501
|
Zhang K, Qiu W, Wu B, Fang F. Long non‑coding RNAs are novel players in oral inflammatory disorders, potentially premalignant oral epithelial lesions and oral squamous cell carcinoma (Review). Int J Mol Med 2020; 46:535-545. [PMID: 32626947 PMCID: PMC7307862 DOI: 10.3892/ijmm.2020.4628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, a large number of studies have shown that the abnormal expression of long non‑coding (lnc)RNAs can lead to a variety of different diseases, including inflammatory disorders, cardiovascular disease, nervous system diseases, and cancers. Recent research has demonstrated the biological characteristics of lncRNAs and the important functions of lncRNAs in oral inflammation, precancerous lesions and cancers. The present review aims to explore and discuss the potential roles of candidate lncRNAs in oral diseases by summarizing multiple lncRNA profiles in diseased and healthy oral tissues to determine the altered lncRNA signatures. In addition, to highlight the exact regulatory mechanism of lncRNAs in oral inflammatory disorders, potentially premalignant oral epithelial lesions and oral squamous cell carcinoma. The detection of lncRNAs in oral samples has the potential to be used as a diagnostic and an early detection tool for oral diseases. Furthermore, lncRNAs are promising future therapeutic targets in oral diseases, and research in this field may expand in the future.
Collapse
Affiliation(s)
- Kaiying Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
502
|
Effect of Active Ingredients of Chinese Herbal Medicine on the Rejuvenation of Healthy Aging: Focus on Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7307026. [PMID: 32724327 PMCID: PMC7366228 DOI: 10.1155/2020/7307026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Stem cells (SCs) are special types of cells with the ability of self-renewal and multidirectional differentiation. As the organism ages, the ability to maintain homeostasis and regeneration deteriorates and the number and activity of stem cells decline. Theoretically, the restoration of stem cells might reverse aging. However, due to their own aging, donor-derived immune rejection, and difficulties in stem cell differentiation control, a series of problems need to be solved to realize the potential for clinical application of stem cells. Chinese herbal medicine is a nature drug library which is suitable for the long-term treatment of aging-related diseases. Modern pharmacological studies have revealed that many active ingredients of Chinese herbal medicines with the effect of promoting stem cells growth and differentiation mainly belong to “reinforcing herbs.” In recent years, exploration of natural active ingredients from Chinese herbal medicines for delaying aging, improving the stem cell microenvironment, and promoting the proliferation and differentiation of endogenous stem cells has attracted substantial attention. This article will focus on active ingredients from Chinese herbs-mediated differentiation of stem cells into particular cell type, like neural cells, endothelial cells, cardiomyocytes, and osteoblasts. We will also discuss the effects of these small molecules on Wnt, Sonic Hedgehog, Notch, eNOS-cGMP, and MAP kinase signal transduction pathways, as well as reveal the role of estrogen receptor α and PPAR γ on selectively promoting or inhibiting stem cells differentiation. This review will provide new insights into the health aging strategies of active ingredients in Chinese herbal medicine in regenerative medicine.
Collapse
|
503
|
Dang Y, Xu J, Yang Y, Li C, Zhang Q, Zhou W, Zhang L, Ji G. Ling-gui-zhu-gan decoction alleviates hepatic steatosis through SOCS2 modification by N6-methyladenosine. Biomed Pharmacother 2020; 127:109976. [PMID: 32559839 DOI: 10.1016/j.biopha.2020.109976] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The ling-gui-zhu-gan (LGZG) decoction is a classic formula in traditional chinese medicine (TCM) and is widely used in clinical settings. Recently, the LGZG decoction was demonstrated to have an effect in alleviating hepatic steatosis induced by a high-fat diet (HFD). However, the mechanisms underlying this therapeutic effect remain unclear. The present study was designed to evaluate the effect and explore possible mechanisms of action of the LGZG decoction in nonalcoholic fatty liver disease (NAFLD). METHODS Liver tissue and blood samples were harvested. Liver steatosis, triglyceride (TG), liver total cholesterol (TC), liver low-density lipoprotein (LDL), serum almandine aminotransferase (ALT), aspartate aminotransferase (AST), and free fatty acid (FFA) were assayed. N6-methyladenosine (m6A) levels were estimated using an m6A RNA methylation quantification kit and immunohistochemistry. The m6A methylome was detected through methylated RNA immunoprecipitation sequencing (MeRIP-seq), followed by data analysis. The expression levels of differentially methylated genes (DMGs) were determined using real-time polymerase chain reaction and western blotting. RESULTS The LGZG decoction significantly alleviated hepatic steatosis and reduced m6A levels. MeRIP-seq revealed the coding sequence (CDS) domain to be the most critical modification site for m6A methylation, and the molecular functions of DMGs predominantly included insulin-like growth factor receptor binding and fatty acid metabolism and degradation. Further, LGZG treatment could reduce the m6A methylation levels of suppressor of cytokine signaling 2 (SOCS2), along with the expression of SOCS2 at mRNA and protein levels. CONCLUSIONS The LGZG decoction is an effective formula for treating NAFLD, and the possible mechanisms underlying its action could be related to N6-methyladenosine modification-medicated SOCS2.
Collapse
Affiliation(s)
- Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Jingjuan Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yang Yang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chunlin Li
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qiang Zhang
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
504
|
Dang Y, Hu D, Xu J, Li C, Tang Y, Yang Z, Liu Y, Zhou W, Zhang L, Xu H, Xu Y, Ji G. Comprehensive analysis of 5-hydroxymethylcytosine in zw10 kinetochore protein as a promising biomarker for screening and diagnosis of early colorectal cancer. Clin Transl Med 2020; 10:e125. [PMID: 32628818 PMCID: PMC7418801 DOI: 10.1002/ctm2.125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a new epigenetic biomarker, 5-hydroxymethylcytosine (5hmC) is broadly involved in various diseases including cancers. However, the function and diagnostic performance of 5hmC in colorectal cancer (CRC) remain unclear. RESULTS High-throughput sequencing was used to profile 5hmC levels in adjacent normal colon, advanced adenomas, and CRC. The expression and 5hmC levels in zw10 kinetochore protein (ZW10) were significantly increased in the tissues and blood samples for patients with advanced adenoma and CRC, and were much higher in the early stages of CRC (I and II). The receiver operating characteristic analysis had potential diagnostic value for CRC. The area under the curve (AUC) of ZW10 5hmC levels in tissue samples of CRC was 0.901. In blood samples, the AUC was 0.748 for CRC. In addition, the ZW10 5hmC level had much higher diagnostic performance in early stages of CRC (AUC = 0.857) than it did in advanced stages (AUC = 0.594). Compared with FHC cell, ZW10 expression in HT29 cell was significantly increased. The ZW10 knockdown could inhibit cell proliferation and the ZW10 overexpression could promote cell proliferation in HT-29 cell. Furthermore, ZW10 knockdown inhibited AKT and mTOR phosphorylation, and ZW10 overexpression promoted AKT and mTOR phosphorylation. CONCLUSIONS The ZW10 5hmC level may serve as an effective epigenetic biomarker for minimally invasive screening and diagnosis of CRC, and it has higher diagnostic performance in early stages of CRC than it does in advanced stages. In addition, ZW10 could regulate CRC progression through the AKT-mTOR signaling.
Collapse
Affiliation(s)
- Yanqi Dang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Dan Hu
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Traditional Chinese MedicineSeventh People's Hospital of Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jingjuan Xu
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chunlin Li
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yingjue Tang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Zhenhua Yang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- Digestive Endoscopy DepartmentLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yang Liu
- Department of General SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Li Zhang
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hanchen Xu
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yangxian Xu
- Department of General SurgeryLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesLonghua HospitalChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
505
|
Dang Y, Xu J, Zhu M, Zhou W, Zhang L, Ji G. Gan-Jiang-Ling-Zhu decoction alleviates hepatic steatosis in rats by the miR-138-5p/CPT1B axis. Biomed Pharmacother 2020; 127:110127. [PMID: 32325349 DOI: 10.1016/j.biopha.2020.110127] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a commonly-encountered chronic liver disease which lacks verified pharmacological interventions. Gan-Jiang-Ling-Zhu decoction (GJLZ) is a classic formula utilized in clinical practice. In this study, we aimed to evaluate the therapeutic effect of GJLZ in NAFLD and explore the possible underlying mechanisms. METHODS Twenty-four rats were randomly divided into three groups: normal group, fed with chow diet for 8 weeks; model group, fed with high fat diet for 8 weeks; and GJLZ group, initially fed HFD for 4 weeks, and then administered the GJLZ decoction for 4 weeks by oral gavage while continuously feeding HFD. Rats were sacrificed after the intervention, and liver tissues and blood samples were harvested. Liver steatosis was detected by HE and Oil Red O staining. Body weight and liver index were analyzed. Liver triglyceride (TG), total cholesterol (TC), and low-density lipoprotein (LDL), serum almandine aminotransferase (ALT), aspartate aminotransferase (AST), and nonesterified fatty acid (NEFA) were assayed using commercial kits. Differentially expressed genes were identified by RNA-sequencing and verified using real-time PCR (RT-PCR) and western blotting. Whole miRNAs were detected by RNA-sequence analysis, and mRNA-targeted miRNAs were verified by RT-PCR. The miRNA-mRNA regulation pattern was confirmed using the dual-luciferase reporter assay. RESULTS Treatment with GJLZ significantly improved hepatic steatosis and inflammation, reduced liver index and liver TG content, and also significantly reduced serum ALT and AST levels. Based on the results of RNA-sequence analysis, five differentially expressed genes (DEGs) in the peroxisome proliferator-activated receptor (PPAR) signaling pathway were recognized. RT-PCR confirmed that carnitine palmitoyltransferase 1b (CPT1B) expression was significantly regulated by GJLZ treatment. GJLZ decoction intervention also increased significantly hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA) expression. Next, miRNA profiling and screening were performed based on CPT1B alteration. Rno-miR-138-5p likely responded to GJLZ intervention, and rno-miR-138-5p inhibitor increased CPT1B expression while rno-miR-138-5p mimic reduced CPT1B expression. When CPT1B mutated, miR-138-5p mimic and inhibitor could not regulate the luciferase activity of CPT1B. CONCLUSIONS GJLZ is an effective formula for NAFLD management, and its possible mechanism of action involves the regulation of CPT1B expression via rno-miR-138-5p.
Collapse
Affiliation(s)
- Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jingjuan Xu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Mingzhe Zhu
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
506
|
Cervena K, Siskova A, Buchler T, Vodicka P, Vymetalkova V. Methylation-Based Therapies for Colorectal Cancer. Cells 2020; 9:E1540. [PMID: 32599894 PMCID: PMC7349319 DOI: 10.3390/cells9061540] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal carcinogenesis (CRC) is caused by the gradual long-term accumulation of both genetic and epigenetic changes. Recently, epigenetic alterations have been included in the classification of the CRC molecular subtype, and this points out their prognostic impact. As epigenetic modifications are reversible, they may represent relevant therapeutic targets. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), regulates gene expression. For many years, the deregulation of DNA methylation has been considered to play a substantial part in CRC etiology and evolution. Despite considerable advances in CRC treatment, patient therapy response persists as limited, and their profit from systemic therapies are often hampered by the introduction of chemoresistance. In addition, inter-individual changes in therapy response in CRC patients can arise from their specific (epi)genetic compositions. In this review article, we summarize the options of CRC treatment based on DNA methylation status for their predictive value. This review also includes the therapy outcomes based on the patient's methylation status in CRC patients. In addition, the current challenge of research is to develop therapeutic inhibitors of DNMT. Based on the essential role of DNA methylation in CRC development, the application of DNMT inhibitors was recently proposed for the treatment of CRC patients, especially in patients with DNA hypermethylation.
Collapse
Affiliation(s)
- Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anna Siskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic;
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
507
|
Pádua D, Figueira P, Ribeiro I, Almeida R, Mesquita P. The Relevance of Transcription Factors in Gastric and Colorectal Cancer Stem Cells Identification and Eradication. Front Cell Dev Biol 2020; 8:442. [PMID: 32626705 PMCID: PMC7314965 DOI: 10.3389/fcell.2020.00442] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Gastric and colorectal cancers have a high incidence and mortality worldwide. The presence of cancer stem cells (CSCs) within the tumor mass has been indicated as the main reason for tumor relapse, metastasis and therapy resistance, leading to poor overall survival. Thus, the elimination of CSCs became a crucial goal for cancer treatment. The identification of these cells has been performed by using cell-surface markers, a reliable approach, however it lacks specificity and usually differs among tumor type and in some cases even within the same type. In theory, the ideal CSC markers are those that are required to maintain their stemness features. The knowledge that CSCs exhibit characteristics comparable to normal stem cells that could be associated with the expression of similar transcription factors (TFs) including SOX2, OCT4, NANOG, KLF4 and c-Myc, and signaling pathways such as the Wnt/β-catenin, Hedgehog (Hh), Notch and PI3K/AKT/mTOR directed the attention to the use of these similarities to identify and target CSCs in different tumor types. Several studies have demonstrated that the abnormal expression of some TFs and the dysregulation of signaling pathways are associated with tumorigenesis and CSC phenotype. The disclosure of common and appropriate biomarkers for CSCs will provide an incredible tool for cancer prognosis and treatment. Therefore, this review aims to gather the new insights in gastric and colorectal CSC identification specially by using TFs as biomarkers and divulge promising drugs that have been found and tested for targeting these cells.
Collapse
Affiliation(s)
- Diana Pádua
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Paula Figueira
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Inês Ribeiro
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Raquel Almeida
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Patrícia Mesquita
- i3S – Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| |
Collapse
|
508
|
Effects and Mechanisms of Five Psoralea Prenylflavonoids on Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2128513. [PMID: 32655760 PMCID: PMC7320294 DOI: 10.1155/2020/2128513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023]
Abstract
During the aging process, senescent cells gradually accumulate in the organs; they secrete proinflammatory cytokines and other factors, collectively known as the senescence-associated secretory phenotype (SASP). SASP secretions contribute to “inflammaging,” which is a state of chronic, systemic, sterility, low-grade inflammatory microenvironment and a key risk factor in the development of aging-related diseases. Fructus psoraleae is a traditional Chinese medical herb best known for delaying aging and treating osteoporosis. Prenylflavonoids from fructus psoraleae are the main bioactive compounds responsible for its pharmacological applications, such as beaching, bavachinin, bavachalcone, isobavachalcone, and neobavaisoflavone. In previous decades, there have been some promising studies on the pharmacology of fructus psoraleae. Here, we focus on the anti-inflammatory and antiaging diseases of five psoralea prenylflavonoids, such as cardiovascular protection, diabetes and obesity intervention, neuroprotection, and osteoporosis, and discuss the mechanism of these active ingredients for better understanding the material basis and drug application of fructus psoraleae in Chinese medicine.
Collapse
|
509
|
Xu S. Therapeutic potential of blood flow mimetic compounds in preventing endothelial dysfunction and atherosclerosis. Pharmacol Res 2020; 155:104737. [DOI: 10.1016/j.phrs.2020.104737] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 01/08/2023]
|
510
|
Wan ML, Wang Y, Zeng Z, Deng B, Zhu BS, Cao T, Li YK, Xiao J, Han Q, Wu Q. Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways. Biosci Rep 2020; 40:BSR20200265. [PMID: 32149326 PMCID: PMC7087324 DOI: 10.1042/bsr20200265] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy and one of the leading causes of cancer-related death among men worldwide. CRC is a multifactor digestive pathology, which is a huge problem faced not only by clinicians but also by researchers. Importantly, a unique feature of CRC is the dysregulation of molecular signaling pathways. To date, a series of reviews have indicated that different signaling pathways are disordered and have potential as therapeutic targets in CRC. Nevertheless, an overview of the function and interaction of multiple signaling pathways in CRC is needed. Therefore, we summarized the pathways, biological functions and important interactions involved in CRC. First, we investigated the involvement of signaling pathways, including Wnt, PI3K/Akt, Hedgehog, ErbB, RHOA, Notch, BMP, Hippo, AMPK, NF-κB, MAPK and JNK. Subsequently, we discussed the biological function of these pathways in pathophysiological aspects of CRC, such as proliferation, apoptosis and metastasis. Finally, we summarized important interactions among these pathways in CRC. We believe that the interaction of these pathways could provide new strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Mao-lin Wan
- Department of Hepatobiliary and Pancreatic Surgery, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Yu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of University of South China, Hengyang, 421001, P.R. China
| | - Zhi Zeng
- Department of Pathology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Bo Deng
- Department of Oncology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Bi-sheng Zhu
- Department of Oncology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Ting Cao
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, P.R. China
| | - Yu-kun Li
- Key Laboratory of Tumor Cellular and Molecular Pathology, College of Hunan Province, Cancer Research Institute, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, P.R. China
| | - Qi Han
- Department of Oncology, Xianning Central Hospital, the First Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437000, P.R. China
| | - Qing Wu
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang, 421002, P.R. China
| |
Collapse
|
511
|
Li S, Xu Y, Guo W, Chen F, Zhang C, Tan HY, Wang N, Feng Y. The Impacts of Herbal Medicines and Natural Products on Regulating the Hepatic Lipid Metabolism. Front Pharmacol 2020; 11:351. [PMID: 32265720 PMCID: PMC7105674 DOI: 10.3389/fphar.2020.00351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The dysregulation of hepatic lipid metabolism is one of the hallmarks in many liver diseases including alcoholic liver diseases (ALD) and non-alcoholic fatty liver diseases (NAFLD). Hepatic inflammation, lipoperoxidative stress as well as the imbalance between lipid availability and lipid disposal, are direct causes of liver steatosis. The application of herbal medicines with anti-oxidative stress and lipid-balancing properties has been extensively attempted as pharmaceutical intervention for liver disorders in experimental and clinical studies. Although the molecular mechanisms underlying their hepatoprotective effects warrant further exploration, increasing evidence demonstrated that many herbal medicines are involved in regulating lipid accumulation processes including hepatic lipolytic and lipogenic pathways, such as mitochondrial and peroxisomal β-oxidation, the secretion of very low density lipoprotein (VLDL), the non-esterified fatty acid (NEFA) uptake, and some vital hepatic lipogenic enzymes. Therefore, in this review, the pathways or crucial mediators participated in the dysregulation of hepatic lipid metabolism are systematically summarized, followed by the current evidences and advances in the positive impacts of herbal medicines and natural products on the lipid metabolism pathways are detailed. Furthermore, several herbal formulas, herbs or herbal derivatives, such as Erchen Dection, Danshen, resveratrol, and berberine, which have been extensively studied for their promising potential in mediating lipid metabolism, are particularly highlighted in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
512
|
Wang C, Li L, Jiang J, Li L, Li J, Xu C, Jin S, Zhu L, Yan G. Pterostilbene Inhibits FcεRI Signaling through Activation of the LKB1/AMPK Pathway in Allergic Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3456-3465. [PMID: 32096633 DOI: 10.1021/acs.jafc.9b07126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, the role and mechanism of pterostilbene (Pts) in mast cell degranulation in vitro and in vivo were investigated. The results showed that Pts inhibited mast cell-mediated local passive allergic reactions in mice. In addition, treatment with Pts reduced both histamine release and calcium influx in rat peritoneal mast cells and RBL-2H3 cells and reduced IgE-mediated mast cell activation. Furthermore, the mechanism underlying Pts inhibition of mast cell signaling was probed via studying the effects of Pts on liver kinase B1 (LKB1), including the use of the LKB1 activator metformin and siRNA knockdown of LKB1. The data showed that Pts reduced the release of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, leukotriene C4, and prostaglandin D2 in mast cells by activating the LKB1/adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway. Furthermore, Pts inhibited phosphorylation of FcεRI and FcεRI-mediated degranulation in RBL-2H3 cells. These effects were attenuated after LKB1 knockdown. Taken together, Pts could inhibit FcεRI signaling through activation of the LKB1/AMPK signaling pathway in IgE-mediated mast cell activation. Thus, Pts might be an effective therapeutic agent for mast cell-mediated allergic diseases.
Collapse
Affiliation(s)
- Chongyang Wang
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| | - Liangchang Li
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| | - Jingzhi Jiang
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| | - Li Li
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| | - Junfeng Li
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| | - Chang Xu
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| | - Shan Jin
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
- Department of Dermatology, Yanbian University Hospital, Yanji 133002, P. R. China
| | - Lianhua Zhu
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
- Department of Dermatology, Yanbian University Hospital, Yanji 133002, P. R. China
| | - Guanghai Yan
- Department of Anatomy, Histology and Embryology, Medical College, Yanbian University, Yanji 133002, P. R. China
- Jilin Key Laboratory of Anaphylactic Disease, Yanbian University, Yanji 133000, P. R. China
| |
Collapse
|
513
|
Wu R, Wang L, Yin R, Hudlikar R, Li S, Kuo HCD, Peter R, Sargsyan D, Guo Y, Liu X, Kong AN. Epigenetics/epigenomics and prevention by curcumin of early stages of inflammatory-driven colon cancer. Mol Carcinog 2020; 59:227-236. [PMID: 31820492 PMCID: PMC6946865 DOI: 10.1002/mc.23146] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is associated with significant morbidity and mortality in the US and worldwide. CRC is the second most common cancer-related death in both men and women globally. Chronic inflammation has been identified as one of the major risk factors of CRC. It may drive genetic and epigenetic/epigenomic alterations, such as DNA methylation, histone modification, and non-coding RNA regulation. Current prevention modalities for CRC are limited and some treatment regimens such as use the nonsteroidal anti-inflammatory drug aspirin may have severe side effects, namely gastrointestinal ulceration and bleeding. Therefore, there is an urgent need of developing alternative strategies. Recently, increasing evidence suggests that several dietary cancer chemopreventive phytochemicals possess anti-inflammation and antioxidative stress activities, and may prevent cancers including CRC. Curcumin (CUR) is the yellow pigment that is found in the rhizomes of turmeric (Curcuma longa). Many studies have demonstrated that CUR exhibit strong anticancer, antioxidative stress, and anti-inflammatory activities by regulating signaling pathways, such as nuclear factor erythroid-2-related factor 2, nuclear factor-κB, and epigenetics/epigenomics pathways of histones modifications, and DNA methylation. In this review, we will discuss the latest evidence in epigenetics/epigenomics alterations by CUR in CRC and their potential contribution in the prevention of CRC.
Collapse
Affiliation(s)
- Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hsiao-Chen D Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rebecca Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Graduate Program in Pharmaceutical Science, Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Yue Guo
- Janssen Research & Development, Spring House, Pennsylvania
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - A N Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
514
|
Ma L, Wang R, Wang H, Zhang Y, Zhao Z. Long-term caloric restriction activates the myocardial SIRT1/AMPK/PGC-1α pathway in C57BL/6J male mice. Food Nutr Res 2020; 64:3668. [PMID: 32082101 PMCID: PMC7007760 DOI: 10.29219/fnr.v64.3668] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 01/23/2023] Open
Abstract
Background Caloric restriction (CR) can help in improving heart function. There is as yet no consensus on the mechanism of the effect of CR. Silent mating-type information regulation 1 (SIRT1), adenosine monophosphate-activated protein kinase (AMPK), and mTOR are key players in metabolic stress management. We aimed to explore the effect of CR on the myocardial SIRT1/AMPK/mTOR pathway in mice. Methods Thirty-six 6-week-old male C57BL/6J mice were randomly divided into three groups: normal control group (NC group, n = 12), high-energy group (HE group, n = 12) and CR group (n = 12) according to different diets. After 11 months, western blot was used to examine proteins such as p-AMPK, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), SIRT1, and p-mTOR, whereas real-time PCR was used to examine the expression of AMPK, PGC-1α, and SIRT1 transcripts. Results Compared to the HE group, the CR group displayed increased expression of myocardial p-AMPK protein, SIRT1 protein and mRNA, and PGC-1a mRNA. However, no difference was observed in the expression of p-mTOR protein and mTOR mRNA in the myocardium among the three groups. Conclusions CR improves the SIRT1/AMPK/PGC-1α pathway in mice myocardium with no effect on the mTOR pathway.
Collapse
Affiliation(s)
- Lina Ma
- Department of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.,Central Laboratory, Xuanwu Hospital Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Hongjuan Wang
- Department of Biochemistry and Molecular Biology, Yanjing Medical College, Capital Medical University, Beijing, China
| | - Yaxin Zhang
- Department of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Zhiwei Zhao
- Central Laboratory, Xuanwu Hospital Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
515
|
Li X, Xu G, Wei S, Zhang B, Yao H, Chen Y, Liu W, Wang B, Zhao J, Gao Y. Lingguizhugan decoction attenuates doxorubicin-induced heart failure in rats by improving TT-SR microstructural remodeling. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:360. [PMID: 31829159 PMCID: PMC6907350 DOI: 10.1186/s12906-019-2771-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/25/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Lingguizhugan decoction (LGZG), an ancient Chinese herbal formula, has been used to treat cardiovascular diseases in eastern Asia. We investigated whether LGZG has protective activity and the mechanism underlying its effect in an animal model of heart failure (HF). METHODS A rat model of HF was established by administering eight intraperitoneal injections of doxorubicin (DOX) (cumulative dose of 16 mg/kg) over a 4-week period. Subsequently, LGZG at 5, 10, and 15 mL/kg/d was administered to the rats intragastrically once daily for 4 weeks. The body weight, heart weight index (HWI), heart weight/tibia length ratio (HW/TL), and serum BNP level were investigated to assess the effect of LGZG on HF. Echocardiography was performed to investigate cardiac function, and H&E staining to visualize myocardial morphology. Myocardial ultrastructure and T-tubule-sarcoplasmic reticulum (TT-SR) junctions were observed by transmission electron microscopy. The JP-2 protein level was determined by Western blotting. The mRNA level of CACNA1S and RyR2 and the microRNA-24 (miR-24) level were assayed by quantitative RT-PCR. RESULTS Four weeks after DOX treatment, rats developed cardiac damage and exhibited a significantly increased BNP level compared with the control rats (169.6 ± 29.6 pg/mL versus 80.1 ± 9.8 pg/mL, P < 0.001). Conversely, LGZG, especially at the highest dose, markedly reduced the BNP level (93.8 ± 17.9 pg/mL, P < 0.001). Rats treated with DOX developed cardiac dysfunction, characterized by a strong decrease in left ventricular ejection fraction compared with the control (58.5 ± 8.7% versus 88.7 ± 4.0%; P < 0.001). Digoxin and LGZG improved cardiac dysfunction (79.6 ± 6.1%, 69.2 ± 2.5%, respectively) and preserved the left ventricular ejection fraction (77.9 ± 5.1, and 80.5 ± 4.9, respectively, P < 0.01). LGZG also improved the LVEDD, LVESD, and FS and eliminated ventricular hypertrophy, as indicated by decreased HWI and HW/TL ratio. LGZG attenuated morphological abnormalities and mitochondrial damage in the myocardium. In addition, a high dose of LGZG significantly downregulated the expression of miR-24 compared with that in DOX-treated rats (fold change 1.4 versus 3.4, P < 0.001), but upregulated the expression of JP-2 and antagonized DOX-induced T-tubule TT-SR microstructural remodeling. These activities improved periodic Ca2+ transients and cell contraction, which may underly the beneficial effect of LGZG on HF. CONCLUSIONS LGZG exerted beneficial effects on DOX-induced HF in rats, which were mediated in part by improved TT-SR microstructural remodeling.
Collapse
|
516
|
Wang X, Shi L, Wang X, Feng Y, Wang Y. MDG-1, an Ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis. Int J Biol Macromol 2019; 141:1013-1021. [DOI: 10.1016/j.ijbiomac.2019.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
|
517
|
Kim S, Bolatkan A, Kaneko S, Ikawa N, Asada K, Komatsu M, Hayami S, Ojima H, Abe N, Yamaue H, Hamamoto R. Deregulation of the Histone Lysine-Specific Demethylase 1 Is Involved in Human Hepatocellular Carcinoma. Biomolecules 2019; 9:810. [PMID: 31805626 PMCID: PMC6995592 DOI: 10.3390/biom9120810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is a leading cause of cancer-related death worldwide. Given that the standard-of-care for advanced liver cancer is limited, there is an urgent need to develop a novel molecular targeted therapy to improve therapeutic outcomes for HCC. In order to tackle this issue, we conducted functional analysis of the histone lysine-specific demethylase (LSD1) to explore the possibility that this enzyme acts as a therapeutic target in HCC. According to immunohistochemical analysis, 232 of 303 (77%) HCC cases showed positive staining of LSD1 protein, and its expression was correlated with several clinicopathological characteristics, such as female gender, AFP (alpha-fetoprotein) levels, and HCV (hepatitis C virus) infectious. The survival curves for HCC using the Kaplan-Meier method and the log-rank test indicate that positive LSD1 protein expression was significantly associated with decreased rates of overall survival (OS) and disease-free survival (DFS); the multivariate analysis indicates that LSD1 expression was an independent prognostic factor for both OS and DFS in patients with HCC. In addition, knockout of LSD1 using the CRISPR/Cas9 system showed a significantly lower number of colony formation units (CFUs) and growth rate in both SNU-423 and SNU-475 HCC cell lines compared to the corresponding control cells. Moreover, LSD1 knockout decreased cells in S phase of SNU-423 and SNU-475 cells with increased levels of H3K4me1/2 and H3K9me1/2. Finally, we identified the signaling pathways regulated by LSD1 in HCC, including the retinoic acid (RA) pathway. Our findings imply that deregulation of LSD1 can be involved in HCC; further studies may explore the usefulness of LSD1 as a therapeutic target of HCC.
Collapse
Affiliation(s)
- Sangchul Kim
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Department of Gastroenterological and General Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan;
| | - Amina Bolatkan
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Syuzo Kaneko
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Noriko Ikawa
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
| | - Ken Asada
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Masaaki Komatsu
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Shinya Hayami
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan; (S.H.); (H.Y.)
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Nobutsugu Abe
- Department of Gastroenterological and General Surgery, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, Japan;
| | - Hiroki Yamaue
- Second Department of Surgery, School of Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8510, Japan; (S.H.); (H.Y.)
| | - Ryuji Hamamoto
- Division of Molecular Modification and Cancer Biology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (S.K.); (A.B.); (N.I.); (K.A.); (M.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
518
|
Qian Y, Yang Y, Wang K, Zhou W, Dang Y, Zhu M, Li F, Ji G. 2'-Hydroxychalcone Induced Cytotoxicity via Oxidative Stress in the Lipid-Loaded Hepg2 Cells. Front Pharmacol 2019; 10:1390. [PMID: 31824319 PMCID: PMC6880759 DOI: 10.3389/fphar.2019.01390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
Licorice is a common herb used in traditional Chinese medicine, and has been widely used clinically. Physiologically, although it is relatively safe, licorice-induced hepatotoxicity in the presence of other diseases needs to be evaluated. The present study was conducted to investigate the toxicological effects of the bioactive components of licorice in HepG2 cells cultured with or without free fatty acid (FFA). The compounds, isoliquiritigenin, licorice chalcone A, bavachalcone, and 2'-hydroxy chalcone (2'-HC) inhibited cell proliferation at certain concentrations in lipid loaded cells with limited effects on the normal cells. The representative compound 2'-HC (at a concentration of ≥ 20µM) increased the oxygen consumption rate, ATP production, mitochondrial membrane potential, generation of total and mitochondrial reactive oxygen species (ROS) production, and expression of inflammatory cytokines (TNF-α, IL-6, and IL-8) and Caspase-9 protein; and reduced the expression of SOD1. In addition, we found exaggerated lipid accumulation in HepG2 cells treated with FFA. Our results suggest that 2'-HC at a concentration of ≥ 20µM might cause damage to the hepatocytes. The toxicity may be related to excess ROS production and inadequate SOD1 expression, leading to apoptosis, inflammation, and cellular dysfunctions.
Collapse
Affiliation(s)
- Yun Qian
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Yang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqi Dang
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingzhe Zhu
- School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenghua Li
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, China-Canada Center of Research for Digestive Diseases (ccCRDD), Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
519
|
Association between lncRNA and GCKR gene in type 2 diabetes mellitus. Clin Chim Acta 2019; 501:66-71. [PMID: 31756311 DOI: 10.1016/j.cca.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/02/2019] [Accepted: 10/06/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To screen long non-coding RNA (lncRNA) related to glucokinase regulatory protein gene (GCKR), its differential expression was analyzed in patients with Type 2 diabetes mellitus (T2DM) and control samples. The correlation of lncRNA with GCKR was verified and its potential value as a molecular marker of T2DM was assessed. METHODS Lymphocyte RNA was extracted from five patients with T2DM and five patients with non-T2DM. The expression profiles of circulating lncRNAs and mRNAs were obtained by microarray. Bioinformatics analysis was used to screen lncRNAs associated with the GCKR gene in 127 patients with T2DM and 130 patients with non-T2DM were selected. The expression levels of the GCKR gene and lncRNA (ENST00000588707.1 and TCONS_00004187) in the T2DM group and control group were verified by real-time PCR. Additionally, a correlation analysis was conducted. The value of circulating ENST00000588707.1 and TCONS_00004187 as biomarkers for the diagnosis of T2DM was performed by receiver operating characteristic curve analysis. RESULTS We identified 68 lncRNAs and 74 mRNAs differentially expressed from the expression profile. Compared with the control group, the expression levels of the GCKR gene and lncRNA ENST00000588707.1 and TCONS_00004187 in the T2DM group were significantly lower (P < 0.05). The correlation analysis revealed that ENST00000588707.1 and TCONS_00004187 were correlated with GCKR gene expression and glycolipid metabolism (P < 0.05). ROC analysis showed that the area under the curve value of ENST00000588707.1 between T2DM patients and non-T2DM patients was 0.816 (95% CI: 0.764-0.869, sensitivity 72.0%, specificity 80.3%) and the AUC value of TCONS_00004187 was 0.826 (95% CI: 0.774-0.879, sensitivity 81.6%, specificity 61.3%). CONCLUSION lncRNA ENST0000588707.1 and TCONS_00004187 could serve as potential biomarkers for T2DM, which could involve in glycolipid metabolism by regulating the GCKR gene.
Collapse
|
520
|
Wang W, Wang YR, Chen J, Chen YJ, Wang ZX, Geng M, Xu DC, Wang ZY, Li JH, Xu ZD, Pan LL, Sun J. Pterostilbene Attenuates Experimental Atherosclerosis through Restoring Catalase-Mediated Redox Balance in Vascular Smooth Muscle Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12752-12760. [PMID: 31642668 DOI: 10.1021/acs.jafc.9b05373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atherosclerosis, the major risk of cardiovascular events, is a chronic vascular inflammatory disease. Pterostilbene is a naturally occurring dimethylated analogue of resveratrol and has recently been demonstrated to be beneficial against cardiovascular diseases. However, the underlying mechanisms of pterostilbene on atherosclerosis remain elusive. Experimental atherosclerosis was induced by a high-fat diet (HFD) in apolipoprotein E knockout (ApoE-/-) mice. Pterostilbene was administered intragastrically for 16 weeks. We found that pterostilbene significantly attenuated thoracic and abdominal atherosclerotic plaque formation in HFD-fed ApoE-/-mice, accompanied by modulated lipid profiles and reduced production of proinflammatory cytokines (including IL-6, IFN-γ, and TNF-α). In addition, pterostilbene restored vascular redox balance in thoracic and abdominal aorta, evidenced by enhanced catalase (CAT) expression and activities, and decreased malondialdehyde and H2O2 production. Notably, pterostilbene specifically induced CAT expression and activities in the vascular smooth muscle cells (VSMCs) of thoracic and abdominal aorta. In vitro, pterostilbene markedly promoted the expression and activity of CAT and decreased ox-low-density lipoprotein (LDL)-mediated VSMC proliferation and intracellular H2O2 production, which was abolished by CAT siRNA knockdown or inhibition. Pterostilbene-induced CAT expression was associated with inhibition of Akt, PRAS40, and GSK-3β signaling activation and upregulation of PTEN. Our data clearly demonstrated that pterostilbene exerted an antiatherosclerotic effect by inducing CAT and modulating the VSMC function.
Collapse
Affiliation(s)
- Wei Wang
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Ya-Ru Wang
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Jing Chen
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Ya-Jun Chen
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Zhao-Xia Wang
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Ming Geng
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - De-Cong Xu
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Zi-Ying Wang
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Jin-Hua Li
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | - Zhong-Dong Xu
- School of Life Science , Hefei Normal University , Hefei 230601 , China
| | | | | |
Collapse
|
521
|
ZHOU QH, ZHU YD, ZHANG F, SONG YQ, JIA SN, ZHU L, FANG SQ, GE GB. Interactions of drug-metabolizing enzymes with the Chinese herb Psoraleae Fructus. Chin J Nat Med 2019; 17:858-870. [DOI: 10.1016/s1875-5364(19)30103-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 12/13/2022]
|
522
|
Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med 2019; 8:1958-1975. [PMID: 30945475 PMCID: PMC6536969 DOI: 10.1002/cam4.2108] [Citation(s) in RCA: 483] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been practiced for thousands of years and at the present time is widely accepted as an alternative treatment for cancer. In this review, we sought to summarize the molecular and cellular mechanisms underlying the chemopreventive and therapeutic activity of TCM, especially that of the Chinese herbal medicine-derived phytochemicals curcumin, resveratrol, and berberine. Numerous genes have been reported to be involved when using TCM treatments and so we have selectively highlighted the role of a number of oncogene and tumor suppressor genes in TCM therapy. In addition, the impact of TCM treatment on DNA methylation, histone modification, and the regulation of noncoding RNAs is discussed. Furthermore, we have highlighted studies of TCM therapy that modulate the tumor microenvironment and eliminate cancer stem cells. The information compiled in this review will serve as a solid foundation to formulate hypotheses for future studies on TCM-based cancer therapy.
Collapse
Affiliation(s)
- Yuening Xiang
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Zimu Guo
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Pengfei Zhu
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Jia Chen
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| | - Yongye Huang
- College of Life and Health SciencesNortheastern UniversityShenyangChina
| |
Collapse
|
523
|
Niu N, Xu S, Xu Y, Little PJ, Jin ZG. Targeting Mechanosensitive Transcription Factors in Atherosclerosis. Trends Pharmacol Sci 2019; 40:253-266. [PMID: 30826122 DOI: 10.1016/j.tips.2019.02.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is the primary underlying cause of cardiovascular disease which preferentially develops at arterial regions exposed to disturbed flow (DF), but much less at regions of unidirectional laminar flow (UF). Recent studies have demonstrated that DF and UF differentially regulate important aspects of endothelial function, such as vascular inflammation, oxidative stress, vascular tone, cell proliferation, senescence, mitochondrial function, and glucose metabolism. DF and UF regulate vascular pathophysiology via differential regulation of mechanosensitive transcription factors (MSTFs) (KLF2, KLF4, NRF2, YAP/TAZ/TEAD, HIF-1α, NF-κB, AP-1, and others). Emerging studies show that MSTFs represent promising therapeutic targets for the prevention and treatment of atherosclerosis. We present here a comprehensive overview of the role of MSTFs in atherosclerosis, and highlight future directions for developing novel therapeutic agents by targeting MSTFs.
Collapse
Affiliation(s)
- Niu Niu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| | - Yanni Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; National Health Commission (NHC) Key Laboratory of Biotechnology of Antibiotics, National Center for Drug (Microbiology) Screening Laboratory, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS and PUMC), Beijing, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Wooloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Guangzhou 510520, China
| | - Zheng-Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
524
|
EMADEDIN MOHSEN, KARIMI SHAHEDEH, KARIMI ALIASGHAR, LABIBZADEH NARGES, NIKNEJADI MARYAM, BAHARVAND HOSSEIN, AGHDAMI NASSER. Autologous bone marrow–derived CD133 cells with core decompression as a novel treatment method for femoral head osteonecrosis: a pilot study. Cytotherapy 2019; 21:107-112. [DOI: 10.1016/j.jcyt.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/30/2018] [Accepted: 10/07/2018] [Indexed: 11/29/2022]
|
525
|
A769662 Inhibits Insulin-Stimulated Akt Activation in Human Macrovascular Endothelial Cells Independent of AMP-Activated Protein Kinase. Int J Mol Sci 2018; 19:ijms19123886. [PMID: 30563079 PMCID: PMC6321332 DOI: 10.3390/ijms19123886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 01/15/2023] Open
Abstract
Protein kinase B (Akt) is a key enzyme in the insulin signalling cascade, required for insulin-stimulated NO production in endothelial cells (ECs). Previous studies have suggested that AMP-activated protein kinase (AMPK) activation stimulates NO synthesis and enhances insulin-stimulated Akt activation, yet these studies have largely used indirect activators of AMPK. The effects of the allosteric AMPK activator A769662 on insulin signalling and endothelial function was therefore examined in cultured human macrovascular ECs. Surprisingly, A769662 inhibited insulin-stimulated NO synthesis and Akt phosphorylation in human ECs from umbilical veins (HUVECs) and aorta (HAECs). In contrast, the AMPK activators compound 991 and AICAR had no substantial inhibitory effect on insulin-stimulated Akt phosphorylation in ECs. Inhibition of AMPK with SBI-0206965 had no effect on the inhibition of insulin-stimulated Akt phosphorylation by A769662, suggesting the inhibitory action of A769662 is AMPK-independent. A769662 decreased IGF1-stimulated Akt phosphorylation yet had no effect on VEGF-stimulated Akt signalling in HUVECs, suggesting that A769662 attenuates early insulin/IGF1 signalling. The effects of A769662 on insulin-stimulated Akt phosphorylation were specific to human ECs, as no effect was observed in the human cancer cell lines HepG2 or HeLa, as well as in mouse embryonic fibroblasts (MEFs). A769662 inhibited insulin-stimulated Erk1/2 phosphorylation in HAECs and MEFs, an effect that was independent of AMPK in MEFs. Therefore, despite being a potent AMPK activator, A769662 has effects unlikely to be mediated by AMPK in human macrovascular ECs that reduce insulin sensitivity and eNOS activation.
Collapse
|
526
|
Lee JA, Kim HR, Kim J, Park KD, Kim DJ, Hwang O. The Novel Neuroprotective Compound KMS99220 Has an Early Anti-neuroinflammatory Effect via AMPK and HO-1, Independent of Nrf2. Exp Neurobiol 2018; 27:408-418. [PMID: 30429650 PMCID: PMC6221835 DOI: 10.5607/en.2018.27.5.408] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
We have previously reported a novel synthetic compound KMS99220 that prevented degeneration of the nigral dopaminergic neurons and the associated motor deficits, suggesting a neuroprotective therapeutic utility for Parkinson's disease. Microglia are closely associated with neuroinflammation, which plays a key role in the pathogenesis of neurodegenerative diseases. In this study, we investigated the effects of KMS99220 on the signaling involving AMP-activated protein kinase (AMPK) and heme oxygenase-1 (HO-1), the enzymes thought to regulate inflammation. KMS99220 was shown to elevate the enzyme activity of purified AMPK, and phosphorylation of cellular AMPK in BV2 microglia. It increased the level of HO-1, and this was attenuated by AMPK inhibitors. KMS99220 lowered phosphorylation of IκB, nuclear translocation of NFκB, induction of inducible nitric oxide synthase, and generation of nitric oxide in BV2 cells that had been challenged with lipopolysaccharide. This anti-inflammatory response involved HO-1, because both its pharmacological inhibition and knockdown of its expression abolished the response. The AMPK inhibitors also reversed the anti-inflammatory effects of KMS99220. The induction of HO-1 by KMS99220 occurred within 1 h, and this appeared not to involve the transcription factor Nrf2, because Nrf2 knockdown did not affect the compound's HO-1 inducing- and anti-inflammatory effects in this time window. These findings indicated that KMS99220 leads to AMPK-induced HO-1 expression in microglia, which in turn plays an important role in early anti-inflammatory signaling. Together with its neuroprotective property, KMS99220 may serve as a feasible therapeutic agent against neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Ji Ae Lee
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Hye Ri Kim
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jiyoung Kim
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Dong Jin Kim
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Onyou Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
527
|
Wang X, Wu Z, He Y, Zhang H, Tian L, Zheng C, Shang T, Zhu Q, Li D, He Y. Humanin prevents high glucose-induced monocyte adhesion to endothelial cells by targeting KLF2. Mol Immunol 2018; 101:245-250. [DOI: 10.1016/j.molimm.2018.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/22/2018] [Accepted: 07/02/2018] [Indexed: 01/10/2023]
|
528
|
Safety evaluation, anti-oxidative and anti-inflammatory effects of subchronically dietary supplemented high dosing grape seed powder (GSP) to healthy rat. Biomed Pharmacother 2018; 107:534-546. [PMID: 30114637 DOI: 10.1016/j.biopha.2018.08.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 12/21/2022] Open
Abstract
Grape seed powder (GSP) contains high amount of bioactive polyphenols usually used as nutritional supplement or food preservatives due to their antioxidant and scavenging properties. The purpose of the present work was to evaluate the safety of increasing dosage GSP (w/w) of 0.5%, 5%, 10% and 20% corresponding to 0.4, 4, 8 and 16 g/kg bw respectively, when administered sub-chronically to Wistar rats in a 2 month-repeated dosing oral toxicity trial. Overally GSP had no effect on food intake, decreased body weight gain without affecting brain, liver, heart or kidney relative weight. GSP did not alter haematology except an increase in platelets, slightly decreased plasma transaminases, creatinine, urea and xanthine oxidase activity, without affecting uricemia, glycemia, triglyceridemia and cholesterolemia. GSP did not affect intracellular mediators as calcium, free iron or H2O2, but exerted real anti-oxidative properties in the four selected organs as assessed by lower lipoperoxidation and carbonylation, higher non protein thiols and antioxidant enzyme activities as CAT, GPx and SOD. Besides GSP exerted anti-inflammatory properties as supported by lower plasma IL17 A and CRP and higher IL10 and adiponectin. Histopathologically GSP provoked the dilation of heart and kidney arterioles and increased the size of the hippocampal dentate gyrus reflecting higher neurogenesis as assessed by Ki-67 labeling. Under the experimental conditions of the current study, GSP appeared as highly safe even when administered at very high dosage and could find potential applications in a variety of biotic or abiotic stresses-induced multi-organ dysfunction.
Collapse
|
529
|
Alam F, Khan GN, Asad MHHB. Psoralea corylifolia L: Ethnobotanical, biological, and chemical aspects: A review. Phytother Res 2018; 32:597-615. [PMID: 29243333 PMCID: PMC7167735 DOI: 10.1002/ptr.6006] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023]
Abstract
Psoralea corylifolia L. (Leguminosae) is a well-known traditional medicinal plant used from ancient times for treatment of various ailments. It is widely distributed and an important part of therapeutics in Ayurveda and in Chinese medicines. The aim of this review is to present comprehensive and most up to date report on its ethnobotanical, ethnopharmacological, clinical, phytochemical, and side effects. Studies on the ethnobotanical, ethnopharmacological, clinical, phytochemical, and side effects of P. corylifolia were published until year 2017 and were searched using various scientific databases. The scientific literature searched revealed that these plant species has been extensively investigated in vivo and in vitro for various biological and phytochemical studies. It has cardiotonic, vasodilator, pigmentor, antitumor, antibacterial, cytotoxic, and anti-helminthic properties and locally used for alopecia, inflammation, leukoderma, leprosy, psoriasis, and eczema. So far, about a hundred bioactive compounds have been isolated from seeds and fruits, and most important compounds identified belongs to coumarins, flavonoids, and meroterpenes groups. This review article summarized the most updated scientific literature on bioactive phytochemical and biological activities of P. corylifolia. This article will be a useful addition to providing information for future research, and more standard clinical trials are needed for the plant to be used as therapeutic agent.
Collapse
Affiliation(s)
- Fiaz Alam
- Department of PharmacyCOMSATS Institute of Information TechnologyAbbottabad22060Pakistan
| | - Gul Nawaz Khan
- Department of PharmacyCOMSATS Institute of Information TechnologyAbbottabad22060Pakistan
| | | |
Collapse
|
530
|
Dunye Guanxinning Improves Acute Myocardial Ischemia-Reperfusion Injury by Inhibiting Neutrophil Infiltration and Caspase-1 Activity. Mediators Inflamm 2018; 2018:4608017. [PMID: 29674944 PMCID: PMC5838499 DOI: 10.1155/2018/4608017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 11/17/2022] Open
Abstract
Acute myocardial infarction is the most serious manifestation of cardiovascular disease, and it is a life-threatening condition. Dunye Guanxinning (DG) is a protective traditional Chinese patent herbal medicine with high clinical efficacy and suitable for the treatment of myocardial infarction. However, the mechanism through which it is beneficial is unclear. In this study, we hypothesized that DG improves acute myocardial ischemia-reperfusion injury by inhibiting neutrophil infiltration and caspase-1 activity. We found that DG administration decreased infarct size and cardiomyocyte apoptosis and improved left ventricular ejection fraction, fractional shortening, end-systolic volume index, end-systolic diameter, and carotid arterial blood flow output in rats. DG administration also improved hemorheological parameters, myocardial damage biomarkers, and oxidative stress indexes. The findings showed that DG administration inhibited neutrophil infiltration and reduced the serum interleukin-1 beta (IL-1β) level and myocardial IL-1β maturation. Moreover, DG administration inhibited caspase-1 activity and activated adenosine monophosphate-activated protein kinase (AMPK) phosphorylation in rat hearts. These results suggested that DG administration inhibits inflammasome activity and IL-1β release through the AMPK pathway. Our findings support the clinical efficacy of DG and partially reveal its mechanism, which is beneficial for understanding the therapeutic effects of this protective traditional Chinese patent drug.
Collapse
|
531
|
Fernandes GFS, Silva GDB, Pavan AR, Chiba DE, Chin CM, Dos Santos JL. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients 2017; 9:nu9111201. [PMID: 29104258 PMCID: PMC5707673 DOI: 10.3390/nu9111201] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (RVT) is one of the main natural compounds studied worldwide due to its potential therapeutic use in the treatment of many diseases, including cancer, diabetes, cardiovascular diseases, neurodegenerative diseases and metabolic disorders. Nevertheless, the mechanism of action of RVT in all of these conditions is not completely understood, as it can modify not only biochemical pathways but also epigenetic mechanisms. In this paper, we analyze the biological activities exhibited by RVT with a focus on the epigenetic mechanisms, especially those related to DNA methyltransferase (DNMT), histone deacetylase (HDAC) and lysine-specific demethylase-1 (LSD1).
Collapse
Affiliation(s)
- Guilherme Felipe Santos Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
- Institute of Chemistry, São Paulo State University (UNESP), 14800060 Araraquara, Brazil.
| | | | - Aline Renata Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| |
Collapse
|
532
|
Calle-Guisado V, Hurtado de Llera A, González-Fernández L, Bragado MJ, Garcia-Marin LJ. Human sperm motility is downregulated by the AMPK activator A769662. Andrology 2017; 5:1131-1140. [DOI: 10.1111/andr.12423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 12/11/2022]
Affiliation(s)
- V. Calle-Guisado
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP); Institute of Biotechnology in Agriculture and Livestock (INBIO G+C); University of Extremadura; Caceres Spain
| | - A. Hurtado de Llera
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP); Institute of Biotechnology in Agriculture and Livestock (INBIO G+C); University of Extremadura; Caceres Spain
| | - L. González-Fernández
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP); Institute of Biotechnology in Agriculture and Livestock (INBIO G+C); University of Extremadura; Caceres Spain
- CECA/ICETA-Animal Science Centre; ICBAS-University of Porto; Vairão Portugal
| | - M. J. Bragado
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP); Institute of Biotechnology in Agriculture and Livestock (INBIO G+C); University of Extremadura; Caceres Spain
| | - L. J. Garcia-Marin
- Research Group of Intracellular Signalling and Technology of Reproduction (SINTREP); Institute of Biotechnology in Agriculture and Livestock (INBIO G+C); University of Extremadura; Caceres Spain
| |
Collapse
|
533
|
Ling S, Ni RZ, Yuan Y, Dang YQ, Zhou QM, Liang S, Guo F, Feng W, Chen Y, Ikeda K, Yamori Y, Xu JW. Natural compound bavachalcone promotes the differentiation of endothelial progenitor cells and neovascularization through the RORα-erythropoietin-AMPK axis. Oncotarget 2017; 8:86188-86205. [PMID: 29156787 PMCID: PMC5689677 DOI: 10.18632/oncotarget.21036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/06/2017] [Indexed: 01/07/2023] Open
Abstract
In cardiovascular diseases, endothelial function is impaired and the level of circulating endothelial progenitor cells (EPCs) is low. This study investigated whether the natural bioactive component bavachalcone (BavaC) induces the differentiation of EPCs and neovascularization in vivo; the underlying mechanisms were also examined. We observed that the treatment of rat bone marrow–derived cells with a very low dose of BavaC significantly promoted EPC differentiation. In our hindlimb ischemia models, low–dose BavaC administered orally for 14 days stimulated the recovery of ischemic hindlimb blood flow, increased circulating EPCs, and promoted capillary angiogenesis. The BavaC treatment of rat bone marrow cells for 24 h initiated the AMP–activated protein kinase (AMPK) activity required for the differentiation of EPCs. Further testing revealed that BavaC and CGP52608, a retinoic acid receptor–related orphan receptor α (RORα) activator, enhanced the activity of RORα1 and EPO luciferase reporter gene. BavaC treatment also elevated EPO mRNA and protein expression in vitro and in vivo and the circulating EPO levels in rats. By contrast, the RORα antagonist VPR66 inhibited BavaC–induced EPO reporter activity, and differentiation of bone marrow cells into endothelial progenitor cells. Overall, this study revealed that BavaC promotes EPC differentiation and neovascularization through a RORα–EPO–AMPK axis. BavaC can be used as a promising angiogenesis agent for enhancing angiogenesis and tissue repair.
Collapse
Affiliation(s)
- Shuang Ling
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong-Zhen Ni
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunyun Yuan
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan-Qi Dang
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian-Mei Zhou
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Liang
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fujiang Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Feng
- School of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Chen
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Katsumi Ikeda
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Japan
| | - Yukio Yamori
- Institute for World Health Development, Mukogawa Women's University, Nishinomiya, Japan
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
534
|
Zhou D, An L, Xia Y, Wang Y, Li X. Quantitative bioanalysis of bavachalcone in rat plasma by LC-MS/MS and its application in a pharmacokinetics study. Biomed Chromatogr 2017; 31. [PMID: 28618051 DOI: 10.1002/bmc.4031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/24/2017] [Accepted: 06/13/2017] [Indexed: 11/12/2022]
Abstract
This study aims to develop and validate a simple and sensitive liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for investigating the pharmacokinetic characteristics of bavachalcone. Liquid-liquid extraction was used to prepare plasma sample. Chromatographic separation of bavachalcone and IS was achieved using a Venusil ASB C18 (2.1 × 50 mm, 5 μm) column with a mobile phase of methanol (A)-water (B) (70:30, v/v). The detection and quantification of analytes was performed in selected-reaction monitoring mode using precursor → product ion combinations of m/z 323.1 → 203.2 for bavachalcone, and m/z 373.0 → 179.0 for IS. Linear calibration plots were achieved in the range of 1-1000 ng/mL for bavachalcone (r2 > 0.99) in rat plasma. The recovery of bavachalcone ranged from 84.1 to 87.0%. The method was precise, accurate and reliable. It was fully validated and successfully applied to pharmacokinetic study of bavachalcone.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pediatrics, the Second Hospital of Jilin University, Changchun, China
| | - Lianhua An
- Department of Science and Education, the First Hospital of Jilin University, Changchun, China
| | - Yan Xia
- Department of Gastroenterology, the First Hospital of Jilin University, Changchun, China
| | - Yuanyi Wang
- Department of Spine, the First Hospital of Jilin University, Changchun, China
| | - Xingliang Li
- Department of Emergency, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
535
|
Quantitative Analysis of Psoralea corylifolia Linne and its Neuroprotective and Anti-Neuroinflammatory Effects in HT22 Hippocampal Cells and BV-2 Microglia. Molecules 2016; 21:molecules21081076. [PMID: 27548120 PMCID: PMC6274380 DOI: 10.3390/molecules21081076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
The seeds of Psoralea corylifolia L. (P. corylifolia), also known as “Bo-Gol-Zhee” in Korea, are used in a traditional herbal medicine for treating various skin diseases. In the present study, we performed quantitative analyses of the seven standard components of P. corylifolia: psoralen, angelicin, neobavaisoflavone, psoralidin, isobavachalcone, bavachinin, and bakuchiol, using high-performance liquid chromatography. We also investigated the neuroprotective and anti-neuroinflammation effects of P. corylifolia and its standard components in the hippocampal cell line HT22 and microglia cell line BV-2. A 70% ethanol extract of P. corylifolia was prepared and the seven standard components were separated using C-18 analytical columns by gradient solvents with acetonitrile and water, and ultraviolet detection at 215, 225 and 275 nm. The analytical method showed high linearity, with a correlation coefficient of ≥0.9999. The amounts of the standard components ranged from 0.74 to 11.71 mg/g. Among the components, bakuchiol (11.71 mg/g) was the most potent phytochemical component of P. corylifolia. Furthermore, we analyzed the inhibitory effects of the components from P. corylifolia to determine the bioactive compound needed to regulate neuronal cell changes. Angelicin, isobavachalcone, and bakuchiol suppressed lipopolysaccharide (LPS)-stimulated nitric oxide production in LPS-treated BV-2 microglia more significantly than did the other components. In HT22 hippocampal cells, neobavaisoflavone and bakuchiol had more potent inhibitory activity against hydrogen peroxide-induced cell death. Taken together of the quantification and efficacy analyses, bakuchiol appeared to be the most potent bioactive phytochemical component of P. corylifolia for the potential treatment of neurodegenerative diseases.
Collapse
|
536
|
Li H, Li WK, Lu YF, Wei LX, Liu J. The Tibetan medicine Zuotai influences clock gene expression in the liver of mice. PeerJ 2016; 4:e1632. [PMID: 26855871 PMCID: PMC4741069 DOI: 10.7717/peerj.1632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/06/2016] [Indexed: 01/14/2023] Open
Abstract
Background. The circadian clock is involved in drug metabolism, efficacy and toxicity. Drugs could in turn affect the biological clock as a mechanism of their actions. Zuotai is an essential component of many popular Tibetan medicines for sedation, tranquil and “detoxification,” and is mainly composed of metacinnabar (β-HgS). The pharmacological and/or toxicological basis of its action is unknown. This study aimed to examine the effect of Zuotai on biological clock gene expression in the liver of mice. Materials and methods. Mice were orally given Zuotai (10 mg/kg, 1.5-fold of clinical dose) daily for 7 days, and livers were collected every 4 h during the 24 h period. Total RNA was extracted and subjected to real-time RT-PCR analysis of circadian clock gene expression. Results. Zuotai decreased the oscillation amplitude of the clock core gene Clock, neuronal PAS domain protein 2 (Npas2), Brain and muscle Arnt-like protein-1 (Bmal1) at 10:00. For the clock feedback negative control genes, Zuotai had no effect on the oscillation of the clock gene Cryptochrome (Cry1) and Period genes (Per1–3). For the clock-driven target genes, Zuotai increased the oscillation amplitude of the PAR-bZip family member D-box-binding protein (Dbp), decreased nuclear factor interleukin 3 (Nfil3) at 10:00, but had no effect on thyrotroph embryonic factor (Tef); Zuotai increased the expression of nuclear receptor Rev-Erbα (Nr1d1) at 18:00, but had little influence on the nuclear receptor Rev-Erbβ (Nr1d2) and RORα. Conclusion. The Tibetan medicine Zuotai could influence the expression of clock genes, which could contribute to pharmacological and/or toxicological effects of Zuotai.
Collapse
Affiliation(s)
- Huan Li
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College , Zunyi , China
| | - Wen-Kai Li
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College , Zunyi , China
| | - Yuan-Fu Lu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College , Zunyi , China
| | - Li-Xin Wei
- Northwest Plateau Institute of Bology, Chinese Academia of Sciences , Xining, Qinghai , China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical College , Zunyi , China
| |
Collapse
|
537
|
Grahame Hardie D. Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 2016; 6:1-19. [PMID: 26904394 PMCID: PMC4724661 DOI: 10.1016/j.apsb.2015.06.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/28/2015] [Indexed: 12/11/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function.
Collapse
Affiliation(s)
- David Grahame Hardie
- Division of Cell Signaling & Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
538
|
Bavachalcone Enhances RORα Expression, Controls Bmal1 Circadian Transcription, and Depresses Cellular Senescence in Human Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26199639 PMCID: PMC4493309 DOI: 10.1155/2015/920431] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The circadian clock regulates many aspects of (patho)physiology in the central nervous system and in the peripheral tissues. RAR-related orphan receptor α (RORα), an orphan nuclear receptor, is involved in circadian rhythm regulation, including regulation of cardiovascular function. Bavachalcone, a prenylchalcone, is a major bioactive chalcone isolated from Psoralea corylifolia. This natural ingredient activated RORα1 luciferase reporter activity on drug screening. In addition, bavachalcone induced RORα1 expression in mRNA and protein levels in a dose-dependent manner and enhanced the circadian amplitude of Bmal1 mRNA expression after serum shock. Moreover, bavachalcone suppressed senescence in human endothelial cells and mRNA expression of p16(ink4a) (a marker of replicative senescence) and IL-1α (a proinflammatory cytokine of the senescence-associated secretory phenotype). These inhibitory effects were partially reversed by the RORα inhibitor VPR-66. Our results demonstrate that bavachalcone, as a natural medicine ingredient, has a pharmacological function in regulating RORα1.
Collapse
|
539
|
Cross-validation of item selection and scoring for the SF-12 Health Survey in nine countries: results from the IQOLA Project. International Quality of Life Assessment. PPAR Res 1998; 2016:9282087. [PMID: 27051413 PMCID: PMC4802016 DOI: 10.1155/2016/9282087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/11/2016] [Indexed: 02/08/2023] Open
Abstract
Activated AMPK protects the heart from cardiac ischemia-reperfusion (IR) injury and is associated with inhibition of mitochondrial permeability transition pore (PTP) opening. On the other hand, pharmacological inhibition of the PTP reduces infarct size and improves cardiac function. However, it is unclear whether beneficial effects of AMPK are mediated through the PTP and, if they are not, whether simultaneous activation of AMPK and inhibition of the PTP exert synergistic protective effects against cardiac IR injury. Here, we examined the effects of the AMPK activator, A-769662 in combination with the PTP inhibitor, sanglifehrin A (SfA) on in vivo cardiac IR. Cardiac dysfunction following IR injury was associated with decreased activity of the mitochondrial electron transport chain (ETC) and increased mitochondrial ROS and PTP opening. Administration of A-769662 or SfA individually upon reperfusion improved cardiac function, reduced infarction size, and inhibited ROS production and PTP opening. However, simultaneous administration of SfA and A-769662 did not provide synergistic improvement of postischemic recovery of cardiac and mitochondrial function, though both compounds disrupted IR-induced interaction between PPARα and CyP-D. In conclusion, A-769662 or SfA prevents PPARα interaction with CyP-D, improving cardiac outcomes and increasing mitochondrial function, and simultaneous administration of the drugs does not provide synergistic effects.
Collapse
|