501
|
Kruspe S, Mittelberger F, Szameit K, Hahn U. Aptamers as drug delivery vehicles. ChemMedChem 2014; 9:1998-2011. [PMID: 25130604 DOI: 10.1002/cmdc.201402163] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/02/2014] [Indexed: 01/22/2023]
Abstract
The benefits of directed and selective therapy for systemic treatment are reasons for increased interest in exploiting aptamers for cell-specific drug delivery. Nucleic acid based pharmaceuticals represent an interesting and novel tool to counter human diseases. Combining inhibitory potential and cargo transfer upon internalization, nanocarriers as well as various therapeutics including siRNAs, chemotherapeutics, photosensitizers, or proteins can be imported via these synthetic nucleic acids. However, widespread clinical application is still hampered by obstacles that must be overcome. In this review, we give an overview of applications and recent advances in aptamer-mediated drug delivery. We also introduce prominent selection methods as well as useful approaches in choice of drug and conjugation method. We discuss the challenges that need to be considered and present strategies that have been applied to achieve intracellular delivery of effectors transported by readily internalized aptamers.
Collapse
Affiliation(s)
- Sven Kruspe
- Institut für Biochemie und Molekularbiologie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg (Germany)
| | | | | | | |
Collapse
|
502
|
Ramana LN, Anand AR, Sethuraman S, Krishnan UM. Targeting strategies for delivery of anti-HIV drugs. J Control Release 2014; 192:271-83. [PMID: 25119469 PMCID: PMC7114626 DOI: 10.1016/j.jconrel.2014.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/02/2014] [Accepted: 08/04/2014] [Indexed: 02/01/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection remains a significant cause of mortality globally. Though antiretroviral therapy has significantly reduced AIDS-related morbidity and mortality, there are several drawbacks in the current therapy, including toxicity, drug–drug interactions, development of drug resistance, necessity for long-term drug therapy, poor bio-availability and lack of access to tissues and reservoirs. To circumvent these problems, recent anti-HIV therapeutic research has focused on improving drug delivery systems through drug delivery targeted specifically to host cells infected with HIV or could potentially get infected with HIV. In this regard, several surface molecules of both viral and host cell origin have been described in recent years, that would enable targeted drug delivery in HIV infection. In the present review, we provide a comprehensive overview of the need for novel drug delivery systems, and the successes and challenges in the identification of novel viral and host-cell molecules for the targeted drug delivery of anti-HIV drugs. Such targeted anti-retroviral drug delivery approaches could pave the way for effective treatment and eradication of HIV from the body.
Collapse
Affiliation(s)
- Lakshmi Narashimhan Ramana
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | | | - Swaminathan Sethuraman
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA University, Thanjavur, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA University, Thanjavur, India; School of Chemical & Biotechnology, SASTRA University, Thanjavur, India.
| |
Collapse
|
503
|
Mansoori B, Sandoghchian Shotorbani S, Baradaran B. RNA interference and its role in cancer therapy. Adv Pharm Bull 2014; 4:313-21. [PMID: 25436185 DOI: 10.5681/apb.2014.046] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/16/2014] [Accepted: 04/19/2014] [Indexed: 12/21/2022] Open
Abstract
In todays' environment, it is becoming increasingly difficult to ignore the role of cancer in social health. Although a huge budget is allocated on cancer research every year, cancer remains the second global cause of death. And, exclusively, less than 50% of patients afflicted with advanced cancer live one year subsequent to standard cancer treatments. RNA interference (RNAi) is a mechanism for gene silencing. Such mechanism possesses uncanny ability in targeting cancer-related genes. A majority of gene products involved in tumorigenesis have recently been utilized as targets in RNAi based therapy. The evidence from these studies indicates that RNAi application for targeting functional carcinogenic molecules, tumor resistance to chemotherapy and radiotherapy is required in today's cancer treatment. Knock downing of gene products by RNAi technology exerts antiproliferative and proapoptotic effects upon cell culture systems, animal models and in clinical trials in the most studies. The recognition of RNAi mechanism and the progress in this field leaded several new RNAi-based drugs to Clinical Trial phases. This has also developed genome based personalized cancer therapeutics. Hopefully, this type of treatment will work as one of the efficient one for cancer patients.
Collapse
Affiliation(s)
- Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
504
|
Yang Y, Wang S, Wang Y, Wang X, Wang Q, Chen M. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol Adv 2014; 32:1301-1316. [PMID: 25109677 DOI: 10.1016/j.biotechadv.2014.07.007] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/24/2014] [Accepted: 07/30/2014] [Indexed: 02/06/2023]
Abstract
Nanomaterials based on chitosan have emerged as promising carriers of therapeutic agents for drug delivery due to good biocompatibility, biodegradability, and low toxicity. Chitosan originated nanocarriers have been prepared by mini-emulsion, chemical or ionic gelation, coacervation/precipitation, and spray-drying methods. As alternatives to these traditional fabrication methods, self-assembled chitosan nanomaterials show significant advantages and have received growing scientific attention in recent years. Self-assembly is a spontaneous process by which organized structures with particular functions and properties could be obtained without additional complicated processing or modification steps. In this review, we focus on recent progress in the design, fabrication and physicochemical aspects of chitosan-based self-assembled nanomaterials. Their applications in drug delivery of different therapeutic agents are also discussed in details.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Xiaohui Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.
| |
Collapse
|
505
|
Li T, Wu M, Zhu YY, Chen J, Chen L. Development of RNA Interference–Based Therapeutics and Application of Multi-Target Small Interfering RNAs. Nucleic Acid Ther 2014; 24:302-12. [DOI: 10.1089/nat.2014.0480] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Tiejun Li
- Department of Pathological Anatomy, Nantong University, Nantong, China
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Meihua Wu
- Department of Pathological Anatomy, Nantong University, Nantong, China
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - York Yuanyuan Zhu
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Jianxin Chen
- Small RNA Technology and Application Institute, Nantong University, Nantong, China
- Department of Life Science Center, Biomics Biotechnologies Co., Ltd., Nantong, China
| | - Li Chen
- Department of Pathological Anatomy, Nantong University, Nantong, China
| |
Collapse
|
506
|
Sharma VK, Sharma RK, Singh SK. Antisense oligonucleotides: modifications and clinical trials. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00184b] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
507
|
Martins R, Queiroz J, Sousa F. Ribonucleic acid purification. J Chromatogr A 2014; 1355:1-14. [DOI: 10.1016/j.chroma.2014.05.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/23/2014] [Accepted: 05/27/2014] [Indexed: 11/24/2022]
|
508
|
Wang HX, Yang XZ, Sun CY, Mao CQ, Zhu YH, Wang J. Matrix metalloproteinase 2-responsive micelle for siRNA delivery. Biomaterials 2014; 35:7622-34. [PMID: 24929619 DOI: 10.1016/j.biomaterials.2014.05.050] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/17/2014] [Indexed: 01/06/2023]
Abstract
Systemic delivery of small interfering RNA (siRNA) into cancer cells remains the major obstacle to siRNA drug development. An ideal siRNA delivery vehicle for systemic administration should have long circulation time in blood, accumulate at tumor site, and sufficiently internalize into cancer cells for high-efficiency of gene silence. Herein, we report a core-shell Micelleplex delivery system that made from block copolymer bearing poly(ethylene glycol) (PEG), matrix metalloproteinase 2 (MMP-2)-degradable peptide PLG*LAG, cationic cell penetrating peptide polyarginine r9 and poly(ε-caprolactone) (PCL) for siRNA delivery. We show clear evidences in vitro and in vivo to prove that the micelle carrying siRNA can circulate enough time in blood, enrich accumulation at tumor sites, shed the PEG layer when triggered by tumor overexpressing MMP-2, and then the exposing cell penetrating peptide r9 enhanced cellular uptake of siRNA. Accordingly, this design strategy enhances the inhibition of breast tumor growth following systemic injection of this system carrying siRNA against Polo-like kinase 1, which demonstrating this Micelleplex can be a potential delivery system for systemic siRNA delivery in cancer therapy.
Collapse
Affiliation(s)
- Hong-Xia Wang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Xian-Zhu Yang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Chun-Yang Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Cheng-Qiong Mao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Yan-Hua Zhu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, China
| | - Jun Wang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui 230027, China; Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, China; High Magnetic Field Laboratory of CAS, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
509
|
Scarborough RJ, Lévesque MV, Boudrias-Dalle E, Chute IC, Daniels SM, Ouellette RJ, Perreault JP, Gatignol A. A Conserved Target Site in HIV-1 Gag RNA is Accessible to Inhibition by Both an HDV Ribozyme and a Short Hairpin RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e178. [PMID: 25072692 PMCID: PMC4121520 DOI: 10.1038/mtna.2014.31] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 06/03/2014] [Indexed: 12/18/2022]
Abstract
Antisense-based molecules targeting HIV-1 RNA have the potential to be used as part of gene or drug therapy to treat HIV-1 infection. In this study, HIV-1 RNA was screened to identify more conserved and accessible target sites for ribozymes based on the hepatitis delta virus motif. Using a quantitative screen for effects on HIV-1 production, we identified a ribozyme targeting a highly conserved site in the Gag coding sequence with improved inhibitory potential compared to our previously described candidates targeting the overlapping Tat/Rev coding sequence. We also demonstrate that this target site is highly accessible to short hairpin directed RNA interference, suggesting that it may be available for the binding of antisense RNAs with different modes of action. We provide evidence that this target site is structurally conserved in diverse viral strains and that it is sufficiently different from the human transcriptome to limit off-target effects from antisense therapies. We also show that the modified hepatitis delta virus ribozyme is more sensitive to a mismatch in its target site compared to the short hairpin RNA. Overall, our results validate the potential of a new target site in HIV-1 RNA to be used for the development of antisense therapies.
Collapse
Affiliation(s)
- Robert J Scarborough
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | - Michel V Lévesque
- Département de Biochimie, RNA Group/Groupe ARN, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Etienne Boudrias-Dalle
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | - Ian C Chute
- Atlantic Cancer Research Institute, Moncton, New Brunswick, Canada
| | - Sylvanne M Daniels
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | | | - Jean-Pierre Perreault
- Département de Biochimie, RNA Group/Groupe ARN, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Anne Gatignol
- 1] Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada [2] Department of Microbiology & Immunology, McGill University, Montréal, Québec, Canada [3] Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
510
|
Abstract
Aptamers targeted to HIV reverse transcriptase (RT) have been demonstrated to inhibit RT in biochemical assays and as in cell culture. However, methods employed to date to evaluate viral suppression utilize time-consuming serial passage of infectious HIV in aptamer-expressing stable cell lines. We have established a rapid, transfection-based assay system to effectively examine the inhibitory potential of anti-HIV RT aptamers expressed between two catalytically inactive hammerhead ribozymes. Our system can be altered and optimized for a variety of cloning schemes, and addition of sequences of interest to the cassette is simple and straightforward. When paired with methods to analyze aptamer RNA accumulation and localization in cells and as packaging into pseudotyped virions, the method has a very high level of success in predicting good inhibitors.
Collapse
|
511
|
Ross SJ, Critchlow SE. Emerging approaches to target tumor metabolism. Curr Opin Pharmacol 2014; 17:22-9. [PMID: 25048629 DOI: 10.1016/j.coph.2014.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 05/29/2014] [Accepted: 07/01/2014] [Indexed: 12/21/2022]
Abstract
Therapeutic exploitation of the next generation of drugs targeting the genetic basis of cancer will require an understanding of how cancer genes regulate tumor biology. Reprogramming of tumor metabolism has been linked with activation of oncogenes and inactivation of tumor suppressors. Well established and emerging cancer genes such as MYC, IDH1/2 and KEAP1 regulate tumor metabolism opening up opportunities to evaluate metabolic pathway inhibition as a therapeutic strategy in these tumors.
Collapse
Affiliation(s)
- Sarah J Ross
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - Susan E Critchlow
- Oncology iMED, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK.
| |
Collapse
|
512
|
|
513
|
Huang H, Cao D, Qin L, Tian S, Liang Y, Pan S, Feng M. Dilution-stable PAMAM G1-grafted polyrotaxane supermolecules deliver gene into cells through a caveolae-dependent pathway. Mol Pharm 2014; 11:2323-33. [PMID: 24957192 DOI: 10.1021/mp5002608] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Numerous preclinical studies have demonstrated that polycation mediated gene delivery systems successfully achieved efficient gene transfer into cells and animal models. However, results of their clinical trials to date have been disappointing. That self-assembled gene and polycation systems should be stable undergoing dilution in the body is one of the prerequisites to ensuring efficiency of gene transfer in clinical trials, but it was neglected in most preclinical studies. In this account, we developed the dilution-stable PAMAM G1-grafted polyrotaxane (PPG1) supermolecules in which PAMAM G1-grafted α-cyclodextrins are threaded onto a PEG chain capped with hydrophobic adamantanamine. The PPG1/pDNA polyplex (approximate 100 nm in diameter) was very stable and kept its initial particle size and a uniform size distribution at ultrahigh dilution, whereas DNA/PEI 25K polyplex was above three times bigger at a 16-fold dilution than the initial size and their particle size distribution indicated multiple peaks mainly due to forming loose and noncompacted aggregates. PPG1 supermolecules showed significantly superior transfection efficiencies compared to either PEI 25K or Lipofectamine 2000 in most cell lines tested including normal cells (HEK293A) and cancer cells (Bel7402, HepG2, and HeLa). Furthermore, we found that the PPG1 supermolecules delivered DNA into HEK293A through a caveolae-dependent pathway but not a clathrin-dependent pathway as PEI 25K did. These findings raised the intriguing possibility that the caveolae-dependent pathway of PPG1 supermolecule/pDNA polyplex avoiding lysosomal degradation was attributed to their high transfection efficiency. The dilution-stable PPG1 supermolecule polyplex facilitating caveolae-dependent internalization has potential applications to surmount the challenges of high dilutions in the body and lysosomal degradation faced by most gene therapy clinical trials.
Collapse
Affiliation(s)
- Huan Huang
- School of Pharmaceutical Sciences and the First Affiliated Hospital, Sun Yat-sen University , Guangzhou 510080, P. R. China
| | | | | | | | | | | | | |
Collapse
|
514
|
Vogel P, Stafforst T. Site-Directed RNA Editing with Antagomir Deaminases - A Tool to Study Protein and RNA Function. ChemMedChem 2014; 9:2021-5. [DOI: 10.1002/cmdc.201402139] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Indexed: 12/20/2022]
|
515
|
Afonin K, Kasprzak WK, Bindewald E, Kireeva M, Viard M, Kashlev M, Shapiro BA. In silico design and enzymatic synthesis of functional RNA nanoparticles. Acc Chem Res 2014; 47:1731-41. [PMID: 24758371 PMCID: PMC4066900 DOI: 10.1021/ar400329z] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Indexed: 12/25/2022]
Abstract
CONSPECTUS: The use of RNAs as scaffolds for biomedical applications has several advantages compared with other existing nanomaterials. These include (i) programmability, (ii) precise control over folding and self-assembly, (iii) natural functionalities as exemplified by ribozymes, riboswitches, RNAi, editing, splicing, and inherent translation and transcription control mechanisms, (iv) biocompatibility, (v) relatively low immune response, and (vi) relatively low cost and ease of production. We have tapped into several of these properties and functionalities to construct RNA-based functional nanoparticles (RNA NPs). In several cases, the structural core and the functional components of the NPs are inherent in the same construct. This permits control over the spatial disposition of the components, intracellular availability, and precise stoichiometry. To enable the generation of RNA NPs, a pipeline is being developed. On one end, it encompasses the rational design and various computational schemes that promote design of the RNA-based nanoconstructs, ultimately producing a set of sequences consisting of RNA or RNA-DNA hybrids, which can assemble into the designed construct. On the other end of the pipeline is an experimental component, which takes the produced sequences and uses them to initialize and characterize their proper assembly and then test the resulting RNA NPs for their function and delivery in cell culture and animal models. An important aspect of this pipeline is the feedback that constantly occurs between the computational and the experimental parts, which synergizes the refinement of both the algorithmic methodologies and the experimental protocols. The utility of this approach is depicted by the several examples described in this Account (nanocubes, nanorings, and RNA-DNA hybrids). Of particular interest, from the computational viewpoint, is that in most cases, first a three-dimensional representation of the assembly is produced, and only then are algorithms applied to generate the sequences that will assemble into the designated three-dimensional construct. This is opposite to the usual practice of predicting RNA structures from a given sequence, that is, the RNA folding problem. To be considered is the generation of sequences that upon assembly have the proper intra- or interstrand interactions (or both). Of particular interest from the experimental point of view is the determination and characterization of the proper thermodynamic, kinetic, functionality, and delivery protocols. Assembly of RNA NPs from individual single-stranded RNAs can be accomplished by one-pot techniques under the proper thermal and buffer conditions or, potentially more interestingly, by the use of various RNA polymerases that can promote the formation of RNA NPs cotransciptionally from specifically designed DNA templates. Also of importance is the delivery of the RNA NPs to the cells of interest in vitro or in vivo. Nonmodified RNAs rapidly degrade in blood serum and have difficulties crossing biological membranes due to their negative charge. These problems can be overcome by using, for example, polycationic lipid-based carriers. Our work involves the use of bolaamphiphiles, which are amphipathic compounds with positively charged hydrophilic head groups at each end connected by a hydrophobic chain. We have correlated results from molecular dynamics computations with various experiments to understand the characteristics of such delivery agents.
Collapse
Affiliation(s)
- Kirill
A. Afonin
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Wojciech K. Kasprzak
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Eckart Bindewald
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Maria Kireeva
- Gene
Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Mathias Viard
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic
Science Program, Leidos Biomedical Research,
Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Mikhail Kashlev
- Gene
Regulation and Chromosome Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Bruce A. Shapiro
- Basic
Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
516
|
Oe Y, Christie RJ, Naito M, Low SA, Fukushima S, Toh K, Miura Y, Matsumoto Y, Nishiyama N, Miyata K, Kataoka K. Actively-targeted polyion complex micelles stabilized by cholesterol and disulfide cross-linking for systemic delivery of siRNA to solid tumors. Biomaterials 2014; 35:7887-95. [PMID: 24930854 DOI: 10.1016/j.biomaterials.2014.05.041] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 12/29/2022]
Abstract
For small interfering RNA (siRNA)-based cancer therapies, we report an actively-targeted and stabilized polyion complex micelle designed to improve tumor accumulation and cancer cell uptake of siRNA following systemic administration. Improvement in micelle stability was achieved using two stabilization mechanisms; covalent disulfide cross-linking and non-covalent hydrophobic interactions. The polymer component was designed to provide disulfide cross-linking and cancer cell-targeting cyclic RGD peptide ligands, while cholesterol-modified siRNA (Chol-siRNA) provided additional hydrophobic stabilization to the micelle structure. Dynamic light scattering confirmed formation of nano-sized disulfide cross-linked micelles (<50 nm in diameter) with a narrow size distribution. Improved stability of Chol-siRNA-loaded micelles (Chol-siRNA micelles) was demonstrated by resistance to both the dilution in serum-containing medium and counter polyion exchange with dextran sulfate, compared to control micelles prepared with Chol-free siRNA (Chol-free micelles). Improved stability resulted in prolonged blood circulation time of Chol-siRNA micelles compared to Chol-free micelles. Furthermore, introduction of cRGD ligands onto Chol-siRNA micelles significantly facilitated accumulation of siRNA in a subcutaneous cervical cancer model following systemic administration. Ultimately, systemically administered cRGD/Chol-siRNA micelles exhibited significant gene silencing activity in the tumor, presumably due to their active targeting ability combined with the enhanced stability through both hydrophobic interactions of cholesterol and disulfide cross-linking.
Collapse
Affiliation(s)
- Yusuke Oe
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - R James Christie
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Stewart A Low
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shigeto Fukushima
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuko Toh
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yutaka Miura
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yu Matsumoto
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuhiro Nishiyama
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kanjiro Miyata
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kazunori Kataoka
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Center for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
517
|
Paul BC, Rafii BY, Gandonu S, Bing R, Born H, Amin MR, Branski RC. Smad3: an emerging target for vocal fold fibrosis. Laryngoscope 2014; 124:2327-31. [PMID: 24737245 DOI: 10.1002/lary.24723] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/11/2014] [Accepted: 04/14/2014] [Indexed: 01/05/2023]
Abstract
OBJECTIVES/HYPOTHESIS To determine the efficacy of small interfering RNA (siRNA) targeting Smad3 to mediate fibroplasia in vitro, to investigate the temporal regulation of Smad3 following vocal fold (VF) injury, and to determine the local and distal effects of Smad3 siRNA VF injection. STUDY DESIGN In vitro and in vivo. METHODS In vitro, Smad3 regulation was examined at both the level of transcription and translation in a human VF cell line in response to Smad3 siRNA ± transforming growth factor β (TGF-β). Collagen transcription was also examined. In vivo, Smad3 messenger RNA (mRNA) expression was quantified as a function of time following rabbit VF injury. Also, the effects of injected Smad3 siRNA were assessed at local and distal sites. RESULTS Smad3 siRNA knocked down Smad3 transcription and translation and limited TGF-β-mediated collagen mRNA expression with minimal cytotoxicity in vitro. In vivo, Smad3 mRNA increased 1 day following VF injury and remained elevated through day 7. Smad3 siRNA injection into the uninjured vocal fold had no local or distant effect on Smad3 mRNA at multiple organ sites. CONCLUSIONS These data provide a foundation for further investigation regarding the development of novel RNA-based therapeutics for the VF, specifically locally delivered siRNA for challenging fibrotic conditions of the VF.
Collapse
Affiliation(s)
- Benjamin C Paul
- Department of Otolaryngology, NYU Voice Center, New York University School of Medicine, New York, New York, U.S.A
| | | | | | | | | | | | | |
Collapse
|
518
|
Affiliation(s)
- Yonathan F Melman
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA
| | | | | |
Collapse
|
519
|
Lu Y, Liu Y, Jiang J, Xi Z, Zhong N, Shi S, Wang J, Wei X. Knocking down the expression of Aurora-A gene inhibits cell proliferation and induces G2/M phase arrest in human small cell lung cancer cells. Oncol Rep 2014; 32:243-9. [PMID: 24841948 DOI: 10.3892/or.2014.3194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 03/10/2014] [Indexed: 11/06/2022] Open
Abstract
A hallmark of small cell lung cancer (SCLC) is frequent relapse characterized by newfound resistance to formerly efficacious chemotherapies. The prognosis for SCLC patients is particularly unfavorable. Aurora kinase A (AURKA), a member of the serine/threonine kinase family, is overexpressed across many types of human tumors. Recent studies have identified AURKA as an important factor in tumorigenesis, but little is known regarding its specific roles in SCLC. The aim of the present study was to establish the roles of AURKA in the molecular pathogenesis of human SCLC. In the present study, we constructed a lentiviral vector to express siRNA against AURKA (LV-AURKA siRNA). As we expected, the viral construct effectively suppressed the expression of the AURKA gene and protein in H446 and H1688 cell lines. Additionally, RNA interference of AURKA inhibited the colony formation and subsequent growth of H446 and H1688 cell lines by increasing the incidence of cell cycle arrest in the G2/M phase. Furthermore, suppression of AURKA by LV-AURKA siRNA also increased apoptosis of SCLC cells. A potential mechanism for the increase of apoptosis is the downregulation of Bcl-2 and upregulation of Bax. AURKA gene suppression may provide a novel, effective therapy for SCLC patients by inhibiting cell division and increasing the rate of apoptosis of SCLC cells.
Collapse
Affiliation(s)
- Yimin Lu
- Department of Emergency, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yuanhua Liu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu 210009, P.R. China
| | - Jianzhong Jiang
- Department of Geriatrics, People's Hospital of Yixing City, Yixing, Jiangsu 214200, P.R. China
| | - Zhaoqing Xi
- Department of Emergency, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Ning Zhong
- Department of Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Shunbin Shi
- Department of Thoracic Surgery, Affiliated Wujiang Hospital of Nantong University, Suzhou, Jiangsu 215200, P.R. China
| | - Jinzhi Wang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiaodong Wei
- Department of Thoracic Surgery, No. 101 Hospital of PLA, Wuxi, Jiangsu 214044, P.R. China
| |
Collapse
|
520
|
Zhang X, Liang H, Tan Y, Wu X, Li S, Shi Y. A U87-EGFRvIII cell-specific aptamer mediates small interfering RNA delivery. Biomed Rep 2014; 2:495-499. [PMID: 24944794 DOI: 10.3892/br.2014.276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/24/2014] [Indexed: 11/06/2022] Open
Abstract
U87-EGFRvIII is a U87 glioma cell line that overexpresses epidermal growth factor receptor variant III (EGFRvIII). In the present study, we investigated whether a DNA aptamer selected against U87-EGFRvIII using cell-based systematic evolution of ligands by exponential enrichment (cell-SELEX) could deliver c-Met small interfering RNA (siRNA) into U87-EGFRvIII cells and silence the targeted gene expression. The selected biotinylated aptamer (BA) was coupled to biotinylated c-Met siRNA by streptavidin to deliver siRNA into U87-EGFRvIII cells. c-Met siRNA, transfected with lipofectamine 2000, served as a positive control, while control siRNA, transferred with BA, served as a negative control. Western blotting was performed to detect changes in the c-Met protein expression, and MTT and Annexin V-fluorescein isothiocyanate/propidium iodine assays were used to determine changes in the proliferation and apoptosis of U87-EGFRvIII cells, respectively. Similar to the liposome-mediated group, U87-EGFRvIII cells that were transfected with BA-c-Met siRNA experienced a significant decrease in the c-Met protein expression (P<0.05). There were also significant increases in the apoptotic rate (P<0.05) and inhibition rate of cell growth (P<0.01) compared with the negative control group, indicating that BA could deliver c-Met siRNA into U87-EGFRvIII and result in target gene silencing. In conclusion, the results demonstrated that this DNA aptamer, obtained through cell-SELEX, can be used as an efficient and targeted carrier for siRNA delivery, providing a novel approach and strategy for the targeted combination therapy of glioblastoma.
Collapse
Affiliation(s)
- Xingmei Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Huiyu Liang
- Department of Neurobiology, School of Basic Medical Sciences, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yan Tan
- Department of Neurobiology, School of Basic Medical Sciences, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xidong Wu
- Department of Neurobiology, School of Basic Medical Sciences, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Shuji Li
- Department of Neurobiology, School of Basic Medical Sciences, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yusheng Shi
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
521
|
Cao Y, Wang C, Zhang X, Xing G, Lu K, Gu Y, He F, Zhang L. Selective small molecule compounds increase BMP-2 responsiveness by inhibiting Smurf1-mediated Smad1/5 degradation. Sci Rep 2014; 4:4965. [PMID: 24828823 PMCID: PMC4021816 DOI: 10.1038/srep04965] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/25/2014] [Indexed: 12/21/2022] Open
Abstract
The ubiquitin ligase Smad ubiquitination regulatory factor-1 (Smurf1) negatively regulates bone morphogenetic protein (BMP) pathway by ubiquitinating certain signal components for degradation. Thus, it can be an eligible pharmacological target for increasing BMP signal responsiveness. We established a strategy to discover small molecule compounds that block the WW1 domain of Smurf1 from interacting with Smad1/5 by structure based virtual screening, molecular experimental examination and cytological efficacy evaluation. Our selected hits could reserve the protein level of Smad1/5 from degradation by interrupting Smurf1-Smad1/5 interaction and inhibiting Smurf1 mediated ubiquitination of Smad1/5. Further, these compounds increased BMP-2 signal responsiveness and the expression of certain downstream genes, enhanced the osteoblastic activity of myoblasts and osteoblasts. Our work indicates targeting Smurf1 for inhibition could be an accessible strategy to discover BMP-sensitizers that might be applied in future clinical treatments of bone disorders such as osteopenia.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Cheng Wang
- 1] State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China [2] School of Medicine, Shihezi University, Shihezi, Xinjiang Province, China
| | - Xueli Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Guichun Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Kefeng Lu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Yongqing Gu
- School of Medicine, Shihezi University, Shihezi, Xinjiang Province, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China
| | - Lingqiang Zhang
- 1] State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing, China [2] Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
522
|
Konca YU, Kirshenbaum K, Zuckermann RN. Nanometer-scale siRNA carriers incorporating peptidomimetic oligomers: physical characterization and biological activity. Int J Nanomedicine 2014; 9:2271-85. [PMID: 24872690 PMCID: PMC4026564 DOI: 10.2147/ijn.s57449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Synthetic short interfering RNA (siRNA) oligonucleotides can trigger the RNA interference pathway and lead to selective gene silencing. Despite considerable enthusiasm and investment, formidable challenges remain that may deter translating this breakthrough discovery into clinical applications. In particular, the development of efficient, nontoxic, nonimmunogenic methods for delivering siRNA in vivo has proven to be exceptionally challenging. Thorough analysis of the relationship between the structure and function of siRNA carrier systems, both in isolation and in complex with RNA, will facilitate the design of efficient nonviral siRNA delivery vehicles. In this study, we explore the relationship between the physicochemical characteristics and the biological activity of “lipitoid” compounds as potent siRNA delivery vehicles. Lipitoids are cationic peptidomimetic oligomers incorporating a peptoid and a phospholipid moiety. Lipitoids can associate with siRNA oligonucleotides and self-assemble into spherical lipitoid-based nanoparticles (LNPs), with dimensions that are dependent upon the medium and the stoichiometric ratio between the cationic monomers of the lipitoid and anionic siRNA oligonucleotides. The morphology, gene silencing efficiency, and cytotoxicity of the siRNA-loaded LNPs are similarly sensitive to the stoichiometry of the complexes. The medium in which the LNPs are formed affects the assembled cargo particles’ characteristics such as particle size, transfection efficiency, and stability. Formation of the LNPs in the biological, serum-free medium OptiMEM resulted in LNPs an order of magnitude larger than LNPs formed in water, and were twice as efficient in siRNA transfection compared to LNPs formed in water. Inhibitor studies were conducted to elucidate the efficiency of lysosomal escape and the uptake mechanism of the siRNA-loaded LNPs. Our results suggest that these lipitoid-based, siRNA-loaded spherical LNPs are internalized through a lipid raft-dependent and dynamin-mediated pathway, circumventing endosomal and lysosomal encapsulation. The lipitoid-siRNA nanospheres proved to be suitable platforms for investigating the critical parameters determining the efficiency of transfection agents, revealing the necessity for conducting characterization studies in biological media. The investigation of the LNP internalization pathway points to an alternative uptake route that bypasses the lysosome, explaining the surprisingly high efficiency of LNPs and suggesting that the uptake mechanism should be probed rather than assumed for the next generation of rationally designed transfection agents.
Collapse
|
523
|
Tonin Y, Heckel AM, Vysokikh M, Dovydenko I, Meschaninova M, Rötig A, Munnich A, Venyaminova A, Tarassov I, Entelis N. Modeling of antigenomic therapy of mitochondrial diseases by mitochondrially addressed RNA targeting a pathogenic point mutation in mitochondrial DNA. J Biol Chem 2014; 289:13323-34. [PMID: 24692550 PMCID: PMC4036341 DOI: 10.1074/jbc.m113.528968] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/20/2014] [Indexed: 12/24/2022] Open
Abstract
Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Presently, no efficient therapeutic treatment has been developed against this class of pathologies. Because most of deleterious mitochondrial mutations are heteroplasmic, meaning that wild type and mutated forms of mitochondrial DNA (mtDNA) coexist in the same cell, the shift in proportion between mutant and wild type molecules could restore mitochondrial functions. Recently, we developed mitochondrial RNA vectors that can be used to address anti-replicative oligoribonucleotides into human mitochondria and thus impact heteroplasmy level in cells bearing a large deletion in mtDNA. Here, we show that this strategy can be also applied to point mutations in mtDNA. We demonstrate that specifically designed RNA molecules containing structural determinants for mitochondrial import and 20-nucleotide sequence corresponding to the mutated region of mtDNA, are able to anneal selectively to the mutated mitochondrial genomes. After being imported into mitochondria of living human cells in culture, these RNA induced a decrease of the proportion of mtDNA molecules bearing a pathogenic point mutation in the mtDNA ND5 gene.
Collapse
Affiliation(s)
- Yann Tonin
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| | - Anne-Marie Heckel
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| | - Mikhail Vysokikh
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| | - Ilya Dovydenko
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
- the Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia, and
| | - Mariya Meschaninova
- the Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia, and
| | - Agnès Rötig
- the Université Paris Descartes-Sorbonne Paris Cité, INSERM U781, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Arnold Munnich
- the Université Paris Descartes-Sorbonne Paris Cité, INSERM U781, Hôpital Necker-Enfants Malades, Paris 75015, France
| | - Alya Venyaminova
- the Laboratory of RNA Chemistry, Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk 630090, Russia, and
| | - Ivan Tarassov
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| | - Nina Entelis
- From the UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg 67084, France
| |
Collapse
|
524
|
Akdeli N, Riemann K, Westphal J, Hess J, Siffert W, Bachmann HS. A 3'UTR polymorphism modulates mRNA stability of the oncogene and drug target Polo-like Kinase 1. Mol Cancer 2014; 13:87. [PMID: 24767679 PMCID: PMC4020576 DOI: 10.1186/1476-4598-13-87] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 04/15/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The Polo-like Kinase 1 (PLK1) protein regulates cell cycle progression and is overexpressed in many malignant tissues. Overexpression is associated with poor prognosis in several cancer entities, whereby expression of PLK1 shows high inter-individual variability. Although PLK1 is extensively studied, not much is known about the genetic variability of the PLK1 gene. The function of PLK1 and the expression of the corresponding gene could be influenced by genomic variations. Hence, we investigated the gene for functional polymorphisms. Such polymorphisms could be useful to investigate whether PLK1 alters the risk for and the course of cancer and they could have an impact on the response to PLK1 inhibitors. METHODS The coding region, the 5' and 3'UTRs and the regulatory regions of PLK1 were systematically sequenced. We determined the allele frequencies and genotype distributions of putatively functional SNPs in 120 Caucasians and analyzed the linkage and haplotype structure using Haploview. The functional analysis included electrophoretic mobility shift assay (EMSA) for detected variants of the silencer and promoter regions and reporter assays for a 3'UTR polymorphism. RESULTS Four putatively functional polymorphisms were detected and further analyzed, one in the silencer region (rs57973275), one in the core promoter region (rs16972787), one in intron 3 (rs40076) and one polymorphism in the 3'untranslated region (3'UTR) of PLK1 (rs27770). Alleles of rs27770 display different secondary mRNA structures and showed a distinct allele-dependent difference in mRNA stability with a significantly higher reporter activity of the A allele (p < 0.01). CONCLUSION The present study provides evidence that at least one genomic variant of PLK1 has functional properties and influences expression of PLK1. This suggests polymorphisms of the PLK1 gene as an interesting target for further studies that might affect cancer risk, tumor progression as well as the response to PLK1 inhibitors.
Collapse
Affiliation(s)
- Neval Akdeli
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Kathrin Riemann
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Jana Westphal
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Jochen Hess
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
- Department of Urology, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Winfried Siffert
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Hagen S Bachmann
- Institute of Pharmacogenetics, University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
525
|
Maeda Y, Pittella F, Nomoto T, Takemoto H, Nishiyama N, Miyata K, Kataoka K. Fine-Tuning of Charge-Conversion Polymer Structure for Efficient Endosomal Escape of siRNA-Loaded Calcium Phosphate Hybrid Micelles. Macromol Rapid Commun 2014; 35:1211-5. [DOI: 10.1002/marc.201400049] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/03/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Yoshinori Maeda
- Department of Bioengineering, Graduate School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656 Japan
| | - Frederico Pittella
- Center for Disease Biology and Integrative Medicine; Graduate School of Medicine, The University of Tokyo; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Takahiro Nomoto
- Department of Bioengineering, Graduate School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656 Japan
| | - Hiroyasu Takemoto
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11; 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Nobuhiro Nishiyama
- Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11; 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Kanjiro Miyata
- Center for Disease Biology and Integrative Medicine; Graduate School of Medicine, The University of Tokyo; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
| | - Kazunori Kataoka
- Department of Bioengineering, Graduate School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656 Japan
- Center for Disease Biology and Integrative Medicine; Graduate School of Medicine, The University of Tokyo; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033 Japan
- Department of Materials Engineering; Graduate School of Engineering; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku, Tokyo 113-8656 Japan
| |
Collapse
|
526
|
Berkhout B, Liu YP. Towards improved shRNA and miRNA reagents as inhibitors of HIV1 replication. Future Microbiol 2014; 9:561-71. [DOI: 10.2217/fmb.14.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ABSTRACT: miRNAs are the key players of the RNAi mechanism, which regulates the expression of a large number of mRNAs in human cells. shRNAs are man-made synthetic miRNA mimics that exploit similar intracellular RNA processing routes. Massive amounts of data derived from next-generation sequencing have revealed miRNA species that are derived from alternative biosynthesis pathways. Here, we review recent progress in our understanding of these noncanonical routes of miRNA and shRNA biosynthesis. We focus on ways to use these novel insights for the design of more potent and specific RNAi reagents for therapeutic applications, including the AgoshRNA design, which is processed differently than regular shRNAs. We will also discuss the development of a durable gene therapy against HIV1.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
- Current address: uniQure biopharma BV, Department of Research & Development, The Netherlands
| |
Collapse
|
527
|
Momen-Heravi F, Bala S, Bukong T, Szabo G. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1517-27. [PMID: 24685946 DOI: 10.1016/j.nano.2014.03.014] [Citation(s) in RCA: 220] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/04/2014] [Accepted: 03/19/2014] [Indexed: 12/13/2022]
Abstract
Exosomes, membranous nanovesicles, naturally carry bio-macromolecules and play pivotal roles in both physiological intercellular crosstalk and disease pathogenesis. Here, we showed that B cell-derived exosomes can function as vehicles to deliver exogenous miRNA-155 mimic or inhibitor into hepatocytes or macrophages, respectively. Stimulation of B cells significantly increased exosome production. Unlike in parental cells, baseline level of miRNA-155 was very low in exosomes derived from stimulated B cells. Exosomes loaded with a miRNA-155 mimic significantly increased miRNA-155 levels in primary mouse hepatocytes and the liver of miRNA-155 knockout mice. Treatment of RAW macrophages with miRNA-155 inhibitor loaded exosomes resulted in statistically significant reduction in LPS-induced TNFα production and partially prevented LPS-induced decrease in SOCS1 mRNA levels. Furthermore, exosome-mediated miRNA-155 inhibitor delivery resulted in functionally more efficient inhibition and less cellular toxicity compared to conventional transfection methods. Similar approaches could be useful in modification of target biomolecules in vitro and in vivo. From the clinical editor: In this study, exosome-based delivery of miRNA-155 mimicker or inhibitor was found to have significant biological response in hepatocytes and macrophages. Exosome-based approaches may be useful in the modification of other target biomolecules.
Collapse
Affiliation(s)
- Fatemeh Momen-Heravi
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Terence Bukong
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
528
|
Lefoix M, Mathis G, Kleinmann T, Truffert JC, Asseline U. Pyrazolo[1,5-a]-1,3,5-triazine C-nucleoside as deoxyadenosine analogue: synthesis, pairing, and resistance to hydrolysis. J Org Chem 2014; 79:3221-7. [PMID: 24649913 DOI: 10.1021/jo5000253] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of a pyrazolo[1,5-a]-1,3,5-triazine C-nucleoside (dA(PT)), designed to form two hydrogen bonds with a complementary dT residue, is reported. Oligonucleotides including this dA nucleoside analogue possess base-pairing properties similar to those of the parent oligonucleotide. This dA nucleoside analogue is more resistant to acid-catalyzed hydrolysis than dA.
Collapse
Affiliation(s)
- Myriam Lefoix
- NucleoSyn. Pépinières d'entreprises - Centre Innovation 16, Rue Léonard de Vinci 45074 Orléans Cedex 2, France
| | | | | | | | | |
Collapse
|
529
|
Abstract
The beginning of the 21st century saw numerous protein and peptide therapeuticals both on the market and entering the final stages of clinical studies. They represent a new category of biologically originated drugs termed biologics or biologicals. Their main advantages over conventional drugs can be summarized by their high selectivity and potent therapeutic efficacy coupled with limited side effects. In addition, they exhibit more predictable behavior under in vivo conditions. However, up to now most of the formulations of biologics are designed and destined for the parenteral route of administration. As a consequence, many suffer from short plasma half-lives, resulting in their frequent administration and ultimately poor patient compliance. This review represents an attempt to address some of the challenges and promises in the product development of biologics both for parenteral and noninvasive administration. Some of the products currently in the pipeline of pharmaceutical development and corresponding perspectives are discussed in more detail.
Collapse
Affiliation(s)
- Nataša Skalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, University of Tromsø, Tromsø, Norway
| |
Collapse
|
530
|
Functional deregulation of KIT: link to mast cell proliferative diseases and other neoplasms. Immunol Allergy Clin North Am 2014; 34:219-37. [PMID: 24745671 DOI: 10.1016/j.iac.2014.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review, the authors discuss common gain-of-function mutations in the stem cell factor receptor KIT found in mast cell proliferation disorders and summarize the current understanding of the molecular mechanisms by which these transforming mutations may affect KIT structure and function leading to altered downstream signaling and cellular transformation. Drugs targeting KIT have shown mixed success in the treatment of mastocytosis and other hyperproliferative diseases. A brief overview of the most common KIT inhibitors currently used, the reasons for the varied clinical results of such inhibitors and a discussion of potential new strategies are provided.
Collapse
|
531
|
Wan Y, Apostolou S, Dronov R, Kuss B, Voelcker NH. Cancer-targeting siRNA delivery from porous silicon nanoparticles. Nanomedicine (Lond) 2014; 9:2309-21. [PMID: 24593001 DOI: 10.2217/nnm.14.12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIMS Porous silicon nanoparticles (pSiNPs) with tunable pore size are biocompatible and biodegradable, suggesting that they are suitable biomaterials as vehicles for drug delivery. Loading of small interfering RNA (siRNA) into the pores of pSiNPs can protect siRNA from degradation as well as improve the cellular uptake. We aimed to deliver MRP1 siRNA loaded into pSiNPs to glioblastoma cells, and to demonstrate downregulation of MRP1 at the mRNA and protein levels. METHODS 50-220 nm pSiNPs with an average pore size of 26 nm were prepared, followed by electrostatic adsorption of siRNA into pores. Oligonucleotide loading and release profiles were investigated; MRP1 mRNA and protein expression, cell viability and cell apoptosis were studied. RESULTS Approximately 7.7 µg of siRNA was loaded per mg of pSiNPs. Cells readily took up nanoparticles after 30 min incubation. siRNA-loaded pSiNPs were able to effectively downregulate target mRNA (~40%) and protein expression (31%), and induced cell apoptosis and necrosis (33%). CONCLUSION siRNA loaded pSiNPs downregulated mRNA and protein expression and induced cell death. This novel siRNA delivery system may pave the way towards developing more effective tumor therapies.
Collapse
Affiliation(s)
- Yuan Wan
- Mawson Institute, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
| | | | | | | | | |
Collapse
|
532
|
Aptamer-based therapeutics of the past, present and future: from the perspective of eye-related diseases. Drug Discov Today 2014; 19:1309-21. [PMID: 24598791 DOI: 10.1016/j.drudis.2014.02.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/04/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023]
Abstract
Aptamers have emerged as a novel and powerful class of biomolecules with an immense untapped potential. The ability to synthesise highly specific aptamers against any molecular target make them a vital cog in the design of effective therapeutics for the future. However, only a minutia of the enormous potential of this dynamic class of molecule has been exploited. Several aptamers have been studied for the treatment of eye-related disorders, and one such strategy has been successful in therapy. This review gives an account of several eye diseases and their regulatory biomolecules where other nucleic acid therapeutics have been attempted with limited success and how aptamers, with their exceptional flexibility to chemical modifications, can overcome those inherent shortcomings.
Collapse
|
533
|
Systemic siRNA delivery to a spontaneous pancreatic tumor model in transgenic mice by PEGylated calcium phosphate hybrid micelles. J Control Release 2014; 178:18-24. [DOI: 10.1016/j.jconrel.2014.01.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 12/17/2013] [Accepted: 01/07/2014] [Indexed: 12/26/2022]
|
534
|
Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems. Phys Life Rev 2014; 11:113-34. [DOI: 10.1016/j.plrev.2013.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/05/2013] [Indexed: 12/26/2022]
|
535
|
Mavridis K, Avgeris M, Scorilas A. Targeting kallikrein-related peptidases in prostate cancer. Expert Opin Ther Targets 2014; 18:365-83. [DOI: 10.1517/14728222.2014.880693] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
536
|
Current progress on aptamer-targeted oligonucleotide therapeutics. Ther Deliv 2014; 4:1527-46. [PMID: 24304250 DOI: 10.4155/tde.13.118] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exploiting the power of the RNAi pathway through the use of therapeutic siRNA drugs has remarkable potential for treating a vast array of human disease conditions. However, difficulties in delivery of these and similar nucleic acid-based pharmacological agents to appropriate organs or tissues, remains a major impediment to their broad clinical application. Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery vehicles for therapeutic oligonucleotides, including siRNAs. In this review, we summarize recent attractive developments in creatively employing cell-internalizing aptamers to deliver therapeutic oligonucleotides (e.g., siRNAs, miRNAs, anti-miRs and antisense oligos) to target cells. We also discuss advancements in aptamer-siRNA chimera technology, as well as, aptamer-functionalized nanoparticles for siRNA delivery. In addition, the challenges and future prospects of aptamer-targeted oligonucleotide drugs for clinical translation are further highlighted.
Collapse
|
537
|
Burdick AD, Sciabola S, Mantena SR, Hollingshead BD, Stanton R, Warneke JA, Zeng M, Martsen E, Medvedev A, Makarov SS, Reed LA, Davis JW, Whiteley LO. Sequence motifs associated with hepatotoxicity of locked nucleic acid--modified antisense oligonucleotides. Nucleic Acids Res 2014; 42:4882-91. [PMID: 24550163 PMCID: PMC4005641 DOI: 10.1093/nar/gku142] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fully phosphorothioate antisense oligonucleotides (ASOs) with locked nucleic acids (LNAs) improve target affinity, RNase H activation and stability. LNA modified ASOs can cause hepatotoxicity, and this risk is currently not fully understood. In vitro cytotoxicity screens have not been reliable predictors of hepatic toxicity in non-clinical testing; however, mice are considered to be a sensitive test species. To better understand the relationship between nucleotide sequence and hepatotoxicity, a structure–toxicity analysis was performed using results from 2 week repeated-dose-tolerability studies in mice administered LNA-modified ASOs. ASOs targeting human Apolipoprotien C3 (Apoc3), CREB (cAMP Response Element Binding Protein) Regulated Transcription Coactivator 2 (Crtc2) or Glucocorticoid Receptor (GR, NR3C1) were classified based upon the presence or absence of hepatotoxicity in mice. From these data, a random-decision forest-classification model generated from nucleotide sequence descriptors identified two trinucleotide motifs (TCC and TGC) that were present only in hepatotoxic sequences. We found that motif containing sequences were more likely to bind to hepatocellular proteins in vitro and increased P53 and NRF2 stress pathway activity in vivo. These results suggest in silico approaches can be utilized to establish structure–toxicity relationships of LNA-modified ASOs and decrease the likelihood of hepatotoxicity in preclinical testing.
Collapse
Affiliation(s)
- Andrew D Burdick
- Drug Safety Research and Development, Worldwide Research and Development, Pfizer Inc., Cambridge, MA 02140, USA, Oligonucleotide Therapeutic Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA 02139, USA and Attagene Inc., Morrisville, NC 27560, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
538
|
siRNA-mediated Allele-specific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e147. [PMID: 24518369 PMCID: PMC3950771 DOI: 10.1038/mtna.2013.74] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/07/2013] [Indexed: 12/16/2022]
Abstract
Congenital muscular dystrophy type Ullrich (UCMD) is a severe disorder of early childhood onset for which currently there is no effective treatment. UCMD commonly is caused by dominant-negative mutations in the genes coding for collagen type VI, a major microfibrillar component of the extracellular matrix surrounding the muscle fibers. To explore RNA interference (RNAi) as a potential therapy for UCMD, we designed a series of small interfering RNA (siRNA) oligos that specifically target the most common mutations resulting in skipping of exon 16 in the COL6A3 gene and tested them in UCMD-derived dermal fibroblasts. Transcript analysis by semiquantitative and quantitative reverse transcriptase PCR showed that two of these siRNAs were the most allele-specific, i.e., they efficiently knocked down the expression from the mutant allele, without affecting the normal allele. In HEK293T cells, these siRNAs selectively suppressed protein expression from a reporter construct carrying the mutation, with no or minimal suppression of the wild-type (WT) construct, suggesting that collagen VI protein levels are as also reduced in an allele-specific manner. Furthermore, we found that treating UCMD fibroblasts with these siRNAs considerably improved the quantity and quality of the collagen VI matrix, as assessed by confocal microscopy. Our current study establishes RNAi as a promising molecular approach for treating dominant COL6-related dystrophies.
Collapse
|
539
|
Alekseev S, Ayadi M, Brino L, Egly JM, Larsen AK, Coin F. A small molecule screen identifies an inhibitor of DNA repair inducing the degradation of TFIIH and the chemosensitization of tumor cells to platinum. ACTA ACUST UNITED AC 2014; 21:398-407. [PMID: 24508195 DOI: 10.1016/j.chembiol.2013.12.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/09/2013] [Accepted: 12/23/2013] [Indexed: 11/30/2022]
Abstract
Nucleotide excision repair (NER) removes DNA lesions resulting from exposure to UV irradiation or chemical agents such as platinum-based drugs used as anticancer molecules. Pharmacological inhibition of NER is expected to enhance chemosensitivity but nontoxic NER inhibitors are rare. Using a drug repositioning approach, we identify spironolactone (SP), an antagonist of aldosterone, as a potent NER inhibitor. We found that SP promotes a rapid and reversible degradation of XPB, a subunit of transcription/repair factor TFIIH. Such degradation depends both on ubiquitin-activating enzyme and on the 26S proteasome. Supplementation of extracts from SP-treated cells with purified TFIIH restored TFIIH-dependent repair and transcription activities in vitro, demonstrating the specific impact of SP on two fundamental functions of TFIIH. Finally, SP potentiated the cytotoxicity of platinum derivatives toward tumor cells, making it a potential therapeutic and research tool.
Collapse
Affiliation(s)
- Sergey Alekseev
- IGBMC, Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014, CNRS/INSERM/Université de Strasbourg, BP 163, 67404 Illkirch Cedex, CU Strasbourg, France
| | - Mériam Ayadi
- Laboratory of Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM and Université Pierre et Marie Curie, UPCM, 4 Place Jussieu, 75005 Paris, France
| | - Laurent Brino
- IGBMC, Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014, CNRS/INSERM/Université de Strasbourg, BP 163, 67404 Illkirch Cedex, CU Strasbourg, France
| | - Jean-Marc Egly
- IGBMC, Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014, CNRS/INSERM/Université de Strasbourg, BP 163, 67404 Illkirch Cedex, CU Strasbourg, France
| | - Annette K Larsen
- Laboratory of Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine, INSERM and Université Pierre et Marie Curie, UPCM, 4 Place Jussieu, 75005 Paris, France
| | - Frédéric Coin
- IGBMC, Department of Functional Genomics and Cancer, Equipe Labellisée Ligue 2014, CNRS/INSERM/Université de Strasbourg, BP 163, 67404 Illkirch Cedex, CU Strasbourg, France.
| |
Collapse
|
540
|
Afonin KA, Desai R, Viard M, Kireeva ML, Bindewald E, Case CL, Maciag AE, Kasprzak WK, Kim T, Sappe A, Stepler M, KewalRamani VN, Kashlev M, Blumenthal R, Shapiro BA. Co-transcriptional production of RNA-DNA hybrids for simultaneous release of multiple split functionalities. Nucleic Acids Res 2014; 42:2085-97. [PMID: 24194608 PMCID: PMC3919563 DOI: 10.1093/nar/gkt1001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022] Open
Abstract
Control over the simultaneous delivery of different functionalities and their synchronized intracellular activation can greatly benefit the fields of RNA and DNA biomedical nanotechnologies and allow for the production of nanoparticles and various switching devices with controllable functions. We present a system of multiple split functionalities embedded in the cognate pairs of RNA-DNA hybrids which are programmed to recognize each other, re-associate and form a DNA duplex while also releasing the split RNA fragments which upon association regain their original functions. Simultaneous activation of three different functionalities (RNAi, Förster resonance energy transfer and RNA aptamer) confirmed by multiple in vitro and cell culture experiments prove the concept. To automate the design process, a novel computational tool that differentiates between the thermodynamic stabilities of RNA-RNA, RNA-DNA and DNA-DNA duplexes was developed. Moreover, here we demonstrate that besides being easily produced by annealing synthetic RNAs and DNAs, the individual hybrids carrying longer RNAs can be produced by RNA polymerase II-dependent transcription of single-stranded DNA templates.
Collapse
Affiliation(s)
- Kirill A. Afonin
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ravi Desai
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mathias Viard
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Maria L. Kireeva
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Eckart Bindewald
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christopher L. Case
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna E. Maciag
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Wojciech K. Kasprzak
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Taejin Kim
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Alison Sappe
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Marissa Stepler
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Vineet N. KewalRamani
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mikhail Kashlev
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Robert Blumenthal
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Bruce A. Shapiro
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702, USA, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, Gene Regulation and Chromosome Biology Laboratory, Center for Cancer Research, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA, HIV Drug Resistance Program, NCI-Frederick, Frederick, MD 21702, USA and Chemical Biology Laboratory, NCI, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
541
|
Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev 2014; 66:110-6. [PMID: 24384374 DOI: 10.1016/j.addr.2013.12.008] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/22/2013] [Accepted: 12/19/2013] [Indexed: 11/17/2022]
Abstract
Small interfering RNAs (siRNA) have recently emerged as a new class of therapeutics with a great potential to revolutionize the treatment of cancer and other diseases. A specifically designed siRNA binds and induces post-transcriptional silencing of target genes (mRNA). Clinical applications of siRNA-based therapeutics have been limited by their rapid degradation, poor cellular uptake, and rapid renal clearance following systemic administration. A variety of synthetic and natural nanoparticles composed of lipids, polymers, and metals have been developed for siRNA delivery, with different efficacy and safety profiles. Liposomal nanoparticles have proven effective in delivering siRNA into tumor tissues by improving stability and bioavailability. While providing high transfection efficiency and a capacity to form complexes with negatively charged siRNA, cationic lipids/liposomes are highly toxic. Negatively charged liposomes, on the other hand, are rapidly cleared from circulation. To overcome these problems we developed highly safe and effective neutral lipid-based nanoliposomes that provide robust gene silencing in tumors following systemic (intravenous) administration. This delivery system demonstrated remarkable antitumor efficacy in various orthotopic human cancer models in animals. Here, we briefly overview this and other lipid-based approaches with preclinical applications in different tumor models for cancer therapy and potential applications as siRNA-nanotherapeutics in human cancers.
Collapse
Affiliation(s)
- Bulent Ozpolat
- Departments of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Anil K Sood
- Gynecologic Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Departments of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
542
|
Trelle MB, Dupont DM, Madsen JB, Andreasen PA, Jørgensen TJD. Dissecting the effect of RNA aptamer binding on the dynamics of plasminogen activator inhibitor 1 using hydrogen/deuterium exchange mass spectrometry. ACS Chem Biol 2014; 9:174-82. [PMID: 24138169 DOI: 10.1021/cb400619v] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA aptamers, selected from large synthetic libraries, are attracting increasing interest as protein ligands, with potential uses as prototype pharmaceuticals, conformational probes, and reagents for specific quantification of protein levels in biological samples. Very little is known, however, about their effects on protein conformation and dynamics. We have employed hydrogen/deuterium exchange (HDX) mass spectrometry to study the effect of RNA aptamers on the structural flexibility of the serpin plasminogen activator inhibitor-1 (PAI-1). The aptamers have characteristic effects on the biochemical properties of PAI-1. In particular, they are potent inhibitors of the structural transition of PAI-1 from the active state to the inactive, so-called latent state. This transition is one of the largest conformational changes of a folded protein domain without covalent modification. Binding of the aptamers to PAI-1 is associated with substantial and widespread protection against deuterium uptake in PAI-1. The aptamers induce protection against exchange with the solvent both in the protein-aptamer interface as well as in other specific areas. Interestingly, the aptamers induce substantial protection against exchange in α-helices B, C and I. This observation substantiates the relevance of structural instability in this region for transition to the latent state and argues for involvement of flexibility in regions not commonly associated with regulation of latency transition in serpins.
Collapse
Affiliation(s)
- Morten B. Trelle
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Daniel M. Dupont
- Department
of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10DK-8000 Århus C, Denmark
| | - Jeppe B. Madsen
- Department
of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10DK-8000 Århus C, Denmark
| | - Peter A. Andreasen
- Department
of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10DK-8000 Århus C, Denmark
| | - Thomas J. D. Jørgensen
- Department
of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
543
|
Gupta S, Hirota M, Waugh SM, Murakami I, Suzuki T, Muraguchi M, Shibamori M, Ishikawa Y, Jarvis TC, Carter JD, Zhang C, Gawande B, Vrkljan M, Janjic N, Schneider DJ. Chemically modified DNA aptamers bind interleukin-6 with high affinity and inhibit signaling by blocking its interaction with interleukin-6 receptor. J Biol Chem 2014; 289:8706-19. [PMID: 24415766 PMCID: PMC3961692 DOI: 10.1074/jbc.m113.532580] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that regulates immune and inflammatory responses, and its overproduction is a hallmark of inflammatory diseases. Inhibition of IL-6 signaling with the anti-IL-6 receptor antibody tocilizumab has provided some clinical benefit to patients; however, direct cytokine inhibition may be a more effective option. We used the systematic evolution of ligands by exponential enrichment (SELEX) process to discover slow off-rate modified aptamers (SOMAmers) with hydrophobic base modifications that inhibit IL-6 signaling in vitro. Two classes of IL-6 SOMAmers were isolated from modified DNA libraries containing 40 random positions and either 5-(N-benzylcarboxamide)-2′-deoxyuridine (Bn-dU) or 5-[N-(1-naphthylmethyl)carboxamide]-2′-deoxyuridine (Nap-dU) replacing dT. These modifications facilitate the high affinity binding interaction with IL-6 and provide resistance against degradation by serum endonucleases. Post-SELEX optimization of one Bn-dU and one Nap-dU SOMAmer led to improvements in IL-6 binding (10-fold) and inhibition activity (greater than 20-fold), resulting in lead SOMAmers with sub-nanomolar affinity (Kd = 0.2 nm) and potency (IC50 = 0.2 nm). Although similar in inhibition properties, the two SOMAmers have unique sequences and different ortholog specificities. Furthermore, these SOMAmers were stable in human serum in vitro for more than 48 h. Both SOMAmers prevented IL-6 signaling by blocking the interaction of IL-6 with its receptor and inhibited the proliferation of tumor cells in vitro as effectively as tocilizumab. This new class of IL-6 inhibitor may be an effective therapeutic alternative for patients suffering from inflammatory diseases.
Collapse
Affiliation(s)
- Shashi Gupta
- From SomaLogic, Inc., Boulder, Colorado 80301 and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
544
|
Yoshida W, Abe K, Ikebukuro K. Emerging techniques employed in aptamer-based diagnostic tests. Expert Rev Mol Diagn 2014; 14:143-51. [PMID: 24400930 DOI: 10.1586/14737159.2014.868307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Since aptamers were reported in 1990, research into the applications of aptamers, particularly diagnostic applications, has been growing. Aptamers can act as recognition elements instead of antibodies. In this regard, aptamers have unique characteristics because they are composed of nucleic acids. Intra- and intermolecular interactions of nucleic acids can be easily tailored following straightforward hybridization rules. Nucleic acids can be enzymatically replicated and their sequences can be determined using high-throughput methods. Using these properties, ligand-induced structural change-based aptamer sensors for homogeneous assays, polymerase- and/or nuclease-combined aptamer sensors for ultrasensitive assays, and microarray/next-generation sequencing-based aptamer sensors for multiplexed assays have been developed. This article reviews these unique aptamer sensors, demonstrating their great potential for diagnostic applications.
Collapse
Affiliation(s)
- Wataru Yoshida
- Department of Biotechnology and Life Science, Tokyo University of Agriculture & Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | | | | |
Collapse
|
545
|
Fehring V, Schaeper U, Ahrens K, Santel A, Keil O, Eisermann M, Giese K, Kaufmann J. Delivery of therapeutic siRNA to the lung endothelium via novel Lipoplex formulation DACC. Mol Ther 2014; 22:811-20. [PMID: 24390281 DOI: 10.1038/mt.2013.291] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/21/2013] [Indexed: 11/09/2022] Open
Abstract
Posttranscriptional gene silencing by RNA interference can be therapeutically exploited to inhibit pathophysiological gene expression. However, in contrast to the established effectiveness of RNAi in vitro, safe and effective delivery of siRNAs to specific organs and cell types in vivo remains the major hurdle. Here, we report the development and in vivo characterization of a novel siRNA delivery system (DACC lipoplex) suitable for modulating target gene expression specifically in the lung vasculature. Systemic administration of DACC in mice delivered siRNA cargo functionally to the lung pulmonary endothelium. A single dose of DACC lipoplexes administered by bolus injection or by infusion was sufficient to specifically silence genes expressed in pulmonary endothelial cells such as CD31, Tie-2, VE-cadherin, or BMP-R2. When tested in a mouse model for lung cancer, repeated treatment with DACC/siRNA(CD31) reduced formation of lung metastases and increased life span in a mouse model of experimental lung metastasis.
Collapse
Affiliation(s)
- V Fehring
- Silence Therapeutics GmbH, Berlin, Germany
| | - U Schaeper
- Silence Therapeutics GmbH, Berlin, Germany
| | - K Ahrens
- Silence Therapeutics GmbH, Berlin, Germany
| | - A Santel
- Silence Therapeutics GmbH, Berlin, Germany
| | - O Keil
- Silence Therapeutics GmbH, Berlin, Germany
| | | | - K Giese
- Silence Therapeutics GmbH, Berlin, Germany
| | | |
Collapse
|
546
|
Juliano RL, Ming X, Carver K, Laing B. Cellular uptake and intracellular trafficking of oligonucleotides: implications for oligonucleotide pharmacology. Nucleic Acid Ther 2014; 24:101-13. [PMID: 24383421 DOI: 10.1089/nat.2013.0463] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
One of the major constraints on the therapeutic use of oligonucleotides is inefficient delivery to their sites of action in the cytosol or nucleus. Recently it has become evident that the pathways of cellular uptake and intracellular trafficking of oligonucleotides can strongly influence their pharmacological actions. Here we provide background information on the basic processes of endocytosis and trafficking and then review recent literature on targeted delivery and subcellular trafficking of oligonucleotides in that context. A variety of approaches including molecular scale ligand-oligonucleotide conjugates, ligand-targeted nanocarriers, and the use of small molecules to enhance oligonucleotide effects are discussed.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina
| | | | | | | |
Collapse
|
547
|
Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRβ aptamer. Mol Ther 2014; 22:828-41. [PMID: 24566984 DOI: 10.1038/mt.2013.300] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 12/18/2013] [Indexed: 12/28/2022] Open
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) is a cell-surface tyrosine kinase receptor implicated in several cellular processes including proliferation, migration, and angiogenesis. It represents a compelling therapeutic target in many human tumors, including glioma. A number of tyrosine kinase inhibitors under development as antitumor agents have been found to inhibit PDGFRβ. However, they are not selective as they present multiple tyrosine kinase targets. Here, we report a novel PDGFRβ-specific antagonist represented by a nuclease-resistant RNA-aptamer, named Gint4.T. This aptamer is able to specifically bind to the human PDGFRβ ectodomain (Kd: 9.6 nmol/l) causing a strong inhibition of ligand-dependent receptor activation and of downstream signaling in cell lines and primary cultures of human glioblastoma cells. Moreover, Gint4.T aptamer drastically inhibits cell migration and proliferation, induces differentiation, and blocks tumor growth in vivo. In addition, Gint4.T aptamer prevents PDGFRβ heterodimerization with and resultant transactivation of epidermal growth factor receptor. As a result, the combination of Gint4.T and an epidermal growth factor receptor-targeted aptamer is better at slowing tumor growth than either single aptamer alone. These findings reveal Gint4.T as a PDGFRβ-drug candidate with translational potential.
Collapse
|
548
|
Masaki Y, Miyasaka R, Hirai K, Kanamori T, Tsunoda H, Ohkubo A, Seio K, Sekine M. Properties of 5- and/or 2-modified 2′-O-cyanoethyl uridine residue: 2′-O-cyanoethyl-5-propynyl-2-thiouridine as an efficient duplex stabilizing component. Org Biomol Chem 2014; 12:1157-62. [DOI: 10.1039/c3ob41983e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
549
|
Gonçalves C, Berchel M, Gosselin MP, Malard V, Cheradame H, Jaffrès PA, Guégan P, Pichon C, Midoux P. Lipopolyplexes comprising imidazole/imidazolium lipophosphoramidate, histidinylated polyethyleneimine and siRNA as efficient formulation for siRNA transfection. Int J Pharm 2014; 460:264-72. [DOI: 10.1016/j.ijpharm.2013.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/01/2013] [Indexed: 02/05/2023]
|
550
|
Xing ZH, Wei JH, Cheang TY, Wang ZR, Zhou X, Wang SS, Chen W, Wang SM, Luo JH, Xu AW. Bifunctional pH-sensitive Zn(ii)–curcumin nanoparticles/siRNA effectively inhibit growth of human bladder cancer cells in vitro and in vivo. J Mater Chem B 2014; 2:2714-2724. [DOI: 10.1039/c3tb21625j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|