501
|
Mårild K, Stephansson O, Montgomery S, Murray JA, Ludvigsson JF. Pregnancy outcome and risk of celiac disease in offspring: a nationwide case-control study. Gastroenterology 2012; 142:39-45.e3. [PMID: 21995948 PMCID: PMC3244504 DOI: 10.1053/j.gastro.2011.09.047] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 09/05/2011] [Accepted: 09/19/2011] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Studies on pregnancy characteristics and mode of delivery and risk of later celiac disease in offspring are inconsistent. In recent decades rates of cesarean delivery and preterm birth survival have increased while at the same time the prevalence of celiac disease has doubled. METHODS In this population-based case-control study we examined the risk of celiac disease in individuals exposed to cesarean delivery and adverse fetal events (ie, low Apgar score, small for gestational age, low birth weight, preterm birth, and neonatal infections). Prospectively recorded pregnancy data were obtained from the Swedish Medical Birth Register between 1973 and 2008. Study participants consisted of 11,749 offspring with biopsy-verified celiac disease identified through histopathology reports from Sweden's 28 pathology departments, and 53,887 age- and sex-matched controls from the general population. RESULTS We found a positive association between elective cesarean delivery and later celiac disease (adjusted odds ratio [OR], 1.15; 95% confidence interval [CI], 1.04-1.26), but no increased risk of celiac disease after emergency (adjusted OR, 1.02; 95% CI, 0.92-1.13) or any cesarean delivery (adjusted OR, 1.06; 95% CI, 0.99-1.13). Infants born small for gestational age were at a 21% increased risk of celiac disease (95% CI, 1.09-1.35), whereas other pregnancy exposures did not increase the risk of future celiac disease. CONCLUSIONS The positive association with elective, but not emergency, cesarean delivery is consistent with the hypothesis that the bacterial flora of the newborn plays a role in the development of celiac disease.
Collapse
Affiliation(s)
- Karl Mårild
- Astrid Lindgren Children's Hospital, Solna, Sweden.
| | - Olof Stephansson
- Clinical Epidemiology Unit and Department of Women’s and Children’s Health, Karolinska University Hospital and Institutet, Stockholm, Sweden.
| | - Scott Montgomery
- Clinical Epidemiology Unit and Department of Women’s and Children’s Health, Karolinska University Hospital and Institutet, Stockholm, Sweden.
,Clinical Epidemiology and Biostatistics Unit, Örebro University Hospital, Örebro University, Örebro, Sweden.
| | - Joseph A Murray
- Division of Gastroenterology and Hepatology, Departments of Medicine and Immunology, Mayo Clinic College of Medicine, Rochester, USA
| | - Jonas F Ludvigsson
- Clinical Epidemiology Unit and Department of Women’s and Children’s Health, Karolinska University Hospital and Institutet, Stockholm, Sweden.
,Department of Pediatrics, Örebro University Hospital, Sweden
| |
Collapse
|
502
|
Tanoue T, Honda K. Induction of Treg cells in the mouse colonic mucosa: a central mechanism to maintain host-microbiota homeostasis. Semin Immunol 2011; 24:50-7. [PMID: 22172550 DOI: 10.1016/j.smim.2011.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD4+ regulatory T (Treg) cells expressing the transcription factor forkhead box P3 (Foxp3) play a critical role in maintaining immunological homeostasis. Treg cells are highly abundant in the mouse intestinal lamina propria, particularly in the colon. Recent studies using germ-free and gnotobiotic mice have revealed that specific components of the intestinal microbiota influence the number and function of Treg cells. Substantial changes in the composition of microbiota have been associated with inflammatory bowel disease. In this review, we will discuss recent findings that associate intestinal microbiota in mice with Treg responses and with the maintenance of intestinal immune homeostasis.
Collapse
Affiliation(s)
- Takeshi Tanoue
- Department of Immunology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
503
|
The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol 2011; 12:9-23. [PMID: 22158411 DOI: 10.1038/nri3112] [Citation(s) in RCA: 377] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mucosal surfaces of the gut and airways have important barrier functions and regulate the induction of immunological tolerance. The rapidly increasing incidence of chronic inflammatory disorders of these surfaces, such as inflammatory bowel disease and asthma, indicates that the immune functions of these mucosae are becoming disrupted in humans. Recent data indicate that events in prenatal and neonatal life orchestrate mucosal homeostasis. Several environmental factors promote the perinatal programming of the immune system, including colonization of the gut and airways by commensal microorganisms. These complex microbial-host interactions operate in a delicate temporal and spatial manner and have an important role in the induction of homeostatic mechanisms.
Collapse
|
504
|
Serum sTREM-1 as a surrogate marker of treatment outcome in patients with peptic ulcer disease. Dig Dis Sci 2011; 56:3590-5. [PMID: 21633832 DOI: 10.1007/s10620-011-1761-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 05/14/2011] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) is elevated in the gastric juice and in cultures of gastric mucosa of patients with peptic ulcer disease (PUD). Its application as a surrogate marker for the treatment of PUD was assessed. METHODS From 138 eligible patients, 96 were enrolled; 50 with duodenal ulcer, 29 with gastric ulcer and 17 with chronic gastritis. Patients were endoscoped twice; once before treatment and once after treatment. Biopsy specimens were collected for histopathologic estimation of gastritis. Blood was sampled prior to each endoscopy. Serum was collected and sTREM-1 was measured by an enzyme immunoabsorbent assay ( http://www.clinicaltrials.gov identifier NCT00534443). RESULTS At the end of treatment sTREM-1 was either: (a) below the limit of detection (this occurred in 62 patients and it was accompanied by lacks signs of residual disease in 58 patients, 93.5%); or (b) above the limit of detection (this occurred in 17 patients and it was accompanied by residual disease in 14 patients, 82.3%) (p < 0.0001). Odds ratio for complete healing of peptic ulcer with sTREM-1 below detection limit was 5.30 (95% CI: 1.89-14.83, p < 0.001) compared to serum sTREM-1 above the limit of detection. CONCLUSIONS Serum sTREM-1 below detection limit may effectively distinguish patients who successfully completed therapy for PUD from those with residual disease and apply as a surrogate marker.
Collapse
|
505
|
Melenhorst JJ, Tian X, Xu D, Sandler NG, Scheinberg P, Biancotto A, Scheinberg P, McCoy JP, Hensel NF, McIver Z, Douek DC, Barrett AJ. Cytopenia and leukocyte recovery shape cytokine fluctuations after myeloablative allogeneic hematopoietic stem cell transplantation. Haematologica 2011; 97:867-73. [PMID: 22133778 DOI: 10.3324/haematol.2011.053363] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation is associated with profound changes in levels of various cytokines. Emphasis has been placed on conditioning-associated mucosal damage and neutropenia and associated bacterial translocation as the initiating conditions predisposing to acute graft-versus-host disease. The post-transplant period is, however, also associated with increases in certain homeostatic cytokines. It is unclear how much the homeostatic drive to lymphocyte recovery and the production of cytokines from the engrafting donor immune system determine cytokine fluctuations in the peri- and immediate post-transplant period. The aim of this study was to examine the contributions of the conditioning regimen, donor engraftment, infections, and graft-versus-host disease to fluctuations in cytokines involved in homeostasis and inflammation. DESIGN AND METHODS We examined the levels of 33 cytokines in relation to peri- and post-transplant events such as conditioning regimen, chimerism, and acute graft-versus-host disease in myeloablative, non-T cell-replete HLA-identical sibling donor stem cell transplantation for hematologic malignancies. RESULTS We identified two cytokine storms. The first occurred following conditioning and reached peak levels when all the leukocytes were at their lowest concentrations. The second cytokine storm occurred concurrently with hematopoietic reconstitution and subsided with the achievement of full donor lymphocyte chimerism. CONCLUSIONS Our results indicate that both recipient-related and donor-related factors contribute to the changes in cytokine levels in the recipient following allogeneic hematopoietic stem cell transplantation. The study reported here was performed using plasma samples drawn from patients enrolled in the ClinicalTrials.gov-registered trials NCT00467961 and NCT00378534.
Collapse
Affiliation(s)
- Jan Joseph Melenhorst
- Hematology Branch, National Heart, Lung, and Blood Institute, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
506
|
Martin R, Nauta AJ, Ben Amor K, Knippels LMJ, Knol J, Garssen J. Early life: gut microbiota and immune development in infancy. Benef Microbes 2011; 1:367-82. [PMID: 21831776 DOI: 10.3920/bm2010.0027] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immune system of infants is actively downregulated during pregnancy and therefore the first months of life represent a period of heightened susceptibility to infection. After birth, there is an age-dependent maturation of the immune system. Exposure to environmental microbial components is suggested to play an important role in the maturation process. The gastrointestinal tract is the major site of interaction between the host immune system and microorganisms, both commensal as well as potentially pathogenic. It is well established that the mammalian immune system is designed to help protect the host from invading microorganisms and other danger signals. However, recent research is emerging in the field of host-microbe interactions showing that commensal microorganisms (microbiota) are most likely one of the drivers of immune development and, in turn the immune system shapes the composition of the microbiota. Specific early microbial exposure of the gut is thought to dramatically reduce the incidence of inflammatory, autoimmune and atopic diseases further fuelling the scientific view that microbial colonisation plays an important role in regulating and fine-tuning the immune system throughout life. Therefore, the use of pre-, pro- and synbiotics may result in a beneficial microbiota composition that might have a pivotal role on the prevention of several important diseases that develop in early life such as necrotizing enterocolitis and atopic eczema.
Collapse
Affiliation(s)
- R Martin
- Danone Research, Center for Specialised Nutrition, P.O. Box 7005, 6700 CA Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
507
|
|
508
|
Abstract
Polymorphisms in NOD2, encoding an intracellular pattern recognition receptor, contribute the largest fraction of genetic risk for Crohn's disease among the >40 risk loci identified so far. Autophagy plays a prominent role in the innate immune response towards intracellular bacteria. The discovery of the autophagy genes ATG16L1 and IRGM as risk factors for Crohn's disease turned autophagy into the spotlight in inflammatory bowel disease (IBD). Remarkably, NOD2 has recently been identified as a potent autophagy inducer. A physical interaction of NOD2 and ATG16L1 appears to be required for autophagic clearance of intracellular pathogens. Moreover, Crohn's disease-associated NOD2 and ATG16L1 variants exhibit a defect in the induction of an autophagic response and hence predict autophagy as a key converging mechanism that leads to Crohn's disease. Another pathway that is closely intertwined with autophagy and mutually cross-regulated is the unfolded protein response (UPR), which is induced by endoplasmic reticulum (ER) stress. Genes involved in the UPR (XBP1, ORMDL3) have also been genetically associated with Crohn's disease and ulcerative colitis. Moreover, the intestinal epithelium at the interface between host and microbe appears particularly affected by IBD-associated hypomorphic function of autophagy and the UPR. The functional convergence of main genetic risk factors for IBD on these innate immune pathways has hence important implications for the host's interaction with the microbiota. Moreover, the genetic convergence on these molecular mechanisms may open novel therapeutic options for IBD that deserve further exploration.
Collapse
Affiliation(s)
- Teresa Fritz
- Department of Medicine II (Gastroenterology & Hepatology), Innsbruck Medical University, Innsbruck, Austria
| | - Lukas Niederreiter
- Department of Medicine II (Gastroenterology & Hepatology), Innsbruck Medical University, Innsbruck, Austria
| | - Timon Adolph
- Department of Medicine II (Gastroenterology & Hepatology), Innsbruck Medical University, Innsbruck, Austria
| | - Richard S Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Dept of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arthur Kaser
- Department of Medicine II (Gastroenterology & Hepatology), Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
509
|
Bevins CL, Salzman NH. The potter's wheel: the host's role in sculpting its microbiota. Cell Mol Life Sci 2011; 68:3675-85. [PMID: 21968920 PMCID: PMC3222938 DOI: 10.1007/s00018-011-0830-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 02/08/2023]
Abstract
Animals, ranging from basal metazoans to primates, are host to complex microbial ecosystems; engaged in a symbiotic relationship that is essential for host physiology and homeostasis. Epithelial surfaces vary in the composition of colonizing microbiota as one compares anatomic sites, developmental stages and species origin. Alterations of microbial composition likely contribute to susceptibility to several distinct diseases. The forces that shape the colonizing microbial composition are the focus of much current investigation, and it is evident that there are pressures exerted both by the host and the external environment to mold these ecosystems. The focus of this review is to discuss recent studies that demonstrate the critical importance of host factors in selecting for its microbiome. Greater insight into host-microbiome interactions will be essential for understanding homeostasis at mucosal surfaces, and developing useful interventions when homeostasis is disrupted.
Collapse
Affiliation(s)
- Charles L. Bevins
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA 95616 USA
| | - Nita H. Salzman
- Division of Gastroenterology, Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226 USA
| |
Collapse
|
510
|
Kaser A, Niederreiter L, Blumberg RS. Genetically determined epithelial dysfunction and its consequences for microflora-host interactions. Cell Mol Life Sci 2011; 68:3643-9. [PMID: 21984606 PMCID: PMC4592146 DOI: 10.1007/s00018-011-0827-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 09/07/2011] [Accepted: 09/07/2011] [Indexed: 12/18/2022]
Abstract
The intestinal epithelium forms a highly active functional interface between the relatively sterile internal body surfaces and the enormously complex and diverse microbiota that are contained within the lumen. Genetic models that allow for manipulation of genes specifically in the intestinal epithelium have provided an avenue to understand the diverse set of pathways whereby intestinal epithelial cells (IECs) direct the immune state of the mucosa associated with homeostasis versus either productive or non-productive inflammation as occurs during enteropathogen invasion or inflammatory bowel disease (IBD), respectively. These pathways include the unfolded protein response (UPR) induced by stress in the endoplasmic reticulum (ER), autophagy, a self-cannibalistic pathway important for intracellular bacterial killing and proper Paneth cell function as well as the interrelated functions of NOD2/NF-κB signaling which also regulate autophagy induction. Multiple genes controlling these IEC pathways have been shown to be genetic risk factors for human IBD. This highlights the importance of these pathways not only for proper IEC function but also suggesting that IECs may be one of the cellular originators of organ-specific and systemic inflammation as in IBD.
Collapse
Affiliation(s)
- Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Level 5, Box 157, Hills Road, Cambridge, CB2 0QQ UK
| | - Lukas Niederreiter
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Level 5, Box 157, Hills Road, Cambridge, CB2 0QQ UK
| | - Richard S. Blumberg
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115 USA
| |
Collapse
|
511
|
Karrasch T, Spaeth T, Allard B, Jobin C. PI3K-dependent GSK3ß(Ser9)-phosphorylation is implicated in the intestinal epithelial cell wound-healing response. PLoS One 2011; 6:e26340. [PMID: 22039465 PMCID: PMC3198390 DOI: 10.1371/journal.pone.0026340] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/25/2011] [Indexed: 01/12/2023] Open
Abstract
Introduction The ability of the intestinal epithelial barrier to respond to various injurious insults is an essential component of intestinal homeostasis. However, the molecular mechanisms responsible for wound-healing and repair in the intestine are poorly understood. The glycogen synthase kinase 3ß (GSK3ß) has been implicated in various biological processes such as cellular motility, cell spreading and recently inflammation. Aim To investigate the role of GSK3ß in intestinal epithelial cell restitution. Methods Rat intestinal epithelial IEC18 cells were serum-starved for 16 to 24h and wounded by multiple scraping. Akt(Ser473)-, GSK3ß(Ser9)- and RelA(Ser536)-phosphorylation were determined by Western blot using specific phospho-antibodies. The inhibitors AG1478 (1 µM) and Ly294002 (25 µM) were used to block EGF-R autophosphorylation and PI3K-activation, respectively. ß-catenin/LEF/TCF dependent transcription was determined by reporter gene assay (TOP/FOP system). C-myc gene expression was evaluated by real-time RT-PCR. GSK3ß−/− mouse embryonic fibroblasts were used to characterize the role of GSK3ß in wounding-induced cell migration. Results Wounding induced GSK3ß(Ser9) phosphorylation in IEC-18 cells, which led to ß-catenin accumulation as well as nuclear translocation of ß-catenin. ß-catenin stabilization/nuclear translocation led to enhanced LEF-TCF transcriptional activity and subsequent c-myc mRNA accumulation in wounded cell monolayers. Blocking PI3K/Akt signaling with Ly294002 prevented wound-induced GSK3ß(Ser9) phosphorylation as well as ß-catenin nuclear translocation and significantly attenuated restitution. Additionally, wounding induced rapid NF-kB(Ser536) phosphorylation, which was inhibited by AG1478, but not by Ly294002. GSK3ß−/− cells demonstrated significantly attenuated wound-induced restitution compared to wild-type cells. Conclusion We conclude that PI3K-mediated GSK3ß phosphorylation is involved in the intestinal epithelial wound-healing response. Phosphorylation of GSK3ß may be important for intestinal restitution by promoting cell motility in response to wounding.
Collapse
Affiliation(s)
- Thomas Karrasch
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|
512
|
Kuss SK, Best GT, Etheredge CA, Pruijssers AJ, Frierson JM, Hooper LV, Dermody TS, Pfeiffer JK. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 2011; 334:249-52. [PMID: 21998395 PMCID: PMC3222156 DOI: 10.1126/science.1211057] [Citation(s) in RCA: 465] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Intestinal bacteria aid host health and limit bacterial pathogen colonization. However, the influence of bacteria on enteric viruses is largely unknown. We depleted the intestinal microbiota of mice with antibiotics before inoculation with poliovirus, an enteric virus. Antibiotic-treated mice were less susceptible to poliovirus disease and supported minimal viral replication in the intestine. Exposure to bacteria or their N-acetylglucosamine-containing surface polysaccharides, including lipopolysaccharide and peptidoglycan, enhanced poliovirus infectivity. We found that poliovirus binds lipopolysaccharide, and exposure of poliovirus to bacteria enhanced host cell association and infection. The pathogenesis of reovirus, an unrelated enteric virus, also was more severe in the presence of intestinal microbes. These results suggest that antibiotic-mediated microbiota depletion diminishes enteric virus infection and that enteric viruses exploit intestinal microbes for replication and transmission.
Collapse
Affiliation(s)
- Sharon K Kuss
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
513
|
Hall JA, Grainger JR, Spencer SP, Belkaid Y. The role of retinoic acid in tolerance and immunity. Immunity 2011; 35:13-22. [PMID: 21777796 DOI: 10.1016/j.immuni.2011.07.002] [Citation(s) in RCA: 420] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Indexed: 01/17/2023]
Abstract
Vitamin A elicits a broad array of immune responses through its metabolite, retinoic acid (RA). Recent evidence indicates that loss of RA leads to impaired immunity, whereas excess RA can potentially promote inflammatory disorders. In this review, we discuss recent advances showcasing the crucial contributions of RA to both immunological tolerance and the elicitation of adaptive immune responses. Further, we provide a comprehensive overview of the cell types and factors that control the production of RA and discuss how host perturbations may affect the ability of this metabolite to control tolerance and immunity or to instigate pathology.
Collapse
Affiliation(s)
- Jason A Hall
- Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
514
|
Abstract
The microbiome is a complex community of Bacteria, Archaea, Eukarya, and viruses that infect humans and live in our tissues. It contributes the majority of genetic information to our metagenome and, consequently, influences our resistance and susceptibility to diseases, especially common inflammatory diseases, such as type 1 diabetes, ulcerative colitis, and Crohn's disease. Here we discuss how host-gene-microbial interactions are major determinants for the development of these multifactorial chronic disorders and, thus, for the relationship between genotype and phenotype. We also explore how genome-wide association studies (GWAS) on autoimmune and inflammatory diseases are uncovering mechanism-based subtypes for these disorders. Applying these emerging concepts will permit a more complete understanding of the etiologies of complex diseases and underpin the development of both next-generation animal models and new therapeutic strategies for targeting personalized disease phenotypes.
Collapse
Affiliation(s)
- Herbert W Virgin
- Department of Pathology and Immunology, Midwest Regional Center of Excellence for Biodefense and Emerging Infectious Diseases Research, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
515
|
Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis. Proc Natl Acad Sci U S A 2011; 108:17390-5. [PMID: 21960441 DOI: 10.1073/pnas.1107114108] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RIG-I-like receptors (RLRs) activate host innate immune responses against virus infection through recruiting the mitochondrial adaptor protein MAVS (also known as IPS1, VISA, or CARDIF). Here we show that MAVS also plays a pivotal role in maintaining intestinal homeostasis. We found that MAVS knockout mice developed more severe mortality and morbidity than WT animals in an experimental model of colitis. Bone marrow transplantation experiments revealed that MAVS in cells of nonhematopoietic origin plays a dominant role in the protection against colitis. Importantly, RNA species derived from intestinal commensal bacteria activate the RIG-I-MAVS pathway to induce the production of multiple cytokines and antimicrobial peptides, including IFN-β and RegIIIγ. These results unveil a previously unexplored role of MAVS in monitoring intestinal commensal bacteria and maintaining tissue homeostasis.
Collapse
|
516
|
The role of the intestinal context in the generation of tolerance and inflammation. Clin Dev Immunol 2011; 2012:157948. [PMID: 21949668 PMCID: PMC3178197 DOI: 10.1155/2012/157948] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/28/2011] [Indexed: 01/01/2023]
Abstract
The mucosal surface of the intestine alone forms the largest area exposed to exogenous antigens as well as the largest collection of lymphoid tissue in the body. The enormous amount of nonpathogenic and pathogenic bacteria and food-derived antigens that we are daily exposed sets an interesting challenge to the immune system: a protective immune activity must coexist with efficient regulatory mechanisms in order to maintain a health status of these organisms. This paper discusses how the immune system assimilates the perturbations from the environment without generating tissue damage.
Collapse
|
517
|
Azcárate-Peril MA, Sikes M, Bruno-Bárcena JM. The intestinal microbiota, gastrointestinal environment and colorectal cancer: a putative role for probiotics in prevention of colorectal cancer? Am J Physiol Gastrointest Liver Physiol 2011; 301:G401-24. [PMID: 21700901 PMCID: PMC3774253 DOI: 10.1152/ajpgi.00110.2011] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the United States, and, even though 5-15% of the total CRC cases can be attributed to individual genetic predisposition, environmental factors could be considered major factors in susceptibility to CRC. Lifestyle factors increasing the risks of CRC include elevated body mass index, obesity, and reduced physical activity. Additionally, a number of dietary elements have been associated with higher or lower incidence of CRC. In this context, it has been suggested that diets high in fruit and low in meat might have a protective effect, reducing the incidence of colorectal adenomas by modulating the composition of the normal nonpathogenic commensal microbiota. In addition, it has been demonstrated that changes in abundance of taxonomic groups have a profound impact on the gastrointestinal physiology, and an increasing number of studies are proposing that the microbiota mediates the generation of dietary factors triggering colon cancer. High-throughput sequencing and molecular taxonomic technologies are rapidly filling the knowledge gaps left by conventional microbiology techniques to obtain a comprehensive catalog of the human intestinal microbiota and their associated metabolic repertoire. The information provided by these studies will be essential to identify agents capable of modulating the massive amount of gut bacteria in safe noninvasive manners to prevent CRC. Probiotics, defined as "live microorganisms which, when administered in adequate amounts, confer a health benefit on the host" (219), are capable of transient modulation of the microbiota, and their beneficial effects include reinforcement of the natural defense mechanisms and protection against gastrointestinal disorders. Probiotics have been successfully used to manage infant diarrhea, food allergies, and inflammatory bowel disease; hence, the purpose of this review was to examine probiotic metabolic activities that may have an effect on the prevention of CRC by scavenging toxic compounds or preventing their generation in situ. Additionally, a brief consideration is given to safety evaluation and production methods in the context of probiotics efficacy.
Collapse
Affiliation(s)
- M. Andrea Azcárate-Peril
- 1Department of Cell and Molecular Physiology, University of North Carolina School of Medicine, Chapel Hill;
| | - Michael Sikes
- 2Department of Microbiology, North Carolina State University, Raleigh, North Carolina
| | - José M. Bruno-Bárcena
- 2Department of Microbiology, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
518
|
Buhnik-Rosenblau K, Danin-Poleg Y, Kashi Y. Predominant effect of host genetics on levels of Lactobacillus johnsonii bacteria in the mouse gut. Appl Environ Microbiol 2011; 77:6531-8. [PMID: 21803912 PMCID: PMC3187140 DOI: 10.1128/aem.00324-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 07/18/2011] [Indexed: 12/11/2022] Open
Abstract
The gut microbiota is strongly associated with the well-being of the host. Its composition is affected by environmental factors, such as food and maternal inoculation, while the relative impact of the host's genetics have been recently uncovered. Here, we studied the effect of the host genetic background on the composition of intestinal bacteria in a murine model, focusing on lactic acid bacteria (LAB) as an important group that includes many probiotic strains. Based on 16S rRNA gene genotyping, variation was observed in fecal LAB populations of BALB/c and C57BL/6J mouse lines. Lactobacillus johnsonii, a potentially probiotic bacterium, appeared at significantly higher levels in C57BL/6J versus BALB/c mouse feces. In the BALB/c gut, the L. johnsonii level decreased rapidly after oral administration, suggesting that some selective force does not allow its persistence at higher levels. The genetic inheritance of L. johnsonii levels was further tested in reciprocal crosses between the two mouse lines. The resultant F1 offspring presented similar L. johnsonii levels, confirming that mouse genetics plays a major role in determining these levels compared to the smaller maternal effect. Our findings suggest that mouse genetics has a major effect on the composition of the LAB population in general and on the persistence of L. johnsonii in the gut in particular. Concentrating on a narrow spectrum of culturable LAB enables the isolation and characterization of such potentially probiotic bacterial strains, which might be specifically oriented to the genetic background of the host as part of a personalized-medicine approach.
Collapse
Affiliation(s)
- Keren Buhnik-Rosenblau
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Danin-Poleg
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yechezkel Kashi
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
519
|
Gut microbiota as a candidate for lifespan extension: an ecological/evolutionary perspective targeted on living organisms as metaorganisms. Biogerontology 2011; 12:599-609. [PMID: 21814818 DOI: 10.1007/s10522-011-9352-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/26/2011] [Indexed: 12/21/2022]
Abstract
An emerging central concept in evolutionary biology suggests that symbiosis is a universal characteristic of living organisms that can help in understanding complex traits and phenotypes. During evolution, an integrative circuitry fundamental for survival has been established between commensal gut microbiota and host. On the basis of recent knowledge in worms, flies, and humans, an important role of the gut microbiota in aging and longevity is emerging. The complex bacterial community that populates the gut and that represents an evolutionary adapted ecosystem correlated with nutrition appears to limit the accumulation of pathobionts and infections in all taxa, being able of affecting the efficiency of the host immune system and exerting systemic metabolic effects. There is an urgent need to disentangle the underpinning molecular mechanisms, which could shed light on the basic mechanisms of aging in an ecological perspective. Thus, it appears possible to extend healthy aging and lifespan by targeting the host as a metaorganism by manipulating the complex symbiotic ecosystem of gut microbiota, as well as other possible ecosystems of the body.
Collapse
|
520
|
Fernandez-Marcos PJ, Auwerx J, Schoonjans K. Emerging actions of the nuclear receptor LRH-1 in the gut. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:947-55. [PMID: 21194563 PMCID: PMC3617401 DOI: 10.1016/j.bbadis.2010.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/14/2010] [Indexed: 12/11/2022]
Abstract
Liver receptor homolog-1 (NR5A2) is a nuclear receptor originally identified in the liver and mostly known for its regulatory role in cholesterol and bile acid homeostasis. More recently, liver receptor homolog-1 has emerged as a key regulator of intestinal function, coordinating unanticipated actions, such as cell renewal and local immune function with important implications to common intestinal diseases, including colorectal cancer and inflammatory bowel disease. Unlike most of the other nuclear receptors, liver receptor homolog-1 acts as a constitutively active transcription factor to drive the transcription of its target genes. Liver receptor homolog-1 activity however is to a major extent regulated by different corepressors and posttranslational modifications, which may account for its tissue-specific functions. This review will provide an update on the molecular aspects of liver receptor homolog-1 action and focus on some emerging aspects of its function in normal and diseased gut. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Pablo J Fernandez-Marcos
- Laboratory of Integrative and Systems Physiology, EPFL SV IBI1 NCEM1, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
521
|
|
522
|
Probiotics, nuclear receptor signaling, and anti-inflammatory pathways. Gastroenterol Res Pract 2011; 2011:971938. [PMID: 21808643 PMCID: PMC3144714 DOI: 10.1155/2011/971938] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/28/2011] [Accepted: 05/19/2011] [Indexed: 02/07/2023] Open
Abstract
There is increased investigation of the human microbiome as it relates to health and disease. Dysbiosis is implicated in various clinical conditions including inflammatory bowel disease (IBD). Probiotics have been explored as a potential treatment for IBD and other diseases. The mechanism of action for probiotics has yet to be fully elucidated. This paper discusses novel mechanisms of action for probiotics involving anti-inflammatory signaling pathways. We highlight recent progress in probiotics and nuclear receptor signaling, such as peroxisome-proliferator-activated receptor gamma (PPARγ) and vitamin D receptor (VDR). We also discuss future areas of investigation.
Collapse
|
523
|
Young VB, Kahn SA, Schmidt TM, Chang EB. Studying the Enteric Microbiome in Inflammatory Bowel Diseases: Getting through the Growing Pains and Moving Forward. Front Microbiol 2011; 2:144. [PMID: 21772835 PMCID: PMC3131521 DOI: 10.3389/fmicb.2011.00144] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/16/2011] [Indexed: 01/01/2023] Open
Abstract
In this commentary, we will review some of the early efforts aimed at understanding the role of the enteric microbiota in the causality of inflammatory bowel diseases. By examining these studies and drawing on our own experiences bridging clinical gastroenterology and microbial ecology as part of the NIH-funded Human Microbiome Project (Turnbaugh et al., 2007), we hope to help define some of the “growing pains” that have hampered these initial efforts. It is our sincere hope that this discussion will help advance future efforts in this area by identifying current challenges and limitations and by suggesting strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Vincent B Young
- Department of Medicine, University of Michigan Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
524
|
Abstract
PURPOSE OF REVIEW To review our current understanding of the relationship between absorption of nutrients and intestinal inflammatory response. RECENT FINDINGS There is increasing evidence linking gut local inflammatory events with the intake of nutrients. Our recent studies, using the conscious lymph fistula rat model, demonstrate that fat absorption activates the intestinal mucosal mast cells. This is accompanied by a dramatic increase in the lymphatic release of mast cell mediators including histamine, rat mucosal mast cell protease II (RMCPII), as well as the lipid mediator prostaglandin D2 (PGD2). Clinical studies suggest that increased consumption of animal fat may play a role in the pathogenesis of inflammatory bowel disease. This impact of dietary fat may not be restricted to the gut but may extend to the whole body. There is evidence linking a high-fat diet-induced metabolic syndrome, with a low-grade chronic inflammatory state. In this review, we hope to convince the readers that fat absorption can have far reaching physiological and pathophysiological consequences. SUMMARY Understanding the relationship between nutrient absorption and intestinal inflammation is important. We need a better understanding of the interaction between enterocytes and the intestinal immune cells in nutrient absorption and the gut inflammatory responses.
Collapse
Affiliation(s)
- Yong Ji
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, Cincinnati, Ohio 45237, USA
| | | | | |
Collapse
|
525
|
Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 2011; 184:957-63. [PMID: 21680950 DOI: 10.1164/rccm.201104-0655oc] [Citation(s) in RCA: 801] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Defining the biogeography of bacterial populations in human body habitats is a high priority for understanding microbial-host relationships in health and disease. The healthy lung was traditionally considered sterile, but this notion has been challenged by emerging molecular approaches that enable comprehensive examination of microbial communities. However, studies of the lung are challenging due to difficulties in working with low biomass samples. OBJECTIVES Our goal was to use molecular methods to define the bacterial microbiota present in the lungs of healthy individuals and assess its relationship to upper airway populations. METHODS We sampled respiratory flora intensively at multiple sites in six healthy individuals. The upper tract was sampled by oral wash and oro-/nasopharyngeal swabs. Two bronchoscopes were used to collect samples up to the glottis, followed by serial bronchoalveolar lavage and lower airway protected brush. Bacterial abundance and composition were analyzed by 16S rDNA Q-PCR and deep sequencing. MEASUREMENTS AND MAIN RESULTS Bacterial communities from the lung displayed composition indistinguishable from the upper airways, but were 2 to 4 logs lower in biomass. Lung-specific sequences were rare and not shared among individuals. There was no unique lung microbiome. CONCLUSIONS In contrast to other organ systems, the respiratory tract harbors a homogenous microbiota that decreases in biomass from upper to lower tract. The healthy lung does not contain a consistent distinct microbiome, but instead contains low levels of bacterial sequences largely indistinguishable from upper respiratory flora. These findings establish baseline data for healthy subjects and sampling approaches for sequence-based analysis of diseases.
Collapse
Affiliation(s)
- Emily S Charlson
- University of Pennsylvania School of Medicine, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
526
|
Non-apoptotic role of BID in inflammation and innate immunity. Nature 2011; 474:96-9. [PMID: 21552281 DOI: 10.1038/nature09982] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/03/2011] [Indexed: 12/19/2022]
Abstract
Innate immunity is a fundamental defence response that depends on evolutionarily conserved pattern recognition receptors for sensing infections or danger signals. Nucleotide-binding and oligomerization domain (NOD) proteins are cytosolic pattern-recognition receptors of paramount importance in the intestine, and their dysregulation is associated with inflammatory bowel disease. They sense peptidoglycans from commensal microorganisms and pathogens and coordinate signalling events that culminate in the induction of inflammation and anti-microbial responses. However, the signalling mechanisms involved in this process are not fully understood. Here, using genome-wide RNA interference, we identify candidate genes that modulate the NOD1 inflammatory response in intestinal epithelial cells. Our results reveal a significant crosstalk between innate immunity and apoptosis and identify BID, a BCL2 family protein, as a critical component of the inflammatory response. Colonocytes depleted of BID or macrophages from Bid(-/-) mice are markedly defective in cytokine production in response to NOD activation. Furthermore, Bid(-/-) mice are unresponsive to local or systemic exposure to NOD agonists or their protective effect in experimental colitis. Mechanistically, BID interacts with NOD1, NOD2 and the IκB kinase (IKK) complex, impacting NF-κB and extracellular signal-regulated kinase (ERK) signalling. Our results define a novel role of BID in inflammation and immunity independent of its apoptotic function, furthering the mounting evidence of evolutionary conservation between the mechanisms of apoptosis and immunity.
Collapse
|
527
|
Nishio H, Kanno S, Onoyama S, Ikeda K, Tanaka T, Kusuhara K, Fujimoto Y, Fukase K, Sueishi K, Hara T. Nod1 Ligands Induce Site-Specific Vascular Inflammation. Arterioscler Thromb Vasc Biol 2011; 31:1093-9. [DOI: 10.1161/atvbaha.110.216325] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective—
The goal of this study was to investigate the effects of stimulants for a nucleotide-binding domain, leucine-rich repeat-containing (NLR) protein family on human artery endothelial cells and murine arteries.
Methods and Results—
Human coronary artery endothelial cells were challenged in vitro with microbial components that stimulate NLRs or Toll-like receptors. We found stimulatory effects of NLR and Toll-like receptor ligands on the adhesion molecule expression and cytokine secretion by human coronary artery endothelial cells. On the basis of these results, we examined the in vivo effects of these ligands in mice. Among them, FK565, 1 of the nucleotide-binding oligomerization domain (Nod)-1 ligands induced strong site-specific inflammation in the aortic root. Furthermore, coronary arteritis/valvulitis developed after direct oral administration or ad libitum drinking of FK565. The degree of the respective vascular inflammation was associated with persistent high expression of proinflammatory chemokine/cytokine and matrix metallopeptidase (
Mmp
) genes in each tissue in vivo by microarray analysis.
Conclusion—
This is the first coronary arteritis animal model induced by oral administration of a pure synthetic Nod1 ligand. The present study has demonstrated an unexpected role of Nod1 in the development of site-specific vascular inflammation, especially coronary arteritis. These findings might lead to the clarification of the pathogenesis and pathophysiology of coronary artery disease in humans.
Collapse
Affiliation(s)
- Hisanori Nishio
- From the Departments of Pediatrics (H.N., S.K., S.O., K.I., T.T., T.H.) and Pathophysiological and Experimental Pathology (H.N., K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Kitakyushu (K.K.); Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan (Y.F., K.F.); Japan Society for the Promotion of Science (T.H.), Tokyo, Japan
| | - Shunsuke Kanno
- From the Departments of Pediatrics (H.N., S.K., S.O., K.I., T.T., T.H.) and Pathophysiological and Experimental Pathology (H.N., K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Kitakyushu (K.K.); Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan (Y.F., K.F.); Japan Society for the Promotion of Science (T.H.), Tokyo, Japan
| | - Sagano Onoyama
- From the Departments of Pediatrics (H.N., S.K., S.O., K.I., T.T., T.H.) and Pathophysiological and Experimental Pathology (H.N., K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Kitakyushu (K.K.); Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan (Y.F., K.F.); Japan Society for the Promotion of Science (T.H.), Tokyo, Japan
| | - Kazuyuki Ikeda
- From the Departments of Pediatrics (H.N., S.K., S.O., K.I., T.T., T.H.) and Pathophysiological and Experimental Pathology (H.N., K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Kitakyushu (K.K.); Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan (Y.F., K.F.); Japan Society for the Promotion of Science (T.H.), Tokyo, Japan
| | - Tamami Tanaka
- From the Departments of Pediatrics (H.N., S.K., S.O., K.I., T.T., T.H.) and Pathophysiological and Experimental Pathology (H.N., K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Kitakyushu (K.K.); Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan (Y.F., K.F.); Japan Society for the Promotion of Science (T.H.), Tokyo, Japan
| | - Koichi Kusuhara
- From the Departments of Pediatrics (H.N., S.K., S.O., K.I., T.T., T.H.) and Pathophysiological and Experimental Pathology (H.N., K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Kitakyushu (K.K.); Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan (Y.F., K.F.); Japan Society for the Promotion of Science (T.H.), Tokyo, Japan
| | - Yukari Fujimoto
- From the Departments of Pediatrics (H.N., S.K., S.O., K.I., T.T., T.H.) and Pathophysiological and Experimental Pathology (H.N., K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Kitakyushu (K.K.); Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan (Y.F., K.F.); Japan Society for the Promotion of Science (T.H.), Tokyo, Japan
| | - Koichi Fukase
- From the Departments of Pediatrics (H.N., S.K., S.O., K.I., T.T., T.H.) and Pathophysiological and Experimental Pathology (H.N., K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Kitakyushu (K.K.); Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan (Y.F., K.F.); Japan Society for the Promotion of Science (T.H.), Tokyo, Japan
| | - Katsuo Sueishi
- From the Departments of Pediatrics (H.N., S.K., S.O., K.I., T.T., T.H.) and Pathophysiological and Experimental Pathology (H.N., K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Kitakyushu (K.K.); Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan (Y.F., K.F.); Japan Society for the Promotion of Science (T.H.), Tokyo, Japan
| | - Toshiro Hara
- From the Departments of Pediatrics (H.N., S.K., S.O., K.I., T.T., T.H.) and Pathophysiological and Experimental Pathology (H.N., K.S.), Graduate School of Medical Sciences, Kyushu University, Fukuoka; Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Kitakyushu (K.K.); Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan (Y.F., K.F.); Japan Society for the Promotion of Science (T.H.), Tokyo, Japan
| |
Collapse
|
528
|
|
529
|
Apidianakis Y, Rahme LG. Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 2011; 4:21-30. [PMID: 21183483 PMCID: PMC3014343 DOI: 10.1242/dmm.003970] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent findings concerning Drosophila melanogaster intestinal pathology suggest that this model is well suited for the study of intestinal stem cell physiology during aging, stress and infection. Despite the physiological divergence between vertebrates and insects, the modeling of human intestinal diseases is possible in Drosophila because of the high degree of conservation between Drosophila and mammals with respect to the signaling pathways that control intestinal development, regeneration and disease. Furthermore, the genetic amenability of Drosophila makes it an advantageous model species. The well-studied intestinal stem cell lineage, as well as the tools available for its manipulation in vivo, provide a promising framework that can be used to elucidate many aspects of human intestinal pathology. In this Perspective, we discuss recent advances in the study of Drosophila intestinal infection and pathology, and briefly review the parallels and differences between human and Drosophila intestinal regeneration and disease.
Collapse
Affiliation(s)
- Yiorgos Apidianakis
- Department of Surgery, Massachusetts General Hospital, 50 Blossom Street, Their 340, Boston, MA 02114, USA
| | | |
Collapse
|
530
|
Renz H, von Mutius E, Brandtzaeg P, Cookson WO, Autenrieth IB, Haller D. Gene-environment interactions in chronic inflammatory disease. Nat Immunol 2011; 12:273-7. [PMID: 21423219 DOI: 10.1038/ni0411-273] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University, Marburg, Germany.
| | | | | | | | | | | |
Collapse
|
531
|
Abstract
Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.
Collapse
|
532
|
Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 2011. [PMID: 21423246 DOI: 10.1038/nrmicro2546.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Building and maintaining a homeostatic relationship between a host and its colonizing microbiota entails ongoing complex interactions between the host and the microorganisms. The mucosal immune system, including epithelial cells, plays an essential part in negotiating this equilibrium. Paneth cells (specialized cells in the epithelium of the small intestine) are an important source of antimicrobial peptides in the intestine. These cells have become the focus of investigations that explore the mechanisms of host-microorganism homeostasis in the small intestine and its collapse in the processes of infection and chronic inflammation. In this Review, we provide an overview of the intestinal microbiota and describe the cell biology of Paneth cells, emphasizing the composition of their secretions and the roles of these cells in intestinal host defence and homeostasis. We also highlight the implications of Paneth cell dysfunction in susceptibility to chronic inflammatory bowel disease.
Collapse
|
533
|
Piao JH, Hasegawa M, Heissig B, Hattori K, Takeda K, Iwakura Y, Okumura K, Inohara N, Nakano H. Tumor necrosis factor receptor-associated factor (TRAF) 2 controls homeostasis of the colon to prevent spontaneous development of murine inflammatory bowel disease. J Biol Chem 2011; 286:17879-88. [PMID: 21393251 DOI: 10.1074/jbc.m111.221853] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fine-tuning of host cell responses to commensal bacteria plays a crucial role in maintaining homeostasis of the gut. Here, we show that tumor necrosis factor receptor-associated factor (Traf)2(-/-) mice spontaneously developed severe colitis and succumbed within 3 weeks after birth. Histological analysis revealed that apoptosis of colonic epithelial cells was enhanced, and B cells diffusely infiltrated into the submucosal layer of the colon of Traf2(-/-) mice. Expression of proinflammatory cytokines, including Tnfa, Il17a, and Ifng, was up-regulated, whereas expression of antimicrobial peptides was down-regulated in the colon of Traf2(-/-) mice. Moreover, a number of IL-17-producing helper T cells were increased in the colonic lamina propria of Traf2(-/-) mice. These cellular alterations resulted in drastic changes in the colonic microbiota of Traf2(-/-) mice compared with Traf2(+/+) mice. Treatment of Traf2(-/-) mice with antibiotics ameliorated colitis along with down-regulation of proinflammatory cytokines and prolonged survival, suggesting that the altered colonic microbiota might contribute to exacerbation of colitis. Finally, deletion of Tnfr1, but not Il17a, dramatically ameliorated colitis in Traf2(-/-) mice by preventing apoptosis of colonic epithelial cells, down-regulation of proinflammatory cytokines, and restoration of wild-type commensal bacteria. Together, TRAF2 plays a crucial role in controlling homeostasis of the colon.
Collapse
Affiliation(s)
- Jiang-Hu Piao
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Tokyo 113-8421, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
534
|
Fu J, Wei B, Wen T, Johansson MEV, Liu X, Bradford E, Thomsson KA, McGee S, Mansour L, Tong M, McDaniel JM, Sferra TJ, Turner JR, Chen H, Hansson GC, Braun J, Xia L. Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J Clin Invest 2011; 121:1657-66. [PMID: 21383503 DOI: 10.1172/jci45538] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 01/12/2011] [Indexed: 12/19/2022] Open
Abstract
Mucin-type O-linked oligosaccharides (O-glycans) are primary components of the intestinal mucins that form the mucus gel layer overlying the gut epithelium. Impaired expression of intestinal O-glycans has been observed in patients with ulcerative colitis (UC), but its role in the etiology of this disease is unknown. Here, we report that mice with intestinal epithelial cell-specific deficiency of core 1-derived O-glycans, the predominant form of O-glycans, developed spontaneous colitis that resembled human UC, including massive myeloid infiltrates and crypt abscesses. The colitis manifested in these mice was also characterized by TNF-producing myeloid infiltrates in colon mucosa in the absence of lymphocytes, supporting an essential role for myeloid cells in colitis initiation. Furthermore, induced deletion of intestinal core 1-derived O-glycans caused spontaneous colitis in adult mice. These data indicate a causal role for the loss of core 1-derived O-glycans in colitis. Finally, we detected a biosynthetic intermediate typically exposed in the absence of core 1 O-glycan, Tn antigen, in the colon epithelium of a subset of UC patients. Somatic mutations in the X-linked gene that encodes core 1 β1,3-galactosyltransferase-specific chaperone 1 (C1GALT1C1, also known as Cosmc), which is essential for core 1 O-glycosylation, were found in Tn-positive epithelia. These data suggest what we believe to be a new molecular mechanism for the pathogenesis of UC.
Collapse
Affiliation(s)
- Jianxin Fu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
535
|
Guarner F. [The intestinal microbiota and inflammatory bowel disease]. GASTROENTEROLOGIA Y HEPATOLOGIA 2011; 34:147-54. [PMID: 21377761 DOI: 10.1016/j.gastrohep.2010.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 11/30/2010] [Indexed: 01/01/2023]
Abstract
The intestine hosts a complex ecosystem of microbial communities. Experimental data suggests that the microbiota has metabolic functions that contribute to nutrient and energy recovery from non-digestible substrates. Moreover, microbial colonization is essential for the normal development of the immune system and therefore seems to influence homeostasis between environmental antigen load and immune response. In genetically-susceptible individuals, an imbalance may give rise to diseases of immune dysregulation, including chronic inflammatory bowel diseases, in which there is an exaggerated immune response to harmless microbial antigens. Despite the availability of new molecular technologies, the normal composition of the human intestinal microbiota remains unknown. In the next few years, the results of international projects designed to determine the precise impact of the microbiota in various physiological and pathological processes will hopefully lead to major advances.
Collapse
Affiliation(s)
- Francisco Guarner
- Unidad de Investigación de Aparato Digestivo, Hospital Universitari Vall d'Hebron, Barcelona, España.
| |
Collapse
|
536
|
Sartor RB. Key questions to guide a better understanding of host-commensal microbiota interactions in intestinal inflammation. Mucosal Immunol 2011; 4:127-32. [PMID: 21248723 DOI: 10.1038/mi.2010.87] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Co-evolution with an extremely complex commensal enteric microbiota has helped shape mammalian mucosal immune responses. A yet incompletely defined subset of intestinal bacteria is required to stimulate chronic, immune-mediated intestinal inflammation, including human Crohn's disease, and intestinal microbiota composition is altered in a characteristic manner by the inflammatory response to create a dysbiotic relationship of protective vs. aggressive bacteria. We pose a number of questions regarding host interactions with the enteric microbiota, including influences of inflammation, host genetics, early environmental exposure, and diet on microbial composition and function, and conversely, the effect of bacterial metabolism, enteric fungi and viruses, and endogenous protective bacterial species on host immune and inflammatory responses. These questions are designed to stimulate research that will promote a better understanding of host-microbial interactions in the intestine and promote targeted novel therapeutic interventions.
Collapse
Affiliation(s)
- R B Sartor
- Department of Medicine/Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
537
|
Suzuki K, Kawamoto S, Maruya M, Fagarasan S. GALT: organization and dynamics leading to IgA synthesis. Adv Immunol 2011; 107:153-85. [PMID: 21034974 DOI: 10.1016/b978-0-12-381300-8.00006-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since its discovery more than four decades ago, immunoglobulin (Ig) A has been the subject of continuous and intensive studies. The major concepts derived were that the precursors of IgA plasma cells are generated in follicular organized structures with the help of T cells and the secreted IgAs provide protection against mucosal pathogens. However, only recently we began to appreciate that IgAs play key roles in regulation of bacterial communities in the intestine and that the repertoire of gut microbiota is closely linked to the proper functioning of the immune system. In this review, we highlight the complex and dynamic mutualistic relationships between bacteria and immune cells and discuss the sites and pathways leading to IgA synthesis in gut-associated lymphoid tissues (GALT).
Collapse
Affiliation(s)
- Keiichiro Suzuki
- Research Center for Allergy and Immunology, RIKEN Yokohama Tsurumi, Yokohama, Japan
| | | | | | | |
Collapse
|
538
|
Ramasamy S, Nguyen DD, Eston M, Alam SN, Moss AK, Ebrahimi F, Biswas B, Mostafa G, Chen KT, Kaliannan K, Yammine H, Narisawa S, Millán JL, Warren HS, Hohmann EL, Mizoguchi E, Reinecker HC, Bhan AK, Snapper SB, Malo MS, Hodin RA. Intestinal alkaline phosphatase has beneficial effects in mouse models of chronic colitis. Inflamm Bowel Dis 2011; 17:532-42. [PMID: 20645323 PMCID: PMC3154118 DOI: 10.1002/ibd.21377] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The brush border enzyme intestinal alkaline phosphatase (IAP) functions as a gut mucosal defense factor and is protective against dextran sulfate sodium (DSS)-induced acute injury in rats. The present study evaluated the potential therapeutic role for orally administered calf IAP (cIAP) in two independent mouse models of chronic colitis: 1) DSS-induced chronic colitis, and 2) chronic spontaneous colitis in Wiskott-Aldrich Syndrome protein (WASP)-deficient (knockout) mice that is accelerated by irradiation. METHODS The wildtype (WT) and IAP knockout (IAP-KO) mice received four cycles of 2% DSS ad libitum for 7 days. Each cycle was followed by a 7-day DSS-free interval during which mice received either cIAP or vehicle in the drinking water. The WASP-KO mice received either vehicle or cIAP for 6 weeks beginning on the day of irradiation. RESULTS Microscopic colitis scores of DSS-treated IAP-KO mice were higher than DSS-treated WT mice (52±3.8 versus 28.8±6.6, respectively, P<0.0001). cIAP treatment attenuated the disease in both groups (KO=30.7±6.01, WT=18.7±5.0, P<0.05). In irradiated WASP-KO mice cIAP also attenuated colitis compared to control groups (3.3±0.52 versus 6.2±0.34, respectively, P<0.001). Tissue myeloperoxidase activity and proinflammatory cytokines were significantly decreased by cIAP treatment. CONCLUSIONS Endogenous IAP appears to play a role in protecting the host against chronic colitis. Orally administered cIAP exerts a protective effect in two independent mouse models of chronic colitis and may represent a novel therapy for human IBD.
Collapse
Affiliation(s)
- Sundaram Ramasamy
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Deanna D. Nguyen
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Michelle Eston
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Sayeda Nasrin Alam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Angela K. Moss
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Farzad Ebrahimi
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Brishti Biswas
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Golam Mostafa
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Kathryn T. Chen
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Kanakaraju Kaliannan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Halim Yammine
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Sonoko Narisawa
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - José Luis Millán
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - H. Shaw Warren
- Infectious Disease Unit, Departments of Pediatrics and Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Elizabeth L. Hohmann
- Infectious Disease Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Emiko Mizoguchi
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Hans-Christian Reinecker
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Atul K. Bhan
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Scott B. Snapper
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Madhu S. Malo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Richard A. Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
539
|
Kaser A, Tomczak M, Blumberg RS. "ER stress(ed out)!": Paneth cells and ischemia-reperfusion injury of the small intestine. Gastroenterology 2011; 140:393-6. [PMID: 21172333 PMCID: PMC4594951 DOI: 10.1053/j.gastro.2010.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
540
|
Gopalan S, Ausubel FM. A high throughput amenable Arabidopsis-P. aeruginosa system reveals a rewired regulatory module and the utility to identify potent anti-infectives. PLoS One 2011; 6:e16381. [PMID: 21283656 PMCID: PMC3025032 DOI: 10.1371/journal.pone.0016381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 12/14/2010] [Indexed: 11/18/2022] Open
Abstract
We previously demonstrated that in a metasystem consisting of Arabidopsis seedlings growing in liquid medium (in 96 well plates) even microbes considered to be innocuous such as laboratory strains of E. coli and B. subtilis can cause potent damage to the host. We further posited that such environment-induced adaptations are brought about by 'system status changes' (rewiring of pre-existing cellular signaling networks and components) of the host and the microbe, and that prolongation of such a situation could lead to the emergence of pathogenic states in real-life. Here, using this infection model, we show that the master regulator GacA of the human opportunistic pathogen P. aeruginosa (strain PA14) is dispensable for pathogenesis, as evidenced by three independent read-outs. The gene expression profile of the host after infection with wild type PA14 or the gacA mutant are also identical. GacA normally acts upstream of the quorum sensing regulatory circuit (that includes the regulator LasR) that controls a subset of virulence factors. Double mutants in gacA and lasR behave similar to the lasR mutant, as seen by abrogation of a characteristic cell type specific host cell damage caused by PA14 or the gacA mutant. This indicates that a previously unrecognized regulatory mechanism is operative under these conditions upstream of LasR. In addition, the detrimental effect of PA14 on Arabidopsis seedlings is resistant to high concentrations of the aminoglycoside antibiotic gentamicin. These data suggest that the Arabidopsis seedling infection system could be used to identify anti-infectives with potentially novel modes of action.
Collapse
Affiliation(s)
- Suresh Gopalan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America.
| | | |
Collapse
|
541
|
Abstract
Although it is generally accepted that the distal gut microbiota are relatively stable in healthy adult individuals, a collapse of the microbial community structure resulting from antibiotic therapy or pathogen presence can lead to gut dysfunction. However, recent findings demonstrate that it is possible to engraft new microbiota from a donor source, resulting in the restoration of gut functionality and improvement in health. This builds upon decades of case reports and series in which fecal transfers were used to successfully treat refractory and recurrent Clostridium difficile infection. As fecal transplantation becomes part of mainstream medicine, it will likely provide a unique opportunity to study the interactions of humans with their attendant microbiota and allow greater insights into their synergistic functionality.
Collapse
Affiliation(s)
- A Khoruts
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA.
| | | |
Collapse
|
542
|
Abstract
PURPOSE OF REVIEW Host-microbe dialogue is involved not only in maintenance of mucosal homeostasis but also in the pathogenesis of several infectious, inflammatory, and neoplastic disorders of the gut. This has led to a resurgence of interest in the colonic microbiota in health and disease. Recent landmark findings are addressed here. RECENT FINDINGS Reciprocal signalling between the immune system and the microbiota plays a pivotal role in linking alterations in gut microbiota with risk of metabolic disease in the host, notably insulin resistance, obesity, and chronic low-grade inflammation. Loss of ancestral indigenous organisms consequent upon a modern lifestyle may contribute to an increased frequency of various metabolic and immuno-allergic diseases. The potential to address this underpins the science of pharmabiotics. SUMMARY Advances in understanding host-microbe interactions within the gut can inform rational probiotic or pharmabiotic selection criteria. In addition, the gut microbiota may be a repository for drug discovery as well as a therapeutic target.
Collapse
|
543
|
Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2010; 331:337-41. [PMID: 21205640 DOI: 10.1126/science.1198469] [Citation(s) in RCA: 2851] [Impact Index Per Article: 190.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
CD4(+) T regulatory cells (T(regs)), which express the Foxp3 transcription factor, play a critical role in the maintenance of immune homeostasis. Here, we show that in mice, T(regs) were most abundant in the colonic mucosa. The spore-forming component of indigenous intestinal microbiota, particularly clusters IV and XIVa of the genus Clostridium, promoted T(reg) cell accumulation. Colonization of mice by a defined mix of Clostridium strains provided an environment rich in transforming growth factor-β and affected Foxp3(+) T(reg) number and function in the colon. Oral inoculation of Clostridium during the early life of conventionally reared mice resulted in resistance to colitis and systemic immunoglobulin E responses in adult mice, suggesting a new therapeutic approach to autoimmunity and allergy.
Collapse
Affiliation(s)
- Koji Atarashi
- Department of Immunology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
544
|
|
545
|
Sartor RB. Genetics and environmental interactions shape the intestinal microbiome to promote inflammatory bowel disease versus mucosal homeostasis. Gastroenterology 2010; 139:1816-9. [PMID: 21029802 DOI: 10.1053/j.gastro.2010.10.036] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
546
|
Abstract
Granulocyte macrophage colony-stimulating factor (GM-CSF) is a cytokine that promotes myeloid cell development and maturation, and dendritic cell differentiation and survival in vitro. Growing evidence supports the notion that GM-CSF has a major role in some inflammatory and autoimmune reactions and in the host's response to pulmonary infection, but few studies have addressed its functions and importance in the GI tract. Recent studies demonstrated that administration of GM-CSF can result in clinical improvement in patients with Crohn's disease. Mice deficient in GM-CSF (GM-CSF(-/-) ) developed more severe intestinal and systemic infection after an enteric infection, and more severe colitis in response to enteric exposure to dextran sodium sulfate. Both the severity of infection and colitis were largely prevented by GM-CSF administration. Such studies indicate that GM-CSF has an important role in the regulation of intestinal immune and inflammatory responses.
Collapse
Affiliation(s)
- Laia Egea
- Department of Medicine and Laboratory of Mucosal Immunology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0623, USA
| | - Yoshihiro Hirata
- Department of Medicine and Laboratory of Mucosal Immunology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0623, USA
| | - Martin F Kagnoff
- Department of Medicine and Laboratory of Mucosal Immunology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0623, USA
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0623, USA
| |
Collapse
|
547
|
The role of CDX2 in intestinal homeostasis and inflammation. Biochim Biophys Acta Mol Basis Dis 2010; 1812:283-9. [PMID: 21126581 DOI: 10.1016/j.bbadis.2010.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 12/17/2022]
Abstract
Many transcription factors are known to control transcription at several promoters, while others are only active at a few places. However, due to their importance in controlling cellular functions, aberrant transcription factor function and inappropriate gene regulation have been shown to play a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including cell proliferation, differentiation, cell adhesion, migration, and tumorigenesis. In addition to these critical cellular processes, there is increasing evidence for linking CDX2 to intestinal inflammation. The aim of the present paper was to review the current knowledge of CDX2 in regulation of the intestinal homeostasis and further to reveal its potential role in inflammation.
Collapse
|
548
|
Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol 2010; 9:27-38. [PMID: 21113182 DOI: 10.1038/nrmicro2473] [Citation(s) in RCA: 368] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In a healthy host, a balance exists between members of the microbiota, such that potential pathogenic and non-pathogenic organisms can be found in apparent harmony. During infection, this balance can become disturbed, leading to often dramatic changes in the composition of the microbiota. For most bacterial infections, nonspecific antibiotics are used, killing the non-pathogenic members of the microbiota as well as the pathogens and leading to a substantial delay in the restoration of a healthy microbiota. However, in some cases, infections can self-resolve without the intervention of antibiotics. In this Review, we explore the mechanisms underlying microbiota restoration following insult (antibiotic or otherwise) to the skin, oral cavity, and gastrointestinal and urogenital tracts, highlighting recovery by natural processes and after probiotic administration.
Collapse
|
549
|
Ramberg JE, Nelson ED, Sinnott RA. Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr J 2010; 9:54. [PMID: 21087484 PMCID: PMC2998446 DOI: 10.1186/1475-2891-9-54] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 11/18/2010] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND A large body of literature suggests that certain polysaccharides affect immune system function. Much of this literature, however, consists of in vitro studies or studies in which polysaccharides were injected. Their immunologic effects following oral administration is less clear. The purpose of this systematic review was to consolidate and evaluate the available data regarding the specific immunologic effects of dietary polysaccharides. METHODS Studies were identified by conducting PubMed and Google Scholar electronic searches and through reviews of polysaccharide article bibliographies. Only articles published in English were included in this review. Two researchers reviewed data on study design, control, sample size, results, and nature of outcome measures. Subsequent searches were conducted to gather information about polysaccharide safety, structure and composition, and disposition. RESULTS We found 62 publications reporting statistically significant effects of orally ingested glucans, pectins, heteroglycans, glucomannans, fucoidans, galactomannans, arabinogalactans and mixed polysaccharide products in rodents. Fifteen controlled human studies reported that oral glucans, arabinogalactans, heteroglycans, and fucoidans exerted significant effects. Although some studies investigated anti-inflammatory effects, most studies investigated the ability of oral polysaccharides to stimulate the immune system. These studies, as well as safety and toxicity studies, suggest that these polysaccharide products appear to be largely well-tolerated. CONCLUSIONS Taken as a whole, the oral polysaccharide literature is highly heterogenous and is not sufficient to support broad product structure/function generalizations. Numerous dietary polysaccharides, particularly glucans, appear to elicit diverse immunomodulatory effects in numerous animal tissues, including the blood, GI tract and spleen. Glucan extracts from the Trametes versicolor mushroom improved survival and immune function in human RCTs of cancer patients; glucans, arabinogalactans and fucoidans elicited immunomodulatory effects in controlled studies of healthy adults and patients with canker sores and seasonal allergies. This review provides a foundation that can serve to guide future research on immune modulation by well-characterized polysaccharide compounds.
Collapse
Affiliation(s)
- Jane E Ramberg
- Mannatech™, Incorporated, 600 S, Royal Lane, Suite 200, Coppell, TX 75019 USA.
| | | | | |
Collapse
|
550
|
Kanazawa Y, Saito Y, Supriatna Y, Tezuka H, Kotani T, Murata Y, Okazawa H, Ohnishi H, Kinouchi Y, Nojima Y, Ohteki T, Shimosegawa T, Matozaki T. Role of SIRPα in regulation of mucosal immunity in the intestine. Genes Cells 2010; 15:1189-200. [PMID: 21040253 DOI: 10.1111/j.1365-2443.2010.01453.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mononuclear phagocytes such as dendritic cells (DCs) and macrophages in the lamina propria (LP) are thought to be important for both induction of inflammatory responses and maintenance of immunologic tolerance in the mammalian intestine. The molecular mechanisms by which these cells regulate intestinal immunity have remained poorly understood, however. Signal regulatory protein α (SIRPα) is a transmembrane protein that is specifically expressed in DCs, macrophages and neutrophils. Here, we show that SIRPα is abundant in CD11c(+) CD11b(+) LP cells of the mouse intestine. Whereas SIRPα did not appear to be important for the steady-state homeostasis of mucosal immunity in the intestine, the flagellin-stimulated production of IL-17 or interferon (IFN)-γ by LP cells of SIRPα mutant (MT) mice that lack the cytoplasmic region of the protein was markedly decreased compared with that observed with wild-type cells. Moreover, the flagellin-induced production of IL-6 by LP cells from SIRPα MT mice was also greatly reduced. SIRPα MT mice were also resistant to the development of colitis induced by IL-10 deficiency. Our data thus suggest that SIRPα expressed on CD11c(+) LP cells is important for the production of IL-17 or IFN-γ in the LP as well as for the development of colitis induced by IL-10 deficiency.
Collapse
Affiliation(s)
- Yoshitake Kanazawa
- Laboratory of Biosignal Sciences, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|