54551
|
Park T, Lee M, Choo J, Kim YS, Lee EK, Kim DJ, Lee SH. Analysis of passive mixing behavior in a poly(dimethylsiloxane) microfluidic channel using confocal fluorescence and Raman microscopy. APPLIED SPECTROSCOPY 2004; 58:1172-1179. [PMID: 15527517 DOI: 10.1366/0003702042336019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Confocal fluorescence microscopy (CFM) and confocal Raman microscopy (CRM) have been applied to monitor the laminar flow mixing behavior in a poly(dimethylsiloxane) (PDMS) microfluidic channel. Two passive PDMS micromixing devices were fabricated for this purpose: a two-dimensional round-wave channel and a three-dimensional serpentine channel. The microscale laminar flow mixing of ethanol and isopropanol was evaluated using the CFM and CRM at various flow rates. The mixing behavior of confluent streams in the microchannel was assessed by determining the degree of color change in Rhodamine 6G dye on mixing using the CFM. However, it was also possible to quantitatively evaluate the mixing process without employing a fluorescence label using the CRM. The results show a strong potential for CRM as a highly sensitive detection tool to measure fundamental fluid mixing processes and to provide detailed information on chemical changes of non-fluorescent reaction mixtures in a PDMS microfluidic channel.
Collapse
Affiliation(s)
- Taehan Park
- Department of Chemistry, Hanyang University, Ansan 426-791, Korea
| | | | | | | | | | | | | |
Collapse
|
54552
|
Alcaraz J, Nelson CM, Bissell MJ. Biomechanical approaches for studying integration of tissue structure and function in mammary epithelia. J Mammary Gland Biol Neoplasia 2004; 9:361-74. [PMID: 15838605 PMCID: PMC2933199 DOI: 10.1007/s10911-004-1406-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The structure and function of each individual mammary epithelial cell (MEC) is largely controlled by a bidirectional interchange of chemical and mechanical signals with the microenvironment. Most of these signals are tissue-specific, since they arise from the three-dimensional (3D) tissue organization and are modulated during mammary gland development, maturation, pregnancy, lactation, and involution. Although the important role played by structural and mechanical signals in mammary cell and tissue function is being increasingly recognized, quantitative biomechanical approaches are still scarce. Here we review currently available biomechanical tools that allow quantitative examination of individual cells, groups of cells or full monolayers in two-dimensional cultures, and cells in 3D cultures. Current technological limitations and challenges are discussed, with special emphasis on their potential applications in MEC biology. We argue that the combination of biomechanical tools with current efforts in mathematical modeling and in cell and molecular biology applied to 3D cultures provides a powerful approach to unravel the complexity of tissue-specific structure-function relationships.
Collapse
Affiliation(s)
- Jordi Alcaraz
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
- To whom correspondence should be addressed at Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 83-101, Berkeley, California 94720; ;
| | - Celeste M. Nelson
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
- To whom correspondence should be addressed at Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 83-101, Berkeley, California 94720; ;
| |
Collapse
|
54553
|
Xu G, Nie DY, Wang WZ, Zhang PH, Shen J, Ang BT, Liu GH, Luo XG, Chen NL, Xiao ZC. Optic nerve regeneration in polyglycolic acid–chitosan conduits coated with recombinant L1-Fc. Neuroreport 2004; 15:2167-72. [PMID: 15371726 DOI: 10.1097/00001756-200410050-00004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Autografts have been extensively studied to facilitate optic nerve (ON) regeneration in animal experiments, but the clinical application of this approach to aid autoregeneration has not yet been attempted. This study aims to explore the guided regeneration by an artificial polyglycolic acid-chitosan conduit coated with recombinant L1-Fc. Consistent with previous studies; in vitro assay showed that both chitosan, a natural biomaterial, and the neural cell adhesion molecule L1-Fc enhanced neurite outgrowth. Rat optic nerve transection was used as an in vivo model. The implanted PGA-chitosan conduit was progressively degraded and absorbed, accompanied by significant axonal regeneration as revealed by immunohistochemistry, anterograde and retrograde tracing. The polyglycolic acid-chitosan conduit coated with L1-Fc showed more effective to promote axonal regeneration and remyelination. Taken together, our observations demonstrated that the L1-Fc coated PGA-chitosan conduits provided a compatible and supportive canal to guild the injured nerve regeneration and remyelination.
Collapse
Affiliation(s)
- Gang Xu
- Department of Clinical Research, Singapore General Hospital, Block A, No. 7 Hospital Drive, Singapore 169608
| | | | | | | | | | | | | | | | | | | |
Collapse
|
54554
|
Alfaro Vigo DG, Fouque JP, Garnier J, Nachbin A. Robustness of time reversal for waves in time-dependent random media. Stoch Process Their Appl 2004. [DOI: 10.1016/j.spa.2004.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
54555
|
Melo LG, Gnecchi M, Pachori AS, Kong D, Wang K, Liu X, Pratt RE, Dzau VJ. Endothelium-Targeted Gene and Cell-Based Therapies for Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2004; 24:1761-74. [PMID: 15308553 DOI: 10.1161/01.atv.0000142363.15113.88] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most common cardiovascular diseases are accompanied by endothelial dysfunction. Because of its predominant role in the pathogenesis of cardiovascular disease, the vascular endothelium is an attractive therapeutic target. The identification of promoter sequences capable of rendering endothelial-specific transgene expression together with the recent development of vectors with enhanced tropism for endothelium may offer opportunities for the design of new strategies for modulation of endothelial function. Such strategies may be useful in the treatment of chronic diseases such as hypertension, atherosclerosis, and ischemic artery disease, as well as in acute myocardial infarction and during open heart surgery for prevention of ischemia and reperfusion (I/R)-induced injury. The recent identification of putative endothelial progenitor cells in peripheral blood may allow the design of autologous cell-based strategies for neovascularization of ischemic tissues and for the repair of injured blood vessels and bioengineering of vascular prosthesis. "Proof-of-concept" for some of these strategies has been established in animal models of cardiovascular disease. However the successful translation of these novel strategies into clinical application will require further developments in vector and delivery technologies. Further characterization of the processes involved in mobilization, migration, homing, and incorporation of endothelial progenitor cells into the target tissues is necessary, and the optimal conditions for therapeutic application of these cells need to be defined and standardized.
Collapse
Affiliation(s)
- Luis G Melo
- Department of Physiology, Queen's University, 18 Stuart Street, Kingston, Ontario, K7L 3N6, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
54556
|
Alexeev VL, Das S, Finegold DN, Asher SA. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin Chem 2004; 50:2353-60. [PMID: 15459093 DOI: 10.1373/clinchem.2004.039701] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND We recently developed a photonic crystal glucose-sensing material, which consists of a crystalline colloidal array embedded within a polymer network of a polyacrylamide-poly(ethylene glycol) hydrogel with pendent phenylboronic acid groups. The aim of the present work was to improve this approach for application to noninvasive or minimally invasive monitoring of glucose. METHODS We used new boronic acid derivatives such as 4-amino-3-fluorophenylboronic acid and 4-carboxy-3-fluorophenylboronic acid as the molecular recognition elements to achieve sensing at physiologic pH values. RESULTS The improved photonic glucose-sensing material sensed glucose in the range of the 100 mumol/L concentrations found in tear fluid. The detection limits were approximately 1 mumol/L in synthetic tear fluid. The visually evident diffraction color shifted across the entire visible spectral region from red to blue over the physiologically relevant tear-fluid glucose concentrations. This sensing material is selective for glucose over galactose, mannose, and fructose. CONCLUSIONS These new glucose sensors have properties appropriate for use in such glucose-sensing applications as ocular inserts or diagnostic contact lenses for patients with diabetes mellitus.
Collapse
Affiliation(s)
- Vladimir L Alexeev
- Department of Chemistry, Chevron Science Center, Department of Pediatrics, University of Pittsburgh Medical School, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
54557
|
Golzio M, Rols MP, Gabriel B, Teissié J. Optical imaging of in vivo gene expression: a critical assessment of the methodology and associated technologies. Gene Ther 2004; 11 Suppl 1:S85-91. [PMID: 15454962 DOI: 10.1038/sj.gt.3302374] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Following and quantifying the expression of reporter gene expression in vivo is very important to monitor the expression of therapeutic genes in targeted tissues in disease models and/or to assess the effectiveness of systems of gene therapy delivery. Gene expression of luminescent or fluorescent proteins can be detected directly on living animals by simply observing the associated optical signals by means of a cooled charged-coupled device camera. More accurate resolution can be obtained with more sophisticated technologies. Time-course and quasi-quantitative monitoring of the expression can be obtained on a given animal and followed on a large time window. The present paper describes the physical and technological methodologies and associated problems of in vivo optical imaging. Several examples of in vivo detection of gene delivery are described.
Collapse
Affiliation(s)
- M Golzio
- IPBS/CNRS (UMR 5089), Toulouse, France
| | | | | | | |
Collapse
|
54558
|
Cavalcante FSA, Ito S, Brewer K, Sakai H, Alencar AM, Almeida MP, Andrade JS, Majumdar A, Ingenito EP, Suki B. Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue. J Appl Physiol (1985) 2004; 98:672-9. [PMID: 15448123 DOI: 10.1152/japplphysiol.00619.2004] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Collagen and elastin are thought to dominate the elasticity of the connective tissue including lung parenchyma. The glycosaminoglycans on the proteoglycans may also play a role because osmolarity of interstitial fluid can alter the repulsive forces on the negatively charged glycosaminoglycans, allowing them to collapse or inflate, which can affect the stretching and folding pattern of the fibers. Hence, we hypothesized that the elasticity of lung tissue arises primarily from 1) the topology of the collagen-elastin network and 2) the mechanical interaction between proteoglycans and fibers. We measured the quasi-static, uniaxial stress-strain curves of lung tissue sheets in hypotonic, normal, and hypertonic solutions. We found that the stress-strain curve was sensitive to osmolarity, but this sensitivity decreased after proteoglycan digestion. Images of immunofluorescently labeled collagen networks showed that the fibers follow the alveolar walls that form a hexagonal-like structure. Despite the large heterogeneity, the aspect ratio of the hexagons at 30% uniaxial strain increased linearly with osmolarity. We developed a two-dimensional hexagonal network model of the alveolar structure incorporating the mechanical properties of the collagen-elastin fibers and their interaction with proteoglycans. The model accounted for the stress-strain curves observed under all experimental conditions. The model also predicted how aspect ratio changed with osmolarity and strain, which allowed us to estimate the Young's modulus of a single alveolar wall and a collagen fiber. We therefore identify a novel and important role for the proteoglycans: they stabilize the collagen-elastin network of connective tissues and contribute to lung elasticity and alveolar stability at low to medium lung volumes.
Collapse
|
54559
|
Abstract
Many technologies have been developed to help explain the phenotypic consequences of genetic and/or environmental modifications in areas like functional genomics, pharmaceutical research and metabolic engineering. The missing link in contemporary functional analyses that focus on the analysis of cellular components is the capacity to directly observe functional units. By linking genes and proteins to higher level biological functions, the molecular fluxes through metabolic networks (the fluxome) determine the cellular phenotype. Quantitative monitoring of such whole network operations by methods of metabolic flux analysis, thus bridges the gap by providing a global perspective of the integrated regulation at the transcriptional, translational and metabolic level. This review highlights recent developments towards high-throughput flux analysis.
Collapse
Affiliation(s)
- Uwe Sauer
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland.
| |
Collapse
|
54560
|
Gu WY, Sun DN, Lai WM, Mow VC. Analysis of the Dynamic Permeation Experiment with Implication to Cartilaginous Tissue Engineering. J Biomech Eng 2004; 126:485-91. [PMID: 15543866 DOI: 10.1115/1.1785806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, a 1-D dynamic permeation of a monovalent electrolyte solution through a negatively charged-hydrated cartilaginous tissue is analyzed using the mechano-electrochemical theory developed by Lai et al. (1991) as the constitutive model for the tissue. The spatial distributions of stress, strain, fluid pressure, ion concentrations, electrical potential, ion and fluid fluxes within and across the tissue have been calculated. The dependencies of these mechanical, electrical and physicochemical responses on the tissue fixed charge density, with specified modulus, permeability, diffusion coefficients, and frequency and magnitude of pressure differential are determined. The results demonstrate that these mechanical, electrical and physicochemical fields within the tissue are intrinsically and nonlinearly coupled, and they all vary with time and depth within the tissue.
Collapse
Affiliation(s)
- W Y Gu
- Tissue Biomechanics Laboratory, Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33124-0621, USA.
| | | | | | | |
Collapse
|
54561
|
Kettenbach J, Kronreif G, Figl M, Fürst M, Birkfellner W, Hanel R, Bergmann H. Robot-assisted biopsy using ultrasound guidance: initial results from in vitro tests. Eur Radiol 2004; 15:765-71. [PMID: 15449006 DOI: 10.1007/s00330-004-2487-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2004] [Revised: 06/28/2004] [Accepted: 08/06/2004] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to develop a robotic system for ultrasound (US)-guided biopsy and to validate the feasibility, accuracy and efficacy using phantom tests. Twenty peas (mean diameter 9.3+/-0.1 mm) embedded within a gel-phantom were selected for biopsy. Once the best access was defined, the position of the US transducer was recorded by an optical tracking system. Positional data of the transducer and the corresponding US image were transferred to the roboter planning system (LINUX-based industrial PC equipped with video capture card). Once the appropriate position, angulation and pitch were calculated, the robotic arm moved automatically with seven degrees-of-freedom to the planned insertion path, aiming the needle-positioning unit at the center of the target. Then, the biopsy was performed manually using a coaxial technique. The length of all harvested specimens was measured, and the deviation of the actual needle tract from the center of the target was evaluated sonographically. In all targets, the biopsy specimen (mean length 5+/-1.2 mm) was harvested with only one needle pass required The mean deviation of the needle tip from the center of the target was 1.1+/-0.8 mm. Robotic assisted biopsies in-vitro using US-guidance were feasible and provided high accuracy.
Collapse
Affiliation(s)
- Joachim Kettenbach
- Division of Angiography and Interventional Radiology, Department of Radiology, Medical University Vienna, General Hospital, Währinger Guertel 18-20, 1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
54562
|
Ciszek JW, Stewart MP, Tour JM. Spontaneous Assembly of Organic Thiocyanates on Gold Sufaces. Alternative Precursors for Gold Thiolate Assemblies. J Am Chem Soc 2004; 126:13172-3. [PMID: 15479041 DOI: 10.1021/ja0472477] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thiolate self-assembly on gold has proven to be a valuable technique for assembling monolayers on a wide variety of substrates. However, the oxidative instability of the thiols, especially aromatic thiols and alpha,omega-dithiols, presents several difficulties. Shown here is that thiocyanates, easily synthesized stable thiol derivatives, can be directly assembled on gold surfaces with no auxiliary reagents required. Assembly is complete in 24 h and leaves a similar gold thiolate structure as seen in typical thiol self-assembled monolayers.
Collapse
Affiliation(s)
- Jacob W Ciszek
- Department of Chemistry and Center for Nanoscale Sciences and Technology, Rice University, 6100 Main Street, Houston, Texas 77005, USA
| | | | | |
Collapse
|
54563
|
Jiang X, Bruzewicz DA, Thant MM, Whitesides GM. Palladium as a Substrate for Self-Assembled Monolayers Used in Biotechnology. Anal Chem 2004; 76:6116-21. [PMID: 15481961 DOI: 10.1021/ac049152t] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes self-assembled monolayers (SAMs) on palladium that resist the nonspecific adsorption of proteins and the adhesion of mammalian cells. These SAMs form when thin films of palladium are exposed to solutions of alkanethiol with the general structure HS(CH(2))(m)()(OCH(2)CH(2))(n)()OH (m = 2, 11; n = 3, 6, 7). Ellipsometry and surface plasmon resonance spectroscopy (using a palladium-on-gold substrate) showed that these SAMs resist adsorption of all proteins present in bovine serum. Microislands of SAMs of octadecanethiol on palladium allowed patterned adhesion and growth of mammalian cells (in a "sea" of oligo(ethyleneglycol)-terminated SAM). The oligo(ethyleneglycol)-terminated SAM resisted the invasion of cells for over four weeks under standard conditions of cell culture; similar SAMs on gold remained patterned for only two weeks.
Collapse
Affiliation(s)
- Xingyu Jiang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
54564
|
Hilt JZ. Nanotechnology and biomimetic methods in therapeutics: molecular scale control with some help from nature. Adv Drug Deliv Rev 2004; 56:1533-6. [PMID: 15350287 DOI: 10.1016/j.addr.2004.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoscale science and engineering has provided new avenues for engineering materials with macromolecular and even molecular precision. In particular, researchers are beginning to mimic biological systems, achieving molecular scale control via self-assembly and directed assembly techniques. Fabrication and manipulation with macromolecular and molecular precision have led and will lead to the development of novel materials, and these materials will facilitate the fabrication of micro- and nanoscale devices, such as self-regulated micro- and nanoscale drug delivery devices that combine diagnostic and therapeutic actions for instantaneous administration of therapy. As the field of nanoscale science and engineering matures, technologies that will revolutionize the way health care is administered will continue to be developed.
Collapse
Affiliation(s)
- J Zachary Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506-0046, USA.
| |
Collapse
|
54565
|
Peppas NA, Huang Y. Nanoscale technology of mucoadhesive interactions. Adv Drug Deliv Rev 2004; 56:1675-87. [PMID: 15350296 DOI: 10.1016/j.addr.2004.03.001] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 05/15/2004] [Indexed: 11/29/2022]
Abstract
Nanoscale analysis may be used to design new types of mucoadhesive polymers. Understanding of the surface interactions between hydrophilic polymer surfaces and mucins can lead to improved adhesive bonding by hydrogen bonding. Alternatively, decoration of a mucoadhesive polymer surface with tethers of linear and block copolymers containing neutral or ionizable structures provides increased interdigitation and interpenetration with the mucus. Finally, formation of micro- or nanopatterns on these surfaces can lead to promising new systems of oral delivery applications.
Collapse
Affiliation(s)
- Nicholas A Peppas
- Department of Chemical Engineering, CPE 3.466, 1 University Station, C-0400, The University of Texas at Austin, Austin, TX 78712-0231, USA.
| | | |
Collapse
|
54566
|
Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004; 56:1649-59. [PMID: 15350294 DOI: 10.1016/j.addr.2004.02.014] [Citation(s) in RCA: 1207] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 05/15/2004] [Indexed: 11/16/2022]
Abstract
This review explores recent work directed towards more targeted treatment of cancer, whether through more specific anti-cancer agents or through methods of delivery. These areas include delivery by avoiding the reticuloendothelial system, utilizing the enhanced permeability and retention effect and tumor-specific targeting. Treatment opportunities using antibody-targeted therapies are summarized. The ability to treat cancer by targeting delivery through angiogenesis is also discussed and antiangiogenic drugs in clinical trials are presented. Delivery methods that specifically use nanoparticles are also highlighted, including both degradable and nondegradable polymers.
Collapse
Affiliation(s)
- Lisa Brannon-Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, 1 University Station, C0800, Austin, TX 78712-0231, USA.
| | | |
Collapse
|
54567
|
Sauro HM, Kholodenko BN. Quantitative analysis of signaling networks. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 86:5-43. [PMID: 15261524 DOI: 10.1016/j.pbiomolbio.2004.03.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The response of biological cells to environmental change is coordinated by protein-based signaling networks. These networks are to be found in both prokaryotes and eukaryotes. In eukaryotes, the signaling networks can be highly complex, some networks comprising of 60 or more proteins. The fundamental motif that has been found in all signaling networks is the protein phosphorylation/dephosphorylation cycle--the cascade cycle. At this time, the computational function of many of the signaling networks is poorly understood. However, it is clear that it is possible to construct a huge variety of control and computational circuits, both analog and digital from combinations of the cascade cycle. In this review, we will summarize the great versatility of the simple cascade cycle as a computational unit and towards the end give two examples, one prokaryotic chemotaxis circuit and the other, the eukaryotic MAPK cascade.
Collapse
Affiliation(s)
- Herbert M Sauro
- Computational Biology, Keck Graduate Institute, 535 Watson Drive, Claremont, CA 91711, USA.
| | | |
Collapse
|
54568
|
Davis HE, Rosinski M, Morgan JR, Yarmush ML. Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys J 2004; 86:1234-42. [PMID: 14747357 PMCID: PMC1303915 DOI: 10.1016/s0006-3495(04)74197-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The specific mechanisms of charged polymer modulation of retrovirus transduction were analyzed by characterizing their effects on virus transport and adsorption. From a standard colloidal perspective two mechanisms, charge shielding and virus aggregation, can potentially account for the experimentally observed changes in adsorption behavior and biophysical parameters due to charged polymers. Experimental testing revealed that both mechanisms could be at work depending on the characteristics of the cationic polymer. All cationic polymers enhanced adsorption and transduction via charge shielding; however, only polymers greater than 15 kDa in size were capable of enhancing these processes via the virus aggregation mechanism, explaining the higher efficiency enhancement of the high molecular weight molecules. The role of anionic polymers was also characterized and they were found to inhibit transduction via sequestration of cationic polymers, thereby preventing charge shielding and virus aggregation. Taken together, these findings suggest the basis for a revised physical model of virus transport that incorporates electrostatic interactions through both virus-cell repulsive and attractive interactions, as well as the aggregation state of the virus.
Collapse
Affiliation(s)
- Howard E Davis
- Center for Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
54569
|
Brzóska MM, Moniuszko-Jakoniuk J. Low-Level Exposure to Cadmium during the Lifetime Increases the Risk of Osteoporosis and Fractures of the Lumbar Spine in the Elderly: Studies on a Rat Model of Human Environmental Exposure. Toxicol Sci 2004; 82:468-77. [PMID: 15375291 DOI: 10.1093/toxsci/kfh275] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, based on a rat model of human environmental exposure to cadmium (Cd), it has been examined whether low-level lifetime Cd exposure increases the risk of vertebral osteoporosis and vertebrae fractures in the elderly. For this purpose, the lumbar vertebral bodies (L4 or L3) of control and Cd-exposed (1 mg Cd/l in drinking water for 24 months) female Wistar rats were assigned to densitometric, radiographic, biomechanical (compression test), and biochemical studies, as well as to assess their dimensions and chemical composition. The exposure to Cd affected the mineral status of the L4. The decreased mineral content, density (BMD) and bone mineral area of the vertebral body together with the unchanged ratio of non-organic and organic components indicate osteoporotic nature of the Cd-induced changes. The activity of alkaline phosphatase in the L3 decreased. Cd also influenced the mechanical properties of the L4. The yield load and ultimate load decreased indicating a weakness in the vertebral body compression strength. Stiffness of the L4 decreased and the displacement at ultimate increased suggesting its enhanced susceptibility to deformities. Indeed, in the Cd group vertebral deformities (in 30% of females) or even fractures (in 40% of females), including those with disruption of bone continuity were evident. Z-score values for the L4 BMD revealed vertebral osteopenia in 30% and osteoporosis in 70% of the Cd-exposed females. The results allow for the conclusion that low lifetime exposure to Cd may become an important factor increasing the risk of lumbar spine osteoporosis with vertebral deformities and fractures in the elderly.
Collapse
Affiliation(s)
- Malgorzata M Brzóska
- Department of Toxicology, Medical University of Białystok, Mickiewicza 2C street, 15-222 Białystok, Poland.
| | | |
Collapse
|
54570
|
Chapman S, Asthagiri AR. Resistance to signal activation governs design features of the MAP kinase signaling module. Biotechnol Bioeng 2004; 85:311-22. [PMID: 14748087 DOI: 10.1002/bit.10836] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Given its broad influence over numerous cell functions, redesigning the mitogen-activated protein (MAP) kinase signaling module would offer a powerful means to engineer cell behavior. Early challenges include identifying quantitative module features most relevant to biological function and developing simple design rules to predictably modify these features. This computational study delineates how features such as signal amplification, input potency, and dynamic range of output may be tuned by manipulating chief module components. Importantly, the model construction identifies a metric of resistance to signal activation that quantitatively predicts module features and design trade-offs for broad perturbations in kinase and phosphatase expression. Its predictive utility extends to dynamic properties such as signal lifetime, which often dictates MAP kinase effect on cell function. Taken together, we propose that predictably altering MAP kinase signaling by tuning resistance is not only a feasible engineering strategy, but also one exploited by natural systems to allow each MAP kinase to exert pleiotropic effects in a context-dependent manner. External stimuli not only activate kinases, but also alter phosphatase expression and activity, thereby reconfiguring a single module for quantitatively distinct modes of signaling such as transient vs. sustained dynamics, each with unique effects on cell function.
Collapse
Affiliation(s)
- Stephen Chapman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
54571
|
Goh ELK, Ma D, Ming GL, Song H. Adult neural stem cells and repair of the adult central nervous system. ACTA ACUST UNITED AC 2004; 12:671-9. [PMID: 14977476 DOI: 10.1089/15258160360732696] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Neural stem cells are present not only in the developing nervous systems, but also in the adult central nervous system of mammals, including humans. The mature central nervous system has been traditionally regarded as an unfavorable environment for the regeneration of damaged axons of mature neurons and the generation of new neurons. In the adult central nervous system, however, newly generated neurons from adult neural stem cells in specific regions exhibit a striking ability to migrate, send out long axonal and dendritic projections, integrate into pre-existing neuronal circuits, and contribute to normal brain functions. Adult stem cells with potential neural capacity recently have been isolated from various neural and nonneural sources. Rapid advances in the stem cell biology have raised exciting possibilities of replacing damaged or lost neurons by activation of endogenous neural stem cells and/or transplantation of in vitro-expanded stem cells and/or their neuronal progeny. Before the full potential of adult stem cells can be realized for regenerative medicine, we need to identify the sources of stem cells, to understand mechanisms regulating their proliferation, fate specification, and, most importantly in the case of neuronal lineages, to characterize their functional properties. Equally important, we need to understand the neural development processes in the normal and diseased adult central nervous system environment, which is quite different from the embryonic central nervous system, where neural development has been traditionally investigated. Here we will review some recent progress of adult neural stem cell research that is applicable to developmental neurobiology and also has potential implications in clinical neuroscience.
Collapse
Affiliation(s)
- Eyleen Lay Keow Goh
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
54572
|
Abstract
Many clinical and experimental studies have investigated how tendons repair in response to an injury. This body of work has led to a greater understanding of tendon healing mechanisms and subsequently to an improvement in their treatment. In this review paper, characterization of normal and healing tendons is first covered. In addition, the debate between intrinsic and extrinsic healing is examined, and the cellular and extracellular matrix response following a tendon injury is detailed. Next, clinical and experimental injury and repair methods utilizing animal models are discussed. Animal models have been utilized to study the effect of various activity levels, motions, injury methods, and injury locations on tendon injury and repair. Finally, current and future treatment modalities for improving tendon healing, such as tissue engineering, cell therapy, and gene therapy, are reviewed.
Collapse
Affiliation(s)
- T W Tony W Lin
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6081, USA
| | | | | |
Collapse
|
54573
|
Iwata R, Suk-In P, Hoven VP, Takahara A, Akiyoshi K, Iwasaki Y. Control of Nanobiointerfaces Generated from Well-Defined Biomimetic Polymer Brushes for Protein and Cell Manipulations. Biomacromolecules 2004; 5:2308-14. [PMID: 15530046 DOI: 10.1021/bm049613k] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To better understand protein/material and cell/material interactions at the submolecular level, well-defined polymer brushes consisting of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) on silicon wafers were prepared by atom transfer radical polymerization (ATRP). Silicon wafers were treated with 3-(2-bromoisobutyryl)propyl dimethylchlorosilane (BDCS) to form a monolayer that acts as initiators for ATRP. Silicon-supported BDCS monolayers were soaked in a methanol/water mixture solution containing Cu(I)Br, bipyridine, and a sacrificial initiator. After MPC was added to the solution, ATRP was carried out for 18 h. The molecular weight and thickness of the PMPC brush layer on the silicon surface increased with an increase in the polymerization time. The dense polymer brushes were obtained by the "grafting from" system. By selective decomposition of the BDCS monolayer by UV light-irradiation, the PMPC brush region and the sizes were well controlled, resulting in fabricating micropatterns of the PMPC brushes. When the thickness of the PMPC brush layer was greater than 5.5 +/- 1.0 nm (3 h polymerization), serum protein adsorption and fibroblast adhesion were effectively reduced, i.e., proteins and cells could recognize such thin polymer brushes on the surface. In addition, the density of the adherent cells on the patterned PMPC brush surface could be controlled by changing the size of the pattern.
Collapse
Affiliation(s)
- Ryoko Iwata
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | |
Collapse
|
54574
|
Le Page C, Provencher D, Maugard CM, Ouellet V, Mes-Masson AM. Signature of a silent killer: expression profiling in epithelial ovarian cancer. Expert Rev Mol Diagn 2004; 4:157-67. [PMID: 14995903 DOI: 10.1586/14737159.4.2.157] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
With the sequencing of the human genome and the simultaneous development of high-throughput strategies, cancer biologists have entered an exciting new area for gene expression analysis, with the ability to glimpse higher order patterns of genetic and epigenetic alterations in complex diseases. Ovarian cancer biologists are rising to the challenge of applying these new technologies to this silent killer, with the eventual goal of improving the quality of life and long-term survival of patients. This review provides a summary of the disease, a description of available technologies and their application to the ovarian cancer problem, as well as a discussion on the challenges and opportunities related to DNA microarray expression profiling-based research, including downstream clinical applications.
Collapse
Affiliation(s)
- Cécile Le Page
- Centre de recherche du Centre Hospitalier de l'Université de Montréal/Institut du cancer de Montréal, 1560, rue Sherbrooke est, Montréal, Quebec H2L 4M1, Canada.
| | | | | | | | | |
Collapse
|
54575
|
Harwanegg C, Hiller R. Protein microarrays in diagnosing IgE-mediated diseases: spotting allergy at the molecular level. Expert Rev Mol Diagn 2004; 4:539-48. [PMID: 15225101 DOI: 10.1586/14737159.4.4.539] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Over the last few decades, the prevalence of allergic diseases has increased dramatically in developed nations. The resulting worldwide burden on healthcare systems has provoked a whole series of research initiatives among allergy experts and commercial companies that aim to develop novel tests to improve the diagnostic risk assessment and early preventive treatment of disease. The advent of protein microarray technology has fueled aspirations of multianalyte immunological applications that permit the simultaneous analysis of huge numbers of disease-related parameters that will hopefully become amenable in the near future. Allergen microarrays have been developed for the monitoring of patient-specific antibody profiles to a previously unknown variety of allergens in a single analytical step. This review describes significant discoveries and developments in allergy research against a background of the increasing prevalence of disease and hence the emerging challenges for national healthcare systems. The development of novel protein microarray-based allergy diagnostic tests is portrayed in concert with the recent advances and benefits of this technology, along with the challenges that must be met by manufacturers in order to succeed with innovative allergen microarrays in a highly competitive market.
Collapse
|
54576
|
Lee K, Berthiaume F, Stephanopoulos GN, Yarmush ML. Induction of a hypermetabolic state in cultured hepatocytes by glucagon and H2O2. Metab Eng 2004; 5:221-9. [PMID: 14642350 DOI: 10.1016/s1096-7176(03)00042-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Stress hormones and pro-inflammatory cytokines are putative signals triggering increased energy expenditure or "hypermetabolism" commonly observed in inflammatory states. Cytokines also cause the release of reactive oxidants by immune cells resident in tissues in vivo. Therefore, we hypothesized that oxidative stress plays a role in the induction of hypermetabolism. We examined the effect of glucagon (1.0 nM), a catabolic stress hormone, and the oxidant H(2)O(2) (1.0 mM) on the metabolism of stable hepatocyte cultures for 4 days. Combined H(2)O(2) and glucagon treatment, but not H(2)O(2) or glucagon used alone, increased the hepatocyte oxygen uptake rate 25% above control untreated cells after a lag-time of 72 h. The same treatment also increased the expression of mitochondrial uncoupling protein-2 (UCP2). These effects were significantly inhibited by the antioxidant N-acetylcysteine (5mM) and the pentose phosphate pathway (PPP) inhibitor dehydroepianderosterone (200 microM). Glucagon alone induced urea synthesis and H(2)O(2) alone induced the PPP. These findings show, for the first time, that oxidative stress, in combination with glucagon, increases metabolic energy expenditure in cultured cells, and that this effect may be mediated by UCP-2. Furthermore, the results implicate the PPP in the induction of the hypermetabolic response.
Collapse
Affiliation(s)
- Kyongbum Lee
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
54577
|
|
54578
|
Sun Y, Lo W, Lin SJ, Jee SH, Dong CY. Multiphoton polarization and generalized polarization microscopy reveal oleic-acid-induced structural changes in intercellular lipid layers of the skin. OPTICS LETTERS 2004; 29:2013-2015. [PMID: 15455764 DOI: 10.1364/ol.29.002013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have demonstrated that both multiphoton polarization and generalized polarization (GP) microscopy may be combined to characterize the structural changes of intercellular lipids in skin. Both polarization and GP (at 440- and 490-nm emission) images obtained by analysis of Laurdan fluorescence suggest that the treatment of oleic acid results in a skin surface with a more random packing of lipid molecules, which allows easier water penetration. Our results show that combined polarization and GP microscopy can be used to characterize the physical and chemical changes in biological structures.
Collapse
Affiliation(s)
- Yen Sun
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
54579
|
Chowdhury V, Morley JW, Coroneo MT. Surface stimulation of the brain with a prototype array for a visual cortex prosthesis. J Clin Neurosci 2004; 11:750-5. [PMID: 15337140 DOI: 10.1016/j.jocn.2003.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 12/08/2003] [Indexed: 11/15/2022]
Abstract
We are developing a neural prosthesis to electrically stimulate the visual cortex to restore basic visual perceptions to blind patients. The effects on cortical excitation of different stimulus configurations using a prototype electrode array are presented. Cats underwent a bilateral craniotomy to expose the cortex. An array for brain stimulation was placed on the surface of the right hemisphere. Cortical stimulation was undertaken in a variety of configurations while measuring the evoked responses that propagated through transcallosal pathways, at a homologous region on the contralateral hemisphere. Cortical excitation elicited by stimulation with a particular paradigm could be assessed by measuring the spatial spread and amplitudes of evoked responses in the contralateral hemisphere. Results from this transcallosal model have allowed us to examine the spatial and amplitude effects of cortical stimulation with our prototype electrode array and will aid in developing a neuroprosthesis for blind patients.
Collapse
Affiliation(s)
- Vivek Chowdhury
- Department of Ophthalmology, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, Australia.
| | | | | |
Collapse
|
54580
|
Brehm-Stecher BF, Johnson EA. Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 2004; 68:538-59, table of contents. [PMID: 15353569 PMCID: PMC515252 DOI: 10.1128/mmbr.68.3.538-559.2004] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The field of microbiology has traditionally been concerned with and focused on studies at the population level. Information on how cells respond to their environment, interact with each other, or undergo complex processes such as cellular differentiation or gene expression has been obtained mostly by inference from population-level data. Individual microorganisms, even those in supposedly "clonal" populations, may differ widely from each other in terms of their genetic composition, physiology, biochemistry, or behavior. This genetic and phenotypic heterogeneity has important practical consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. New appreciation of the importance of cellular heterogeneity, coupled with recent advances in technology, has driven the development of new tools and techniques for the study of individual microbial cells. Because observations made at the single-cell level are not subject to the "averaging" effects characteristic of bulk-phase, population-level methods, they offer the unique capacity to observe discrete microbiological phenomena unavailable using traditional approaches. As a result, scientists have been able to characterize microorganisms, their activities, and their interactions at unprecedented levels of detail.
Collapse
Affiliation(s)
- Byron F Brehm-Stecher
- Department of Food Microbiology and Toxicology, University of Wisconsin-Madison Food Research Institute, 1925 Willow Drive, Madison, WI 53706, USA
| | | |
Collapse
|
54581
|
Bluestone AY, Stewart M, Lasker J, Abdoulaev GS, Hielscher AH. Three-dimensional optical tomographic brain imaging in small animals, part 1: hypercapnia. JOURNAL OF BIOMEDICAL OPTICS 2004; 9:1046-1062. [PMID: 15447026 DOI: 10.1117/1.1784471] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, we explore the potential of diffuse optical tomography for brain oximetry. While several groups have already reported on the sensitivity of optical measurements to changes in oxyhemoglobin, deoxyhemoglobin, and blood volume, these studies were often limited to single source-detector geometries or topographic maps, where signals obtained from within the brain are projected onto 2-D surface maps. In this two-part study, we report on our efforts toward developing a volumetric optical imaging system that allows one to spatially resolve 3-D hemodynamic effects in rat brains. In part 1, we describe the instrumentation, optical probe design, and the model-based iterative image reconstruction algorithm employed in this work. Consideration of how a priori anatomical knowledge can be incorporated in the reconstruction process is presented. This system is then used to monitor global hemodynamic changes that occur in the brain under various degrees of hypercapnia. The physiologic cerebral response to hypercapnia is well known and therefore allows an initial performance assessment of the imaging system. As expected, we observe global changes in blood volume and oxygenation, which vary linearly as a function of the concentration of the inspired carbon dioxide. Furthermore, experiments are designed to determine the sensitivity of the reconstructions of only 1 mm to inaccurate probe positioning. We determine that shifts can significantly influence the reconstructions. In part 2 we focus on more local hemodynamic changes that occur during unilateral carotid occlusion performed at lower-than-normal systemic blood pressure. In this case, the occlusion leads to a predominantly monohemispherically localized effect, which is well described in the literature. Having explored the system with a well-characterized physiologic effect, we investigate and discuss the complex compensatory cerebrovascular hemodynamics that occur at normotensive blood pressure. Overall, these studies demonstrate the potential and limitations of our diffuse optical imager for visualizing global and focal hemodynamic phenomenon three dimensionally in the brains of small animals.
Collapse
Affiliation(s)
- A Y Bluestone
- Columbia University, Departments of Biomedical Engineering and Radiology, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
54582
|
Kashtan N, Itzkovitz S, Milo R, Alon U. Topological generalizations of network motifs. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:031909. [PMID: 15524551 DOI: 10.1103/physreve.70.031909] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Indexed: 05/24/2023]
Abstract
Biological and technological networks contain patterns, termed network motifs, which occur far more often than in randomized networks. Network motifs were suggested to be elementary building blocks that carry out key functions in the network. It is of interest to understand how network motifs combine to form larger structures. To address this, we present a systematic approach to define "motif generalizations": families of motifs of different sizes that share a common architectural theme. To define motif generalizations, we first define "roles" in a subgraph according to structural equivalence. For example, the feedforward loop triad--a motif in transcription, neuronal, and some electronic networks--has three roles: an input node, an output node, and an internal node. The roles are used to define possible generalizations of the motif. The feedforward loop can have three simple generalizations, based on replicating each of the three roles and their connections. We present algorithms for efficiently detecting motif generalizations. We find that the transcription networks of bacteria and yeast display only one of the three generalizations, the multi-output feedforward generalization. In contrast, the neuronal network of C. elegans mainly displays the multi-input generalization. Forward-logic electronic circuits display a multi-input, multi-output hybrid. Thus, networks which share a common motif can have very different generalizations of that motif. Using mathematical modeling, we describe the information processing functions of the different motif generalizations in transcription, neuronal, and electronic networks.
Collapse
Affiliation(s)
- N Kashtan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel 76100
| | | | | | | |
Collapse
|
54583
|
Qian F, Ermilov S, Murdock D, Brownell WE, Anvari B. Combining optical tweezers and patch clamp for studies of cell membrane electromechanics. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2004; 75:2937-2942. [PMID: 21412445 PMCID: PMC3056459 DOI: 10.1063/1.1781382] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have designed and implemented a novel experimental setup which combines optical tweezers with patch-clamp apparatus to investigate the electromechanical properties of cellular plasma membranes. In this system, optical tweezers provide measurement of forces at piconewton scale, and the patch-clamp technique allows control of the cell transmembrane potential. A micron-size bead trapped by the optical tweezers is brought in contact with the membrane of a voltage-clamped cell, and subsequently moved away to form a plasma membrane tether. Bead displacement from the trapping center is monitored by a quadrant photodetector for dynamic measurements of tether force. Fluorescent beads and the corresponding fluorescence imaging optics are used to eliminate the shadow of the cell projected on the quadrant photodetector. Salient information associated with the mechanical properties of the membrane tether can thus be obtained. A unique feature of this setup is that the patch-clamp headstage and the manipulator for the recording pipette are mounted on a piezoelectric stage, preventing relative movements between the cell and the patch pipette during the process of tether pulling. Tethers can be pulled from the cell membrane at different holding potentials, and the tether force response can be measured while changing transmembrane potential. Experimental results from mammalian cochlear outer hair cells and human embryonic kidney cells are presented.
Collapse
Affiliation(s)
- Feng Qian
- Department of Bioengineering, Rice University, Houston, Texas
| | - Sergey Ermilov
- Department of Bioengineering, Rice University, Houston, Texas
| | - David Murdock
- Department of Bioengineering, Rice University, Houston, Texas
| | - William E. Brownell
- Department of Otorhinolaryngology and Communicative Sciences, Baylor College of Medicine, Houston, Texas
| | - Bahman Anvari
- Department of Bioengineering, Rice University, Houston, Texas
| |
Collapse
|
54584
|
Zhu H, Ji J, Shen J. Biomacromolecules Electrostatic Self-Assembly on 3-Dimensional Tissue Engineering Scaffold. Biomacromolecules 2004; 5:1933-9. [PMID: 15360308 DOI: 10.1021/bm049753u] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A poly(ethylenimine) (PEI) was employed to obtain a stable positively charged surface on a poly(D,L-lactide) (PDL-LA) tissue engineering scaffold. An extracellular matrix (ECM)-like biomacromolecule, gelatin, was selected as polyelectrolyte and deposit alternately with PEI on the activated PDL-LA scaffold via ESA technique. The zeta-potential result showed alternating charge of polyelectrolytes (PEI/gelatin) layering on PDL-LA microspheres. Quartz crystal microbalance (QCM) measurement further verified the gradual deposition of PEI/gelatin on the PDL-LA thin film. The combination of PEI aminolysis and the layer-by-layer technique was then explored to construct gelatin coating onto the 3-D porous PDL-LA scaffold. Scanning electronic microscopy showed that there is no notable difference between modified and unmodified PLA scaffolds, with regard to the porosity, pore diameter, and scaffold integration. The dual-tunnel confocal laser scanning microscopy indicated uniform gelatin distribution on the inner surface of the 3-D porous scaffold. The gradual build-up of protein layer on scaffold was investigated by radioiodination technique. Chondrocyte was chosen to test the cell behavior on modified and unmodified PDL-LA scaffolds. The results of the cell viability, total intracellular protein content, and cell morphology on the PEI/gelatin multilayers modified PDL-LA scaffold showed to promote chondrocyte growth. Comparing conventional coating methods, polyelectrolyte multilayers are easy and stable to prepare. It may be a promising choice for the surface modification of complex biomedical devices. These very flexible systems allow broad medical applications for drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Huiguang Zhu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | | | | |
Collapse
|
54585
|
Foley JL, Little JW, Starr FL, Frantz C, Vaezy S. Image-guided HIFU neurolysis of peripheral nerves to treat spasticity and pain. ULTRASOUND IN MEDICINE & BIOLOGY 2004; 30:1199-1207. [PMID: 15550323 DOI: 10.1016/j.ultrasmedbio.2004.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 06/17/2004] [Accepted: 07/08/2004] [Indexed: 05/24/2023]
Abstract
Spasticity, a major complication of central nervous system disorders, signified by uncontrollable muscle contractions, is very difficult to treat effectively. We report on the use of ultrasound (US) image-guided high-intensity focused US (HIFU) to target and suppress the function of the sciatic nerve complex of rabbits in vivo, as a possible treatment of spasticity. The image-guided HIFU device included a 3.2-MHz spherically curved transducer and an intraoperative imaging probe. A focal acoustic intensity of 1480 to 1850 W/cm(2), applied using a scanning method, was effective in achieving complete conduction block in 100% of 22 nerve complexes with HIFU treatment times of 36 +/- 14 s (mean +/- SD). Gross examination showed blanching of the nerve at the HIFU treatment site and lesion volumes of 2.8 +/- 1.4 cm(3) encompassing the nerve complex. Histologic examination indicated axonal demyelination and necrosis of Schwann cells as probable mechanisms of nerve block. With accurate localization and targeting of peripheral nerves using US imaging, HIFU could become a promising tool for the suppression of spasticity.
Collapse
Affiliation(s)
- Jessica L Foley
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
54586
|
Abstract
For longer than 40 years, ultrasound (US) has been a widely used imaging tool in medical practice, which has proved helpful for the diagnosis and staging of diseases. Although three-dimensional ultrasound (3D) US has been available for more than 10 years, it was only through the development of the most recent computer technologies and its adaptation to ultrasound systems, that 3D US has become able to achieve the high level of sensitivity and performance necessary to be considered seriously in clinical practice. 3D US is rapidly turning into a technology with an ever-increasing range of applications in numerous fields because, among other reasons, it helps overcome some of the key limitations related to two-dimensional imaging. 3D US can be used in ultrasonography for small parts, among other medical areas. The assessment of the testicle, parotid, thyroid and parathyroid glands is properly achieved. The multiplanar presentation and niche mode are quite useful to determine the extension--inside or outside the organs-, of nodules, cysts or tumors. The volume measurement is better assessed with 3D US and given this, we can perform studies that follow growth in order to decide medical or surgical treatment. The VOCAL makes it possible to obtain a proper after-treatment follow-up of focal disorders in these small organs. Neovascularization is clearly viewed with 3D US and probably can suggest malignant origin of a neoplasm. 3D US offers a more comprehensive image of anatomical structures and pathological conditions and also permits to observe the exact spatial relationships. We are aware more studies are needed to demonstrate specificity and sensibility of 3D US in particular clinical conditions, not only in small parts but also is some other non-Ob/Gyn applications.
Collapse
Affiliation(s)
- Leandro J Fernandez
- Laboratorio de Ecografia Avanzada, Instituto Medico La Floresta, Caracas, Venezuela.
| | | | | |
Collapse
|
54587
|
Boryczko K, Dzwinel W, Yuen DA. Modeling fibrin aggregation in blood flow with discrete-particles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2004; 75:181-194. [PMID: 15265617 DOI: 10.1016/j.cmpb.2004.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Excessive clotting can cause bleeding over a vast capillary area. We study the mesoscopic dynamics of clotting by using the fluid particle model. We assume that the plasma consists of fluid particles containing fibrin monomers, while the red blood cells and capillary walls are modeled with elastic mesh of "solid" particles. The fluid particles interact with each other with a short-ranged, repulsive dissipative force. The particles containing fibrin monomers have a dual character. The polymerization of fibrin monomers into hydrated fibrins is modeled by the change of the interactions between fluid particles from repulsive to attractive forces. This process occurs with a probability being an increasing function of the local density. We study the blood flow in microscopic capillary vessels about 100 microm long and with diameters in order of 10 microm. We show that the model of polymerization reflects clearly the role played by fibrins in clotting. Due to the density fluctuations caused the by the high acceleration, the fibrin chains are produced within a very short time (0.5 ms). Fibrin aggregation modifies the rheological properties of blood, slows down the incipient flow, and entraps the red blood cells, thus forming dangerous clots.
Collapse
Affiliation(s)
- Krzysztof Boryczko
- AGH Institute of Computer Science, al. Mickiewicza 30, 30-059 Cracow, Poland
| | | | | |
Collapse
|
54588
|
Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS. Tackling the plant proteome: practical approaches, hurdles and experimental tools. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 39:715-33. [PMID: 15315634 DOI: 10.1111/j.1365-313x.2004.02182.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The study of complex biological questions through comparative proteomics is becoming increasingly attractive to plant biologists as the rapidly expanding plant genomic and expressed sequence tag databases provide improved opportunities for protein identification. This review focuses on practical issues associated with comparative proteomic analysis, including the challenges of effective protein extraction and separation from plant tissues, the pros and cons of two-dimensional gel-based analysis and the problems of identifying proteins from species that are not recognized models for functional genomic studies. Specific points are illustrated using data from an ongoing study of the tomato and pepper fruit proteomes.
Collapse
Affiliation(s)
- Jocelyn K C Rose
- Department of Plant Biology, Cornell University, Ithaca, NY 147853, USA.
| | | | | | | | | |
Collapse
|
54589
|
Weisel JW, Collet JP. Packaging is important: accelerated thrombolysis with encapsulated plasminogen activators. J Thromb Haemost 2004; 2:1545-7. [PMID: 15333028 DOI: 10.1111/j.1538-7836.2004.00903.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA.
| | | |
Collapse
|
54590
|
Branchini BR, Southworth TL, Murtiashaw MH, Magyar RA, Gonzalez SA, Ruggiero MC, Stroh JG. An alternative mechanism of bioluminescence color determination in firefly luciferase. Biochemistry 2004; 43:7255-62. [PMID: 15182171 DOI: 10.1021/bi036175d] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Beetle luciferases (including those of the firefly) use the same luciferin substrate to naturally display light ranging in color from green (lambda(max) approximately 530 nm) to red (lambda(max) approximately 635 nm). In a recent communication, we reported (Branchini, B. R., Murtiashaw, M. H., Magyar, R. A., Portier, N. C., Ruggiero, M. C., and Stroh, J. G. (2002) J. Am. Chem. Soc. 124, 2112-2113) that the synthetic adenylate of firefly luciferin analogue D-5,5-dimethylluciferin was transformed into the emitter 5,5-dimethyloxyluciferin in bioluminescence reactions catalyzed by luciferases from Photinus pyralis and the click beetle Pyrophorus plagiophthalamus. 5,5-Dimethyloxyluciferin is constrained to exist in the keto form and fluoresces mainly in the red. However, bioluminescence spectra revealed that green light emission was produced by the firefly enzyme, and red light was observed with the click beetle protein. These results, augmented with steady-state kinetic studies, were taken as experimental support for mechanisms of firefly bioluminescence color that require only a single keto form of oxyluciferin. We report here the results of mutagenesis studies designed to determine the basis of the observed differences in bioluminescence color with the analogue adenylate. Mutants of P. pyralis luciferase putative active site residues Gly246 and Phe250, as well as corresponding click beetle residues Ala243 and Ser247 were constructed and characterized using bioluminescence emission spectroscopy and steady state kinetics with adenylate substrates. Based on an analysis of these and recently reported (Branchini, B. R., Southworth, T. L., Murtiashaw, M. H., Boije, H., and Fleet, S. E. (2003) Biochemistry 42, 10429-10436) data, we have developed an alternative mechanism of bioluminescence color. The basis of the mechanism is that luciferase modulates emission color by controlling the resonance-based charge delocalization of the anionic keto form of the oxyluciferin excited state.
Collapse
Affiliation(s)
- Bruce R Branchini
- Department of Chemistry, Connecticut College, New London, Connecticut 06320, USA.
| | | | | | | | | | | | | |
Collapse
|
54591
|
Pancoska P, Moravek Z, Moll UM. Rational design of DNA sequences for nanotechnology, microarrays and molecular computers using Eulerian graphs. Nucleic Acids Res 2004; 32:4630-45. [PMID: 15333695 PMCID: PMC516071 DOI: 10.1093/nar/gkh802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nucleic acids are molecules of choice for both established and emerging nanoscale technologies. These technologies benefit from large functional densities of 'DNA processing elements' that can be readily manufactured. To achieve the desired functionality, polynucleotide sequences are currently designed by a process that involves tedious and laborious filtering of potential candidates against a series of requirements and parameters. Here, we present a complete novel methodology for the rapid rational design of large sets of DNA sequences. This method allows for the direct implementation of very complex and detailed requirements for the generated sequences, thus avoiding 'brute force' filtering. At the same time, these sequences have narrow distributions of melting temperatures. The molecular part of the design process can be done without computer assistance, using an efficient 'human engineering' approach by drawing a single blueprint graph that represents all generated sequences. Moreover, the method eliminates the necessity for extensive thermodynamic calculations. Melting temperature can be calculated only once (or not at all). In addition, the isostability of the sequences is independent of the selection of a particular set of thermodynamic parameters. Applications are presented for DNA sequence designs for microarrays, universal microarray zip sequences and electron transfer experiments.
Collapse
Affiliation(s)
- Petr Pancoska
- Department of Pathology, Stony Brook University, New York, NY 11794, USA.
| | | | | |
Collapse
|
54592
|
Abstract
Calculations of radiation dose are important in assessing the medical and biological implications of ionizing radiation in medical imaging techniques such as SPECT and PET. In contrast, radiation dose estimates of SPECT and PET imaging of small animals are not very well established. For that reason we have estimated the whole-body radiation dose to mice and rats for isotopes such as 18F, 99mTc, 201Tl, (111)In, 123I, and 125I that are used commonly for small animal imaging. We have approximated mouse and rat bodies with uniform soft tissue equivalent ellipsoids. The mouse and rat sized ellipsoids had a mass of 30 g and 300 g, respectively, and a ratio of the principal axes of 1:1:4 and 0.7:1:4. The absorbed fractions for various photon energies have been calculated using the Monte Carlo software package MCNP. Using these values, we then calculated MIRD S-values for two geometries that model the distribution of activity in the animal body: (a) a central point source and (b) a homogeneously distributed source, and compared these values against S-value calculations for small ellipsoids tabulated in MIRD Pamphlet 8 to validate our results. Finally we calculated the radiation dose taking into account the biological half-life of the radiopharmaceuticals and the amount of activity administered. Our calculations produced S-values between 1.06 x 10(-13) Gy/Bq s and 2.77 x 10(-13) Gy/Bq s for SPECT agents, and 15.0 x 10(-13) Gy/Bq s for the PET agent 18F, assuming mouse sized ellipsoids with uniform source distribution. The S-values for a central point source in an ellipsoid are about 10% higher than the values obtained for the uniform source distribution. Furthermore, the S-values for mouse sized ellipsoids are approximately 10 times higher than for the rat sized ellipsoids reflecting the difference in mass. We reviewed published data to obtain administered radioactivity and residence times for small animal imaging. From these values and our computed S-values we estimated that the whole body dose in small animals ranges between 6 cGy and 90 cGy for mice and between about 1 cGy and 27 cGy for rats. The whole body dose in small animal imaging can be very high in comparison to the lethal dose to mice (LD50/30 approximately 7 Gy). For this reason the dose in small animal imaging should be monitored carefully and the administered activity should be kept to a minimum. These results also underscore the need of further development of instrumentation that improves detection efficiency and reduces radiation dose in small animal imaging.
Collapse
Affiliation(s)
- Tobias Funk
- UCSF Physics Research Laboratory, Department of Radiology, University of California, San Francisco, San Francisco, California 94107, USA
| | | | | |
Collapse
|
54593
|
Abstract
Due to the complex structures of living systems, with size scales spanning from the micron to millimeter range, the use of microtechnology to recreate in vivo-like architecture has exciting potential applications. However, most microscale systems are two-dimensional, and few three-dimensional (3-D) systems are being explored. We have developed a versatile technique, combining surface engineering with layer-by-layer microfluidics technology, to create a 3-D microscale hierarchical tissue-like structure. The process involves immobilization of a cell-matrix assembly, cell-matrix contraction, and pressure-driven microfluidic delivery. An aminopropyltriethoxysilane-glutaraldehyde activated chip is used to effectively immobilize the cell-matrix assemblies while maintaining cell viability. Pressure-driven microfluidics is applied to transport cells-matrices with controlled flow rates, determined from dynamic flow imaging. By taking advantage of the contraction of the biopolymer matrices by cells, layer-by-layer microfluidics can be used to build multilayers of cell-matrix inside a microchannel and the thickness of each layer can be controlled down to microscale dimensions. Confocal and electron microscopy images of the final structure show a hierarchical layered cellular configuration composed of heterogeneous biomimetic materials. For a model system, a biomimetic arterial structure is formed using three types of vascular cells to mimic the 3-tunic structure found in vivo. This approach provides solutions to fabricate hierarchical "neotissues" with controlled microarchitectures and 3-D configurations of multiple cell types.
Collapse
Affiliation(s)
- Wei Tan
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA
| | | |
Collapse
|
54594
|
Tsoukias NM, Popel AS. A model of nitric oxide capillary exchange. Microcirculation 2004; 10:479-95. [PMID: 14745461 DOI: 10.1038/sj.mn.7800210] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Accepted: 02/21/2003] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Our aim was to develop a mathematical model that describes the nitric oxide (NO) transport in and around capillaries. The model is used to make quantitative predictions for (1) the contribution of capillary endothelium to the nitric oxide flux into the parenchymal tissue cells; (2) the scavenging of arteriolar endothelium-derived NO by capillaries in the surrounding tissue; and (3) the role of myoglobin in tissue cells and plasma-based hemoglobin on NO diffusion in and around capillaries. METHODS We used a finite element model of a capillary and surrounding tissue with discrete parachute-shape red blood cells (RBCs) moving inside the capillary to obtain the NO concentration distribution. An intravascular mass transfer coefficient is estimated as a function of RBC membrane permeability and capillary hematocrit. A continuum model of the capillary is also formulated, in which blood is treated as a homogeneous fluid; it uses the mass transfer coefficient and provides a closed-form analytic solution for the average exchange rate of NO in a capillary-perfused region. RESULTS The NO concentration in the parenchymal cells depends on parameters such as RBC membrane permeability and capillary hematocrit; the concentration is predicted for a wide range of parameters. In the absence of myoglobin or plasma-based hemoglobin, the average tissue concentration generally ranges between 20 and 300 nM. In the presence of myoglobin or after transfusion of a hemoglobin-based blood substitute, there is minimal NO penetration into the tissue from the capillary endothelium. CONCLUSIONS The model suggests that NO originating from the capillary wall can diffuse toward the parenchymal cells and potentially sustain physiologically significant concentrations. The model provides estimates of NO exchange and concentration level in capillary-perfused tissue, and it can be used in models of NO transport around arterioles or other NO sources.
Collapse
Affiliation(s)
- Nikolaos M Tsoukias
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | |
Collapse
|
54595
|
Lee JM, Kim SH, Jang DP, Ha TH, Kim JJ, Kim IY, Kwon JS, Kim SI. Deformable model with surface registration for hippocampal shape deformity analysis in schizophrenia. Neuroimage 2004; 22:831-40. [PMID: 15193612 DOI: 10.1016/j.neuroimage.2004.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 02/04/2004] [Accepted: 02/05/2004] [Indexed: 11/21/2022] Open
Abstract
Changes to the hippocampal structure have been reported as consistent structural abnormalities in schizophrenic patients and have been related to the learning and memory deficits in such patients. Although many magnetic resonance (MR) imaging studies have focused on the hippocampal volume, local structural changes were difficult to discriminate from normal neuroanatomical variations. 3D shape deformation analysis of the brain structure may reflect localized schizophrenic abnormalities. A deformable model, evolved from the ellipsoid to hippocampal surface, with 2562 vertexes, was developed to analyze the left and right hippocampus shapes in 22 schizophrenic patients and 22 healthy age and gender matched controls. One of the most critical issues in the shape analysis is the determination of homologous points between two objects. To determine more accurate corresponding points, an alignment procedure, consisting of coarse and fine steps, following a deformation process, was applied. The performance of the alignment process was tested using artificial data, to get the alignment error to within 3 degrees for each angle. A volume analysis indicated the hippocampal volume to be bilaterally reduced in schizophrenic patients compared to the normal controls, with a shape analysis showing a deformity pattern of the hippocampal surface. Bilateral inward deformities in the anterior and posterior hippocampus and a unilateral outward deformity in the right anterior hippocampus were observed, respectively.
Collapse
Affiliation(s)
- Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
54596
|
Dillmore WS, Yousaf MN, Mrksich M. A photochemical method for patterning the immobilization of ligands and cells to self-assembled monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:7223-7231. [PMID: 15301509 DOI: 10.1021/la049826v] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This work describes a chemically well defined method for patterning ligands to self-assembled monolayers (SAMs) of alkanethiolates on gold. This method begins with monolayers presenting a nitroveratryloxycarbonyl (NVOC)-protected hydroquinone which is photochemically irradiated to reveal a hydroquinone group. The resulting hydroquinone is then oxidized to the corresponding benzoquinone, providing a site for the Diels-Alder mediated immobilization of ligands. The rate constant for the photochemical deprotection is 0.032 s(-1) (with an intensity of approximately 100 mW/cm(2) between 355 and 375 nm), corresponding to a half-life of 21 s. The hydroquinone is oxidized to the benzoquinone using either electrochemical or chemical oxidation and then functionalized by reaction with a cyclopentadiene-tagged ligand. Two methods for patterning the immobilization of ligands are described. In the first, the substrate is illuminated through a mask to generate a pattern of hydroquinone groups, which are elaborated with ligands. In the second method, an optical microscope fit with a programmable translational stage is used to write patterns of deprotection which are then again elaborated with ligands. This technique is characterized by the use of well-defined chemical reactions to control the regions and densities of ligand immobilization and will be important for a range of applications that require patterned ligands for biospecific interactions.
Collapse
Affiliation(s)
- W Shannon Dillmore
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
54597
|
Zheng H, Berg MC, Rubner MF, Hammond PT. Controlling cell attachment selectively onto biological polymer-colloid templates using polymer-on-polymer stamping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:7215-7222. [PMID: 15301508 DOI: 10.1021/la049856y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A new patterning approach using polymer-on-polymer stamping (POPS) has been developed to fabricate polymer-colloid templates for controlling selective cell attachment. In this paper, a polyamine surface patterned onto a poly(acrylic acid)/poly(allylamine hydrochloride) (PAA/PAH) cell resistant multilayer platform serves as a template for the deposition of close- or loose-packed colloidal particles. Peptides containing the RGD adhesion sequence were used to modify the PAH/colloid surface for specific cell attachment. Cell behavior was studied by varying colloidal packing array density, pattern geometry, and surface chemistry. It was found that loose-packed RGD-modified colloidal arrays enhance cell adhesion, as observed through the development of focal adhesion contacts and orientation of actin stress fibers, but close-packed colloidal arrays induce a rounded and nonadhesive cell morphology and yield a smaller number of attached cells. On loose-packed arrays, cells adjust their shapes to the pattern geometry when the stripe width is smaller than 50 microm and increase their extent of attachment when the concentration of surface RGD peptides is increased. This new biomaterials system allows the examination of cell behavior as a function of RGD surface distribution on the molecular to micrometer scale and reveals cellular response to different surface roughnesses.
Collapse
Affiliation(s)
- Haipeng Zheng
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
54598
|
Cargile BJ, Bundy JL, Stephenson JL. Potential for False Positive Identifications from Large Databases through Tandem Mass Spectrometry. J Proteome Res 2004; 3:1082-5. [PMID: 15473699 DOI: 10.1021/pr049946o] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The biomedical research community at large is increasingly employing shotgun proteomics for large-scale identification of proteins from enzymatic digests. Typically, the approach used to identify proteins and peptides from tandem mass spectral data is based on the matching of experimentally generated tandem mass spectra to the theoretical best match from a protein database. Here, we present the potential difficulties of using such an approach without statistical consideration of the false positive rate, especially when large databases, as are encountered in eukaryotes are considered. This is illustrated by searching a dataset generated from a multidimensional separation of a eukaryotic tryptic digest against an in silico generated random protein database, which generated a significant number of positive matches, even when previously suggested score filtering criteria are used.
Collapse
Affiliation(s)
- Benjamin J Cargile
- Mass Spectrometry Research Program, Research Triangle Institute, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
54599
|
Yin HB, Brown T, Wilkinson JS, Eason RW, Melvin T. Submicron patterning of DNA oligonucleotides on silicon. Nucleic Acids Res 2004; 32:e118. [PMID: 15314186 PMCID: PMC514397 DOI: 10.1093/nar/gnh113] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The covalent attachment of DNA oligonucleotides onto crystalline silicon (100) surfaces, in patterns with submicron features, in a straightforward, two-step process is presented. UV light exposure of a hydrogen-terminated silicon (100) surface coated with alkenes functionalized with N-hydroxysuccinimide ester groups resulted in the covalent attachment of the alkene as a monolayer on the surface. Submicron-scale patterning of surfaces was achieved by illumination with an interference pattern obtained by the transmission of 248 nm excimer laser light through a phase mask. The N-hydroxysuccinimide ester surface acted as a template for the subsequent covalent attachment of aminohexyl-modified DNA oligonucleotides. Oligonucleotide patterns, with feature sizes of 500 nm, were reliably produced over large areas. The patterned surfaces were characterized with atomic force microscopy, scanning electron microscopy, epifluorescence microscopy and ellipsometry. Complementary oligonucleotides were hybridized to the surface-attached oligonucleotides with a density of 7 x 10(12) DNA oligonucleotides per square centimetre. The method will offer much potential for the creation of nano- and micro-scale DNA biosensor devices in silicon.
Collapse
Affiliation(s)
- H B Yin
- Microelectronics Research Centre, School of Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | | | | | | | | |
Collapse
|
54600
|
Abstract
Ultrasound is used widely in medicine as both a diagnostic and therapeutic tool. Through both thermal and nonthermal mechanisms, ultrasound can produce a variety of biological effects in tissues in vitro and in vivo. This chapter provides an overview of the fundamentals of key nonthermal mechanisms for the interaction of ultrasound with biological tissues. Several categories of mechanical bioeffects of ultrasound are then reviewed to provide insight on the range of ultrasound bioeffects in vivo, the relevance of these effects to diagnostic imaging, and the potential application of mechanical bioeffects to the design of new therapeutic applications of ultrasound in medicine.
Collapse
Affiliation(s)
- Diane Dalecki
- Department of Biomedical Engineering and the Rochester Center for Biomedical Ultrasound, University of Rochester, Rochester, New York 14627, USA.
| |
Collapse
|