501
|
Doboli S, Minai AA, Best PJ. Latent attractors: a model for context-dependent place representations in the hippocampus. Neural Comput 2000; 12:1009-43. [PMID: 10905806 DOI: 10.1162/089976600300015484] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cells throughout the rodent hippocampal system show place-specific patterns of firing called place fields, creating a coarse-coded representation of location. The dependencies of this place code--or cognitive map--on sensory cues have been investigated extensively, and several computational models have been developed to explain them. However, place representations also exhibit strong dependence on spatial and behavioral context, and identical sensory environments can produce very different place codes in different situations. Several recent studies have proposed models for the computational basis of this phenomenon, but it is still not completely understood. In this article, we present a very simple connectionist model for producing context-dependent place representations in the hippocampus. We propose that context dependence arises in the dentate gyrus-hilus (DGH) system, which functions as a dynamic selector, disposing a small group of granule and pyramidal cells to fire in response to afferent stimulus while depressing the rest. It is hypothesized that the DGH system dynamics has "latent attractors," which are unmasked by the afferent input and channel system activity into subpopulations of cells in the DG, CA3, and other hippocampal regions as observed experimentally. The proposed model shows that a minimally structured hippocampus-like system can robustly produce context-dependent place codes with realistic attributes.
Collapse
Affiliation(s)
- S Doboli
- ECECS Department, University of Cincinnati, OH 45221-0030, USA
| | | | | |
Collapse
|
502
|
Komai S, Matsuyama T, Matsumoto K, Kato K, Kobayashi M, Imamura K, Yoshida S, Ugawa S, Shiosaka S. Neuropsin regulates an early phase of schaffer-collateral long-term potentiation in the murine hippocampus. Eur J Neurosci 2000; 12:1479-86. [PMID: 10762375 DOI: 10.1046/j.1460-9568.2000.00035.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We found that neuropsin, an extracellular matrix serine protease, has a regulatory effect on Schaffer-collateral long-term potentiation (LTP) in the mouse hippocampus. Bath application of 1-170 nM recombinant neuropsin modulated early phase LTP in the Schaffer-collateral pathway with a 'bell-shape' dose-response curve. The maximum enhancing activity (134% of control LTP) was found at approximately 2.5 nM. Bath application of a neutralizing antibody against neuropsin in the hippocampal slice resulted in a marked inhibition of the tetanus-induced early phase of LTP. The in vivo continuous intraventricular infusion of an antisense oligonucleotide against neuropsin significantly reduced the amplitude of the tetanus-induced early phase of LTP in vitro. Neuropsin did not directly change the N-methyl D-aspartate (NMDA) current. Thus, neuropsin appears to act as a regulatory molecule in the early phase of LTP via its proteolytic function on extracellular matrix rather than affecting NMDA receptor-mediated calcium increase.
Collapse
Affiliation(s)
- S Komai
- Division of Structural Cell Biology, NAIST, 8916-5 Takayama, Ikoma, Nara, 630-0101 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
503
|
Niittykoski M, Haapalinna A, Sirviö J. Diminution of N-methyl-D-aspartate-induced perturbation of neurotransmission by dexmedetomidine in the CA1 field of rat hippocampus in vitro. Neurosci Lett 2000; 281:95-8. [PMID: 10704751 DOI: 10.1016/s0304-3940(00)00811-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of alpha(2)-adrenoceptor activation on N-methyl-D-aspartic acid (NMDA)-induced perturbation of neurotransmission and normal NMDA-receptor dependent function (long-term potentiation, (LTP)) were investigated in the hippocampal CA1 field in vitro. Bath perfusion of dexmedetomidine hydrochloride (50 nM), which was initiated before NMDA (100 microM) exposure, enhanced the extent of recovery of extracellular field excitatory postsynaptic potentials after NMDA infusion. On the other hand, the induction and early maintenance of LTP was normal in the presence of dexmedetomidine. Thus, dexmedetomidine can diminish acute NMDA-induced perturbation of neurotransmission while the same dose of this drug does not influence the normal activation of NMDA receptors.
Collapse
Affiliation(s)
- M Niittykoski
- A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, P.O. Box 1627, FIN-70211, Kuopio, Finland.
| | | | | |
Collapse
|
504
|
Vanderklish PW, Krushel LA, Holst BH, Gally JA, Crossin KL, Edelman GM. Marking synaptic activity in dendritic spines with a calpain substrate exhibiting fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 2000; 97:2253-8. [PMID: 10688895 PMCID: PMC15787 DOI: 10.1073/pnas.040565597] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Excitatory synaptic activity can evoke transient and substantial elevations of postsynaptic calcium. Downstream effects of elevated calcium include the activation of the calcium-dependent protease calpain. We have developed a reagent that identifies dendritic spines in which calpain has been activated. A fusion protein was expressed that contained enhanced yellow and enhanced cyan fluorescent protein (EYFP and ECFP, respectively) linked by a peptide that included the micro-calpain cleavage site from alpha-spectrin. A PDZ-binding site fused to ECFP anchored this protein to postsynaptic densities. The fusion protein exhibited fluorescence resonance energy transfer (FRET), and diminution of FRET by proteolysis was used to localize calpain activity in situ by fluorescence microscopy. Incubation of the fusion protein with calpain in the presence of calcium resulted in the separation of EYFP and ECFP into monomeric fluorophores. In transiently transfected cell lines and dissociated hippocampal neurons, FRET was diminished by raising intracellular calcium levels with an ionophore or with glutamatergic agonists. Calpain inhibitors blocked these changes. Under control conditions, FRET levels in different dendritic spines of cultured neurons and in hippocampal slices were heterogeneous but showed robust decreases upon treatment with glutamatergic agonists. Immunostaining of cultured neurons with antibodies to a spectrin epitope produced by calpain-mediated digestion revealed an inverse correlation between the amount of FRET present at postsynaptic elements and the concentration of spectrin breakdown products. These results suggest that the FRET methodology identifies sites of synaptically induced calpain activity and that it may be useful in analyzing synapses undergoing changes in efficacy.
Collapse
Affiliation(s)
- P W Vanderklish
- Department of Neurobiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
505
|
Discharge properties of juxtacellularly labeled and immunohistochemically identified cholinergic basal forebrain neurons recorded in association with the electroencephalogram in anesthetized rats. J Neurosci 2000. [PMID: 10662840 DOI: 10.1523/jneurosci.20-04-01505.2000] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple lines of evidence indicate that cholinergic basal forebrain neurons play an important role in the regulation of cortical activity and state. However, the discharge properties of cholinergic cells in relation to the electroencephalogram (EEG) are not yet known. In the present study, cells were recorded in the basal forebrain in association with cortical EEG activity in urethane-anesthetized rats, and their discharge was examined during EEG irregular slow activity and during stimulation-induced cortical activation, characterized by rhythmic slow (theta) and high-frequency (gamma) activities. Recorded cells were labeled with Neurobiotin (Nb), using the juxtacellular technique and identified as cholinergic by immunohistochemical staining for choline acetyltransferase (ChAT). Nb-positive/ChAT-positive neurons were distinctive and significantly different from Nb-positive/ChAT-negative neurons, which were heterogeneous in their discharge properties. All Nb(+)/ChAT(+) cells increased their discharge rate with stimulation, and most shifted from an irregular tonic discharge during EEG slow irregular activity to a rhythmic burst discharge during rhythmic slow activity. The stimulation-induced rhythmic discharge was cross-correlated with the EEG rhythmic slow activity. In some units the rhythmic discharge matched the rhythmic slow activity of the retrosplenial cortex; in others, it matched that of the prefrontal cortex, which occurred at a slower frequency, suggesting that subsets of cholinergic neurons may influence their cortical target areas rhythmically at particular frequencies. Cholinergic basal forebrain neurons thus may evoke and enhance cortical activation via both an increase in rate and a change in pattern to rhythmic bursting that would stimulate rhythmic slow (theta-like) activity in cortical fields during active waking and paradoxical sleep states.
Collapse
|
506
|
Yun SH, Huh K, Jung MW. Selective enhancement of non-NMDA receptor-mediated responses following induction of long-term potentiation in entorhinal cortex. Synapse 2000; 35:1-7. [PMID: 10579802 DOI: 10.1002/(sici)1098-2396(200001)35:1<1::aid-syn1>3.0.co;2-l] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The contribution of NMDA receptors to the expression of long-term potentiation (LTP) is controversial. In entorhinal cortex (EC) previous studies reported either that LTP was exclusively expressed through NMDA receptors or that both NMDA and non-NMDA receptors were involved in LTP expression. To reexamine this issue, horizontal entorhinal cortical slices were prepared from adult rats and electrical stimulation was delivered in layer II/III, while field potential recordings were made in layer III. In the standard condition (2.5 mM Mg(++)), LTP was reliably induced by theta burst stimulation, but was blocked by 100 microM D-AP5, an NMDA receptor antagonist. This corroborates previous reports that NMDA receptor activation is required for induction of EC LTP. The field potential response was not affected by D-AP5, but completely blocked by 10 microM CNQX, a non-NMDA receptor antagonist. This indicates that the expression of LTP is mediated by non-NMDA receptors in the standard condition. LTP of NMDA receptor-mediated responses was tested by comparing NMDA responses before and after applying theta burst stimulation in medium containing low magnesium (0.4-1 mM). Theta burst stimulation induced 43.2+/-9.7% increase of non-NMDA responses (i.e., AP5-insensitive fast component) but 5.6+/-9.0% decrease of the NMDA receptor component (AP5-sensitive slow component). These results indicate that activation of NMDA receptors is critical for induction of LTP, but LTP expression is mediated by non-NMDA receptors in EC under these experimental conditions.
Collapse
Affiliation(s)
- S H Yun
- Neuroscience Laboratory, Institute for Medical Sciences, Ajou University School of Medicine, Suwon 442-721, Korea
| | | | | |
Collapse
|
507
|
Chaillan FA, Truchet B, Roman FS, Soumireu-Mourat B. Early polysynaptic potentiation recorded in the dentate gyrus during an associative learning task. Neuroscience 1999; 94:443-51. [PMID: 10579207 DOI: 10.1016/s0306-4522(99)00304-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this report, we investigated the electrophysiological dynamics of the neuronal circuit including the dentate gyrus during an associative task. A group of rats was trained to discriminate between a patterned electrical stimulation of the lateral olfactory tract, used as an artificial cue associated with a water reward, and a natural odor associated with a light flash. Polysynaptic field potential responses, evoked by a single electrical stimulation of the same lateral olfactory tract electrode, were recorded in the molecular layer of the ipsilateral dentate gyrus prior to and just after each training session. An increase in this response was observed when a significant discrimination of the two cues began. A positive correlation was found between the change in the polysynaptic potentiation and behavioral performances. The onset latency of the potentiated polysynaptic response was 35-45 ms. When a group of naive animals was pseudoconditioned, no change in field potential was observed. These results are consistent with the hypothesized dynamic activation of the dentate gyrus early in the making of association, allowing gradual storage of associative information in a defined set of synapses. Moreover, the onset latency of the potentiated response suggests the existence of reactivating hippocampal loops during the processing of associative information.
Collapse
Affiliation(s)
- F A Chaillan
- Laboratoire de Neurobiologie des Comportements, UMR 6562, Université de Provence, I.B.H.O.P., Traverse Charles Susini, Marseille, France.
| | | | | | | |
Collapse
|
508
|
Bilkey DK, Heinemann U. Intrinsic theta-frequency membrane potential oscillations in layer III/V perirhinal cortex neurons of the rat. Hippocampus 1999; 9:510-8. [PMID: 10560921 DOI: 10.1002/(sici)1098-1063(1999)9:5<510::aid-hipo4>3.0.co;2-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The firing of a proportion of neurons in the in vivo perirhinal cortex, a brain region involved in object recognition memory, has recently been shown to be synchronized with hippocampal theta activity. The purpose of the present study was to determine whether neurons located in perirhinal cortex have intrinsic properties that might encourage their participation in theta activity. To these ends, current clamp recordings were made from 98 neurons located in layer III/V of the in vitro rat perirhinal cortex. The intrinsic properties of these neurons were investigated, and a subset of 61 neurons were tested for the presence of membrane potential oscillations at threshold levels of depolarization. Thirty-nine percent of these neurons displayed a theta-frequency membrane potential oscillation (MPO; mean frequency = 8.6 Hz). When depolarized past spike threshold, these neurons tended to fire in clusters, with a within-cluster interspike interval close to the peak to peak interval of the MPOs. Neurons that did not generate MPOs generated nonaccomodating action potential trains with a frequency that spanned the theta range. Biocytin staining indicated that MPOs could be generated in cells with both pyramidal and nonpyramidal morphology. These findings demonstrate that a large proportion of perirhinal neurons exhibit intrinsic properties that could assist in the entrainment and synchronization of theta-frequency oscillations. These properties may enhance the communication of information between the perirhinal cortex, entorhinal cortex, and hippocampus.
Collapse
Affiliation(s)
- D K Bilkey
- Department of Psychology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
509
|
Ye L, Qiao JT. Suppressive action produced by beta-amyloid peptide fragment 31-35 on long-term potentiation in rat hippocampus is N-methyl-D-aspartate receptor-independent: it's offset by (-)huperzine A. Neurosci Lett 1999; 275:187-90. [PMID: 10580706 DOI: 10.1016/s0304-3940(99)00795-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Extracellular recordings of field potential from CA1 region of rat hippocampal slices were used to observe the effects of a shorter synthetic fragment of beta-amyloid peptide (A beta31-35) on the induction of long-term potentiation (LTP) and the action of (-)huperzine A, a potent acetylcholinesterase (AChE) inhibitor on these processes was also observed. The results showed that: (1) 0.1 microM A beta31-35 suppressed the induction of LTP in a similar mode as the longer fragment A beta25-35, did, while they did not change the amplitude of the baseline population spike (PS); (2) when PSs were recorded separately in Mg2+-free medium, which unveils the N-methyl-D-aspartate (NMDA)-mediated responses, both A beta31-35 and A beta25-35 showed little effect on the components of multiple PSs; (3) two concentrations of 0.1 microM or 1.0 microM (-)huperzine A showed no effects on the PS amplitude while the latter could enhance the LTP and (4) co-administration of (-)huperzine A with 0.1 microM concentration could block most of the suppressive action induced by A beta31-35 or A beta25-35 upon the LTP. The results suggest that the shorter fragment A beta31-35, is long enough to suppress the induction of LTP and these two fragments might suppress the induction of LTP through a NMDA receptor-independent pathway that involves cholinergic terminals in hippocampus.
Collapse
Affiliation(s)
- L Ye
- Department of Neurobiology, Shanxi Medical University, Taiyuan, People's Republic of China
| | | |
Collapse
|
510
|
King C, Henze DA, Leinekugel X, Buzsáki G. Hebbian modification of a hippocampal population pattern in the rat. J Physiol 1999; 521 Pt 1:159-67. [PMID: 10562342 PMCID: PMC2269637 DOI: 10.1111/j.1469-7793.1999.00159.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. The study of the physiological role of long-term potentiation (LTP) is often hampered by the challenge of finding a physiological event that can be used to assess synaptic strength. We explored the possibility of utilising a naturally occurring event, the hippocampal sharp wave (SPW), for the assessment of synaptic strength and the induction of LTP in vivo. 2. We used two methods in which hippocampal cells were either recorded intracellularly or extracellularly in vivo. In both cases, a linear association between the magnitude of the SPW and cellular responsiveness was observed. 3. LTP was induced by depolarising cells during SPWs by either direct intracellular current injection or extracellular microstimulation adjacent to the cell body. Both of these approaches led to an increase in the slope of the linear association between SPWs and cellular responsiveness. 4. This change was achieved without a rise in overall cell excitability, implying that the synapses providing input to CA1 cells during sharp waves had undergone potentiation. 5. Our findings show that the Hebbian pairing of cellular activation with spontaneous, naturally occurring synaptic events is capable of inducing LTP.
Collapse
Affiliation(s)
- C King
- Center for Molecular and Behavioural Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
511
|
Oka H, Shimono K, Ogawa R, Sugihara H, Taketani M. A new planar multielectrode array for extracellular recording: application to hippocampal acute slice. J Neurosci Methods 1999; 93:61-7. [PMID: 10598865 DOI: 10.1016/s0165-0270(99)00113-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present paper describes a new planar multielectrode array (the MED probe) and its electronics (the MED system) which perform electrophysiological studies on acute hippocampal slices. The MED probe has 64 planar microelectrodes, is covered with a non-toxic, uniform insulation layer, and is further coated with polyethylenimine and serum. The MED probe is shown to be appropriate for both stimulation and recording. In particular, multi-channel recordings of field EPSPs obtained by stimulating with a pair of planar microelectrodes were established for rat hippocampal acute slices. The recordings were stable for 6 h. Finally a spatial distribution of long-term potentiation was studied using the MED system.
Collapse
Affiliation(s)
- H Oka
- Health and Medical Care Planning Office, Corporate Research Division, Matsushita Electric Industrial Co., Ltd., Soraku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
512
|
Cholinergic induction of theta-frequency oscillations in hippocampal inhibitory interneurons and pacing of pyramidal cell firing. J Neurosci 1999. [PMID: 10493764 DOI: 10.1523/jneurosci.19-19-08637.1999] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cholinergic and GABAergic medial septal afferents contribute to hippocampal theta activity in part by actions on local interneurons. Interneurons near the border between stratum radiatum and stratum lacunosum-moleculare (LM) display intrinsic membrane potential oscillations at theta frequency when depolarized near threshold. First, whole-cell current-clamp recordings in rat hippocampal slices were used to examine effects of the cholinergic agonist carbachol on biocytin-labeled LM interneurons. At resting membrane potential, cells were depolarized by bath application of 25 microM carbachol, and the depolarization was sufficient to induce membrane potential oscillations (2.4 +/- 0.2 mV) that paced cell firing. Carbachol also depolarized LM interneurons in the presence of 6-cyano-7-nitroquinoxaline-2,3-dione, (+/-)-2-amino-5-phosphonopentanoic acid, and bicuculline, indicating that cholinergic depolarization of LM cells does not depend on ionotropic glutamate or GABA(A) synaptic transmission in local circuits. Atropine blocked the depolarization, indicating that muscarinic receptors were involved. Minimal stimulation applied to visually identified LM interneurons was then used to determine if spontaneous activity in CA1 pyramidal cells can be paced by rhythmic inhibition generated by LM cells at theta frequency. Inhibitory postsynaptic potentials evoked in pyramidal cells by single minimal stimulations were followed by rebound depolarizations and action potentials. When trains of minimal stimulation were delivered, membrane potential oscillations of depolarized pyramidal cells followed the stimulation frequency. Minimal stimulation led pyramidal cell firing with an average phase of 177 degrees. Thus, muscarinic induction of theta-frequency membrane potential oscillations in LM interneurons may contribute to the generation of rhythmic inhibition that paces intrinsically generated theta activity in CA1 pyramidal cells.
Collapse
|
513
|
Mook-Jung I, Shin JE, Yun SH, Huh K, Koh JY, Park HK, Jew SS, Jung MW. Protective effects of asiaticoside derivatives against beta-amyloid neurotoxicity. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991101)58:3<417::aid-jnr7>3.0.co;2-g] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
514
|
Magistretti J, Alonso A. Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study. J Gen Physiol 1999; 114:491-509. [PMID: 10498669 PMCID: PMC2229464 DOI: 10.1085/jgp.114.4.491] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The functional and biophysical properties of a sustained, or "persistent," Na(+) current (I(NaP)) responsible for the generation of subthreshold oscillatory activity in entorhinal cortex layer-II principal neurons (the "stellate cells") were investigated with whole-cell, patch-clamp experiments. Both acutely dissociated cells and slices derived from adult rat entorhinal cortex were used. I(NaP), activated by either slow voltage ramps or long-lasting depolarizing pulses, was prominent in both isolated and, especially, in situ neurons. The analysis of the gating properties of the transient Na(+) current (I(NaT)) in the same neurons revealed that the resulting time-independent "window" current (I(NaTW)) had both amplitude and voltage dependence not compatible with those of the observed I(NaP), thus implying the existence of an alternative mechanism of persistent Na(+)-current generation. The tetrodotoxin-sensitive Na(+) currents evoked by slow voltage ramps decreased in amplitude with decreasing ramp slopes, thus suggesting that a time-dependent inactivation was taking place during ramp depolarizations. When ramps were preceded by increasingly positive, long-lasting voltage prepulses, I(NaP) was progressively, and eventually completely, inactivated. The V(1/2) of I(NaP) steady state inactivation was approximately -49 mV. The time dependence of the development of the inactivation was also studied by varying the duration of the inactivating prepulse: time constants ranging from approximately 6.8 to approximately 2.6 s, depending on the voltage level, were revealed. Moreover, the activation and inactivation properties of I(NaP) were such as to generate, within a relatively broad membrane-voltage range, a really persistent window current (I(NaPW)). Significantly, I(NaPW) was maximal at about the same voltage level at which subthreshold oscillations are expressed by the stellate cells. Indeed, at -50 mV, the I(NaPW) was shown to contribute to >80% of the persistent Na(+) current that sustains the subthreshold oscillations, whereas only the remaining part can be attributed to a classical Hodgkin-Huxley I(NaTW). Finally, the single-channel bases of I(NaP) slow inactivation and I(NaPW) generation were investigated in cell-attached experiments. Both phenomena were found to be underlain by repetitive, relatively prolonged late channel openings that appeared to undergo inactivation in a nearly irreversible manner at high depolarization levels (-10 mV), but not at more negative potentials (-40 mV).
Collapse
Affiliation(s)
- Jacopo Magistretti
- From the Department of Neurology and Neurosurgery, McGill University and Montreal Neurological Institute, Montréal, Québec, H3A 2B4 Canada
- Dipartimento di Neurofisiologia Sperimentale, Istituto Nazionale Neurologico “Carlo Besta”, 20133 Milano, Italy
| | - Angel Alonso
- From the Department of Neurology and Neurosurgery, McGill University and Montreal Neurological Institute, Montréal, Québec, H3A 2B4 Canada
| |
Collapse
|
515
|
Hirai N, Uchida S, Maehara T, Okubo Y, Shimizu H. Beta-1 (10-20 Hz) cortical oscillations observed in the human medial temporal lobe. Neuroreport 1999; 10:3055-9. [PMID: 10549822 DOI: 10.1097/00001756-199909290-00033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During wakefulness, signals from subdural electrodes attached to the basal and medial temporal lobes of adult human epilepsy patients revealed a rhythmic oscillation in the beta-1 frequency range (10-20 Hz). This activity was more prominent in the medial than in the basal temporal cortex. We also observed simultaneous oscillations in alpha frequency activity in the medial and the basal temporal cortices. In an eyes-open condition, the alpha oscillation was attenuated, while the beta-1 oscillation in the medial temporal lobe was not. This is the first report that the beta-1 oscillation is present in the human medial temporal lobe. Since we recorded this activity from within the limbic system, beta-1 activity may be an analog of the hippocampal rhythmic slow activity observed in some animals.
Collapse
Affiliation(s)
- N Hirai
- Department of Psychophysiology, Tokyo Institute of Psychiatry, Japan
| | | | | | | | | |
Collapse
|
516
|
|
517
|
Larson J, Lynch G, Games D, Seubert P. Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res 1999; 840:23-35. [PMID: 10517949 DOI: 10.1016/s0006-8993(99)01698-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synaptic transmission and plasticity were studied in the CA1 field of hippocampal slices from young and aged transgenic mice over-expressing a mutant form of the human amyloid precursor protein (PDAPP mice). The transgenic mice at 4-5 months of age, prior to the formation of amyloid-beta peptide deposits in these animals, differed from non-transgenic control mice in three respects: (1) paired-pulse facilitation (PPF) was enhanced; (2) responses to high frequency stimulation bursts were distorted; (3) long-term potentiation (LTP) decayed more rapidly. More striking was the profound reduction in the size of synaptic responses and frequent loss of field potentials that were found in the transgenic mice at 27-29 months, an age at which they exhibit numerous amyloid plaques, neuritic dystrophy, and gliosis. Control mice at these ages did not show such dramatic effects. PPF was reduced in aged transgenic mice, compared to aged controls; however, LTP was still in evidence, although direct comparisons of its induction conditions in aged transgenic and control mice were compromised by the profound differences in field potentials between the two groups. These results point to two conclusions: (1) altered synaptic communication appears in PDAPP mice in advance of amyloid plaque formation and probably involves changes in presynaptic calcium kinetics; (2) the disturbances in synaptic transmission that appear when abundant plaques and Alzheimer's-like neuropathology are present in the transgenic mice are not necessarily accompanied by a disproportionate loss of long-term synaptic plasticity.
Collapse
Affiliation(s)
- J Larson
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
| | | | | | | |
Collapse
|
518
|
Menendez de la Prida L, Sanchez-Andres JV. Nonlinear transfer function encodes synchronization in a neural network from the mammalian brain. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1999; 60:3239-43. [PMID: 11970133 DOI: 10.1103/physreve.60.3239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/1999] [Indexed: 11/07/2022]
Abstract
Synchronization is one of the mechanisms by which the brain encodes information. The observed synchronization of neuronal activity has, however, several levels of fluctuations, which presumably regulate local features of specific areas. This means that biological neural networks should have an intrinsic mechanism able to synchronize the neuronal activity but also to preserve the firing capability of individual cells. Here, we investigate the input-output relationship of a biological neural network from developing mammalian brain, i.e., the hippocampus. We show that the probability of occurrence of synchronous output activity (which consists in stereotyped population bursts recorded throughout the hippocampus) is encoded by a sigmoidal transfer function of the input frequency. Under this scope, low-frequency inputs will not produce any coherent output while high-frequency inputs will determine a synchronous pattern of output activity (population bursts). We analyze the effect of the network size (N) on the parameters of the transfer function (threshold and slope). We found that sigmoidal functions realistically simulate the synchronous output activity of hippocampal neural networks. This outcome is particularly important in the application of results from neural network models to neurobiology.
Collapse
Affiliation(s)
- L Menendez de la Prida
- Unidad de Cartografia, Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan XXIII, 1, 28040 Madrid, Spain.
| | | |
Collapse
|
519
|
Migliore M, Lansky P. Long-term potentiation and depression induced by a stochastic conditioning of a model synapse. Biophys J 1999; 77:1234-43. [PMID: 10465738 PMCID: PMC1300415 DOI: 10.1016/s0006-3495(99)76975-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Protracted presynaptic activity can induce long-term potentiation (LTP) or long-term depression (LTD) of the synaptic strength. However, virtually all the experiments testing how LTP and LTD depend on the conditioning input are carried out with trains of stimuli at constant frequencies, whereas neurons in vivo most likely experience a stochastic variation of interstimulus intervals. We used a computational model of synaptic transmission to test if and to what extent the stochastic fluctuations of an input signal could alter the probability to change the state of a synapse. We found that, even if the mean stimulation frequency was maintained constant, the probability to induce LTD and LTP could be a function of the temporal variation of the input activity. This mechanism, which depends only on the statistical properties of the input and not on the onset of additional biochemical mechanisms, is not usually considered in the experiments, but it could have an important role to determine the amount of LTP/LTD induction in vivo. In response to a change in the distribution of the interstimulus intervals, as measured by the coefficient of variation, a synapse could be easily adapted to inputs that might require immediate attention, with a shift of the input thresholds required to elicit LTD or LTP, which are restored to their initial conditions as soon as the input pattern returns to the original temporal distribution.
Collapse
Affiliation(s)
- M Migliore
- Institute of Advanced Diagnostic Methodologies, National Research Council, Palermo, Italy.
| | | |
Collapse
|
520
|
Jensen K, Jensen MS, Lambert JD. Post-tetanic potentiation of GABAergic IPSCs in cultured rat hippocampal neurones. J Physiol 1999; 519 Pt 1:71-84. [PMID: 10432340 PMCID: PMC2269478 DOI: 10.1111/j.1469-7793.1999.0071o.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
1. Dual whole-cell patch-clamp recording was used to investigate post-tetanic potentiation (PTP) of GABAergic IPSCs evoked between pairs of cultured rat hippocampal neurones. Tetanization of the presynaptic neurone at frequencies (f) ranging from 5 to 100 Hz resulted in PTP of the IPSCs. Maximum PTP had a magnitude of 51.6 % just after the stimulus train, and lasted up to 1 min. PTP was shown to be dependent on the number of stimuli in the train, but independent of f at frequencies > or =5 Hz. 2. Blocking postsynaptic GABAA receptors with bicuculline during the tetanus did not affect the expression of PTP, showing that it is a presynaptic phenomenon. PTP was strongly affected by changing [Ca2+]o during the tetanus: PTP was reduced by lowering [Ca2+]o, and increased by high [Ca2+]o. 3. PTP was still present after presynaptic injection of BAPTA or EGTA, or following perfusion of the membrane-permeable ester EGTA-tetraacetoxymethyl ester (EGTA AM, 50 microM). On the other hand, EGTA AM blocked spontaneous, asynchronous IPSCs (asIPSCs), which were often associated with tetanic stimulation. 4. Tetanic stimulation in the presence of 4-aminopyridine (4-AP), which promotes presynaptic Ca2+ influx, evoked sustained PTP of IPSCs in half of the neurones tested. 5. The results indicate that PTP at inhibitory GABAergic synapses is related to the magnitude of presynaptic Ca2+ influx during the tetanic stimulation, leading to an enhanced probability of vesicle release in the post-tetanic period. The increase in [Ca2+]i occurs despite the presence of high-affinity exogenous and endogenous intracellular Ca2+ buffers. That PTP of IPSCs depends on the number, and not the frequency, of spikes in the GABAergic neurone is in accordance with a slow clearing of intracellular Ca2+ from the presynaptic terminals.
Collapse
Affiliation(s)
- K Jensen
- Department of Physiology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | | | |
Collapse
|
521
|
Leranth C, Vertes RP. Median raphe serotonergic innervation of medial septum/diagonal band of Broca (MSDB) parvalbumin-containing neurons: Possible involvement of the MSDB in the desynchronization of the hippocampal EEG. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990809)410:4<586::aid-cne6>3.0.co;2-h] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
522
|
Pike FG, Meredith RM, Olding AW, Paulsen O. Rapid report: postsynaptic bursting is essential for 'Hebbian' induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J Physiol 1999; 518 ( Pt 2):571-6. [PMID: 10381601 PMCID: PMC2269446 DOI: 10.1111/j.1469-7793.1999.0571p.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The biologically relevant rules of synaptic potentiation were investigated in hippocampal slices from adult rat by mimicking neuronal activity seen during learning behaviours. Synaptic efficacy was monitored in two separate afferent pathways among the Schaffer collaterals during intracellular recording of CA1 pyramidal neurones. The effects of pairing presynaptic single spikes or bursts with postsynaptic single spikes or bursts, repeated at 5 Hz ('theta' frequency), were compared. 2. The pairing of ten single evoked excitatory synaptic events with ten postsynaptic single action potentials at 5 Hz, repeated twelve times, failed to induce synaptic enhancement (EPSP amplitude 95% of baseline amplitude 20 min after pairing; n = 5). In contrast, pairing the same number of action potentials, but clustered in bursts, induced robust synaptic potentiation (EPSP amplitude 163%; P < 0.01, Student's t test; n = 5). This potentiation was input specific, long lasting ( > 1 h; n = 3) and its induction was blocked by an antagonist at NMDA receptors (20-50 microM D(-)-2-amino-5-phosphonopentanoic acid; EPSP amplitude 109%; n = 6). 3. Presynaptic bursting paired with postsynaptic single action potentials did not induce input specific synaptic change (113 % in the test input vs. 111 % in the control; n = 8). In contrast, postsynaptic bursting when paired with presynaptic single action potentials was sufficient to induce synaptic potentiation when the presynaptic activity preceded the postsynaptic activity by 10 ms (150 vs. 84 % in the control input; P < 0.01; n = 10). 4. These results indicate that, under our conditions, postsynaptic bursting activity is necessary for associative synaptic potentiation at CA1 excitatory synapses in adult hippocampus. The existence of a distinct postsynaptic signal for induction of synaptic change calls for refinement of the common interpretation of Hebb's rule, and is likely to have important implications for our understanding of cortical network operation.
Collapse
Affiliation(s)
- F G Pike
- University Department of Pharmacology and MRC Anatomical Neuropharmacology Unit, Mansfield Road, Oxford OX1 3QT, UK
| | | | | | | |
Collapse
|
523
|
Abstract
Studies of the cellular and molecular mechanisms of memory formation have focused on the role of long-lasting forms of synaptic plasticity such as long-term potentiation (LTP). A combination of genetic, electrophysiological and behavioral techniques have been used to examine the possibility that LTP is a cellular mechanism of memory storage in the mammalian brain. Although a definitive answer remains elusive, it is clear that in many cases manipulations that alter LTP alter memory, and training regimens that produce memory can produce LTP-like potentiation of synaptic transmission.
Collapse
Affiliation(s)
- S Miller
- Department of Neurosciences University of California San Diego School of Medicine 9500 Gilman Drive, La Jolla, California 92093-0691, USA
| | | |
Collapse
|
524
|
Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1999; 29:169-95. [PMID: 10209231 DOI: 10.1016/s0165-0173(98)00056-3] [Citation(s) in RCA: 3998] [Impact Index Per Article: 153.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Evidence is presented that EEG oscillations in the alpha and theta band reflect cognitive and memory performance in particular. Good performance is related to two types of EEG phenomena (i) a tonic increase in alpha but a decrease in theta power, and (ii) a large phasic (event-related) decrease in alpha but increase in theta, depending on the type of memory demands. Because alpha frequency shows large interindividual differences which are related to age and memory performance, this double dissociation between alpha vs. theta and tonic vs. phasic changes can be observed only if fixed frequency bands are abandoned. It is suggested to adjust the frequency windows of alpha and theta for each subject by using individual alpha frequency as an anchor point. Based on this procedure, a consistent interpretation of a variety of findings is made possible. As an example, in a similar way as brain volume does, upper alpha power increases (but theta power decreases) from early childhood to adulthood, whereas the opposite holds true for the late part of the lifespan. Alpha power is lowered and theta power enhanced in subjects with a variety of different neurological disorders. Furthermore, after sustained wakefulness and during the transition from waking to sleeping when the ability to respond to external stimuli ceases, upper alpha power decreases, whereas theta increases. Event-related changes indicate that the extent of upper alpha desynchronization is positively correlated with (semantic) long-term memory performance, whereas theta synchronization is positively correlated with the ability to encode new information. The reviewed findings are interpreted on the basis of brain oscillations. It is suggested that the encoding of new information is reflected by theta oscillations in hippocampo-cortical feedback loops, whereas search and retrieval processes in (semantic) long-term memory are reflected by upper alpha oscillations in thalamo-cortical feedback loops.
Collapse
Affiliation(s)
- W Klimesch
- Department of Physiological Psychology, Institute of Psychology, University of Salzburg, Hellbrunnerstr. 34, A-5020, Salzburg, Austria.
| |
Collapse
|
525
|
Wang XJ. Fast burst firing and short-term synaptic plasticity: a model of neocortical chattering neurons. Neuroscience 1999; 89:347-62. [PMID: 10077318 DOI: 10.1016/s0306-4522(98)00315-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We present an ionic conductance model of chattering neurons in the neocortex, which fire fast rhythmic bursts in the gamma frequency range (approximately 40 Hz) in response to stimulation [Gray C. M. and McCormick D. A. (1996) Science 274, 109-113]. The bursting mechanism involves a "ping-pong" interplay between soma-to-dendrite back propagation of action potentials and an afterdepolarization generated by a persistent dendritic Na+ current and a somatic Na+ window current. The oscillation period is primarily determined by a slowly inactivating K+ channel and passive membrane properties. The model behavior is compared quantitatively with the experimental data. It is shown that the cholinergic muscarinic receptor activation can transform the model cell's firing pattern from tonic spiking to rapid bursting, as a possible pathway for acetylcholine to promote 40-Hz oscillations in the visual cortex. To explore possible functions of fast burst firing in the neocortex, a hypothetical neural pair is simulated, where a chattering cell is presynaptic to an inhibitory interneuron via stochastic synapses. For this purpose, we use a synapse model endowed with a low release probability, short-term facilitation and vesicle depletion. This synapse model reproduces the behavior of certain neocortical pyramid-to-interneuron synapses [Thomson A. M. et al. (1993) Neuroscience 54, 347-360]. We showed that the burstiness of cell firing is required for the rhythmicity to be reliably transmitted to the postsynaptic cell via unreliable synapses, and that fast burst firing of chattering neurons can provide an exceptionally powerful drive for recruiting feedback inhibition in cortical circuits. From these results, we propose that the fast rhythmic burst firing of neocortical chattering neurons is generated by a calcium-independent ionic mechanism. Our simulation results on the neural pair highlight the importance of characterizing the short-term plasticity of the synaptic connections made by chattering cells, in order to understand their putative pacemaker role in synchronized gamma oscillations of the visual cortex.
Collapse
Affiliation(s)
- X J Wang
- Department of Physics, Brandeis University, Waltham, MA 02254, USA
| |
Collapse
|
526
|
Chapman CA, Lacaille JC. Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. J Neurophysiol 1999; 81:1296-307. [PMID: 10085356 DOI: 10.1152/jn.1999.81.3.1296] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ionic conductances underlying membrane potential oscillations of hippocampal CA1 interneurons located near the border between stratum lacunosum-moleculare and stratum radiatum (LM) were investigated using whole cell current-clamp recordings in rat hippocampal slices. At 22 degrees C, when LM cells were depolarized near spike threshold by current injection, 91% of cells displayed 2-5 Hz oscillations in membrane potential, which caused rhythmic firing. At 32 degrees C, mean oscillation frequency increased to 7.1 Hz. Oscillations were voltage dependent and were eliminated by hyperpolarizing cells 6-10 mV below spike threshold. Blockade of ionotropic glutamate and GABA synaptic transmission did not affect oscillations, indicating that they were not synaptically driven. Oscillations were eliminated by tetrodotoxin, suggesting that Na+ currents generate the depolarizing phase of oscillations. Oscillations were not affected by blocking Ca2+ currents with Cd2+ or Ca2+-free ACSF or by blocking the hyperpolarization-activated current (Ih) with Cs+. Both Ba2+ and a low concentration of 4-aminopyridine (4-AP) reduced oscillations but TEA did not. Theta-frequency oscillations were much less common in interneurons located in stratum oriens. Intrinsic membrane potential oscillations in LM cells of the CA1 region thus involve an interplay between inward Na+ currents and outward K+ currents sensitive to Ba2+ and 4-AP. These oscillations may participate in rhythmic inhibition and synchronization of pyramidal neurons during theta activity in vivo.
Collapse
Affiliation(s)
- C A Chapman
- Centre de Recherche en Sciences Neurologiques et Département de Physiologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | | |
Collapse
|
527
|
Perez Y, Chapman CA, Woodhall G, Robitaille R, Lacaille JC. Differential induction of long-lasting potentiation of inhibitory postsynaptic potentials by theta patterned stimulation versus 100-Hz tetanization in hippocampal pyramidal cells in vitro. Neuroscience 1999; 90:747-57. [PMID: 10218776 DOI: 10.1016/s0306-4522(98)00531-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tetanization of Schaffer collaterals, which induces long-term potentiation of excitatory transmission in the hippocampus of the rat, also affects local inhibitory circuits. Mechanisms controlling plasticity of early and late components of inhibitory postsynaptic potentials in CA1 pyramidal cells were studied using intracellular recordings and Ca2+ imaging in rat hippocampal slices. High-frequency stimulation (100 Hz/s) of Schaffer collaterals resulted in no change in the mean amplitude of early or late inhibitory postsynaptic potentials 30 min post-tetanus. However, intracellular injection of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetate unmasked a significant increase in mean amplitude of both inhibitory postsynaptic potentials 30 min post-tetanus and the induction of this potentiation was blocked by the N-methyl-D-aspartate receptor antagonist(+/-)-2-amino-5-phosphopentanoic acid. In contrast to high-frequency tetanization, "theta-burst" stimulation in normal medium resulted in a significant potentiation of the mean amplitude of both early and late inhibitory postsynaptic potentials 30 min post-tetanus. This potentiation was blocked by the N-methyl-D-aspartate receptor antagonist. The more physiological tetanization pattern, which mimics the endogenous theta rhythm, therefore resulted in an N-methyl-D-aspartate-dependent increase in inhibition 30 min post-tetanus. Calcium imaging during whole-cell recordings from pyramidal cells revealed differences in the Ca2+ signal associated with high-frequency and theta-burst stimulations. During theta-burst stimulation of Schaffer collaterals, the mean time to peak of Ca2+ signals was significantly longer, and the mean peak amplitude and area under the Ca2+ response were larger than during high-frequency stimulation. These results indicate that tetanization induces long-lasting synaptic plasticity in hippocampal inhibitory circuits. This plasticity involves an interaction between a Ca2(+)-mediated postsynaptic depression and an N-methyl-D-aspartate-mediated potentiation of GABAA and GABAB inhibition, and these processes are differentially sensitive to tetanization parameters.
Collapse
Affiliation(s)
- Y Perez
- Centre de recherche en sciences neurologiques and Département de physiologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
528
|
Vincent SR, Williams JA, Reiner PB. Monitoring neuronal NO release in vivo in cerebellum, thalamus and hippocampus. PROGRESS IN BRAIN RESEARCH 1999; 118:27-35. [PMID: 9932432 DOI: 10.1016/s0079-6123(08)63198-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A variety of methods has been developed based on in vivo microdialysis which allow one to examine the NO/cGMP signal transduction system in action in behaving animals. The extracellular levels of cGMP, the NO oxidative products nitrate and nitrite, and NO itself can all be determined. Using these methods changes in NO and cGMP production in response to pharmacological manipulations can be examined in vivo. In addition, it has been discovered that the activity of this system varies with the behavioral state of the animal. NO and cGMP appear to act via distinct downstream effectors in different brain regions. This opens up the possibility of selectively manipulating NO and cGMP signaling in discrete neuronal populations.
Collapse
Affiliation(s)
- S R Vincent
- Department of Psychiatry, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
529
|
Muir GM, Bilkey DK. Synchronous modulation of perirhinal cortex neuronal activity during cholinergically mediated (type II) hippocampal theta. Hippocampus 1998; 8:526-32. [PMID: 9825962 DOI: 10.1002/(sici)1098-1063(1998)8:5<526::aid-hipo10>3.0.co;2-v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The perirhinal cortex (PRC) plays a major role in memory processes. This role may be influenced by activity in the adjacent entorhinal cortex (EC) and hippocampus (HPC), particularly during the processing of spatial information. In the current experiment we sought to determine whether the cholinergically mediated (type II) theta rhythm, which is a prominent electrophysiological feature of both HPC and EC activity, influenced neuronal firing in the PRC of urethane-anesthetized rats. When the spontaneous firing activity of single units recorded in PRC was related to theta recorded from the hippocampal fissure, it was determined that the firing of 50/163 (31%) PRC neurons exhibited a statistically significant phase relationship (mean phase angle = 188 degrees) to HPC theta. Thirty-three (66%) of these neurons tended to fire near the trough, and 17 near the peak, of this activity. These data indicate that a high proportion of PRC neurons participate in hippocampal-entorhinal theta activity. This activity may support information transmission and storage within and between these structures.
Collapse
Affiliation(s)
- G M Muir
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
530
|
Hoffman KB, Pinkstaff JK, Gall CM, Lynch G. Seizure induced synthesis of fibronectin is rapid and age dependent: implications for long-term potentiation and sprouting. Brain Res 1998; 812:209-15. [PMID: 9813331 DOI: 10.1016/s0006-8993(98)00727-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Extracellular matrix proteins are induced by activity in adult brain but the time course of these responses, and hence the possibility of their involvement in use-dependent synaptic plasticity, is not known. To evaluate this issue, the influence of seizures on fibronectin expression was evaluated in the adult and developing hippocampus. In adult rats, kainic acid-induced seizures increased fibronectin mRNA and immunoreactivity (ir) by about 1 h after the first behavioral seizure. In situ hybridization analysis indicated that fibronectin mRNA was increased in broadly distributed glial cells as well as within discrete neuronal populations that normally express this transcript. Western blots demonstrated that increased fibronectin-ir was evident in both soluble and non-soluble fractions at the same time point. Immunocytochemical colocalization confirmed that fibronectin-ir was indeed elevated in broadly distributed glial fibrillary acidic protein-ir astroglia. Seizures had no detectable effect on fibronectin-ir in the hippocampus of nine day old rats. Together with previous results, the above findings suggest that intense physiological activity triggers a 'matrix response' (i.e., release proteases, activate integrins, secrete matrix proteins) that is sufficiently rapid to participate in the consolidation of long-term potentiation (LTP). The absence of such reactions in the immature hippocampus is in accord with the hypothesis that matrix proteins generated by mature astroglia impose temporal and spatial limitations on axonal remodeling.
Collapse
Affiliation(s)
- K B Hoffman
- Ancile Pharmaceuticals, 1250 Prospect Street Suite 202, La Jolla, CA, 92037, USA
| | | | | | | |
Collapse
|
531
|
Hoffman KB, Martinez J, Lynch G. Proteolysis of cell adhesion molecules by serine proteases: a role in long term potentiation? Brain Res 1998; 811:29-33. [PMID: 9804878 DOI: 10.1016/s0006-8993(98)00906-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Tissue plasminogen activator (tPA), a serine protease endogenous to hippocampal neurons, is shown to recognize a highly conserved sequence in the extracellular domain of cell adhesion molecules (CAMs). When added to brain homogenates, tPA generated a CAM fragment similar in size to that produced in hippocampal slices by brief periods of NMDA receptor stimulation. The serine protease inhibitor 4-(2-Aminoethyl)-benzenesulfonyl fluoride blocked the effects of tPA with an approximately 50% suppression at 250 microM. The inhibitor at this concentration had no evident effect on synaptic responses but caused long term potentiation to decay back to baseline over a 1 h period. These results suggest that extracellular breakdown of cell adhesion molecules initiated by NMDA receptors and mediated by serine proteases contributes to the formation of stable potentiation.
Collapse
Affiliation(s)
- K B Hoffman
- Ancile Pharmaceuticals, 1250 Prospect Street, Suite 202, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
532
|
Lee HK, Kameyama K, Huganir RL, Bear MF. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 1998; 21:1151-62. [PMID: 9856470 DOI: 10.1016/s0896-6273(00)80632-7] [Citation(s) in RCA: 533] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Brief bath application of N-methyl-D-aspartate (NMDA) to hippocampal slices produces long-term synaptic depression (LTD) in CA1 that is (1) sensitive to postnatal age, (2) saturable, (3) induced postsynaptically, (4) reversible, and (5) not associated with a change in paired pulse facilitation. Chemically induced LTD (Chem-LTD) and homosynaptic LTD are mutually occluding, suggesting a common expression mechanism. Using phosphorylation site-specific antibodies, we found that induction of chem-LTD produces a persistent dephosphorylation of the GluR1 subunit of AMPA receptors at serine 845, a cAMP-dependent protein kinase (PKA) substrate, but not at serine 831, a substrate of protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaMKII). These results suggest that dephosphorylation of AMPA receptors is an expression mechanism for LTD and indicate an unexpected role of PKA in the postsynaptic modulation of excitatory synaptic transmission.
Collapse
Affiliation(s)
- H K Lee
- Howard Hughes Medical Institute, Department of Neuroscience, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
533
|
Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD. The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1998; 1:602-9. [PMID: 10196568 DOI: 10.1038/2836] [Citation(s) in RCA: 879] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitogen-activated protein kinase (MAPK) is an integral component of cellular signaling during mitogenesis and differentiation of mitotic cells. Recently MAPK activation in post-mitotic cells has been implicated in hippocampal long-term potentiation (LTP), a potential cellular mechanism of learning and memory. Here we investigate the involvement of MAPK in learning and memory in behaving animals. MAPK activation increased in the rat hippocampus after an associative learning task, contextual fear conditioning. Two other protein kinases known to be activated during hippocampal LTP, protein kinase C and alpha-calcium/calmodulin protein kinase II, also were activated in the hippocampus after learning. Inhibition of the specific upstream activator of MAPK, MAPK kinase (MEK), blocked fear conditioning. Thus, classical conditioning in mammals activates MAPK, which is necessary for consolidation of the resultant learning.
Collapse
Affiliation(s)
- C M Atkins
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
534
|
Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation. J Neurosci 1998. [PMID: 9736635 DOI: 10.1523/jneurosci.18-18-07118.1998] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term potentiation (LTP), a persistent enhancement of synaptic transmission that may be involved in some forms of learning and memory, is induced at excitatory synapses in the CA1 region of the hippocampus by coincident presynaptic and postsynaptic activity. Although action potentials back-propagating into dendrites of hippocampal pyramidal cells provide sufficient postsynaptic activity to induce LTP under some in vitro conditions, it is not known whether LTP can be induced by patterns of postsynaptic action potential firing that occur in these cells in vivo. Here we report that a characteristic in vivo pattern of action potential generation in CA1 pyramidal cells known as the complex spike burst enables the induction of LTP during theta frequency synaptic stimulation in the CA1 region of hippocampal slices maintained in vitro. Our results suggest that complex spike bursting may have an important role in synaptic processes involved in learning and memory formation, perhaps by producing a highly sensitive postsynaptic state during which even low frequencies of presynaptic activity can induce LTP.
Collapse
|
535
|
Kapur A, Haberly LB. Duration of NMDA-dependent synaptic potentiation in piriform cortex in vivo is increased after epileptiform bursting. J Neurophysiol 1998; 80:1623-9. [PMID: 9772226 DOI: 10.1152/jn.1998.80.4.1623] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stimulation of afferent fibers with current pulse trains has been reported to induce long-term potentiation (LTP) in piriform cortex in vitro but not in vivo. LTP has been observed in vivo only when trains are paired with behavioral reinforcement and as a consequence of kindled epileptogenesis. This study was undertaken in the urethan-anesthetized rat to determine if the reported failures to observe pulse-train evoked LTP in vivo may be related to a lesser persistence rather than lack of occurrence, if disinhibition might facilitate induction, and to examine the nature of the relationship between seizure activity and LTP. Stimulation of afferent fibers in the lateral olfactory tract with theta-burst trains under control conditions potentiated the monosynaptic field excitatory postsynaptic potential (EPSP) by approximately the same extent (20.3 +/- 2%; n = 12) as reported for the slice. However, in contrast to the slice, potentiation in vivo decayed to a low level within 1-2 h after induction (70% loss in 1.5 h, on average). The N-methyl--aspartate (NMDA)-receptor antagonists -APV and MK-801 blocked the induction of this decremental potentiation. Pharmacological reduction of gamma-aminobutyric acid-mediated inhibition at the recording site did not increase the duration of potentiation. In contrast, theta-burst stimulation applied after recovery from a period of epileptiform bursting induced stable NMDA-dependent potentiation. Mean increase in the population EPSP was approximately the same as under control conditions (21 +/- 2%; n = 6), but in five of six experiments there was little or no decay in potentiation for the duration of the monitoring period (</=6 h). It is concluded that seizure activity has an enabling action on the induction of persistent synaptic potentiation by stimulus trains that bypasses the need for behavioral reinforcement.
Collapse
Affiliation(s)
- A Kapur
- Neuroscience Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
536
|
Jenrow KA, Zhang X, Renehan WE, Liboff AR. Weak ELF magnetic field effects on hippocampal rhythmic slow activity. Exp Neurol 1998; 153:328-34. [PMID: 9784291 DOI: 10.1006/exnr.1998.6902] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several investigations have revealed that electrical activity within the central nervous system (CNS) can be affected by exposure to weak extremely-low-frequency (ELF) magnetic fields. Many of these studies have implicated CNS structures exhibiting endogenous oscillation and synchrony as optimal sites for field coupling. A particularly well characterized structure in this regard is the rat hippocampus. Under urethane anesthesia, synchronous bursting among hippocampal pyramidal neurons produces a large-amplitude quasi-sinusoidal field potential oscillation, termed "rhythmic slow activity" (RSA) or "theta." Using this in vivo model, we investigated the effect of exposure to an externally applied sinusoidal magnetic field (16.0 Hz; 28.9 microT(rms)) on RSA. During a 60-min exposure interval, the probability of RSA decaying to a less coherent mode of oscillation, termed "large irregular-amplitude activity" (LIA), was increased significantly. Moreover, this instability persisted for up to 90 min postexposure. These results are consistent with the hypothesis that endogenous CNS oscillators are uniquely susceptible to field-mediated perturbation and suggest that the sensitivity of these networks to such fields may be far greater than had previously been assumed. This sensitivity may reflect nonlinearities inherent to these networks which permit amplification of endogenous fields mediating the initiation and propagation of neuronal synchrony.
Collapse
Affiliation(s)
- K A Jenrow
- Department of Gastroenterology and, Henry Ford Hospital, Detroit, Michigan, 48202, USA
| | | | | | | |
Collapse
|
537
|
Gloveli T, Schmitz D, Heinemann U. Interaction between superficial layers of the entorhinal cortex and the hippocampus in normal and epileptic temporal lobe. Epilepsy Res 1998; 32:183-93. [PMID: 9761319 DOI: 10.1016/s0920-1211(98)00050-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The entorhinal cortex (EC) is a major gateway for sensory information into the hippocampal formation. The information flow from layer II and III of the medial EC to the hippocampus is regulated in a frequency dependent manner. Spread of low Mg2+-induced epileptiform activity from EC to hippocampus differs in slices obtained from normal and kindled rats, and in adult versus juvenile rats. In slices from normal rats, low Mg2+-induced epileptiform activity in the EC had only moderate effects on the areas CA3 and CA1, apparently gated by powerful inhibition in the dentate gyrus. In slices from kindled rats, and from juvenile rats, there is facilitated propagation of the seizure-like events and late recurrent discharges through the EC-hippocampal slice. Temporal lobe epilepsy is associated with selective lesions in layer III of the medial EC. Such loss of layer III cells of the medial EC during epilepsy may contribute to the disturbance of frequency dependent information flow from the EC to the hippocampus, and, therefore, to the cognitive impairments associated with these disorders.
Collapse
Affiliation(s)
- T Gloveli
- Institute of Physiology at the Charité, Department of Neurophysiology, Humboldt University Berlin, Germany.
| | | | | |
Collapse
|
538
|
Armand V, Gabriel S, Hoffmann P, Heinemann U, Vergnes M. Epileptiform activity and changes in field potential responses induced by low [Mg2+]0 in a genetic rat model of absence epilepsy. Brain Res 1998; 803:19-26. [PMID: 9729248 DOI: 10.1016/s0006-8993(98)00534-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The genetic absence epilepsy rats of Strasbourg (GAERS) display alterations in cortical synaptic transmission possibly facilitating the generation of ictaform activity and the late development into convulsive epilepsy. We studied low Mg2+-induced epileptiform activities and their long term effects on field potentials (fp) evoked by paired pulse stimulation in hippocampal area CA1 (CA1), medial entorhinal cortex (EC) and frontal cortex (FC) in in-vitro-slice preparations from GAERS and control (NE) adult rats (6 months). Omitting Mg2+-ions from artificial cerebrospinal fluid (ACSF) caused recurrent short discharges (in CA1) and seizure-like events (in EC) in both GAERS and NE rats. Latency to onset of activity as well as discharge pattern, frequency and amplitude of such events did not differ between the two strains, neither in CA1 nor in EC. In the FC, however, epileptiform events occurred in NE rats, but not in GAERS. Field potentials in normal ACSF were similar in both strains in CA1 and FC, while they were smaller in the EC of GAERS. Low [Mg2+]0 caused long-term changes of fp only in area CA1 where the population spikes were depressed in GAERS and increased in NE rats. We concluded that susceptibility to low [Mg2+]0-induced epileptic activity in EC and hippocampal area CA1 is not higher in GAERS than in NE adult rats. However, some properties like synaptic coupling in EC and long-term changes in synaptic efficacy induced by epileptiform activity in CA1 differ from that in NE rats. Whether the particularities in GAERS may be related to kindling by absence epileptic activities will be studied in further experiments.
Collapse
Affiliation(s)
- V Armand
- Department of Neurophysiology, Institute of Physiology of the Charité, Humboldt University Berlin, Tucholskystr. 2, Berlin, D 10117, Germany.
| | | | | | | | | |
Collapse
|
539
|
Abstract
The hippocampus has long been thought to be an important cortical region for associative learning and memory. After several decades of experimental and theoretical studies, a picture is emerging slowly of the generic types of learning tasks that this neural structure might be essential for solving. Recently, there have been attempts to unify electrophysiological and behavioral observations from rodents performing spatial learning tasks with data from primates performing various tests of conditional and discrimination learning. Most of these theoretical frameworks have rested primarily on behavioral observations. Complementing these perspectives,we ask the question: given certain physiological constraints at the neuronal and cortical level, what class of learning problems is the hippocampus, in particular, most suited to solve? From a computational point of view, we argue that this structure is involved most critically in learning and memory tasks in which discontiguous items must be associated, in terms of their temporal or spatial positioning, or both.
Collapse
Affiliation(s)
- G V Wallenstein
- Dept of Psychology, Harvard University, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
540
|
Chapman CA, Perez Y, Lacaille JC. Effects of GABA(A) inhibition on the expression of long-term potentiation in CA1 pyramidal cells are dependent on tetanization parameters. Hippocampus 1998; 8:289-98. [PMID: 9662142 DOI: 10.1002/(sici)1098-1063(1998)8:3<289::aid-hipo10>3.0.co;2-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Long-term potentiation (LTP) of excitatory synaptic responses of principal neurons in the hippocampus is accompanied by changes in GABAergic inhibition mediated by interneurons. The impact of inhibition on LTP of excitatory postsynaptic responses in CA1 pyramidal cells was assessed by monitoring changes in field potentials evoked by Schaffer collateral stimulation in hippocampal slices in vitro. First, to determine the effect of inhibition on population EPSPs, slices were exposed to the GABA(A) receptor antagonist bicuculline (10 microM). Both the slope and amplitude of field EPSPs (fEPSPs) were significantly enhanced by bicuculline indicating that inhibition modulates excitatory postsynaptic responses of pyramidal cells. To assess if stimulation-dependent changes in inhibition influence LTP of excitatory responses of pyramidal cells, LTP was examined in the presence and absence of bicuculline (20 microM) following either 100 Hz tetanization, or theta-patterned stimulation (short bursts delivered at 5 Hz). In normal medium, 100 Hz stimulation produced marked short-term potentiation that decayed 5-10 min post-tetanus and both stimulation paradigms produced similar LTP at 30 min post-tetanus. In comparison, LTP of the fEPSP slope and amplitude was significantly enhanced after theta-patterned stimulation, but not after 100 Hz stimulation, in bicuculline. The greater potentiation of field responses following theta-patterned stimulation in the presence of bicuculline indicates that a larger potentiation of excitatory responses was unmasked during suppression of inhibitory inputs. These results suggest that a long-lasting enhancement of inhibition in pyramidal cells was also induced following theta-patterned stimulation in normal ACSF. Since suppression of inhibition did not uncover a significantly larger potentiation following 100 Hz tetanization, the influence of inhibition on LTP of excitatory responses appears to be stimulation-dependent. In conclusion, theta-patterned stimulation appears to be more effective at inducing plasticity within inhibitory circuits, and this plasticity may partially offset concurrent increases in the excitability of the CA1 network.
Collapse
Affiliation(s)
- C A Chapman
- Centre de Recherche en Sciences Neurologiques et Départment de Physiologie, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
541
|
Abstract
Efforts to characterize long-term potentiation (LTP) and to identify its substrates have led to the discovery of novel synaptic chemistries, computational algorithms, and, most recently, pharmacologies. Progress has also been made in using LTP to develop a "standard model" of how unusual, but physiologically plausible, levels of afferent activity create lasting changes in the operating characteristics of synapses in the cortical telencephalon. Hypotheses of this type typically distinguish induction, expression, and consolidation stages in the formation of LTP. Induction involves a sequence consisting of theta-type rhythmic activity, suppression of inhibitory currents, intense synaptic depolarization, NMDA receptor activation, and calcium influx into dendritic spines. Calcium-dependent lipases, kinases, and proteases have been implicated in LTP induction. Regarding the last group, it has been recently reported that theta pattern stimulation activates calpain and that translational suppression of the protease blocks potentiation. It is thus likely that proteolysis is readily driven by synaptic activity and contributes to structural reorganization. LTP does not interact with treatments that affect transmitter release, has a markedly differential effect on the currents mediated by colocalized AMPA vs NMDA synaptic receptors, changes the waveform of the synaptic current, modifies the effects of drugs that modulate AMPA receptors, and is sensitive to the subunit composition of those receptors. These results indicate that LTP is expressed by changes in AMPA receptor operations. LTP is accompanied by modifications in the anatomy of synapses and spines, something which accounts for its extreme duration (weeks). As with various types of memory, LTP requires about 30 min to consolidate (become resistant to disruption). Consolidation involves adhesion chemistries and, in particular, activation of integrins, a class of transmembrane receptors that control morphology in numerous cell types. Platelet activating factor and adenosine may contribute to consolidation by regulating the engagement of latent integrins. How consolidation stabilizes LTP expression is a topic of intense investigation but probably involves modifications to one or more of the following: membrane environment of AMPA receptors; access of regulatory proteins (e.g., kinases, proteases) to the receptors; receptor clustering; and space available for receptor insertion. Attempts to enhance LTP have focused on the induction phase and resulted in a class of centrally active drugs ("ampakines") that positively modulate AMPA receptors. These compounds promote LTP in vivo and improve the encoding of variety of memory types in animals. Positive results have also been obtained in preliminary studies with humans.
Collapse
Affiliation(s)
- G Lynch
- University of California, Irvine, California 92697-3800, USA
| |
Collapse
|
542
|
Silva AJ, Giese KP, Fedorov NB, Frankland PW, Kogan JH. Molecular, cellular, and neuroanatomical substrates of place learning. Neurobiol Learn Mem 1998; 70:44-61. [PMID: 9753586 DOI: 10.1006/nlme.1998.3837] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Learning and remembering the location of food resources, predators, escape routes, and immediate kin is perhaps the most essential form of higher cognitive processing in mammals. Two of the most frequently studied forms of place learning are spatial learning and contextual conditioning. Spatial learning refers to an animal's capacity to learn the location of a reward, such as the escape platform in a water maze, while contextual conditioning taps into an animal's ability to associate specific places with aversive stimuli, such as an electric shock. Recently, transgenic and gene targeting techniques have been introduced to the study of place learning. In contrast with the abundant literature on the neuroanatomical substrates of place learning in rats, very little has been done in mice. Thus, in the first part of this article, we will review our studies on the involvement of the hippocampus in both spatial learning and contextual conditioning. Having demonstrated the importance of the hippocampus to place learning, we will then focus attention on the molecular and cellular substrates of place learning. We will show that just as in rats, mouse hippocampal pyramidal cells can show place specific firing. Then, we will review our evidence that hippocampal-dependent place learning involves a number of interacting physiological mechanisms with distinct functions. We will show that in addition to long-term potentiation, the hippocampus uses a number of other mechanisms, such as short-term-plasticity and changes in spiking, to process, store, and recall information. Much of the focus of this article is on genetic studies of learning and memory (L&M). However, there is no single experiment that can unambiguously connect any cellular or molecular mechanism with L&M. Instead, several different types of studies are required to determine whether any one mechanism is involved in L&M, including (i) the development of biologically based learning models that explain the involvement of a given mechanism in L&M, (ii) lesion experiments (genetics and pharmacology), (iii) direct observations during learning, and (iv) experiments where learning is triggered by turning on the candidate mechanism. We will show how genetic techniques will be key to unraveling the molecular and cellular basis of place learning.
Collapse
Affiliation(s)
- A J Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|
543
|
van Praag H, Chun D, Black IB, Stäubli UV. Unilateral hippocampal ablation at birth causes a reduction in contralateral LTP. Brain Res 1998; 795:170-8. [PMID: 9622622 DOI: 10.1016/s0006-8993(98)00287-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Subcortical damage in neonates often has more severe consequences than in adults. Unilateral electrolytic hippocampal lesions in adult rats typically result in transient memory deficits, whereas neonatal lesions cause lasting memory impairments. We hypothesized that unilateral lesions made at birth may affect synaptic physiology in the contralateral hippocampus. Consequently, the ability to sustain long-term potentiation (LTP), a form of synaptic plasticity believed to underlie certain forms of memory, was compared between slices from the remaining hippocampus of rats lesioned as newborns and as adults. Initial studies showed that a train of 10 stimulation bursts patterned after the hippocampal theta rhythm produced robust and stable LTP both in slices from controls and rats lesioned at birth. However, a theta burst pattern of stimulation closer to intrinsic physiology (five burst pairs separated by 30 s each), induced significantly less LTP in slices from rats lesioned at birth compared to those from controls and rats lesioned as adults. To investigate possible mechanisms underlying the deficit, the degree of paired-pulse facilitation (PPF) as well as the amount of depolarization occurring between two successive theta bursts were analyzed. The lesion did not detectably change PPF characteristics, suggesting that presynaptic mechanisms are normal. However, the extent to which a burst response was increased by a prior burst was significantly diminished in slices from rats lesioned at birth compared to those from controls and rats lesioned as adults, indicating that postsynaptic factors involved in the initial triggering events of LTP are affected by the lesion. Reduced ability to sustain LTP in the remaining hippocampus may contribute to impaired memory function after unilateral neonatal hippocampal lesion.
Collapse
Affiliation(s)
- H van Praag
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, UMDNJ, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
544
|
Ishizuka S, Hayashi H. Spontaneous epileptiform bursts and long-term potentiation in rat CA3 hippocampal slices induced by chaotic stimulation of mossy fibers. Brain Res 1998; 790:108-14. [PMID: 9593847 DOI: 10.1016/s0006-8993(98)00056-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The relation between long-term potentiation (LTP) and spontaneous rhythm in CA3 was investigated using rat hippocampal slices. Field potential response of CA3 to mossy fiber stimulation consisted of a mono-synaptic positive potential and subsequent poly-synaptic negative potentials. LTP of both field potentials was induced by chaotic mossy fiber stimulation. Although CA3 did not show any spontaneous rhythm before LTP induction in a normal perfusing medium, CA3 spontaneously caused epileptiform bursts after LTP induction by chaotic mossy fiber stimulation. The amplitude of those epileptiform bursts and the inter-burst interval were not uniform. After LTP induction, the cross-correlation function of spontaneous field potentials simultaneously recorded at two sites approximately 300 micron apart in CA3 showed a large central peak. This indicates that neuronal activity at two sites is synchronized. These results suggest that epileptiform bursts in CA3 are caused by synchronization of spontaneous CA3 pyramidal cell activity due to LTP induced by chaotic burst stimulation.
Collapse
Affiliation(s)
- S Ishizuka
- Department of Physiology, Faculty of Dentistry, Kyushu University, Fukuoka 812-82, Japan.
| | | |
Collapse
|
545
|
Pussinen R, Sirviö J, Alhonen L, Larson J, Halmekytö M, Koivisto E, Jänne J. Preserved induction of long-term potentiation in the stratum radiatum in the CA1 field of hippocampal slices from transgenic mice overexpressing ornithine decarboxylase and overproducing putrescine. Synapse 1998; 28:288-93. [PMID: 9517837 DOI: 10.1002/(sici)1098-2396(199804)28:4<288::aid-syn4>3.0.co;2-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The role of putrescine in synaptic neurotransmission and plasticity was studied using transgenic mice overexpressing ornithine decarboxylase (ODC), a polyamine-synthesizing enzyme. Transgenic mice were produced using the standard microinjection technique leading to elevated levels of putrescine in the periphery and in the brain. The experiments investigated whether or not ODC mice with elevated levels of putrescine show alterations in synaptic transmission and induction of long-term potentiation in the CA1 field of the hippocampus in vitro. Our results indicated that (1) putrescine levels in brain slices of the transgenic mice were more than ten times higher than those in fresh slices of control mice, although the absolute levels of putrescine and spermine decreased (by 15 and 40%, respectively) after 3-6 h incubation in vitro, while the levels of spermidine slightly increased (by 10%), (2) the excitatory synaptic response waveforms were wider (an increased half-width), and paired-pulse facilitation was somewhat reduced in ODC mice as compared to controls, and (3) potentiation of excitatory synaptic responses (measured 30-45 min after theta burst stimulation) did not differ between ODC and control mice. These results indicate that synaptic transmission is affected, but synaptic plasticity in the field CA1 assessed in vitro is not changed by elevated levels of intracellular putrescine.
Collapse
Affiliation(s)
- R Pussinen
- A.I. Virtanen Institute, University of Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
546
|
Kolta A, Lynch G, Ambros-Ingerson J. Effects of aniracetam after LTP induction are suggestive of interactions on the kinetics of the AMPA receptor channel. Brain Res 1998; 788:269-86. [PMID: 9555053 DOI: 10.1016/s0006-8993(97)01444-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The modulatory influence of aniracetam, a drug which reversibly modifies the kinetic properties of AMPA-type glutamate receptors, on synaptic responses is reported to be detectably changed by the induction of long-term potentiation (LTP). The present study used hippocampal slices to examine three issues arising from this result. First, possible contributions of inhibitory currents and postsynaptic spiking to the aniracetam/LTP interaction were investigated with infusions of GABA receptor antagonists and topical applications of tetrodotoxin. Second, tests were carried out to determine if the altered response to aniracetam is sufficiently persistent to be a plausible substrate for the extremely stable LTP effect. Third, the nature of the change responsible for the aniracetam/LTP interaction was explored with waveform analyses and a kinetic model of the AMPA receptor. The following results were obtained. LTP reduced the effect of aniracetam on the amplitude but increased its effect on the decay time constant of field EPSPs recorded under conditions in which local spiking and inhibitory responses were blocked. The LTP-induced change in the effect of aniracetam was extremely stable in that it was still evident 75 min after induction of potentiation. Finally, the waveform distortions introduced by LTP and aniracetam could be corrected by uniform stretching of the responses, suggesting that the changes introduced by each of the manipulations are unitary in nature. These distortions and the interactions between them could be reproduced in the AMPA receptor model by representing LTP as an acceleration of channel gating kinetics.
Collapse
Affiliation(s)
- A Kolta
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
547
|
Pussinen R, Sirviö J. Minor role for alpha1-adrenoceptors in the facilitation of induction and early maintenance of long-term potentiation in the CA1 field of the hippocampus. J Neurosci Res 1998; 51:309-15. [PMID: 9486766 DOI: 10.1002/(sici)1097-4547(19980201)51:3<309::aid-jnr4>3.0.co;2-k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The influences of noradrenaline on the modulation of learning and memory functions, as well as synaptic plasticity, e.g., long-term potentiation (LTP), via beta-adrenoceptors are well documented, whereas the role of alpha1-adrenoceptors has not been studied extensively. Therefore, the effects of alpha1-agonists (ST 587 and methoxamine) on the induction of LTP were examined in the CA1 area of the hippocampus in vitro. Submaximal LTP in extracellular excitatory postsynaptic potentials (EPSP) was induced with theta burst stimulation using 4 bursts. The effects of a beta-agonist, isoproterenol, on synaptic potentiation were studied as a comparison in this preparation. At a concentration of 1 microM, ST 587 slightly increased the magnitude of potentiation in EPSPs (measured 30 min after stimulation) compared to a control pathway potentiated 30 min before drug infusion, whereas a lower concentration (0.3 microM) was not effective. Methoxamine did not induce any increase in the amount of submaximal LTP at concentrations of 0.3, 1.0, or 3.0 microM. Isoproterenol (1.5 microM) increased the amount of LTP when measured 30 min after stimulation, and also transiently increased synaptic transmission, measured both in the slope and amplitude of the field EPSP in the prepotentiated control pathway. Thus, the present results indicate that (1) alpha1-adrenoceptors have only a minor role in hippocampal synaptic plasticity in the CA1 area, but (2) the synaptic plasticity in the CA1 area of the hippocampus assessed by induction and early maintenance of LTP in vitro can be modulated through beta-adrenoceptors.
Collapse
Affiliation(s)
- R Pussinen
- A.I. Virtanen Institute and Department of Neuroscience and Neurology, University of Kuopio, Finland
| | | |
Collapse
|
548
|
Cousens G, Otto TA. Induction and transient suppression of long-term potentiation in the peri- and postrhinal cortices following theta-related stimulation of hippocampal field CA1. Brain Res 1998; 780:95-101. [PMID: 9473606 DOI: 10.1016/s0006-8993(97)01151-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During behavioral events associated with periods of likely mnemonic processing, CA1 pyramidal cells in rats typically discharge repetitively in either high-frequency bursts ('complex spikes') or single spikes, both of which are tightly phase-locked to the hippocampal theta rhythm. Interestingly, patterned stimulation which mimics the repetitive, learning-related complex spike discharges are optimal for inducing long-term potentiation (LTP) of excitatory field potentials in CA1, and patterned stimulation which mimics the theta-related single action potentials results in a robust and lasting depotentiation at these same synapses. The aim of the present study was to determine the extent to which these physiologically-relevant patterns of hippocampal stimulation have similar effects on synaptic efficacy in the monosynaptic projection from CA1 to the perirhinal and postrhinal cortices (PRh), areas thought to play a prominent role in many forms of learning and memory. Single-pulse stimulation of CA1 evoked a small amplitude, short latency population excitatory postsynaptic potential (EPSP) in the PRh. Theta-burst stimulation (TBS; n = 8) delivered to CA1 reliably potentiated the PRh EPSP slope for at least 30 min. Theta-pulse stimulation (TPS; 5 Hz; n = 4) delivered to CA1 5 min after TBS substantially but transiently suppressed EPSP slope relative to that of potentiated control preparations. Collectively these data suggest that theta-related patterns of hippocampal activation can reliably induce and transiently suppress LTP in PRh, and are consistent with the notion that behaviorally-relevant, theta-modulated patterns of CA1 unit activity may result in both long- and short-term alterations of synaptic strength within their rhinal cortical targets.
Collapse
Affiliation(s)
- G Cousens
- Department of Psychology, Rutgers University, New Brunswick, NJ 08903, USA
| | | |
Collapse
|
549
|
Janis LS, Glasier MM, Fulop Z, Stein DG. Intraseptal injections of 192 IgG saporin produce deficits for strategy selection in spatial-memory tasks. Behav Brain Res 1998; 90:23-34. [PMID: 9520211 DOI: 10.1016/s0166-4328(97)00078-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The involvement of the cholinergic septohippocampal system in strategies used to reach a spatial goal was examined by functionally inactivating this system with infusions of 192 IgG saporin, a potent cholinergic immunotoxin. Rats were initially trained on a win-shift radial arm maze (RAM) task and then given injections of either 192 IgG saporin (LES) or saline vehicle (CON) into the medial septum and vertical limb of the diagonal band. Rats were then retested postoperatively on the RAM to assess whether allocentric spatial strategies used to solve the task were impaired. The results indicated that injections of 192 IgG saporin into the septum of rats produced deficits in allocentric strategies used to locate the spatial goal when retested. In addition, place and response learning was also examined in a modified version of the Morris water maze task. In this task, rats with cholinergic lesions were mildly impaired in their ability to learn a place response. In order to clarify further whether rats may have been relying on allocentric or egocentric learning strategies to locate the platform, a probe trial was given on the final test day in which the visible platform was moved to a new location. Control rats swam either to the new platform location or the old platform location indicating the use of both an allocentric and egocentric response. However, rats with the cholinergic septal lesions swam to the new platform location indicating an egocentric response. Taken together, these results suggest that selective cholinergic lesions of the septum produce deficits in spatial strategies used to locate a spatial goal.
Collapse
Affiliation(s)
- L S Janis
- Institute of Animal Behavior, Rutgers University, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
550
|
Abstract
We suggest that the hippocampus plays two roles that allow rodents to solve the hidden-platform water maze: self-localization and route replay. When an animal explores an environment such as the water maze, the combination of place fields and correlational (Hebbian) long-term potentiation produces a weight matrix in the CA3 recurrent collaterals such that cells with overlapping place fields are more strongly interconnected than cells with nonoverlapping fields. When combined with global inhibition, this forms an attractor with coherent representations of position as stable states. When biased by local view information, this allows the animal to determine its position relative to the goal when it returns to the environment. We call this self-localization. When an animal traces specific routes within an environment, the weights in the CA3 recurrent collaterals become asymmetric. We show that this stores these routes in the recurrent collaterals. When primed with noise in the absence of sensory input, a coherent representation of position still forms in the CA3 population, but then that representation drifts, retracing a route. We show that these two mechanisms can coexist and form a basis for memory consolidation, explaining the anterograde and limited retrograde amnesia seen following hippocampal lesions.
Collapse
Affiliation(s)
- A D Redish
- Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213-3891, USA
| | | |
Collapse
|