501
|
Lertratanangkoon K, Wu CJ, Savaraj N, Thomas ML. Alterations of DNA methylation by glutathione depletion. Cancer Lett 1997; 120:149-56. [PMID: 9461031 DOI: 10.1016/s0304-3835(97)00300-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
One of the most consistent findings in cancer cells is an overall decrease of 5-methylcytosine content in DNA. The causes that lead to this alteration are not known. We have shown in a recent study that the methyl-donor, methionine (Met), can easily be depleted and that O- and S-methylation can be impaired in response to glutathione (GSH) depletion. This is because mammalian cells are capable of resynthesizing GSH after GSH is depleted, and GSH turnover occurs at the expense of Met. An extensive utilization of Met for the resynthesis of GSH causes Met depletion and impairment in methylation. In the present study we now demonstrate that GSH depletion has a significant impact on DNA methylation. An i.p. dose of a model GSH-depleting hepatotoxin, bromobenzene (BB), caused a progressive impairment in genomic DNA methylation in the Syrian hamster. The administration of a single i.p. dose of Met labeled with [14CH3]Met to BB-treated hamsters at either 1, 3, 5.5 or 9 h after BB resulted in an increase of methyl-group incorporation into liver genomic DNA at 24 h after BB. With respect to the time points chosen for Met administration, methyl-group incorporation found in the BB + Met groups were 1-, 2-, 4- and 12-fold of the controls that received only Met. We further employed an in vitro methylation assay using specific bacterial SssI CpG methylase as the catalyzing enzyme to demonstrate that BB caused a progressive increase of unmethylated CpG sites in genomic DNA. Interestingly, the time response curve of global DNA methylation in vitro showed an identical pattern to that observed in the in vivo experiment. The results provide strong evidence that GSH-depleting agents significantly impair cytosine methylation. Thus, alterations in gene expression could result from a high dose and/or prolonged exposure to GSH-depleting agents, e.g. medications, chemotherapeutic agents and environmental toxins.
Collapse
Affiliation(s)
- K Lertratanangkoon
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston 77555-1031, USA.
| | | | | | | |
Collapse
|
502
|
Mathur P, Xu J, Dedon PC. Cytosine methylation enhances DNA damage produced by groove binding and intercalating enediynes: studies with esperamicins A1 and C. Biochemistry 1997; 36:14868-73. [PMID: 9398209 DOI: 10.1021/bi971533w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Methylation of the C5 position of cytosine in CG dinucleotides represents an important element in the control of gene expression in eukaryotic cells. This major groove modification of DNA causes changes in DNA conformation that are recognized by DNA-binding proteins and DNA-damaging chemicals. We have observed that CG methylation affects the DNA damage produced by the enediyne esperamicin A1 and its analog lacking the intercalating anthranilate, esperamicin C. Fragments of the human phosphoglycerate kinase gene (PGK1) and the plasmid pUC19 were methylated with SssI methylase and subjected to damage by esperamicins A1 and C. Damage produced by esperamicin A1 was enhanced 1.5-2-fold near a single CG sequence at position -101 in PGK1 and in a region containing several methylated CG dinucleotides between positions -120 and -131. Esperamicin C-induced damage was enhanced to a similar degree in PGK1 but only at the site that contained multiple CG dinucleotides. There was enhancement of damage for both drugs in the pUC19 fragment at several sites near CG sequences. Analysis of the chemistry of esperamicin-induced DNA damage suggests that cytosine methylation does not affect the identity of drug-abstracted hydrogen atoms. The damage chemistry was also used to identify the DNA binding orientation of the esperamicins. The anthranilate of esperamicin A1 is predicted to intercalate in a CT step four base pairs in a 3'-direction to the CG sequence at -101 in PGK1 and in a CG dinucleotide at the site containing multiple CGs (positions -120 to -131). These observations are consistent with other studies that indicate a long range effect of cytosine methylation on DNA conformation.
Collapse
Affiliation(s)
- P Mathur
- Division of Toxicology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | |
Collapse
|
503
|
Abstract
OBJECTIVE To review the literature over the past decade on mental retardation, particularly with respect to genetics and behavioral phenotypes. METHOD A computerized search was performed for articles published in the past decade, and selected papers were highlighted. RESULTS The study of mental retardation has benefited considerably by advances in medicine generally, and by developments in molecular neurobiology in particular. These advances in genetics have led to new insights regarding the causes of mental retardation, as well as a growing appreciation of behavioral phenotypes associated with some mental retardation syndromes. CONCLUSIONS Although the study of developmental disorders has advanced significantly over the past decade, considerable work remains. Mental retardation should remain the model for the utility of the biopsychosocial approach in medicine.
Collapse
Affiliation(s)
- M W State
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, USA
| | | | | |
Collapse
|
504
|
Jansen G, Mauritz RM, Assaraf YG, Sprecher H, Drori S, Kathmann I, Westerhof GR, Priest DG, Bunni M, Pinedo HM, Schornagel JH, Peters GJ. Regulation of carrier-mediated transport of folates and antifolates in methotrexate-sensitive and-resistant leukemia cells. ADVANCES IN ENZYME REGULATION 1997; 37:59-76. [PMID: 9381986 DOI: 10.1016/s0065-2571(96)00012-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prolonged cell culture of human leukemia cells at folate concentrations in the (sub)physiological range (1-5 nM) rather than at 'standard' supraphysiological concentrations of 2-10 microM folic acid elicited a number of regulatory aspects of the reduced folate carrier (RFC), the membrane transport protein for natural reduced folate cofactors and folate-based chemotherapeutic drugs such as methotrexate (MTX). One subline of human CCRF-CEM leukemia cells grown under folate-restricted conditions (CEM-7A) exhibited a 95-fold increased Vmax for uptake of [3H]-MTX. The increased uptake of MTX in CEM-7A cells is based on at least two factors: (a) a constitutive 10-fold overexpression of the RFC1 gene and RFC1 message; and (b) a 7-9-fold up-regulation of RFC transport activity under low intracellular reduced folate concentrations. This second component appeared to be regulatable by changes in the cellular folate, purine and methylation status as judged from a 7-9 fold down-regulation of RFC transport activity after short term (1-2 hr) incubation of CEM-7A cells with reduced folate cofactors (25 nM LV), purines (100 microM adenosine) or S-adenosylmethionine (100 microM), respectively. Gradual folate restriction in the cell culture medium of CEM/MTX cells, a subline of CCRF-CEM resistant to MTX due to defective transport via the RFC, revealed the up-regulated expression of an altered RFC protein that is characterized by a 35-fold decreased Km for folic acid and a 10-fold decreased Km for the reduced folate cofactor LV compared to the RFC expressed in CCRF-CEM and CEM-7A cells. As a result of the markedly increased efficiency of folic acid uptake in CEM/MTX cells, intracellular folate pools were 7-fold higher than in CCRF-CEM cells when both cell lines were incubated in the presence of 2 microM folic acid. The high intracellular folate pools in CEM/MTX cells appeared to impair the polyglutamylation of antifolates and confer resistance to ZD1694, an antifolate drug that depends on polyglutamylation for its biological activity. Collectively, these studies provide a better insight into the basic regulation of RFC-mediated membrane transport of clinically active antifolates. In addition, these studies may also provide an opportunity to exploit the transport system as a target for biochemical modulation by which it may contribute to an improved efficacy of folate-based chemotherapy in a clinical setting.
Collapse
Affiliation(s)
- G Jansen
- Department of Oncology, University Hospital Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
505
|
Affiliation(s)
- S B Baylin
- Johns Hopkins Comprehensive Cancer Center and the Department of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
506
|
Rountree MR, Selker EU. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev 1997; 11:2383-95. [PMID: 9308966 PMCID: PMC316521 DOI: 10.1101/gad.11.18.2383] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1997] [Accepted: 07/28/1997] [Indexed: 02/05/2023]
Abstract
In plants, animals, and fungi, DNA methylation is frequently associated with gene silencing, yet little is known about the role of the methylation in silencing. In Neurospora crassa, repeated sequences are silenced by repeat-induced point mutation (RIP) and genes that have suffered numerous GC --> AT mutations by RIP are typically methylated at remaining cytosines. We investigated possible effects on transcription from methylation associated with RIP by taking advantage of 5-azacytidine, which prevents most methylation in Neurospora and a dim-2 mutation that abolishes all detectable methylation. Northern analyses revealed that methylation prevents the accumulation of transcripts from genes mutated by RIP. Measurements of transcription rates in vivo showed that methylation inhibits transcription severely but does not influence mRNA stability. Results of nuclear run-on experiments demonstrated that transcription initiation was not significantly inhibited by the dense methylation in the promoter sequences. In contrast, methylation blocked transcription elongation in vivo.
Collapse
Affiliation(s)
- M R Rountree
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | |
Collapse
|
507
|
Alvarez L, Sánchez-Góngora E, Mingorance J, Pajares MA, Mato JM. Characterization of rat liver-specific methionine adenosyltransferase gene promoter. Role of distal upstream cis-acting elements in the regulation of the transcriptional activity. J Biol Chem 1997; 272:22875-83. [PMID: 9278450 DOI: 10.1074/jbc.272.36.22875] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Methionine adenosyltransferase is a ubiquitous enzyme that catalyzes the only known route of biosynthesis of S-adenosylmethionine, the major methyl group donor in cell metabolism. In mammals, two different methionine adenosyltransferases exist: one is confined to the liver, and the other one is distributed in extrahepatic tissues. In the present study, we report the cloning of the 5'-flanking region of liver-specific methionine adenosyltransferase gene from rat. Two closely spaced sites for transcriptional initiation were identified by primer extension analysis. The major transcription start site was determined to be 29 nucleotides downstream from the putative TATA box. Transient transfection assays of constructs containing sequentially deleted 5'-flanking sequences fused to the luciferase gene showed that rat hepatic methionine adenosyltransferase promoter was able to efficiently drive reporter expression not only in liver-type cells (rat hepatoma H35 cells and human hepatoblastoma HepG2 cells) but also in Chinese hamster ovary cells. Two regions spanning nucleotides -1251 to -958 and -197 to +65 were found to be crucial for the promoter efficiency. The distal upstream region contains elements that positively regulate promoter activity in H35 and HepG2 cells but are ineffective in Chinese hamster ovary cells. Eight protein binding sites were characterized in both regions by DNase I footprinting analysis. Two of these elements, sites A and B, located in the distal region, were found to be essential for the regulation of promoter activity. Electrophoretic mobility shift assays and competition experiments showed that site A is recognized by an NF1 protein. Site B was able to interact with a member of HNF-3 family when nuclear extracts from rat liver and H35 cells were used in the in vitro assay, but an additional binding activity to an NHF1-like protein was obtained with the hepatoma cell extracts. It is suggested that this differential binding can contribute to the cell specificity of promoter function.
Collapse
Affiliation(s)
- L Alvarez
- Instituto de Investigaciones Biomédicas, C.S.I.C. Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | | | |
Collapse
|
508
|
Ryhänen S, Pirskanen A, Jääskeläinen T, Mäenpää PH. State of methylation of the human osteocalcin gene in bone-derived and other types of cells. J Cell Biochem 1997; 66:404-12. [PMID: 9257196 DOI: 10.1002/(sici)1097-4644(19970901)66:3<404::aid-jcb12>3.0.co;2-e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA methylation is a general mechanism of controlling tissue-specific gene expression. Osteocalcin is a bone matrix protein whose expression is limited almost entirely to osteoblasts. We were interested in determining whether the state of methylation of the osteocalcin gene plays a role in its expression by studying human bone-derived (MG-63, U2-Os, SaOs-2) and other types (normal lymphocytes, A-498, Hep G2) of cells. Reverse transcription-polymerase chain reaction (RT-PCR) analysis revealed that osteocalcin mRNA production is stimulated by 1,25(OH)2D3 in MG-63 and induced in SaOs-2 but not in U2-Os osteoblast-like osteosarcoma cells. Genomic analysis of the human osteocalcin gene showed that the local surroundings of this single-copy gene are identical in all cell lines studied. Using an isoschizomeric pair of restriction enzymes and Southern analysis, we found that the osteocalcin gene is identically methylated in all three osteosarcoma cell lines. The same sites are also methylated in human normal lymphocytes and A-498 kidney cells, whereas the degree of methylation is higher in Hep G2 human hepatocellular carcinoma cells. Furthermore, the osteocalcin gene was identically protected against enzymatic digestion at the chromatin level in normal lymphocytes and in all cell lines studied. Induction of hypomethylation of DNA by 5-azacytidine treatment did not cause an induction of osteocalcin synthesis in these cell lines. On the contrary, it attenuated the induction by 1,25(OH)2D3 in MG-63 cells. In gel mobility shift assays, human vitamin D receptor and the AP-1 transcription factor bound to an unmethylated response element oligonucleotide of the osteocalcin gene with greater affinity than to an in vitro methylated response element. These results indicate that the in vivo methylation state of the osteocalcin gene at sites determined in this study does not correlate with the inducibility of this gene. Nevertheless, the in vitro results clearly indicated that hypomethylation of critical regions of the osteocalcin gene promoter is a potential mechanism influencing effective binding of specific nuclear factors and, consequently, gene expression.
Collapse
Affiliation(s)
- S Ryhänen
- Department of Biochemistry and Biotechnology, University of Kuopio, Finland.
| | | | | | | |
Collapse
|
509
|
Abstract
Abstract
Previous studies have shown that the cyclin-dependent kinase inhibitor (CDKI) genes p15INK4B and p16INK4A are frequently inactivated by genetic alterations in many malignant tumors and that they are candidate tumor-suppressor genes. Although genetic alterations in these genes may be limited to lymphoid malignancies, it has been reported that their inactivation by aberrant methylation of 5′ CpG islands may be involved in various hematologic malignancies. In this study, we investigated the p15INK4B and p16INK4A genes to clarify their roles in the pathogenesis of myelodysplastic syndrome (MDS). Southern blotting analysis showed no gross genetic alterations in either of these genes. However, hypermethylation of the 5′ CpG island of the p15INK4B gene occurred frequently in patients with MDS (16/32 [50%]). Interestingly, the p15INK4B gene was frequently methylated in patients with high-risk MDS (refractory anemia with excess blasts [RAEB], RAEB in transformation [RAEB-t], and overt leukemia evolved from MDS; 14/18 [78%]) compared with patients with low-risk MDS (refractory anemia [RA] and refractory anemia with ring sideroblast [RARS]; 1/12 [8%]). Furthermore, methylation status of the p15INK4B gene was progressed with the development of MDS in most patients examined. In contrast, none of the MDS patients showed apparent hypermethylation of the p16INK4A gene. These results suggest that hypermethylation of the p15INK4B gene is involved in the pathogenesis of MDS and is one of the important late events during the development of MDS.
Collapse
|
510
|
Abstract
Previous studies have shown that the cyclin-dependent kinase inhibitor (CDKI) genes p15INK4B and p16INK4A are frequently inactivated by genetic alterations in many malignant tumors and that they are candidate tumor-suppressor genes. Although genetic alterations in these genes may be limited to lymphoid malignancies, it has been reported that their inactivation by aberrant methylation of 5′ CpG islands may be involved in various hematologic malignancies. In this study, we investigated the p15INK4B and p16INK4A genes to clarify their roles in the pathogenesis of myelodysplastic syndrome (MDS). Southern blotting analysis showed no gross genetic alterations in either of these genes. However, hypermethylation of the 5′ CpG island of the p15INK4B gene occurred frequently in patients with MDS (16/32 [50%]). Interestingly, the p15INK4B gene was frequently methylated in patients with high-risk MDS (refractory anemia with excess blasts [RAEB], RAEB in transformation [RAEB-t], and overt leukemia evolved from MDS; 14/18 [78%]) compared with patients with low-risk MDS (refractory anemia [RA] and refractory anemia with ring sideroblast [RARS]; 1/12 [8%]). Furthermore, methylation status of the p15INK4B gene was progressed with the development of MDS in most patients examined. In contrast, none of the MDS patients showed apparent hypermethylation of the p16INK4A gene. These results suggest that hypermethylation of the p15INK4B gene is involved in the pathogenesis of MDS and is one of the important late events during the development of MDS.
Collapse
|
511
|
Chen ZJ, Pikaard CS. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev 1997; 11:2124-36. [PMID: 9284051 PMCID: PMC316451 DOI: 10.1101/gad.11.16.2124] [Citation(s) in RCA: 258] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nucleolar dominance is an epigenetic phenomenon that describes nucleolus formation around rRNA genes inherited from only one progenitor of an interspecific hybrid or allopolyploid. The phenomenon is widespread, occurring in plants, insects, amphibians, and mammals, yet its molecular basis remains unclear. We have demonstrated nucleolar dominance in three allotetraploids of the plant genus Brassica. In Brassica napus, accurately initiated pre-rRNA transcripts from one progenitor, Brassica rapa are detected readily, whereas transcripts from the approximately 3000 rRNA genes inherited from the other progenitor, Brassica oleracea, are undetectable. Nuclear run-on confirmed that dominance is controlled at the level of transcription. Growth of B. napus seedlings on 5-aza-2'-deoxycytidine to inhibit cytosine methylation caused the normally silent, under-dominant B. oleracea rRNA genes to become expressed to high levels. The histone deacetylase inhibitors sodium butyrate and trichostatin A also derepressed silent rRNA genes. These results reveal an enforcement mechanism for nucleolar dominance in which DNA methylation and histone modifications combine to regulate rRNA gene loci spanning tens of megabase pairs of DNA.
Collapse
Affiliation(s)
- Z J Chen
- Biology Department, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
512
|
Mostoslavsky R, Bergman Y. DNA methylation: regulation of gene expression and role in the immune system. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1333:F29-50. [PMID: 9294017 DOI: 10.1016/s0304-419x(97)00010-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- R Mostoslavsky
- The Hubert H. Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
513
|
Nahreini P, Mathews MB. Transduction of the human immunodeficiency virus type 1 promoter into human chromosomal DNA by adeno-associated virus: effects on promoter activity. Virology 1997; 234:42-50. [PMID: 9234945 DOI: 10.1006/viro.1997.8623] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transcription of the human immunodeficiency virus type 1 (HIV-1) genome takes place after integration of the provirus into human chromosomal DNA. HIV transcription is known to be modulated by viral and cellular factors but the influence of flanking chromosomal sequences on proviral gene expression has not been well defined. To investigate the activity of the integrated HIV promoter, we exploited the ability of recombinant adeno-associated virus (AAV-2) to transfer and stably integrate genes into the human genome at random or site-specifically. Chimeric AAV vectors were constructed containing an HIV-CAT reporter cassette; some vectors also contained the neomycin resistance gene to facilitate the isolation of positive clones. HeLa cells were infected with recombinant AAV, in some instances together with wild-type virus as a source of AAV rep function. We isolated 25 clones of G418-resistant cells which carried the integrated HIV-CAT cassette, generally occupying unique sites that did not correspond to the AAV-specific region of chromosome 19. The HIV promoter was transcriptionally active in most of the clones. Basal promoter activity varied substantially among the clones, and its responsivity to the HIV transactivator Tat was also variable. The integrated HIV promoter was transactivated to comparable degrees by the one-exon form and two-exon form of Tat. These findings provide evidence that the transcriptional activity of the HIV promoter can be greatly influenced by the site of proviral insertion.
Collapse
Affiliation(s)
- P Nahreini
- Cold Spring Harbor Laboratory, New York 11724, USA.
| | | |
Collapse
|
514
|
Sparwasser T, Miethke T, Lipford G, Erdmann A, Häcker H, Heeg K, Wagner H. Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-alpha-mediated shock. Eur J Immunol 1997; 27:1671-9. [PMID: 9247576 DOI: 10.1002/eji.1830270712] [Citation(s) in RCA: 337] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cell surface components of pathogens, such as lipopolysaccharide (LPS), are an important signal for receptor-mediated activation of immune cells. Here we demonstrate that DNA of gram-positive and gram-negative bacteria or certain synthetic oligonucleotides displaying unmethylated CpG-motifs can trigger macrophages in vitro to induce nuclear translocation of nuclear factor-kappa B, accumulate tumor necrosis factor (TNF)-alpha mRNA and release large amounts of TNF-alpha. In vivo these events culminate in acute cytokine-release syndrome which includes systemic but transient accumulation of TNF-alpha. D-Galactosamine (DGalN)-sensitized mice succumb to lethal toxic shock due to macrophage-derived TNF-alpha resulting in fulminant apoptosis of liver cells. LPS and a specific oligonucleotide synergized in vivo as measured by TNF-alpha-release, suggesting that macrophages integrate the respective signals. The ability of macrophages to discriminate and to respond to bacterial DNA with acute release of pro-inflammatory cytokines may point out an important and as yet unappreciated sensing mechanism for foreign DNA.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Base Composition/immunology
- DNA, Bacterial/administration & dosage
- DNA, Bacterial/immunology
- DNA, Bacterial/pharmacology
- Drug Synergism
- Galactosamine/immunology
- Injections, Intraperitoneal
- Lipopolysaccharides/administration & dosage
- Liver/immunology
- Liver/metabolism
- Macrophage Activation/drug effects
- Macrophage Activation/genetics
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/microbiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, SCID
- Oligodeoxyribonucleotides/administration & dosage
- Oligodeoxyribonucleotides/pharmacology
- Shock, Septic/genetics
- Shock, Septic/immunology
- Shock, Septic/microbiology
- Tumor Necrosis Factor-alpha/biosynthesis
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- T Sparwasser
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
515
|
Cross SH, Meehan RR, Nan X, Bird A. A component of the transcriptional repressor MeCP1 shares a motif with DNA methyltransferase and HRX proteins. Nat Genet 1997; 16:256-9. [PMID: 9207790 DOI: 10.1038/ng0797-256] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Methylation of cytosines within the sequence CpG is essential for mouse development and has been linked to transcriptional suppression in vertebrate systems. Methyl-CpG binding proteins (MeCPs) 1 and 2 bind preferentially to methylated DNA and can inhibit transcription. The gene for MeCP2 has been cloned and a methyl-CpG binding domain (MBD) within it has been defined. A search of DNA sequence databases with the MBD sequence identified a human cDNA with potential to encode an MBD-like region. Sequencing of the complete cDNA revealed that the open reading frame also encodes two cysteine-rich domains that are found in animal DNA methyltransferases (DNMTs) and in the mammalian HRX protein (also known as MLL and All-1). HRX is related to Drosophila trithorax. The protein, known as Protein Containing MBD (PCM1), was expressed in bacteria and shown to bind specifically to methylated DNA. PCM1 also repressed transcription in vitro in a methylation-dependent manner. A polyclonal antibody raised against the protein was able to 'supershift' the native MeCP11 complex from HeLa cells, indicating that PCM1 is a component of mammalian MeCP1.
Collapse
Affiliation(s)
- S H Cross
- Institute of Cell and Molecular Biology, Edinburgh University U.K. and
| | | | | | | |
Collapse
|
516
|
Yokomori N, Nishio K, Aida K, Negishi M. Transcriptional regulation by HNF-4 of the steroid 15alpha-hydroxylase P450 (Cyp2a-4) gene in mouse liver. J Steroid Biochem Mol Biol 1997; 62:307-14. [PMID: 9408084 DOI: 10.1016/s0960-0760(97)00048-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mouse P450 gene Cyp2a-4 encodes the hepatic steroid 15apha-hydroxylase. We have defined in the 5'-flanking sequence of Cyp2a-4 gene, a composite regulatory element (-61AGACCAAAGTCCGGCCTTC-42) which contains a potential CpG methylation site at position -50. Gel-shift assays indicate that this element consists of overlapped binding sites for a hepatocyte-enriched transcription factor HNF-4 and a Sp1-like protein. Moreover, transcription of the Cyp2a-4 gene is activated by coexpression of HNF-4 in HepG2 cells. A mutation (C at -50 to A) abolishes the binding of HNF-4 to the element as well as the transcriptional activation by HNF-4. The methylated C at position -50, however, does not affect HNF-4 binding. Neither the mutation nor the methylation at position -50 affect the binding of Sp1-like protein to the element. It appears, therefore, that HNF-4 activates the hepatic transcription of Cyp2a-4 gene through its direct binding to the regulatory element regardless of the methylation at position -50.
Collapse
Affiliation(s)
- N Yokomori
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
517
|
LeGros HL, Geller AM, Kotb M. Differential regulation of methionine adenosyltransferase in superantigen and mitogen stimulated human T lymphocytes. J Biol Chem 1997; 272:16040-7. [PMID: 9188509 DOI: 10.1074/jbc.272.25.16040] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Superantigens interact with the T cell receptor for antigen (TCR) and are, therefore, more physiological stimulators of T lymphocytes than nonspecific polyclonal T cell mitogens. The effects of these two classes of T cell stimulators on methionine adenosyltransferase (MAT) and S-adenosylmethionine (AdoMet) levels were investigated. Activation of resting human peripheral blood T lymphocytes by the mitogen phytohemagglutinin (PHA) or the superantigen staphylococcal enterotoxin B (SEB) caused a 3- to 6-fold increase in MAT II specific activity. Although the proliferative response was higher in cultures stimulated with PHA compared with SEB, MAT II activity was comparable in both cultures. Both stimuli caused down-regulation of the MAT 68-kDa lambda subunit expression and induced a comparable increase in the expression of the catalytic alpha2/alpha2' subunit mRNA and protein. However, in superantigen-stimulated cells, the expression of the noncatalytic beta subunit was down-regulated and virtually disappeared by 72 h post-stimulation; whereas, no change in the expression of this subunit was noted in PHA-stimulated cells. Thus, at 72 h following stimulation, PHA-stimulated cells expressed MAT II alpha2/alpha2' and beta subunits while SEB-stimulated cells expressed the alpha2/alpha2' subunits only; the beta subunit was no longer expressed in superantigen-stimulated cells. Kinetic analysis of MAT II in extracts of PHA- and SEB-stimulated cells using reciprocal kinetic plots revealed that in the absence of the beta subunit the Km of the enzyme for L-methionine (L-Met) was 3-fold higher than in the presence of the beta subunit. Furthermore, AdoMet levels were 5-fold higher in cell extracts lacking the beta subunit (SEB-stimulated cell extracts) compared with extracts containing MAT II alpha2/alpha2' and beta subunits. We propose that the increased levels of AdoMet in superantigen-stimulated cells may be attributed to the absence of the beta subunit, which seems to have rendered MAT II less sensitive to product feedback inhibition by (-)AdoMet. The data suggest that the beta subunit of MAT II, which has no catalytic activity, may be a regulatory subunit that imparts a lower Km for L-Met but increases the sensitivity to feedback inhibition by AdoMet. The down-regulation of the beta subunit, which occurred when T cells were stimulated via the TCR, may be an important mechanism to regulate AdoMet levels at different stages of T cell differentiation under physiological conditions.
Collapse
Affiliation(s)
- H L LeGros
- Department of Surgery, The University of Tennessee, Memphis, Tennessee, 38163, USA
| | | | | |
Collapse
|
518
|
Abstract
Triplet repeat expansion diseases (TREDs) are characterized by the coincidence of disease manifestation with amplification of d(CAG. CTG), d(CGG.CCG) or d(GAA.TTC) repeats contained within specific genes. Amplification of triplet repeats continues in offspring of affected individuals, which generally results in progressive severity of the disease and/or an earlier age of onset, phenomena clinically referred to as 'anticipation'. Recent biophysical and biochemical studies reveal that five of the six [d(CGG)n, d(CCG)n, (CAG)n, d(CTG)n and d(GAA)n] complementary sequences that are associated with human disease form stable hairpin structures. Although the triplet repeat sequences d(GAC)n and d(GTC)n also form hairpins, repeats of the double-stranded forms of these sequences are conspicuously absent from DNA sequence databases and are not anticipated to be associated with human disease. With the exception of d(GAG)n and d(GTG)n, the remaining triplet repeat sequences are unlikely to form hairpin structures at physiological salt and temperature. The details of hairpin structures containing trinucleotide repeats are summarized and discussed with respect to potential mechanisms of triplet repeat expansion and d(CGG.CCG) n methylation/demethylation.
Collapse
Affiliation(s)
- M Mitas
- Department of Biochemistry and Molecular Biology, Oklahoma State University, 246 Noble Research Center, Stillwater, OK 74078, USA.
| |
Collapse
|
519
|
Jarrard DF, Bova GS, Ewing CM, Pin SS, Nguyen SH, Baylin SB, Cairns P, Sidransky D, Herman JG, Isaacs WB. Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer 1997. [DOI: 10.1002/(sici)1098-2264(199706)19:2<90::aid-gcc4>3.0.co;2-v] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
520
|
Huq AH, Sutcliffe JS, Nakao M, Shen Y, Gibbs RA, Beaudet AL. Sequencing and functional analysis of the SNRPN promoter: in vitro methylation abolishes promoter activity. Genome Res 1997; 7:642-8. [PMID: 9199937 PMCID: PMC310659 DOI: 10.1101/gr.7.6.642] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The gene encoding the small nuclear ribonucleoprotein-associated polypeptide N (SNRPN) maps to the Prader-Willi syndrome critical region on chromosome 15 and is expressed preferentially from the paternal allele. A CpG island encompassing the first exon of SNRPN is methylated on the inactive maternal allele. DNA sequence was determined for a cosmid containing the first three exons of SNRPN and extending 20 kb upstream and 15 kb downstream from the CpG island. This region is extremely rich in Alu elements and other repetitive sequences and contains a single CpG island, which includes numerous short direct repeat sequences. Functional analysis of the first exon revealed strong promoter activity for a 260-bp fragment extending 207 bp upstream from the exon. In vitro methylation of this 260-bp fragment abolished promoter activity completely, suggesting that the silencing of the maternal SNRPN allele may be a direct consequence of methylation of the promoter region.
Collapse
|
521
|
Wu HK, Minden MD. Transcriptional activation of human LIM-HOX gene hLH-2 in chronic myelogenous leukemia is due to a cis-acting effect of Bcr-Abl. Biochem Biophys Res Commun 1997; 234:742-7. [PMID: 9175786 DOI: 10.1006/bbrc.1997.6592] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DNA methylation plays an important role in gene regulation. A human LIM-HOX gene, namely hLH-2, was highly expressed in chronic myelogenous leukemia (CML) and located on chromosome 9q33-34.1, in the same region as the reciprocal translocation that creates the Bcr-Abl chimera of Philadelphia chromosome [Wu et al. (1996) Oncogene 12, 1205]. To elucidate the mechanism of hLH-2 transcriptional activation, we studied the methylation status of hLH-2 in normal bone marrow and CML cells. When blots containing genomic DNA digested with Hpa II or Msp I were hybridized with full-length cDNA probe, it was discovered that hLH-2 was methylated in normal bone marrow cells in which hLH-2 was not expressed; in contrast, both alleles of hLH-2 locus in CML cells were heavily hypomethylated. Furthermore, using the sensitive RT-PCR technique, we examined the expression of LH-2 in mouse x human hybrids and a wide array of mouse cell lines containing Abl or Bcr-Abl and failed to identify a consistent expression pattern in the cell lines tested. These results suggest that the transcriptional activation of hLH-2 in CML is likely due to a cis-acting effect, but not a trans-acting effect of the Bcr-Abl fusion protein. Because hypomethylated genes generally are transcribed more efficiently than hypermethylated genes, the high level of hLH-2 mRNA in CML cells probably is a consequence of the low level of methylation of the gene in the leukemic cells.
Collapse
Affiliation(s)
- H K Wu
- Department of Medicine, Ontario Cancer Institute/Princess Margaret Hospital, Faculty of Medicine, University of Toronto, Canada
| | | |
Collapse
|
522
|
Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, Sangoram AM, King DP, Pinto LH, Takahashi JS. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 1997; 89:655-67. [PMID: 9160756 PMCID: PMC3764491 DOI: 10.1016/s0092-8674(00)80246-9] [Citation(s) in RCA: 470] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a complementary approach to positional cloning, we used in vivo complementation with bacterial artificial chromosome (BAC) clones expressed in transgenic mice to identify the circadian Clock gene. A 140 kb BAC transgene completely rescued both the long period and the loss-of-rhythm phenotypes in Clock mutant mice. Analysis with overlapping BAC transgenes demonstrates that a large transcription unit spanning approximately 100,000 base pairs is the Clock gene and encodes a novel basic-helix-loop-helix-PAS domain protein. Overexpression of the Clock transgene can shorten period length beyond the wild-type range, which provides additional evidence that Clock is an integral component of the circadian pacemaking system. Taken together, these results provide a proof of principle that "cloning by rescue" is an efficient and definitive method in mice.
Collapse
Affiliation(s)
- M P Antoch
- National Science Foundation Center for Biological Timing, Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
523
|
King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL, Turek FW, Takahashi JS. Positional cloning of the mouse circadian clock gene. Cell 1997; 89:641-53. [PMID: 9160755 PMCID: PMC3815553 DOI: 10.1016/s0092-8674(00)80245-7] [Citation(s) in RCA: 1000] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We used positional cloning to identify the circadian Clock gene in mice. Clock is a large transcription unit with 24 exons spanning approximately 100,000 bp of DNA from which transcript classes of 7.5 and approximately 10 kb arise. Clock encodes a novel member of the bHLH-PAS family of transcription factors. In the Clock mutant allele, an A-->T nucleotide transversion in a splice donor site causes exon skipping and deletion of 51 amino acids in the CLOCK protein. Clock is a unique gene with known circadian function and with features predicting DNA binding, protein dimerization, and activation domains. CLOCK represents the second example of a PAS domain-containing clock protein (besides Drosophila PERIOD), which suggests that this motif may define an evolutionarily conserved feature of the circadian clock mechanism.
Collapse
Affiliation(s)
- D P King
- National Science Foundation Center for Biological Timing, Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
524
|
Stancheva I, Lucchini R, Koller T, Sogo JM. Chromatin structure and methylation of rat rRNA genes studied by formaldehyde fixation and psoralen cross-linking. Nucleic Acids Res 1997; 25:1727-35. [PMID: 9108154 PMCID: PMC146648 DOI: 10.1093/nar/25.9.1727] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
By using formaldehyde cross-linking of histones to DNA and gel retardation assays we show that formaldehyde fixation, similar to previously established psoralen photocross-linking, discriminates between nucleosome- packed (inactive) and nucleosome-free (active) fractions of ribosomal RNA genes. By both cross-linking techniques we were able to purify fragments from agarose gels, corresponding to coding, enhancer and promoter sequences of rRNA genes, which were further investigated with respect to DNA methylation. This approach allows us to analyse independently and in detail methylation patterns of active and inactive rRNA gene copies by the combination of Hpa II and Msp I restriction enzymes. We found CpG methylation mainly present in enhancer and promoter regions of inactive rRNA gene copies. The methylation of one single Hpa II site, located in the promoter region, showed particularly strong correlation with the transcriptional activity.
Collapse
Affiliation(s)
- I Stancheva
- Institute of Cell Biology, ETH-Honggerberg, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
525
|
Wu HK, Minden MD. Transcriptional activation of human LIM-HOX gene, hLH-2, in chronic myelogenous leukemia is due to a cis-acting effect of Bcr-Abl. Biochem Biophys Res Commun 1997; 233:806-12. [PMID: 9168938 DOI: 10.1006/bbrc.1997.6546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
DNA methylation plays an important role in gene regulation. A human LIM-HOX gene, namely hLH-2, was highly expressed in chronic myelogenous leukemia (CML) and located on chromosome 9q33-34.1, in the same region as the reciprocal translocation that creates the Bcr-Abl chimera of Philadelphia chromosome (H.-K. Wu et al., 1996, Oncogene 12, 1205-1212). To elucidate the mechanism of hLH-2 transcriptional activation, we studied the methylation status of hLH-2 in normal bone marrow and CML cells. When blots containing genomic DNA digested with Hpa II or Msp I were hybridized with full-length cDNA probe, it was discovered that hLH-2 was methylated in normal bone marrow cells in which hLH-2 was not expressed; in contrast, both alleles of the hLH-2 locus in CML cells were heavily hypomethylated. Furthermore, using a sensitive RT-PCR technique, we examined the expression of LH-2 in mouse x human hybrids and a wide array of mouse cell lines containing Abl or Bcr-Abl, and we failed to identify a consistent expression pattern in the cell lines tested. These results suggest that the transcriptional activation of hLH-2 in CML is likely due to a cis-acting effect, but not a trans-acting effect, of the Bcr-Abl fusion protein. Because hypomethylated genes generally are transcribed more efficiently than hypermethylated genes, the high level of hLH-2 mRNA in CML cells probably is a consequence of the low level of methylation of the gene in the leukemic cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- DNA Methylation
- DNA Primers/genetics
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Neoplastic
- Genes, Homeobox
- Homeodomain Proteins/genetics
- Humans
- Hybrid Cells
- LIM-Homeodomain Proteins
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Mice
- Oncogenes
- Polymerase Chain Reaction
- Transcription Factors/genetics
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- H K Wu
- Department of Medicine, Ontario Cancer Institute/Princess Margaret Hospital, Faculty of Medicine, University of Toronto, Canada
| | | |
Collapse
|
526
|
Abstract
This paper will explore emerging concepts related to alternative carcinogenic mechanisms of 'non-mutagenic,' and hence epigenetic, carcinogens that may heritably alter DNA methylation without changing the underlying DNA sequence. In this review, we will touch on the basic concepts of DNA methylation, and will elaborate in greater detail on related topics including chromatin condensation, and heterochromatin spreading that is well known to induce gene silencing by position effect variegation in Drosophila and other species. Data from our model transgenic G12 cell system will be presented to support our hypothesis that certain carcinogens, such as nickel, may be carcinogenic not primarily because of their overt mutability, but rather as the result of their ability to promote DNA hypermethylation of important cancer-related genes. We will conclude with a discussion of the broader relevance of our findings and its application to other so-called 'epigenetic' carcinogens.
Collapse
Affiliation(s)
- C B Klein
- Nelson Institute of Environmental Medicine, New York University Medical Center, NY 10016, USA
| | | |
Collapse
|
527
|
Abstract
Tumorigenesis begins with the disregulated growth of an abnormal cell that has acquired the ability to divide more rapidly than its normal counterparts (Nowell, P.C. (1976) Science, 194, 23-28 [1]). Alterations in global levels and regional changes in the patterns of DNA methylation are among the earliest and most frequent events known to occur in human cancers (Feinberg and Vogelstein (1983) Nature, 301, 89-92 ([2]); Gama-Sosa, M.A. et al. (1983) Nucleic Acids Res., 11, 6883-6894 ([3]); Jones, P.A. (1986) Cancer Res., 46, 461-466 [4]). These changes in methylation may impair the proper expression and/or function of cell-cycle regulatory genes and thus confer a selective growth advantage to affected cells. Developments in the field of cancer research over the past few years have led to an increased understanding of the role DNA methylation may play in tumorigenesis. Many of these studies have investigated two major mechanisms by which DNA methylation may lead to aberrant cell cycle control: (1) through the generation of transition mutations via deamination-driven events resulting in the inactivation of tumor suppressor genes, or (2) by altering levels of gene expression through epigenetic effects at CpG islands. The mechanisms by which the normal function of growth regulatory genes may become affected by the mutagenic and epigenetic properties of DNA methylation will be discussed in the framework of recent discoveries in the field.
Collapse
Affiliation(s)
- M L Gonzalgo
- Department of Biochemistry and Molecular Biology, USC/Norris Comprehensive Cancer Center, University of Southern California, School of Medicine, Los Angeles 90033, USA
| | | |
Collapse
|
528
|
Chen ZJ, Pikaard CS. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc Natl Acad Sci U S A 1997; 94:3442-7. [PMID: 9096413 PMCID: PMC20389 DOI: 10.1073/pnas.94.7.3442] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1996] [Accepted: 12/31/1996] [Indexed: 02/04/2023] Open
Abstract
Nucleolar dominance is an epigenetic phenomenon that describes the formation of nucleoli around rRNA genes inherited from only one parent in the progeny of an interspecific hybrid. Despite numerous cytogenetic studies, little is known about nucleolar dominance at the level of rRNA gene expression in plants. We used S1 nuclease protection and primer extension assays to define nucleolar dominance at a molecular level in the plant genus Brassica. rRNA transcription start sites were mapped in three diploids and in three allotetraploids (amphidiploids) and one allohexaploid species derived from these diploid progenitors. rRNA transcripts of only one progenitor were detected in vegetative tissues of each polyploid. Dominance was independent of maternal effect, ploidy, or rRNA gene dosage. Natural and newly synthesized amphidiploids yielded the same results, arguing against substantial evolutionary effects. The hypothesis that nucleolar dominance in plants is correlated with physical characteristics of rRNA gene intergenic spacers is not supported in Brassica. Furthermore, in Brassica napus, rRNA genes silenced in vegetative tissues were found to be expressed in all floral organs, including sepals and petals, arguing against the hypothesis that passage through meiosis is needed to reactivate suppressed genes. Instead, the transition of inflorescence to floral meristem appears to be a developmental stage when silenced genes can be derepressed.
Collapse
Affiliation(s)
- Z J Chen
- Biology Department, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
529
|
Onno M, Amiot L, Bertho N, Drenou B, Fauchet R. CpG methylation patterns in the 5' part of the nonclassical HLA-G gene in peripheral blood CD34+ cells and CD2+ lymphocytes. TISSUE ANTIGENS 1997; 49:356-64. [PMID: 9151387 DOI: 10.1111/j.1399-0039.1997.tb02763.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A dominant goal of research focused on the nonclassical human leukocyte antigen G (HLA-G) gene is to understand the molecular mechanism involved in its limited expression. In the present report, we examined DNA methylation as a potential regulatory mechanism of HLA-G transcription in two cell types of the adult lymphomyeloid lineage: CD2+ lymphocytes express several mRNA isoforms while transcripts are undetectable in CD34+ hematopoietic cells. The methylation status of 63 CpG sites in the promoter and in the 5' CpG island was established using bisulfite-treated genomic DNA sequencing. Methylation was first analyzed by the direct sequencing of bisulfite-treated and amplified products. The general patterns of CpG methylation in the 5' part of the gene were found to be similar for CD34+ cells and CD2+ lymphocytes: the distribution of methylation was not uniform across the 63 CpG sites. In the promoter region, both CpG dinucleotides were partially or fully methylated whereas in the CpG island, several CpG sites were totally demethylated. Unexpectedly, in HLA-G positive CD2+ lymphocytes, a great number of CpG dinucleotides displayed a higher frequency of methylation relative to that found in CD34+ cells. However, the sequence analysis of cloned products revealed that the molecules have different methylation patterns which suggests that the HLA-G gene is differentially expressed in CD2+ cells. Our results suggest that methylation is not the sole mechanism that achieves the repression of HLA-G transcription in immature CD34+ cells.
Collapse
Affiliation(s)
- M Onno
- University Laboratory for Hematology and Biology of Blood cells, University of Rennes I, France
| | | | | | | | | |
Collapse
|
530
|
Martin V, Ribieras S, Song-Wang XG, Lasne Y, Frappart L, Rio MC, Dante R. Involvement of DNA methylation in the control of the expression of an estrogen-induced breast-cancer-associated protein (pS2) in human breast cancers. J Cell Biochem 1997; 65:95-106. [PMID: 9138084 DOI: 10.1002/(sici)1097-4644(199704)65:1<95::aid-jcb10>3.0.co;2-g] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
pS2 gene has been used to investigate the relationship between alterations of DNA methylation patterns in human tumors and gene expression. The expression of pS2, which is transcriptionally controlled by estrogens in breast cancer cell lines, is restricted to estrogen-receptor-rich human breast tumors. We found that the CCGG site within the promoter/enhancer sequence of pS2 was hypomethylated in estrogen-receptor-rich breast tumors expressing this gene. The amount of DNA molecules unmethylated at this site was related to the amount of pS2 mRNA detected in the samples. The demethylation of this region, which contains the estrogen responsive element, was confirmed by genomic sequencing. Transient expression of functional human estrogen receptors stimulated the expression of the endogenous pS2 in HeLa cells, but failed, in BT-20 cells, to stimulate expression of this gene. Since the promoter/enhancer region of pS2 is unmethylated in HeLa cells and methylated in BT-20 cells, these data also support the hypothesis that DNA methylation might be involved in the control of pS2 expression.
Collapse
Affiliation(s)
- V Martin
- Laboratoire de Génétique, UMR 5641 CNRS, UCLB Lyon 1, France
| | | | | | | | | | | | | |
Collapse
|
531
|
Bockamp EO, McLaughlin F, Göttgens B, Murrell AM, Elefanty AG, Green AR. Distinct mechanisms direct SCL/tal-1 expression in erythroid cells and CD34 positive primitive myeloid cells. J Biol Chem 1997; 272:8781-90. [PMID: 9079714 DOI: 10.1074/jbc.272.13.8781] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The SCL/tal-1 gene (hereafter designated SCL) encodes a basic helix-loop-helix transcription factor which is pivotal for the normal development of all hematopoietic lineages and which is expressed in committed erythroid, mast, and megakaryocytic cells as well as in hematopoietic stem cells. The molecular basis for expression of SCL in stem cells and its subsequent modulation during lineage commitment is of fundamental importance for understanding how early "decisions" are made during hematopoiesis. We now compare the activity of SCL promoters 1a and 1b in erythroid cells and in CD34 positive primitive myeloid cells. SCL mRNA expression in CD34 positive myeloid cells did not require GATA-1. Promoter 1a activity was weak or absent in CD34 positive myeloid cells and appeared to correlate with the presence or absence of low levels of GATA-1. However, promoter 1b, which was silent in committed erythroid cells, was strongly active in transient assays using CD34 positive myeloid cells, and functioned in a GATA-independent manner. Interestingly, RNase protection assays demonstrated that endogenous promoter 1b was active in both erythroid and CD34 positive myeloid cells. These results demonstrate that fundamentally different mechanisms regulate the SCL promoter region in committed erythroid cells and in CD34 positive myeloid cells. Moreover these observations suggest that in erythroid, but not in CD34 positive myeloid cells, promoter 1b required integration in chromatin and/or additional sequences for its activity. Stable transfection experiments showed that both core promoters were silent following integration in erythroid or CD34 positive myeloid cells. Our data therefore indicate that additional regulatory elements were necessary for both SCL promoters to overcome chromatin-mediated repression.
Collapse
Affiliation(s)
- E O Bockamp
- University of Cambridge, Department of Haematology, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | | | |
Collapse
|
532
|
Lengauer C, Kinzler KW, Vogelstein B. DNA methylation and genetic instability in colorectal cancer cells. Proc Natl Acad Sci U S A 1997; 94:2545-50. [PMID: 9122232 PMCID: PMC20125 DOI: 10.1073/pnas.94.6.2545] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/1996] [Indexed: 02/04/2023] Open
Abstract
Apparent alterations in DNA methylation have been observed in many cancers, but whether such alterations represent a persistent alteration in the normal methylation process is not known. In this study, we report a striking difference in the expression of exogenously introduced retroviral genes in various colorectal cancer cell lines. Extinguished expression was associated with DNA methylation and could be reversed by treatment with the demethylating agent 5-azacytidine. A striking correlation between genetic instability and methylation capacity suggested that methylation abnormalities may play a role in chromosome segregation processes in cancer cells.
Collapse
Affiliation(s)
- C Lengauer
- Howard Hughes Medical Institute at The Johns Hopkins Oncology Center, Baltimore, MD 21231, USA
| | | | | |
Collapse
|
533
|
Stewart CL, Pedersen R, Rotwein P, Bestor T, Rastan S, Hastie N, Nichols R, Mutter G. NIEHS/EPA Workshops. Genomic imprinting. Reprod Toxicol 1997; 11:309-16. [PMID: 9100305 DOI: 10.1016/s0890-6238(96)00213-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C L Stewart
- Roche Institute of Molecular Biology, Department of Cell and Developmental Biology, Nutley, New Jersey, USA
| | | | | | | | | | | | | | | |
Collapse
|
534
|
Kass SU, Landsberger N, Wolffe AP. DNA methylation directs a time-dependent repression of transcription initiation. Curr Biol 1997; 7:157-65. [PMID: 9395433 DOI: 10.1016/s0960-9822(97)70086-1] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The regulation of DNA methylation is required for differential expression of imprinted genes during vertebrate development. Earlier studies that monitored the activity of the Herpes simplex virus (HSV) thymidine kinase (tk) gene after injection into rodent cells have suggested that assembly of chromatin influences the methylation-dependent repression of gene activity. Here, we examine the mechanism of methylation-dependent HSV tk gene regulation by direct determination of nucleoprotein organization during the establishment of a transcriptionally silenced state after microinjection of templates with defined methylation states into Xenopus oocyte nuclei. RESULTS The transcriptional silencing conferred by a methylated DNA segment was not immediate, as methylated templates were initially assembled into active transcription complexes. The eventual loss of DNase I hypersenitive sites and inhibition of transcription at the HSV tk promoter only occurred after several hours. Flanking methylated vector DNA silenced the adjacent unmethylated HSV tk promoter, indicative of a dominant transmissible repression originating from a center of methylation. The resulting repressive nucleoprotein structure silenced transcription in the presence of activators that are able to overcome repression of transcription by nucleosomes. CONCLUSIONS Silencing of transcription by DNA methylation is achieved at the level of transcription initiation and involves the removal of transcriptional machinery from active templates. This transcriptional repression can occur by indirect mechanisms involving the time-dependent assembly of repressive nucleoprotein complexes, which are able to inhibit transcription more effectively than nucleosomes alone.
Collapse
Affiliation(s)
- S U Kass
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892-5431, USA
| | | | | |
Collapse
|
535
|
Bookstein R, Bova GS, MacGrogan D, Levy A, Isaacs WB. Tumour-suppressor genes in prostatic oncogenesis: a positional approach. BRITISH JOURNAL OF UROLOGY 1997; 79 Suppl 1:28-36. [PMID: 9088270 DOI: 10.1111/j.1464-410x.1997.tb00798.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic alterations, such as mutation, methylation and aneuploidy, are thought to underlie the multistep genesis and progression of many human cancers. However, the genetic events occurring in prostatic oncogenesis are still relatively poorly understood. This is especially so in early-stage tumours, in which mutations of known oncogenes or tumour-suppressor genes appear to be quite infrequent. Allelic losses of chromosome arms 7q, 8p, 10, 16q and 18q suggest the involvement of novel suppressor loci on these chromosomes; allelic losses of chromosome arm 8p are especially frequent and may be detected even in early-stage tumours. We have used a positional approach to seek novel genetic targets in prostate cancer, including allelic-loss mapping of chromosome 8p and physical mapping of chromosome band 8p22 around the MSR gene. A homozygous somatic deletion in one prostatic nodal metastasis was mapped in this region and spanned 730-970 kb. This region was then examined in detail for expressed sequences. One novel gene, called N33, was found to be silenced by a methylation mechanism in most colon cancer cell lines and some primary colorectal tumours. Characterization of additional chromosome 8p22 candidates is in progress.
Collapse
|
536
|
Affiliation(s)
- L H Looijenga
- Dr. Daniel den Hoed Cancer Center, University Hospital Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|
537
|
Bai G, Kusiak JW. Nerve growth factor up-regulates the N-methyl-D-aspartate receptor subunit 1 promoter in PC12 cells. J Biol Chem 1997; 272:5936-42. [PMID: 9038213 DOI: 10.1074/jbc.272.9.5936] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The N-methyl-D-aspartate (NMDA) subtype of glutamate receptor plays important roles in synaptic plasticity, the induction of long term potentiation, and excitotoxicity. Mechanisms governing the regulation of expression of its subunit genes remain largely unknown. The promoter of the essential subunit of the NMDA receptor heteromer, NMDAR1, contains DNA binding elements recognized by the nerve growth factor-inducible/early growth reaction factor (NGFI/Egr) family of transcription factors that are rapidly induced by neurotrophins, such as nerve growth factor (NGF). This study examined the effect of NGF on the activity of the N-methyl-D-aspartate receptor subunit 1 (NMDAR1) promoter/luciferase reporter constructs in PC12 cells, which contain the high affinity TrkA receptor for NGF and the low affinity p75(NTR) receptor for neurotrophins. NGF up-regulated the activity of the NMDAR1 promoter by 3-4-fold in a time- and dose-dependent manner. 5' deletional analysis of the promoter indicated that the responsive element(s) resides in the proximal region containing GSG and Sp1 sites. Mutational analysis of these sites revealed that both were important for NGF regulation. Transient expression of Egr-1 increased activity of the wild type promoter but failed to increase activity of a GSG mutant promoter. Other neurotrophins did not activate the promoter, while K-252a inhibited the action of NGF. These results suggest that the NGF effect is mediated by the high affinity NGF receptor, Trk A and that neurotrophin binding to the low affinity neurotrophin receptor, p75(NTR), alone does not affect the promoter activity. Our results suggest that NGF is able to up-regulate the activity of the NMDAR1 promoter and may play a role in controlling the expression levels of NMDA receptors.
Collapse
Affiliation(s)
- G Bai
- Molecular Neurobiology Unit, Gerontology Research Center, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA.
| | | |
Collapse
|
538
|
Kuromitsu J, Yamashita H, Kataoka H, Takahara T, Muramatsu M, Sekine T, Okamoto N, Furuichi Y, Hayashizaki Y. A unique downregulation of h2-calponin gene expression in Down syndrome: a possible attenuation mechanism for fetal survival by methylation at the CpG island in the trisomic chromosome 21. Mol Cell Biol 1997; 17:707-12. [PMID: 9001224 PMCID: PMC231796 DOI: 10.1128/mcb.17.2.707] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To understand the effect of trisomic chromosome 21 on the cause of Down syndrome (DS), DNA methylation in the CpG island, which regulates the expression of adjacent genes, was investigated with the DNAs of chromosome 21 isolated from DS patients and their parents. A methylation-sensitive enzyme, BssHII, was used to digest DNAs of chromosome 21, and the resulting DNA fragments were subjected to RLGS (restriction landmark genomic scanning). Surprisingly, the CpG island of the h2-calponin gene was shown to be specifically methylated by comparative studies with RLGS and Southern blot analysis. In association with this methylation, h2-calponin gene expression was attenuated to the normal level, although other genes in the DS region of chromosome 21 were expressed dose dependently at 1.5 times the normal level. These results and the high miscarriage rate associated with trisomy 21 embryos imply that the altered in vivo methylation that attenuates downstream gene expression, which is otherwise lethal, permits the generation of DS neonates. The h2-calponin gene detected by the RLGS procedure may be one such gene that is attenuated.
Collapse
Affiliation(s)
- J Kuromitsu
- Genome Science Laboratory, RIKEN Tsukuba Life Science Center, The Institute of Physical and Chemical Research (RIKEN), Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
539
|
Jeppesen P. Histone acetylation: a possible mechanism for the inheritance of cell memory at mitosis. Bioessays 1997; 19:67-74. [PMID: 9008418 DOI: 10.1002/bies.950190111] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunofluorescent labelling demonstrates that human metaphase chromosomes contain hyperacetylated histone H4. With the exception of the inactive X chromosome in female cells, where the bulk of histone H4 is underacetylated, H4 hyperacetylation is non-uniformly distributed along the chromosomes and clustered in cytologically resolvable chromatin domains that correspond, in general, with the R-bands of conventional staining. The strongest immunolabelling is often found in T-bands, the subset of intense R-bands having the highest GC content. The majority of mapped genes also occurs in R-band regions, with the highest gene density in T-bands. These observations are consistent with a model in which hyperacetylation of histone H4 marks the position of potentially active gene sequences on metaphase chromosomes. Since acetylation is maintained during mitosis, progeny cells receive an imprint of the histone H4 acetylation pattern that was present on the parental chromosomes before cell division. Histone acetylation could provide a mechanism for propagating cell memory, defined as the maintenance of committed states of gene expression through cell lineages.
Collapse
Affiliation(s)
- P Jeppesen
- MRC Human Genetics Unit, Western General Hospital, Edinburgh, Scotland, UK
| |
Collapse
|
540
|
Stopper H, Eckert I, Wagener P, Schulz WA. Formation of micronuclei and inhibition of topoisomerase II in the comet assay in mammalian cells with altered DNA methylation. Recent Results Cancer Res 1997; 143:183-93. [PMID: 8912419 DOI: 10.1007/978-3-642-60393-8_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H Stopper
- Department of Toxicology, University of Würzburg, Germany
| | | | | | | |
Collapse
|
541
|
Growth repression of yeast and fungus by bacterial DNAs: A possible physiological function of DNA other than as a carriage of genetic information. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0922-338x(97)81905-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
542
|
Cheng P, Schmutte C, Cofer KF, Felix JC, Yu MC, Dubeau L. Alterations in DNA methylation are early, but not initial, events in ovarian tumorigenesis. Br J Cancer 1997; 75:396-402. [PMID: 9020485 PMCID: PMC2063379 DOI: 10.1038/bjc.1997.64] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We compared global levels of DNA methylation as well as methylation of a specific locus (MyoD1) in ovarian cystadenomas, ovarian tumours of low malignant potential (LMP) and ovarian carcinomas to investigate the association between changes in DNA methylation and ovarian tumour development. As we realized that cystadenomas showed different methylation patterns from both LMP tumours and carcinomas, we verified their monoclonal origin as a means of confirming their true neoplastic nature. High-pressure liquid chromatographic (HPLC) analyses showed that global methylation levels in LMP tumours and carcinomas were 21% and 25% lower than in cystadenomas respectively (P = 0.0001 by one-way variance analysis). Changes in the methylation status of the MyoD1 locus were not seen in any of ten cystadenomas analysed but were present in five of ten LMP tumours and in five of ten carcinomas (P = 0.03). These findings suggest that alterations in DNA methylation are absent (or at least not as extensive) in ovarian cystadenomas, but are present in LMP tumours, the phenotypic features of which are intermediate between those of benign and malignant ovarian tumours. The results also emphasize the merit of distinguishing ovarian LMP tumours from cystadenomas, in spite of their similar clinical characteristics.
Collapse
Affiliation(s)
- P Cheng
- Department of Gynecologic Oncology, USC/Norris Comprehensive Cancer Center, University of Southern California School of Medicine, Los Angeles 90033-0800, USA
| | | | | | | | | | | |
Collapse
|
543
|
Penix LA, Sweetser MT, Weaver WM, Hoeffler JP, Kerppola TK, Wilson CB. The proximal regulatory element of the interferon-gamma promoter mediates selective expression in T cells. J Biol Chem 1996; 271:31964-72. [PMID: 8943243 DOI: 10.1074/jbc.271.50.31964] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Interferon-gamma (IFN-gamma) is produced by natural killer cells and certain subsets of T cells, but the basis for its selective expression is unknown. Within the region between -108 and -40 base pairs of the IFN-gamma promoter are two conserved and essential regulatory elements, which confer activation-specific expression in T cells. This report describes studies indicating that the most proximal of these two regulatory elements is an important determinant of its restricted expression. The proximal element is a composite site that binds members of the CREB/ATF, AP-1, and octamer families of transcription factors. Jun is essential for activation-induced transcription and binds preferably as a heterodimer with ATF-2. In contrast, CREB appears to dampen transcription from this element. The CpG dinucleotide in this element is selectively methylated in Th2 T cells and other cells that do not express IFN-gamma, and methylation markedly reduces transcription factor binding. As a target for DNA methylation and for binding of transcription factors that mediate or impede transcription, this element appears to play a central role in controlling IFN-gamma expression.
Collapse
Affiliation(s)
- L A Penix
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520-8064, USA.
| | | | | | | | | | | |
Collapse
|
544
|
Abstract
The modification of DNA by cytosine methylation is crucial for normal development. DNA methylation patterns are distinctive between tissues and are maintained with high fidelity during cell division. DNA methylation probably exerts its effects through alterations in chromatin structure, with a resultant effect on genetic transcription. 5-methylcytosine is also prone to spontaneous hydrolytic deamination to thymine. Whilst most G:T mismatches so produced are repaired, failure of mismatch repair leads to established mutation. Indeed, mutations that are the result of 5-methylcytosine transitions account for a disproportionate number of genetic mutations described in malignant and non-malignant disease. There is also evidence for substantial deregulation of DNA methylation in malignancy. Whether this deregulation is crucial for the transformation process, or simply an epiphenomenon associated with it, is still not established.
Collapse
Affiliation(s)
- B H Ramsahoye
- Department of Haematology, University of Wales College of Medicine, Health Park, Cardiff, UK
| | | | | |
Collapse
|
545
|
Affiliation(s)
- R J Papac
- Section of Medical Oncology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
546
|
Lund A, Duch M, Pedersen F. Transcriptional Silencing of Retroviral Vectors. J Biomed Sci 1996; 3:365-378. [PMID: 11725119 DOI: 10.1007/bf02258042] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Although retroviral vector systems have been found to efficiently transduce a variety of cell types in vitro, the use of vectors based on murine leukemia virus in preclinical models of somatic gene therapy has led to the identification of transcriptional silencing in vivo as an important problem. Extinction of long-term vector expression has been observed after implantation of transduced hematopoietic cells as well as fibroblasts, myoblasts and hepatocytes. Here we review the influence of vector structure, integration site and cell type on transcriptional silencing. While down-regulation of proviral transcription is known from a number of cellular and animal models, major insight has been gained from studies in the germ line and embryonal cells of the mouse. Key elements for the transfer and expression of retroviral vectors, such as the viral transcriptional enhancer and the binding site for the tRNA primer for reverse transcription may have a major influence on transcriptional silencing. Alterations of these elements of the vector backbone as well as the use of internal promoter elements from housekeeping genes may contribute to reduce transcriptional silencing. The use of cell culture and animal models in the testing and improvement of vector design is discussed. Copyright 1996 S. Karger AG, Basel
Collapse
Affiliation(s)
- A.H. Lund
- Department of Molecular and Structural Biology, University of Aarhus, Denmark
| | | | | |
Collapse
|
547
|
Thomas CP, Doggett NA, Fisher R, Stokes JB. Genomic organization and the 5' flanking region of the gamma subunit of the human amiloride-sensitive epithelial sodium channel. J Biol Chem 1996; 271:26062-6. [PMID: 8824247 DOI: 10.1074/jbc.271.42.26062] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The amiloride-sensitive epithelial sodium channel (ENaC) complex is made up of at least three different subunits alpha, beta, and gamma, which are developmentally regulated, selectively expressed, and variously up-regulated by steroid hormones. To understand mechanisms involved in regulation of the gamma subunit, we have determined the structure of the human gammaENaC gene. By 5' rapid amplification of cDNA ends, primer extension analysis, and nuclease protection assay, we identified transcription start sites in human brain, kidney, and lung. A human genomic library was screened and overlapping cosmid clones that span approximately 50 kilobases and contain the hgammaENaC gene were identified. The 5'-untranslated region is 141 bases long, and the translation start codon is contained within the second exon. The human gene spans at least 35 kilobases. The 5' end of the gene including portions of 5' flanking genomic DNA and the first intron are G + C rich and contain several CpG dinucleotides, consistent with a CpG island. The 5' flanking region contains no CCAAT or TATA-like elements but does contain two GC boxes as well as several putative transcription factor binding sites including AP-2, Sp1, CRE, PEA-3, and NF-IL6. This is the first description of the structural organization and the 5' flanking region of a member of the epithelial sodium channel complex.
Collapse
Affiliation(s)
- C P Thomas
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242-1081, USA
| | | | | | | |
Collapse
|
548
|
Tamir S, Tannenbaum SR. The role of nitric oxide (NO.) in the carcinogenic process. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1288:F31-6. [PMID: 8876631 DOI: 10.1016/0304-419x(96)00021-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The inflammatory process has long been known to be a risk factor for human cancers, particularly of the lung, bladder, colon, stomach, and female breast. Earlier hypothesis cited production of oxygen radicals, release of cytokines, and synthesis of prostaglandins and leukotrienes as biochemical modulators of the carcinogenic process. The discovery of NO. as a product of cells in the immune system has implicated this chemical in the mechanism of carcinogenesis, particularly when NO. is overproduced over a long period of time. After briefly reviewing the important chemical reactions of NO. under physiological conditions, we examine how the chemistry of its key reactants toward biologically important molecules relate to DNA damage and cytotoxicity. In these two processes, NO may play an important role in currently accepted models of multistage carcinogenesis.
Collapse
Affiliation(s)
- S Tamir
- Massachusetts Institute of Technology, Division of Toxicology, Cambridge, MA 02139-4307, USA
| | | |
Collapse
|
549
|
Abstract
Over the past few decades, the life expectancy of patients with sickle cell disease has improved. This has been because of better supportive care and greater awareness of the complications of this disorder. Recent successes of neonatal screening, childhood prophylactic penicillin, and, perhaps, hydroxyurea in adults may further extend the life of sickle cell disease patients. This review will do the following: 1) briefly highlight the major aspects of the conventional treatment of sickle cell disease, 2) address the present use of hydroxyurea in more depth, and 3) succinctly preview what the near-term future of treatment may bring.
Collapse
|
550
|
|