contributes to the sympathetic hyperactivity and breathing instability that exacerbates the progression of the disease. Studies in animal models have shown that carotid body chemoreceptor activity is enhanced under both normoxic and hypoxic conditions in heart failure due to disruption of local mediators that control carotid body function. This brief review highlights evidence that the alterations in the gasotransmitters, nitric oxide, carbon monoxide, and hydrogen sulfide in the carotid body contribute to the exaggerated carotid body function observed in heart failure.
Collapse
Affiliation(s)
- Harold D Schultz
- Department of Integrative/Cellular Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, United States.
| | | | | | | |
Collapse
|
463
|
Breath biomarkers in diagnosis of pulmonary diseases. Clin Chim Acta 2012; 413:1770-80. [PMID: 22796631 DOI: 10.1016/j.cca.2012.07.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/20/2012] [Accepted: 07/05/2012] [Indexed: 12/29/2022]
Abstract
Breath analysis provides a convenient and simple alternative to traditional specimen testing in clinical laboratory diagnosis. As such, substantial research has been devoted to the analysis and identification of breath biomarkers. Development of new analytes enhances the desirability of breath analysis especially for patients who monitor daily biochemical parameters. Elucidating the physiologic significance of volatile substances in breath is essential for clinical use. This review describes the use of breath biomarkers in diagnosis of asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), lung cancer, as well as other pulmonary diseases. A number of breath biomarkers in lung pathophysiology will be described including nitric oxide (NO), carbon monoxide (CO), hydrogen peroxide (H₂O₂) and other hydrocarbons.
Collapse
|
464
|
Wang R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 2012; 92:791-896. [PMID: 22535897 DOI: 10.1152/physrev.00017.2011] [Citation(s) in RCA: 1372] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The important life-supporting role of hydrogen sulfide (H(2)S) has evolved from bacteria to plants, invertebrates, vertebrates, and finally to mammals. Over the centuries, however, H(2)S had only been known for its toxicity and environmental hazard. Physiological importance of H(2)S has been appreciated for about a decade. It started by the discovery of endogenous H(2)S production in mammalian cells and gained momentum by typifying this gasotransmitter with a variety of physiological functions. The H(2)S-catalyzing enzymes are differentially expressed in cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems and affect the functions of these systems through the production of H(2)S. The physiological functions of H(2)S are mediated by different molecular targets, such as different ion channels and signaling proteins. Alternations of H(2)S metabolism lead to an array of pathological disturbances in the form of hypertension, atherosclerosis, heart failure, diabetes, cirrhosis, inflammation, sepsis, neurodegenerative disease, erectile dysfunction, and asthma, to name a few. Many new technologies have been developed to detect endogenous H(2)S production, and novel H(2)S-delivery compounds have been invented to aid therapeutic intervention of diseases related to abnormal H(2)S metabolism. While acknowledging the challenges ahead, research on H(2)S physiology and medicine is entering an exponential exploration era.
Collapse
Affiliation(s)
- Rui Wang
- Department of Biology, Lakehead University, Thunder Bay, Ontario, Canada.
| |
Collapse
|
465
|
Zhai D, Guo Y, Smith G, Krewski D, Walker M, Wen SW. Maternal exposure to moderate ambient carbon monoxide is associated with decreased risk of preeclampsia. Am J Obstet Gynecol 2012; 207:57.e1-9. [PMID: 22521459 DOI: 10.1016/j.ajog.2012.03.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 03/12/2012] [Accepted: 03/22/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Carbon monoxide (CO) in cigarette smoke may be the mechanism by which tobacco use during pregnancy decreases the risk of the development of preeclampsia. We attempted to test this hypothesis by examining the effect of maternal exposure to ambient CO on preeclampsia. STUDY DESIGN Births that occurred between 2004 and 2009 in the Canadian province of Ontario were extracted from the data. Study subjects were divided into 4 groups according to quartiles of CO concentration that were based on maternal residence. Adjusted odds ratio and 95% confidence interval were used to estimate the independent effect of CO on preeclampsia. RESULTS Rates of preeclampsia were 2.32%, 1.97%, 1.59%, and 1.26%, respectively, in the first, second, third, and fourth quartile of CO concentration. The inverse association between CO concentration and preeclampsia risk remained the same after adjustment for several important confounding factors. CONCLUSION Maternal exposure to moderate ambient CO is associated independently with a decreased risk of preeclampsia.
Collapse
|
466
|
Zhao J, Tan S, Liu F, Zhang Y, Su M, Sun D. Heme oxygenase and ocular disease: a review of the literature. Curr Eye Res 2012; 37:955-60. [PMID: 22720721 DOI: 10.3109/02713683.2012.700753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heme oxygenase (HO) catabolizes heme into three products: carbon monoxide (CO), biliverdin/bilirubin and free iron. Two distinct isoforms of HO have been identified: an inducible isozyme HO-1 and a constitutively expressed isozyme HO-2, which participate in a variety of physiological and pathophysiological processes. A growing body of evidence indicates that HO activation plays a variety of roles in several ocular diseases, functioning protectively by reducing oxidative injury, attenuating the inflammatory response, and inhibiting cell apoptosis. This review focuses on the current understanding of the physiological significance of HO and its putative roles in the ocular disease. Possible therapeutic strategies involving HO in the treatment of ocular disease are discussed.
Collapse
Affiliation(s)
- Jun Zhao
- Department of ophthalmology, Linyi People's Hospital, Linyi City, Shandong Province, China.
| | | | | | | | | | | |
Collapse
|
467
|
Lippi G, Rastelli G, Meschi T, Borghi L, Cervellin G. Pathophysiology, clinics, diagnosis and treatment of heart involvement in carbon monoxide poisoning. Clin Biochem 2012; 45:1278-85. [PMID: 22705450 DOI: 10.1016/j.clinbiochem.2012.06.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/30/2012] [Accepted: 06/05/2012] [Indexed: 02/04/2023]
Abstract
The toxicity of carbon monoxide has been recognized for long throughout history and is unquestionably the leading cause of unintentional poisoning deaths in the Western countries. The severity of poisoning is dependent upon environmental and human factor. The leading pathophysiological mechanism resides in the ability of carbon monoxide to bind to hemoglobin molecules with high affinity, displacing oxygen and generating carboxyhemoglobin, which is virtually ineffective to deliver oxygen to the tissues. The organs with the highest demand for oxygen such as the brain and the heart are more vulnerable to injury. Myocardial involvement is commonplace in moderate to severe carbon monoxide poisoning and is associated with a substantially higher risk of mortality. Besides hypoxic damage, carbon monoxide produces myocardium injuries with cardiospecific mechanisms, mostly attributable to direct damage at cellular or subcellular level. The clinical spectrum of heart involvement is broad and encompasses cardiomyopathy, angina attack, myocardial infarction, arrhythmias and heart failure up to myocardial stunning, cardiogenic shock and sudden death. Patients with underlying cardiac disease, especially coronary heart disease, are at greater risk of infarction and arrhythmias. Single photon emission computed tomography (SPECT) is the technique of choice for diagnosing cardiac involvement, whereas the recent introduction of the highly sensitive troponin immunoassays seems promising for the early triage of patients. No specific treatment other than oxygen delivery can be advocated for cardiac toxicity at present, and 100% oxygen therapy should be continued until the patient is asymptomatic and carboxyhemoglobin levels decrease below 5-10%.
Collapse
Affiliation(s)
- Giuseppe Lippi
- UO Diagnostica Ematochimica, Dipartimento di Patologia e Medicina di Laboratorio, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | | | | | | | | |
Collapse
|
468
|
Liu W, Wang D, Liu K, Sun X. Nrf2 as a converging node for cellular signaling pathways of gasotransmitters. Med Hypotheses 2012; 79:308-10. [PMID: 22682031 DOI: 10.1016/j.mehy.2012.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 04/22/2012] [Accepted: 05/10/2012] [Indexed: 12/30/2022]
Abstract
Gasotransmitters is a family of endogenous molecules of gases or gaseous signaling molecules. To date, nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H(2)S) have been found to be important gasotransmitters in humans. Three gasotransmitters at high concentrations have been confirmed to be detrimental to human health, while evidence shows they at low concentrations may confer protective effects. There are important interactions among three gasotransmitters. Recent evidence reveals that these gasotransmitters may converge at Nrf2, an important transcription factor able to induce the expressions of some critical antioxidant enzymes, which may attribute to the protective effects of these gasotransmitters. Thus, we hypothesize that Nrf2 serves as a converging node for cellular signaling pathways of gasotransmitters, which adds evidence on the interactions among them.
Collapse
Affiliation(s)
- Wenwu Liu
- Department of Diving Medicine, The Second Military Medical University, Shanghai, PR China
| | | | | | | |
Collapse
|
469
|
Abstract
Recent findings that heme oxygenase-1 can be induced by oxidative stress and inflammation in many different cellular systems, and that carbon monoxide (CO) produced as a by-product of this enzyme is a signaling molecule, have generated a major research area with hundreds of studies published over the last few years. The measurement of expired CO concentration has been used in humans as a biomarker of induced heme oxygenase resulting from inflammation or oxidative stress, but a precise method of measuring endogenous CO production that can be easily used to study patients is needed. The present study describes such a method. The described method allows calculation of the rate of heme catabolism with a precision of ±2 μmol/h, ∼10% of the mean normal rate in subjects used in this investigation. This method, which is subject-patient friendly, precise, and inexpensive to perform, should be applicable to studies performed on humans with induced heme oxygenase and studies of effects of therapy for inflammatory and hemolytic diseases.
Collapse
Affiliation(s)
- Ronald F. Coburn
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
470
|
Chen L, Zhang J, He Y, Pan J, Zhou H, Li H, Tang Y, Zheng Y. Contribution of BK(Ca) channels of neurons in rostral ventrolateral medulla to CO-mediated central regulation of respiratory rhythm in medullary slices of neonatal rats. Respir Physiol Neurobiol 2012; 182:93-9. [PMID: 22633934 DOI: 10.1016/j.resp.2012.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/12/2012] [Accepted: 05/06/2012] [Indexed: 10/28/2022]
Abstract
We recently described that carbon monoxide (CO) participated in the regulation of rhythmic respiration in medullary slices. The present study was undertaken to further assess whether the large-conductance calcium-activated potassium channels (BK(Ca) channels) are involved in the CO-mediated central regulation of respiratory rhythm in medullary slices. The rhythmic discharge of hypoglossal rootlets of medullary slices of neonatal rats was recorded. We observed that blocking BK(Ca) channels could partially abolish the effects of CO on the rhythmic bursts of hypoglossal rootlets. With whole-cell patch-clamp recording technique, we further observed that CO could reversibly augment potassium current density of the neurons in the rostral ventrolateral medulla. The CO-induced increase in potassium current was entirely blocked by the pretreatment of slices with BK(Ca) channels blocker; whereas blockade of CO generation with zinc protoporphyrin-IX produced an opposite response. Altogether, these data indicate that BK(Ca) channels of the neurons in neonatal rostral ventrolateral medulla could be activated by CO and involved in CO-mediated central regulation of respiratory rhythm in medullary slices.
Collapse
Affiliation(s)
- Li Chen
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
471
|
Huber W, Linder R, Niesel J, Schatzschneider U, Spingler B, Kunz PC. A Comparative Study of Tricarbonylmanganese Photoactivatable CO Releasing Molecules (PhotoCORMs) by Using the Myoglobin Assay and Time-Resolved IR Spectroscopy. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200115] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
472
|
|
473
|
Al-Owais MMA, Scragg JL, Dallas ML, Boycott HE, Warburton P, Chakrabarty A, Boyle JP, Peers C. Carbon monoxide mediates the anti-apoptotic effects of heme oxygenase-1 in medulloblastoma DAOY cells via K+ channel inhibition. J Biol Chem 2012; 287:24754-64. [PMID: 22593583 DOI: 10.1074/jbc.m112.357012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor cell survival and proliferation is attributable in part to suppression of apoptotic pathways, yet the mechanisms by which cancer cells resist apoptosis are not fully understood. Many cancer cells constitutively express heme oxygenase-1 (HO-1), which catabolizes heme to generate biliverdin, Fe(2+), and carbon monoxide (CO). These breakdown products may play a role in the ability of cancer cells to suppress apoptotic signals. K(+) channels also play a crucial role in apoptosis, permitting K(+) efflux which is required to initiate caspase activation. Here, we demonstrate that HO-1 is constitutively expressed in human medulloblastoma tissue, and can be induced in the medulloblastoma cell line DAOY either chemically or by hypoxia. Induction of HO-1 markedly increases the resistance of DAOY cells to oxidant-induced apoptosis. This effect was mimicked by exogenous application of the heme degradation product CO. Furthermore we demonstrate the presence of the pro-apoptotic K(+) channel, Kv2.1, in both human medulloblastoma tissue and DAOY cells. CO inhibited the voltage-gated K(+) currents in DAOY cells, and largely reversed the oxidant-induced increase in K(+) channel activity. p38 MAPK inhibition prevented the oxidant-induced increase of K(+) channel activity in DAOY cells, and enhanced their resistance to apoptosis. Our findings suggest that CO-mediated inhibition of K(+) channels represents an important mechanism by which HO-1 can increase the resistance to apoptosis of medulloblastoma cells, and support the idea that HO-1 inhibition may enhance the effectiveness of current chemo- and radiotherapies.
Collapse
Affiliation(s)
- Moza M A Al-Owais
- Division of Cardiovascular and Neuronal Remodelling, LIGHT, Faculty of Medicine and Health, University of Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
474
|
Medical gases: a novel strategy for attenuating ischemia-reperfusion injury in organ transplantation? J Transplant 2012; 2012:819382. [PMID: 22645665 PMCID: PMC3356705 DOI: 10.1155/2012/819382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/02/2012] [Accepted: 01/23/2012] [Indexed: 12/21/2022] Open
Abstract
Ischemia reperfusion injury (IRI) is an inevitable clinical consequence in organ transplantation. It can lead to early graft nonfunction and contribute to acute and chronic graft rejection. Advanced molecular biology has revealed the highly complex nature of this phenomenon and few definitive therapies exist. This paper reviews factors involved in the pathophysiology of IRI and potential ways to attenuate it. In recent years, inhaled nitric oxide, carbon monoxide, and hydrogen sulfide have been increasingly explored as plausible novel medical gases that can attenuate IRI via multiple mechanisms, including microvascular vasorelaxation, reduced inflammation, and mitochondrial modulation. Here, we review recent advances in research utilizing inhaled nitric oxide, carbon monoxide, and hydrogen sulfide in animal and human studies of IRI and postulate on its future applications specific to solid organ transplantation.
Collapse
|
475
|
Ren Y, D'Ambrosio MA, Wang H, Falck JR, Peterson EL, Garvin JL, Carretero OA. Mechanisms of carbon monoxide attenuation of tubuloglomerular feedback. Hypertension 2012; 59:1139-44. [PMID: 22508834 DOI: 10.1161/hypertensionaha.112.192120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carbon monoxide (CO) is a physiological messenger with diverse functions in the kidney, including controlling afferent arteriole tone both directly and via tubuloglomerular feedback (TGF). We have reported that CO attenuates TGF, but the mechanisms underlying this effect remain unknown. We hypothesized that CO, acting via cGMP, cGMP-dependent protein kinase, and cGMP-stimulated phosphodiesterase 2, reduces cAMP in the macula densa, leading to TGF attenuation. In vitro, microdissected rabbit afferent arterioles and their attached macula densa were simultaneously perfused. TGF was measured as the decrease in afferent arteriole diameter elicited by switching macula densa NaCl from 10 to 80 mmol/L. Adding a CO-releasing molecule (CORM-3, 5 × 10(-5) mol/L) to the macula densa blunted TGF from 3.3 ± 0.3 to 2.0 ± 0.3 μm (P<0.001). The guanylate cyclase inhibitor LY-83583 (10(-6) mol/L) enhanced TGF (5.8 ± 0.6 μm; P<0.001 versus control) and prevented the effect of CORM-3 on TGF (LY-83583+CORM-3, 5.5 ± 0.3 μm). Similarly, the cGMP-dependent protein kinase inhibitor KT-5823 (2 × 10(-6) mol/L) enhanced TGF and prevented the effect of CORM-3 on TGF (KT-5823, 6.0 ± 0.7 μm; KT-5823+CORM-3, 5.9 ± 0.8 μm). However, the phosphodiesterase 2 inhibitor BAY-60-7550 (10(-6) mol/L) did not prevent the effect of CORM-3 on TGF (BAY-60-7550, 4.07 ± 0.31 μm; BAY-60-7550+CORM-3, 1.84 ± 0.31 μm; P<0.001). Finally, the degradation-resistant cAMP analog dibutyryl-cAMP (10(-3) mol/L) prevented the attenuation of TGF by CORM-3 (dibutyryl-cAMP, 4.6 ± 0.5 μm; dibutyryl-cAMP+CORM-3, 5.0 ± 0.6 μm). We conclude that CO attenuates TGF by reducing cAMP via a cGMP-dependent pathway mediated by cGMP-dependent protein kinase rather than phosphodiesterase 2. Our results will lead to a better understanding of the mechanisms that control the renal microcirculation.
Collapse
Affiliation(s)
- Yilin Ren
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, USA
| | | | | | | | | | | | | |
Collapse
|
476
|
Gullotta F, di Masi A, Ascenzi P. Carbon monoxide: an unusual drug. IUBMB Life 2012; 64:378-86. [PMID: 22431507 DOI: 10.1002/iub.1015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/03/2012] [Indexed: 12/22/2022]
Abstract
The highly toxic gas carbon monoxide (CO) displays many physiological roles in several organs and tissues. Although many diseases, including cancer, hematological diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration, and sleep disorders, have been linked to abnormal endogenous CO metabolism and functions, CO administration has therapeutic potential in inflammation, sepsis, lung injury, cardiovascular diseases, transplantation, and cancer. Here, insights into the CO-based therapy, characterized by the induction or gene transfer of heme oxygenase-1 and either gas or CO-releasing molecule administration, are reviewed.
Collapse
Affiliation(s)
- Francesca Gullotta
- Department of Biology and Interdepartmental Laboratory for Electron Microscopy, University Roma Tre, Roma, Italy
| | | | | |
Collapse
|
477
|
Santangelo R, Mancuso C, Marchetti S, Di Stasio E, Pani G, Fadda G. Bilirubin: An Endogenous Molecule with Antiviral Activity in vitro. Front Pharmacol 2012; 3:36. [PMID: 22408623 PMCID: PMC3297833 DOI: 10.3389/fphar.2012.00036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/20/2012] [Indexed: 12/16/2022] Open
Abstract
Bilirubin-IX-alpha (BR) is the final product of heme metabolism through the heme oxygenase/biliverdin reductase (HO/BVR) system. Previous papers reported on the microbicidal effects of the HO by-products biliverdin-IX-alpha, carbon monoxide and iron, through either direct or indirect mechanisms. In this paper the evidence of a virucidal effect of BR against human herpes simplex virus type 1 (HSV-1) and the enterovirus EV71 was provided. Bilirubin-IX-alpha, at concentrations 1–10 μM, close to those found in blood and tissues, significantly reduced HSV-1 and EV71 replication in Hep-2 and Vero cell lines, respectively. Bilirubin-IX-alpha inhibited viral infection of Hep-2 and Vero cells when given 2 h before, concomitantly and 2 h after viral infection. Furthermore, BR retained its antiviral activity even complexed with a saturating concentration of human serum-albumin. Moreover, 10 μM BR increased the formation of nitric oxide and the phosphorylation of c-Jun N-terminal kinase in Vero and Hep-2 cell lines, respectively, thus implying a role of these two pathways in the mechanism of antiviral activity of the bile pigment. In conclusion, these results support the antiviral effect of BR against HSV-1 and enterovirus in vitro, and put the basis for further basic and clinical studies to understand the real role of BR as an endogenous antiviral molecule.
Collapse
Affiliation(s)
- Rosaria Santangelo
- Institute of Microbiology, Catholic University School of Medicine Roma, Italy
| | | | | | | | | | | |
Collapse
|
478
|
Taniguchi S, Kimura T, Umeki T, Kimura Y, Kimura H, Ishii I, Itoh N, Naito Y, Yamamoto H, Niki I. Protein phosphorylation involved in the gene expression of the hydrogen sulphide producing enzyme cystathionine γ-lyase in the pancreatic β-cell. Mol Cell Endocrinol 2012; 350:31-8. [PMID: 22133746 DOI: 10.1016/j.mce.2011.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 11/16/2011] [Accepted: 11/16/2011] [Indexed: 01/24/2023]
Abstract
Cystathionine γ-lyase (CSE) is one of the major enzymes for the production of hydrogen sulphide (H(2)S), a multifunctional gasotransmitter in the pancreatic β-cell. We examined the mechanisms by which glucose induces CSE expression in mouse pancreatic islets and the insulin-secreting cell line MIN6. CSE expression was increased by anti-diabetic sulphonylureas, and decreased by the ATP-sensitive K(+)-channel opener diazoxide and the voltage-dependent Ca(2+) channel blocker nitrendipine. Application of the synthetic inhibitors of protein kinases revealed the involvement of Ca(2+)/calmodulin-dependent protein kinase (CaMK) II and extracellular signal-regulated protein kinase (ERK) in glucose- and thapsigargin-induced CSE expression. The CaMK IIδ knockdown also suppressed CSE expression. Knockdown of the transcription factors Sp1 and Elk1, both of which can be phosphorylated by ERK, blunted CSE expression. By a reporter assay, we found Sp1 may directly and Elk1 may indirectly regulate CSE expression. These findings suggest Ca(2+)-dependent CSE expression may be mediated via protein phosphorylation of Sp1 and Elk1 in pancreatic β-cells.
Collapse
Affiliation(s)
- Shigeki Taniguchi
- Department of Pharmacology, Oita University, 1-1 Idaigaoka, Hasama, Oita 879-5593, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
479
|
Role of HO/CO in the Control of Peripheral Circulation in Humans. Int J Hypertens 2012; 2012:236180. [PMID: 22500215 PMCID: PMC3303686 DOI: 10.1155/2012/236180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 12/07/2011] [Indexed: 12/18/2022] Open
Abstract
Experimental studies show that the heme oxygenase/carbon monoxide system (HO/CO) plays an important role in the homeostasis of circulation and in the pathophysiology of hypertension. No data are available on its role in the control of peripheral circulation in humans. We evaluated the effects of inhibition of HO with stannous mesoporphyrin IX (SnMP) (200 μM) locally administered by iontophoresis, on human skin blood flow, evaluated by laser-Doppler flowmetry, in the presence and absence of nitric oxide synthase (NOS) inhibition with L-NG-Nitroarginine methyl ester (L-NAME) (100 μM). We also evaluated the effect of HO inhibition on vasodilatation induced by acetylcholine (ACh) and vasoconstriction caused by noradrenaline (NA). SnMP and L-NAME caused a similar 20–25% decrease in skin flow. After nitric oxide (NO) inhibition with L-NAME, HO inhibition with SnMP caused a further 20% decrease in skin perfusion. SnMP decreased vasodilatation induced by ACh by about 70%, while it did not affect vasoconstriction to NA. In conclusion, HO/CO participates in the control of peripheral circulation, independently from NO, and is involved in vasodilatation to ACh.
Collapse
|
480
|
Allan PK, Wheatley PS, Aldous D, Mohideen MI, Tang C, Hriljac JA, Megson IL, Chapman KW, De Weireld G, Vaesen S, Morris RE. Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide. Dalton Trans 2012; 41:4060-6. [PMID: 22378060 DOI: 10.1039/c2dt12069k] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.
Collapse
Affiliation(s)
- Phoebe K Allan
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, Scotland, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
481
|
Romão CC, Blättler WA, Seixas JD, Bernardes GJL. Developing drug molecules for therapy with carbon monoxide. Chem Soc Rev 2012; 41:3571-83. [PMID: 22349541 DOI: 10.1039/c2cs15317c] [Citation(s) in RCA: 387] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The use of Carbon Monoxide (CO) as a therapeutic agent has already been tested in human clinical trials. Pre-clinically, CO gas administration proved beneficial in animal models of various human diseases. However, the use of gaseous CO faces serious obstacles not the least being its well-known toxicity. To fully realise the promise of CO as a therapeutic agent, it is key to find novel avenues for CO delivery to diseased tissues in need of treatment, without concomitant formation of elevated, toxic blood levels of carboxyhemoglobin (COHb). CO-releasing molecules (CO-RMs) have the potential to constitute safe treatments if CO release in vivo can be controlled in a spatial and temporal manner. It has already been demonstrated in animals that CO-RMs can release CO and mimic the therapeutic effects of gaseous CO. While demonstrating the principle of treatment with CO-RMs, these first generation compounds are not suitable for human use. This tutorial review summarises the biological and chemical behaviour of CO, the current status of CO-RM development, and derives principles for the creation of the next generation of CO-RMs for clinical applications in humans.
Collapse
Affiliation(s)
- Carlos C Romão
- Alfama Lda., Taguspark, núcleo central 267, 2740-122 Porto Salvo, Portugal.
| | | | | | | |
Collapse
|
482
|
El-Mousleh T, Casalis PA, Wollenberg I, Zenclussen ML, Volk HD, Langwisch S, Jensen F, Zenclussen AC. Exploring the potential of low doses carbon monoxide as therapy in pregnancy complications. Med Gas Res 2012; 2:4. [PMID: 22348450 PMCID: PMC3837472 DOI: 10.1186/2045-9912-2-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/20/2012] [Indexed: 01/25/2023] Open
Abstract
Heme Oxygenase-1 (HO-1) has been shown to play a pivotal role in pregnancy outcome and its ablation leads to abnormal placentation, intrauterine fetal growth restriction (IUGR) and subsequent intrauterine fetal death. Carbon monoxide (CO) has been found to mimic the protective effects of HO-1 activity, rescuing HO-1-deficient fetuses. This gasotransmitter arises in biological systems during the oxidative catabolism of heme by HO. Here, we explored the potential of CO in preventing IUGR and established the optimal doses and therapeutic time window in a clinically relevant mouse model. We additionally investigated the pathways activated upon CO application in vivo. We established 50 ppm as the best lowest dose of CO necessary to prevent growth restriction being the optimal time frame during days 3 to 8 of mouse pregnancy. CO lead to higher fetal and placental weights and avoided fetal death without showing any pathologic effects. CO breathing further suppressed inflammatory responses, diminished placenta apoptosis and complement deposition and regulated placental angiogenesis. Our results confirm the protective role of the HO-1/CO axis and point this gas as an emerging therapeutic possibility which is worth to further explore.
Collapse
Affiliation(s)
- Tarek El-Mousleh
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
483
|
Peers C, Steele DS. Carbon monoxide: a vital signalling molecule and potent toxin in the myocardium. J Mol Cell Cardiol 2012; 52:359-65. [PMID: 21640728 DOI: 10.1016/j.yjmcc.2011.05.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/11/2011] [Accepted: 05/17/2011] [Indexed: 11/20/2022]
Abstract
Endogenous carbon monoxide (CO) is generated through the heme oxygenase-catalysed degradation of heme and is now established as an important, biologically active molecule capable of modulating a number of signalling pathways. Such pathways include those involving nitric oxide/guanylate cyclase, reactive oxygen species (ROS) and MAP kinases. In the heart, up-regulation of the inducible form of heme oxygenase (HO-1) following stresses such as ischemia/reperfusion provides cardioprotection, and much evidence indicates that CO accounts for many of these beneficial effects. One target of CO appears to be the L-type Ca(2+) channel; CO inhibits recombinant and native forms of this cardiac channel via mitochondria-derived ROS, which likely contributes to the protective effects of CO. In stark contrast, exposure to exogenous CO is toxic: chronic, low-level exposure can lead to myocardial injury and fibrosis, whereas acute exposure is associated with life-threatening arrhythmias. The molecular mechanisms accounting for such effects remain to be elucidated, but require future study before the potentially beneficial effects of CO therapy can be safely exploited. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- Chris Peers
- Faculties of Medicine and Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
484
|
Marazioti A, Bucci M, Coletta C, Vellecco V, Baskaran P, Szabó C, Cirino G, Marques AR, Guerreiro B, Gonçalves AML, Seixas JD, Beuve A, Romão CC, Papapetropoulos A. Inhibition of nitric oxide-stimulated vasorelaxation by carbon monoxide-releasing molecules. Arterioscler Thromb Vasc Biol 2012; 31:2570-6. [PMID: 21836072 DOI: 10.1161/atvbaha.111.229039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Carbon monoxide (CO) is a weak soluble guanylyl cyclase stimulator, leading to transient increases in cGMP and vasodilation. The aim of the present work was to measure the effect of CO-releasing molecules (CORMs) on the cGMP/nitric oxide (NO) pathway and to evaluate how selected CORMs affect NO-induced vasorelaxation. METHODS AND RESULTS Incubation of smooth muscle cells with some but not all of the CORMs caused a minor increase in cGMP levels. Concentration-response curves were bell-shaped, with higher CORMs concentrations producing lower increases in cGMP levels. Although exposure of cells to CORM-2 enhanced cGMP formation, we observed that the compound inhibited NO-stimulated cGMP accumulation in cells and NO-stimulated soluble guanylyl cyclase activity that could be reversed by superoxide anion scavengers. Reactive oxygen species generation from CORMs was confirmed using luminol-induced chemiluminescence and electron spin resonance. Furthermore, we observed that NO is scavenged by CORM-2. When used alone CORM-2 relaxed vessels through a cGMP-mediated pathway but attenuated NO donor-stimulated vasorelaxation. CONCLUSION We conclude that the CORMs examined have context-dependent effects on vessel tone, as they can directly dilate blood vessels, but also block NO-induced vasorelaxation.
Collapse
Affiliation(s)
- Antonia Marazioti
- Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, Patras, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
485
|
Ibrahim I, El-Sayed S, Abdel-Hakim S, Hassan M, Aziz N. Inhibition of endogenous CO by ZnPP protects against stress-induced gastric lesion in adult male albino rats. J Physiol Biochem 2012; 68:319-28. [PMID: 22247033 DOI: 10.1007/s13105-011-0143-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/28/2011] [Indexed: 02/06/2023]
Abstract
Carbon monoxide (CO) has been found to be produced in every living cell in a biochemical reaction catalyzed by heme-oxygenase (HO) enzyme which degrades heme into biliverdin, CO, and iron. Endogenous CO is not a waste product, but acts as a chemical messenger mediating and modulating many intracellular biochemical reactions that regulate physiological functions. This study was designed to investigate the effect of inhibition of endogenous CO production by zinc protoporphyrin (ZnPP), an HO inhibitor, on the gastric secretion and ulceration induced by cold-restraint stress (CRS) in adult male albino rats. Rats were pylorically ligated and divided randomly into the following groups (six rats each): control, ZnPP treated (50 μmol/kg/day, s.c. for 10 days), CRS, and stressed ZnPP treated groups. Blood samples were collected from the retro-orbital sinus of anesthetized rats for determination of CO concentration. We found that ZnPP pretreatment significantly decreased HO-1 level, CO level, and volume of gastric juice as compared to the control non-stressed rats. In the present study, ZnPP pretreatment proved to be protective against development of ulcerative lesions in CRS model as evidenced by reduction of the ulcer index, and this could be mediated through reduction of free and total acidity of gastric secretion and decreased lipid peroxidation but with significantly decreased gastric protective nitric oxide and prostaglandin E(2) levels. In conclusion and according to our results, the protective effect of ZnPP on CRS-induced gastric ulcers despite of inhibition of endogenous CO could be attributed to the presence of zinc which is known to have a protective anti-ulcer effect.
Collapse
Affiliation(s)
- Ibrahim Ibrahim
- Department of Physiology, Faculty of Medicine, Minia University, 61111 Minia, Egypt
| | | | | | | | | |
Collapse
|
486
|
Fazekas AS, Wewalka M, Zauner C, Funk GC. Carboxyhemoglobin levels in medical intensive care patients: a retrospective, observational study. Crit Care 2012; 16:R6. [PMID: 22236404 PMCID: PMC3396235 DOI: 10.1186/cc11138] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 08/24/2011] [Accepted: 01/11/2012] [Indexed: 11/10/2022] Open
Abstract
Introduction Critical illness leads to increased endogenous production of carbon monoxide (CO) due to the induction of the stress-response enzyme, heme oxygenase-1 (HO-1). There is evidence for the cytoprotective and anti-inflammatory effects of CO based on animal studies. In critically ill patients after cardiothoracic surgery, low minimum and high maximum carboxyhemoglobin (COHb) levels were shown to be associated with increased mortality, which suggests that there is an 'optimal range' for HO-1 activity. Our study aimed to test whether this relationship between COHb and outcome exists in non-surgical ICU patients. Methods We conducted a retrospective, observational study in a medical ICU at a university hospital in Vienna, Austria involving 868 critically ill patients. No interventions were undertaken. Arterial COHb was measured on admission and during the course of treatment in the ICU. The association between arterial COHb levels and ICU mortality was evaluated using bivariate tests and a logistic regression model. Results Minimum COHb levels were slightly lower in non-survivors compared to survivors (0.9%, 0.7% to 1.2% versus 1.2%, 0.9% to 1.5%; P = 0.0001), and the average COHb levels were marginally lower in non-survivors compared to survivors (1.5%, 1.2% to 1.8% versus 1.6%, 1.4% to 1.9%, P = 0.003). The multivariate logistic regression analysis revealed that the association between a low minimum COHb level and increased mortality was independent of the severity of illness and the type of organ failure. Conclusions Critically ill patients surviving the admission to a medical ICU had slightly higher minimum and marginally higher average COHb levels when compared to non-survivors. Even though the observed differences are statistically significant, the minute margins would not qualify COHb as a predictive marker for ICU mortality.
Collapse
Affiliation(s)
- Andreas S Fazekas
- Department of Respiratory and Critical Care Medicine, Otto Wagner Hospital, Sanatoriumstrasse 2, A-1140 Vienna, Austria
| | | | | | | |
Collapse
|
487
|
Rochette L, Vergely C, Rochette F, Girard C. Carbon monoxide: a new pharmaceutical agent? MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-011-0430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
488
|
Oresmaa L, Tarvainen H, Kolari K, Haukka M. Ruthenium imidazole oxime carbonyls and their activities as CO-releasing molecules. Dalton Trans 2012; 41:11170-11175. [DOI: 10.1039/c2dt31002c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six ruthenium carbonyl complexes with imidazole and alkoxy carbonyl ligands were prepared and found to act as carbon monoxide releasing molecules (CORMs).
Collapse
Affiliation(s)
- Larisa Oresmaa
- Department of Chemistry
- University of Eastern Finland
- FI-80101 Joensuu
- Finland
| | - Heli Tarvainen
- Department of Chemistry
- University of Eastern Finland
- FI-80101 Joensuu
- Finland
| | - Kalle Kolari
- Department of Chemistry
- University of Eastern Finland
- FI-80101 Joensuu
- Finland
| | - Matti Haukka
- Department of Chemistry
- University of Eastern Finland
- FI-80101 Joensuu
- Finland
| |
Collapse
|
489
|
Berends HM, Kurz P. Investigation of light-triggered carbon monoxide release from two manganese photoCORMs by IR, UV–Vis and EPR spectroscopy. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2011.10.047] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
490
|
Gullotta F, di Masi A, Coletta M, Ascenzi P. CO metabolism, sensing, and signaling. Biofactors 2012; 38:1-13. [PMID: 22213392 DOI: 10.1002/biof.192] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/19/2011] [Indexed: 12/16/2022]
Abstract
CO is a colorless and odorless gas produced by the incomplete combustion of hydrocarbons, both of natural and anthropogenic origin. Several microorganisms, including aerobic and anaerobic bacteria and anaerobic archaea, use exogenous CO as a source of carbon and energy for growth. On the other hand, eukaryotic organisms use endogenous CO, produced during heme degradation, as a neurotransmitter and as a signal molecule. CO sensors act as signal transducers by coupling a "regulatory" heme-binding domain to a "functional" signal transmitter. Although high CO concentrations inhibit generally heme-protein actions, low CO levels can influence several signaling pathways, including those regulated by soluble guanylate cyclase and/or mitogen-activated protein kinases. This review summarizes recent insights into CO metabolism, sensing, and signaling.
Collapse
Affiliation(s)
- Francesca Gullotta
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Via Montpellier 1, I-00133 Roma, Italy
| | | | | | | |
Collapse
|
491
|
Gerjevic LN, Lu S, Chaky JP, Harrison-Findik DD. Regulation of heme oxygenase expression by alcohol, hypoxia and oxidative stress. World J Biol Chem 2011; 2:252-60. [PMID: 22216371 PMCID: PMC3247681 DOI: 10.4331/wjbc.v2.i12.252] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 10/11/2011] [Accepted: 10/17/2011] [Indexed: 02/05/2023] Open
Abstract
AIM: To study the effect of both acute and chronic alcohol exposure on heme oxygenases (HOs) in the brain, liver and duodenum.
METHODS: Wild-type C57BL/6 mice, heterozygous Sod2 knockout mice, which exhibit attenuated manganese superoxide dismutase activity, and liver-specific ARNT knockout mice were used to investigate the role of alcohol-induced oxidative stress and hypoxia. For acute alcohol exposure, ethanol was administered in the drinking water for 1 wk. Mice were pair-fed with regular or ethanol-containing Lieber De Carli liquid diets for 4 wk for chronic alcohol studies. HO expression was analyzed by real-time quantitative polymerase chain reaction and Western blotting.
RESULTS: Chronic alcohol exposure downregulated HO-1 expression in the brain but upregulated it in the duodenum of wild-type mice. It did not alter liver HO-1 expression, nor HO-2 expression in the brain, liver or duodenum. In contrast, acute alcohol exposure decreased both liver HO-1 and HO-2 expression, and HO-2 expression in the duodenum of wild-type mice. The decrease in liver HO-1 expression was abolished in ARNT+/- mice. Sod2+/- mice with acute alcohol exposure did not exhibit any changes in liver HO-1 and HO-2 expression or in brain HO-2 expression. However, alcohol inhibited brain HO-1 and duodenal HO-2 but increased duodenal HO-1 expression in Sod2+/- mice. Collectively, these findings indicate that acute and chronic alcohol exposure regulates HO expression in a tissue-specific manner. Chronic alcohol exposure alters brain and duodenal, but not liver HO expression. However, acute alcohol exposure inhibits liver HO-1 and HO-2, and also duodenal HO-2 expression.
CONCLUSION: The inhibition of liver HO expression by acute alcohol-induced hypoxia may play a role in the early phases of alcoholic liver disease progression.
Collapse
Affiliation(s)
- Lisa Nicole Gerjevic
- Lisa Nicole Gerjevic, Sizhao Lu, Jonathan Pascal Chaky, Duygu Dee Harrison-Findik, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5820, United States
| | | | | | | |
Collapse
|
492
|
Cao J, Sodhi K, Puri N, Monu SR, Rezzani R, Abraham NG. High fat diet enhances cardiac abnormalities in SHR rats: Protective role of heme oxygenase-adiponectin axis. Diabetol Metab Syndr 2011; 3:37. [PMID: 22196253 PMCID: PMC3261094 DOI: 10.1186/1758-5996-3-37] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/23/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High dietary fat intake is a major risk factor for development of cardiovascular and metabolic dysfunction including obesity, cardiomyopathy and hypertension. METHODS The present study was designed to examine effect of high fat (HF) diet on cardio-vascular structure and function in spontaneously hypertensive rats (SHR), fed HF diet for 15 weeks, a phenotype designed to mimic metabolic syndrome. RESULTS Development of metabolic syndrome like phenotype was confirmed using parameters, including body weight, total cholesterol and blood pressure levels. High fat diet impaired vascular relaxation by acetylcholine and exacerbated cardiac dysfunction in SHRs as evidenced by lower left ventricular function, and higher coronary resistance (CR) as compared to controls (p < 0.05). The histological examination revealed significant myocardial and peri-vascular fibrosis in hearts from SHRs on HF diet. This cardiac dysfunction was associated with increased levels of inflammatory cytokines, COX-2, NOX-2, TxB2 expression and increase in superoxide (O2-) levels in SHR fed a HF diet (p < 0.05). HO-1 induction via cobalt-protoporphyrin (CoPP,3 mg/kg), in HF fed rats, not only improved cardiac performance parameters, but also prevented myocardial and perivascular fibrosis. These effects of CoPP were accompanied by enhanced levels of cardiac adiponectin levels, pAMPK, peNOS and iNOS expression; otherwise significantly attenuated (p < 0.05) in HF fed SHRs. Prevention of such beneficial effects of CoPP by the concurrent administration of the HO inhibitor stannic mesoporphyrin (SnMP) corroborates the role of HO system in mediating such effects. CONCLUSION In conclusion, this novel study demonstrates that up-regulation of HO-1 improves cardiac and vascular dysfunction by blunting oxidative stress, COX-2 levels and increasing adiponectin levels in hypertensive rats on HF diet.
Collapse
Affiliation(s)
- Jian Cao
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Komal Sodhi
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio, 43614, USA
| | - Nitin Puri
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio, 43614, USA
| | - Sumit R Monu
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio, 43614, USA
| | - Rita Rezzani
- Department of Biomedical Science, Division of Anatomy, University of Brescia, Brescia Italy
| | - Nader G Abraham
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio, 43614, USA
| |
Collapse
|
493
|
Heme Oxygenase-1 Attenuates Hypoxia-Induced sFlt-1 and Oxidative Stress in Placental Villi through Its Metabolic Products CO and Bilirubin. Int J Hypertens 2011; 2012:486053. [PMID: 22195275 PMCID: PMC3238375 DOI: 10.1155/2012/486053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/20/2011] [Indexed: 11/28/2022] Open
Abstract
One of the most prevalent complications of pregnancy is preeclampsia, a hypertensive disorder which is a leading cause of maternal and perinatal morbidity and premature birth with no effective pharmacological intervention. While the underlying cause is unclear, it is believed that placental ischemia/hypoxia induces the release of factors into the maternal vasculature and lead to widespread maternal endothelial dysfunction. Recently, HO-1 has been shown to downregulate two of these factors, reactive oxygen species and sFlt-1, and we have reported that HO-1 induction attenuates many of the pathological factors of placental ischemia experimentally. Here, we have examined the direct effect of HO-1 and its bioactive metabolites on hypoxia-induced changes in superoxide and sFlt-1 in placental vascular explants and showed that HO-1 and its metabolites attenuate the production of both factors in this system. These findings suggest that the HO-1 pathway may be a promising therapeutic approach for the treatment of preeclampsia.
Collapse
|
494
|
Effects of exogenous carbon monoxide on radiation-induced bystander effect in zebrafish embryos in vivo. Appl Radiat Isot 2011; 70:1075-9. [PMID: 22119559 DOI: 10.1016/j.apradiso.2011.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 11/06/2011] [Indexed: 01/26/2023]
Abstract
In the present work, the influence of a low concentration of exogenous carbon monoxide (CO) liberated from tricarbonylchloro(glycinato)ruthenium (II) (CORM-3) on the radiation induced bystander effect (RIBE) in vivo between embryos of the zebrafish was studied. RIBE was assessed through the number of apoptotic signals revealed on embryos at 25 h post fertilization (hpf). A significant attenuation of apoptosis on the bystander embryos induced by RIBE in a CO concentration dependent manner was observed.
Collapse
|
495
|
Truss NJ, Warner TD. Gasotransmitters and platelets. Pharmacol Ther 2011; 132:196-203. [DOI: 10.1016/j.pharmthera.2011.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 10/18/2022]
|
496
|
Acute myocardial infarction in streptozotocin-induced hyperglycaemic rats: protection by a carbon monoxide-releasing molecule (CORM-3). Naunyn Schmiedebergs Arch Pharmacol 2011; 385:137-44. [DOI: 10.1007/s00210-011-0703-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 10/11/2011] [Indexed: 10/16/2022]
|
497
|
Ozaki KS, Kimura S, Murase N. Use of carbon monoxide in minimizing ischemia/reperfusion injury in transplantation. Transplant Rev (Orlando) 2011; 26:125-39. [PMID: 22000659 DOI: 10.1016/j.trre.2011.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/20/2011] [Indexed: 01/27/2023]
Abstract
Although carbon monoxide (CO) is known to be toxic because of its ability to interfere with oxygen delivery at high concentrations, mammalian cells endogenously generate CO primarily via the catalysis of heme by heme oxygenases. Recent findings have indicated that heme oxygenases and generation of CO serve as a key mechanism to maintain the integrity of the physiological function of organs and supported the development of a new paradigm that CO, at low concentrations, functions as a signaling molecule in the body and exerts significant cytoprotection. Consequently, exogenously delivered CO has been shown to mediate potent protection in various injury models through its anti-inflammatory, vasodilating, and antiapoptotic functions. Ischemia/reperfusion (I/R) injury associated with organ transplantation is one of the major deleterious factors limiting the success of transplantation. Ischemia/reperfusion injury is a complex cascade of interconnected events involving cell damage, apoptosis, vigorous inflammatory responses, microcirculation disturbance, and thrombogenesis. Carbon monoxide has a great potential in minimizing I/R injury. This review will provide an overview of the basic physiology of CO, preclinical studies examining efficacy of CO in I/R injury models, and possible protective mechanisms. Carbon monoxide could be developed to be a valuable therapeutic molecule in minimizing I/R injury in transplantation.
Collapse
Affiliation(s)
- Kikumi S Ozaki
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
498
|
Shankaran P, Vlkova L, Liskova J, Melkova Z. Heme arginate potentiates latent HIV-1 reactivation while inhibiting the acute infection. Antiviral Res 2011; 92:434-46. [PMID: 22001321 DOI: 10.1016/j.antiviral.2011.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 09/28/2011] [Accepted: 09/28/2011] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus-1 (HIV-1) successfully escapes from host immune surveillance, vaccines and antiretroviral agents. The available antiretroviral compounds can only control viremia, but it is impossible to eliminate the virus from the organism, namely because HIV-1 provirus persists in the reservoir cells from which the virus repeatedly disseminates into new cells. Current therapeutic approaches, however, do not specifically address the stage of virus reactivation. Heme has been demonstrated as very efficient in inhibiting HIV-1 reverse transcription, while its derivative hemin ameliorated HIV-1 infection via induction of heme oxygenase-1. Normosang (heme arginate; HA) is a human hemin-containing compound used to treat acute porphyria. In this work, we studied the effects of HA in HIV-1-acutely infected T-cell lines, and in cell lines harboring either a complete HIV-1 provirus (ACH-2 cells) or an HIV-1 "mini-virus" (Jurkat clones expressing EGFP under control of HIV LTR). We demonstrate that HA inhibited HIV-1 replication during the acute infection, which was accompanied by the inhibition of reverse transcription. On the other hand, HA alone stimulated the reactivation of HIV-1 "mini-virus" and synergized with phorbol ester or TNF-α in the reactivation of HIV-1 provirus. The stimulatory effects of HA were inhibited by N-acetyl cysteine, suggesting an increased redox stress and activation of NF-κB. Further, HA induced expression of heme oxygenase-1 (HO-1) in ACH-2 cells, while HO-1 was found expressed in untreated Jurkat clones. Inhibitor of HO-1 activity, tin protoporphyrin IX, further increased HA-mediated reactivation of HIV-1 "mini-virus" in Jurkat clones, and this effect was also inhibited by N-acetyl cysteine. The stimulatory effects of HA on HIV-1 reactivation thus seem to involve HO-1 and generation of free radicals. Additionally, the effective concentrations of HA did neither affect normal T-cell activation with PMA nor induce activation of the unstimulated cells. In conclusion, HA appears to possess a combination of unique properties that could help to decrease the pool of latently infected reservoir cells, while simultaneously inhibiting HIV-1 replication in newly infected cells. Our results thus suggest a new direction to explore in treatment of HIV/AIDS disease.
Collapse
Affiliation(s)
- Prakash Shankaran
- Department of Immunology and Microbiology, 1st Medical Faculty, Charles University in Prague, Czech Republic
| | | | | | | |
Collapse
|
499
|
Jimenez-Feltstrom J, Salehi A, Meidute Abaraviciene S, Henningsson R, Lundquist I. Abnormally decreased NO and augmented CO production in islets of the leptin-deficient ob/ob mouse might contribute to explain hyperinsulinemia and islet survival in leptin-resistant type 2 obese diabetes. ACTA ACUST UNITED AC 2011; 170:43-51. [DOI: 10.1016/j.regpep.2011.04.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/24/2011] [Accepted: 04/16/2011] [Indexed: 01/14/2023]
|
500
|
Carbon monoxide poisoning is prevented by the energy costs of conformational changes in gas-binding haemproteins. Proc Natl Acad Sci U S A 2011; 108:15780-5. [PMID: 21900609 DOI: 10.1073/pnas.1109051108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon monoxide (CO) is a product of haem metabolism and organisms must evolve strategies to prevent endogenous CO poisoning of haemoproteins. We show that energy costs associated with conformational changes play a key role in preventing irreversible CO binding. AxCYTcp is a member of a family of haem proteins that form stable 5c-NO and 6c-CO complexes but do not form O(2) complexes. Structure of the AxCYTcp-CO complex at 1.25 Å resolution shows that CO binds in two conformations moderated by the extent of displacement of the distal residue Leu16 toward the haem 7-propionate. The presence of two CO conformations is confirmed by cryogenic resonance Raman data. The preferred linear Fe-C-O arrangement (170 ± 8°) is accompanied by a flip of the propionate from the distal to proximal face of the haem. In the second conformation, the Fe-C-O unit is bent (158 ± 8°) with no flip of propionate. The energetic cost of the CO-induced Leu-propionate movements is reflected in a 600 mV (57.9 kJ mol(-1)) decrease in haem potential, a value in good agreement with density functional theory calculations. Substitution of Leu by Ala or Gly (structures determined at 1.03 and 1.04 Å resolutions) resulted in a haem site that binds CO in the linear mode only and where no significant change in redox potential is observed. Remarkably, these variants were isolated as ferrous 6c-CO complexes, attributable to the observed eight orders of magnitude increase in affinity for CO, including an approximately 10,000-fold decrease in the rate of dissociation. These new findings have wide implications for preventing CO poisoning of gas-binding haem proteins.
Collapse
|