501
|
Hager DN, Hooper MH, Bernard GR, Busse LW, Ely EW, Fowler AA, Gaieski DF, Hall A, Hinson JS, Jackson JC, Kelen GD, Levine M, Lindsell CJ, Malone RE, McGlothlin A, Rothman RE, Viele K, Wright DW, Sevransky JE, Martin GS. The Vitamin C, Thiamine and Steroids in Sepsis (VICTAS) Protocol: a prospective, multi-center, double-blind, adaptive sample size, randomized, placebo-controlled, clinical trial. Trials 2019; 20:197. [PMID: 30953543 PMCID: PMC6451231 DOI: 10.1186/s13063-019-3254-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/27/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sepsis accounts for 30% to 50% of all in-hospital deaths in the United States. Other than antibiotics and source control, management strategies are largely supportive with fluid resuscitation and respiratory, renal, and circulatory support. Intravenous vitamin C in conjunction with thiamine and hydrocortisone has recently been suggested to improve outcomes in patients with sepsis in a single-center before-and-after study. However, before this therapeutic strategy is adopted, a rigorous assessment of its efficacy is needed. METHODS The Vitamin C, Thiamine and Steroids in Sepsis (VICTAS) trial is a prospective, multi-center, double-blind, adaptive sample size, randomized, placebo-controlled trial. It will enroll patients with sepsis causing respiratory or circulatory compromise or both. Patients will be randomly assigned (1:1) to receive intravenous vitamin C (1.5 g), thiamine (100 mg), and hydrocortisone (50 mg) every 6 h or matching placebos until a total of 16 administrations have been completed or intensive care unit discharge occurs (whichever is first). Patients randomly assigned to the comparator group are permitted to receive open-label stress-dose steroids at the discretion of the treating clinical team. The primary outcome is consecutive days free of ventilator and vasopressor support (VVFDs) in the 30 days following randomization. The key secondary outcome is mortality at 30 days. Sample size will be determined adaptively by using interim analyses with pre-stated stopping rules to allow the early recognition of a large mortality benefit if one exists and to refocus on the more sensitive outcome of VVFDs if an early large mortality benefit is not observed. DISCUSSION VICTAS is a large, multi-center, double-blind, adaptive sample size, randomized, placebo-controlled trial that will test the efficacy of vitamin C, thiamine, and hydrocortisone as a combined therapy in patients with respiratory or circulatory dysfunction (or both) resulting from sepsis. Because the components of this therapy are inexpensive and readily available and have very favorable risk profiles, demonstrated efficacy would have immediate implications for the management of sepsis worldwide. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03509350 . First registered on April 26, 2018, and last verified on December 20, 2018. Protocol version: 1.4, January 9, 2019.
Collapse
Affiliation(s)
- David N. Hager
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Johns Hopkins University, 1800 Orleans Street, Suite 9121, Baltimore, MD 21287 USA
| | - Michael H. Hooper
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Eastern Virginia Medical School and Sentara Healthcare, Norfolk, VA USA
| | - Gordon R. Bernard
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Laurence W. Busse
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA USA
| | - E. Wesley Ely
- Division of Pulmonary & Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN USA
- Tennessee Valley Veteran’s Affairs Geriatric Research Education Clinical Center (GRECC), Nashville, TN USA
| | - Alpha A. Fowler
- Division of Pulmonary Disease & Critical Care Medicine, Department of Internal Medicine, The VCU Johnson Center for Critical Care and Pulmonary Research, Virginia Commonwealth University School of Medicine, Richmond, VA USA
| | - David F. Gaieski
- Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA USA
| | - Alex Hall
- Department of Emergency Medicine, Emory University, Atlanta, GA USA
- Grady Memorial Hospital, Atlanta, GA USA
| | - Jeremiah S. Hinson
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD USA
| | - James C. Jackson
- Division of Pulmonary & Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN USA
- Critical Illness, Brain Dysfunction, and Survivorship (CIBS) Center, Vanderbilt University Medical Center, Nashville, TN USA
- Tennessee Valley Veteran’s Affairs Geriatric Research Education Clinical Center (GRECC), Nashville, TN USA
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN USA
| | - Gabor D. Kelen
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Mark Levine
- Molecular & Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD USA
| | | | - Richard E. Malone
- Investigational Drug Service, Vanderbilt University Medical Center, Nashville, TN USA
| | | | - Richard E. Rothman
- Department of Emergency Medicine, Johns Hopkins University, Baltimore, MD USA
| | | | - David W. Wright
- Department of Emergency Medicine, Emory University, Atlanta, GA USA
- Grady Memorial Hospital, Atlanta, GA USA
| | - Jonathan E. Sevransky
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA USA
| | - Greg S. Martin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA USA
- Grady Memorial Hospital, Atlanta, GA USA
| |
Collapse
|
502
|
Ahn JH, Oh DK, Huh JW, Lim CM, Koh Y, Hong SB. Vitamin C alone does not improve treatment outcomes in mechanically ventilated patients with severe sepsis or septic shock: a retrospective cohort study. J Thorac Dis 2019; 11:1562-1570. [PMID: 31179100 DOI: 10.21037/jtd.2019.03.03] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Vitamin C has shown several beneficial effects on sepsis in preclinical studies. However, clinical data supporting these reports are scarce. This study aimed to evaluate whether adjunctive intravenous vitamin C therapy could reduce hospital mortality in patients with severe sepsis or septic shock requiring mechanical ventilation. Methods For this retrospective cohort study, consecutive medical ICU patients with severe sepsis or septic shock requiring mechanical ventilation were included. The study patients were classified into the vitamin C or control groups depending on the administration of intravenous vitamin C (2 g every 8 hours). The primary outcome was hospital mortality. Results Thirty-five patients in the vitamin C group and 40 patients in the control group were included. The two groups were comparable in regards to the baseline characteristics at ICU admission. The hospital mortality was 46% (16 of 35 patients) in the vitamin C group and 40% (16 of 40 patients) in the control group, showing a statistically nonsignificant difference (P=0.62). The mortality at 90 days after ICU admission (60% vs. 48%) did not significantly differ between groups. The median time to shock reversal was 3 days [interquartile range (IQR), 2 to 5 days] in both groups. The changes in the Sepsis-related Organ Failure Assessment (SOFA) scores during the first 4 ICU days were -1.4±3.3 and -1.4±3.0 in the vitamin C and control groups, respectively. Conclusions Adjunctive intravenous vitamin C therapy alone did not reduce hospital mortality in mechanically ventilated patients with severe sepsis or septic shock.
Collapse
Affiliation(s)
- Jee Hwan Ahn
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Dong Kyu Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
503
|
Hemilä H, Chalker E. Vitamin C Can Shorten the Length of Stay in the ICU: A Meta-Analysis. Nutrients 2019; 11:E708. [PMID: 30934660 PMCID: PMC6521194 DOI: 10.3390/nu11040708] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
A number of controlled trials have previously found that in some contexts, vitamin C can have beneficial effects on blood pressure, infections, bronchoconstriction, atrial fibrillation, and acute kidney injury. However, the practical significance of these effects is not clear. The purpose of this meta-analysis was to evaluate whether vitamin C has an effect on the practical outcomes: length of stay in the intensive care unit (ICU) and duration of mechanical ventilation. We identified 18 relevant controlled trials with a total of 2004 patients, 13 of which investigated patients undergoing elective cardiac surgery. We carried out the meta-analysis using the inverse variance, fixed effect options, using the ratio of means scale. In 12 trials with 1766 patients, vitamin C reduced the length of ICU stay on average by 7.8% (95% CI: 4.2% to 11.2%; p = 0.00003). In six trials, orally administered vitamin C in doses of 1⁻3 g/day (weighted mean 2.0 g/day) reduced the length of ICU stay by 8.6% (p = 0.003). In three trials in which patients needed mechanical ventilation for over 24 hours, vitamin C shortened the duration of mechanical ventilation by 18.2% (95% CI 7.7% to 27%; p = 0.001). Given the insignificant cost of vitamin C, even an 8% reduction in ICU stay is worth exploring. The effects of vitamin C on ICU patients should be investigated in more detail.
Collapse
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, POB 41, FI-00014 Helsinki, Finland.
| | - Elizabeth Chalker
- School of Public Health, University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
504
|
Simoni J. Why do we need extracorporeal blood purification for sepsis and septic shock? Artif Organs 2019; 43:444-447. [DOI: 10.1111/aor.13442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jan Simoni
- Texas HemoBioTherapeutics & BioInnovation Center Lubbock Texas
| |
Collapse
|
505
|
D'Costa MR, Winkler NS, Milliner DS, Norby SM, Hickson LJ, Lieske JC. Oxalosis Associated With High-Dose Vitamin C Ingestion in a Peritoneal Dialysis Patient. Am J Kidney Dis 2019; 74:417-420. [PMID: 30910370 DOI: 10.1053/j.ajkd.2019.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/18/2019] [Indexed: 01/15/2023]
Abstract
We report a case of systemic oxalosis involving the eyes and joints due to long-term use of high-dose vitamin C in a patient receiving maintenance peritoneal dialysis (PD). This 76-year-old woman with autosomal dominant polycystic kidney disease underwent living unrelated kidney transplantation 10 years earlier. The transplant failed 6 months before presentation, and she initiated hemodialysis therapy before transitioning to PD therapy 4 months later. During the month before presentation, the patient noted worsening arthralgias and decreased vision. Ophthalmologic examination revealed proliferative retinopathy and calcium oxalate crystals. Plasma oxalate level was markedly elevated at 187 (reference range, <1.7) μmol/L, and urine oxalate-creatinine ratio was high (0.18mg/mg). The patient reported taking up to 4g of vitamin C per day for several years. Workup for causes of primary and secondary hyperoxaluria was otherwise negative. Vitamin C use was discontinued, and the patient transitioned to daily hemodialysis for 2 weeks. Plasma oxalate level before the dialysis session decreased but remained higher (30-53μmol/L) than typical for dialysis patients. Upon discharge, the patient remained on thrice-weekly hemodialysis therapy with stabilized vision and improved joint symptoms. This case highlights the risk of high-dose vitamin C use in patients with advanced chronic kidney disease, especially when maintained on PD therapy.
Collapse
Affiliation(s)
| | | | - Dawn S Milliner
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN; The Rare Kidney Stone Consortium, Mayo Clinic, Rochester, MN
| | - Suzanne M Norby
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN
| | | | - John C Lieske
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN; The Rare Kidney Stone Consortium, Mayo Clinic, Rochester, MN; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
506
|
Gyawali B, Ramakrishna K, Dhamoon AS. Sepsis: The evolution in definition, pathophysiology, and management. SAGE Open Med 2019; 7:2050312119835043. [PMID: 30915218 PMCID: PMC6429642 DOI: 10.1177/2050312119835043] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
There has been a significant evolution in the definition and management of sepsis over the last three decades. This is driven in part due to the advances made in our understanding of its pathophysiology. There is evidence to show that the manifestations of sepsis can no longer be attributed only to the infectious agent and the immune response it engenders, but also to significant alterations in coagulation, immunosuppression, and organ dysfunction. A revolutionary change in the way we manage sepsis has been the adoption of early goal-directed therapy. This involves the early identification of at-risk patients and prompt treatment with antibiotics, hemodynamic optimization, and appropriate supportive care. This has contributed significantly to the overall improved outcomes with sepsis. Investigation into clinically relevant biomarkers of sepsis are ongoing and have yet to yield effective results. Scoring systems such as the sequential organ failure assessment and Acute Physiology and Chronic Health Evaluation help risk-stratify patients with sepsis. Advances in precision medicine techniques and the development of targeted therapy directed at limiting the excesses of the inflammatory and coagulatory cascades offer potentially viable avenues for future research. This review summarizes the progress made in the diagnosis and management of sepsis over the past two decades and examines promising avenues for future research.
Collapse
Affiliation(s)
- Bishal Gyawali
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Karan Ramakrishna
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Amit S Dhamoon
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
507
|
Kyriazopoulou E, Giamarellos-Bourboulis EJ. Pharmacological management of sepsis in adults with a focus on the current gold standard treatments and promising adjunctive strategies: evidence from the last five years. Expert Opin Pharmacother 2019; 20:991-1007. [DOI: 10.1080/14656566.2019.1589451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Evdoxia Kyriazopoulou
- 4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | |
Collapse
|
508
|
Supraphysiologic parenteral ascorbic acid blunts the inflammatory mediator response to pathogen associated molecular patterns in dogs ex vivo. Res Vet Sci 2019; 124:228-232. [PMID: 30928655 DOI: 10.1016/j.rvsc.2019.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/14/2019] [Accepted: 03/10/2019] [Indexed: 12/25/2022]
|
509
|
Vincent JL, Mongkolpun W. Non-antibiotic therapies for sepsis: an update. Expert Rev Anti Infect Ther 2019; 17:169-175. [DOI: 10.1080/14787210.2019.1581606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Wasineenart Mongkolpun
- Department of Intensive Care, Erasme Hospital, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
510
|
De Backer D, Cecconi M, Lipman J, Machado F, Myatra SN, Ostermann M, Perner A, Teboul JL, Vincent JL, Walley KR. Challenges in the management of septic shock: a narrative review. Intensive Care Med 2019; 45:420-433. [PMID: 30741328 DOI: 10.1007/s00134-019-05544-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022]
Abstract
While guidelines provide important information on how to approach a patient in septic shock, "many challenges remain" for the management of these patients. In this narrative review, the panel discusses the challenges in identifying the right hemodynamic target, optimization of fluid therapy, selection of vasopressor agents, identification of patients who may benefit from inotropic agents or on the contrary beta-blockade, and use of steroids. The place for microcirculation-targeted therapy is debated as well as the use of alternative techniques (blood purification) and therapies (vitamin C). The implications of hemodynamic alterations on antibiotic doses is discussed. Finally, the specific challenges in low- and middle-income countries are addressed. Ongoing trials address some of these challenges, but many uncertainties will remain, and individualized therapies based on careful clinical assessment will continue to be essential to optimizing the care of patients with septic shock.
Collapse
Affiliation(s)
- Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium.
| | - Maurizio Cecconi
- Department Anaesthesia and Intensive Care Units, IRCCS Istituto Clinico Humanitas, Humanitas University, Milan, Italy
| | - Jeffrey Lipman
- Intensive Care Services, Royal Brisbane and Women's Hospital and The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Flavia Machado
- Anesthesiology, Pain and Intensive Care Department, Federal University of Sao Paulo, São Paulo, Brazil
| | - Sheila Nainan Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Mumbai, India
| | - Marlies Ostermann
- Department of Intensive Care, King's College London, Guy's & St Thomas' Hospital, London, UK
| | - Anders Perner
- Department of Intensive Care, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jean-Louis Teboul
- Medical Intensive Care Unit, Bicetre Hospital, Paris-South University Hospitals, Inserm UMR_S999, Paris-South University, Le Kremlin-Bicêtre, France
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Keith R Walley
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, Canada
| |
Collapse
|
511
|
Kuwajima K, Chang K, Furuta A, Bougaki M, Uchida K, Sawamura S, Yamada Y. Synergistic cytoprotection by co-treatment with dexamethasone and rapamycin against proinflammatory cytokine-induced alveolar epithelial cell injury. J Intensive Care 2019; 7:12. [PMID: 30774959 PMCID: PMC6367811 DOI: 10.1186/s40560-019-0365-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 11/10/2022] Open
Abstract
Background One of the main pathophysiological manifestations during the acute phase of sepsis is massive production of proinflammatory mediators. Clinical trials involving direct suppression of inflammatory mediators to relieve organ dysfunction in sepsis have been extensively performed; however, the clinical outcomes of such trials remain far from satisfactory. Given the need for better sepsis treatments, we have screened various agents with anti-inflammatory properties for cytoprotective effects. In this study, we identified dexamethasone and rapamycin as clinically applicable candidates with favorable synergistic effects against inflammatory cytokine-induced cytotoxicity in vitro and further explored the molecular mechanisms underlying the augmented cytoprotective effects exerted by co-treatment with both drugs. Methods Human alveolar epithelial cell-derived A549 cells were stimulated with a mixture of inflammatory cytokines, TNF-alpha, IL-1beta, and IFN-gamma, which induce cellular injury, including apoptosis. This in vitro model was designed to simulate acute lung injury (ALI) associated with sepsis. The cells were co-treated with dexamethasone and rapamycin under cytokine stimulation. Conditioned medium and cell lysates were subjected to further analysis. Results Either dexamethasone or rapamycin significantly attenuated cytokine-induced cytotoxicity in A549 cells in a dose-dependent manner. In addition, the simultaneous administration of dexamethasone and rapamycin had a synergistic cytoprotective effect. The applied doses of dexamethasone (10 nM) and rapamycin (1 nM) were considerably below the reported plasma concentrations of each drug in clinical setting. Interestingly, distinct augmentation of both of c-Jun inhibition and Akt activation were observed when the cells were co-treated with both drugs under cytokine stimulation. Conclusions A synergistic protective effect of dexamethasone and rapamycin was observed against cytokine-induced cytotoxicity in A549 cells. Augmentation of both of c-Jun inhibition and Akt activation were likely responsible for the cytoprotective effect. The combined administration of anti-inflammatory drugs such as dexamethasone and rapamycin offers a promising treatment option for alveolar epithelial injury associated with sepsis.
Collapse
Affiliation(s)
- Ken Kuwajima
- 1Department of Anesthesiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kyungho Chang
- 2Anesthesiology and Intensive Care Unit, Teikyo University School of Medicine, Tokyo, Japan
| | - Ai Furuta
- 1Department of Anesthesiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masahiko Bougaki
- 1Department of Anesthesiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kanji Uchida
- 1Department of Anesthesiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shigehito Sawamura
- 2Anesthesiology and Intensive Care Unit, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshitsugu Yamada
- 1Department of Anesthesiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
512
|
Kokkinaki D, Hoffman M, Kalliora C, Kyriazis ID, Maning J, Lucchese AM, Shanmughapriya S, Tomar D, Park JY, Wang H, Yang XF, Madesh M, Lymperopoulos A, Koch WJ, Christofidou-Solomidou M, Drosatos K. Chemically synthesized Secoisolariciresinol diglucoside (LGM2605) improves mitochondrial function in cardiac myocytes and alleviates septic cardiomyopathy. J Mol Cell Cardiol 2019; 127:232-245. [PMID: 30611795 PMCID: PMC6359996 DOI: 10.1016/j.yjmcc.2018.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/14/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023]
Abstract
Sepsis is the overwhelming systemic immune response to infection, which can result in multiple organ dysfunction and septic shock. Myocardial dysfunction during sepsis is associated with advanced disease and significantly increased in-hospital mortality. Our group has shown that energetic failure and excess reactive oxygen species (ROS) generation constitute major components of myocardial dysfunction in sepsis. Because ROS production is central to cellular metabolic health, we tested if the synthetic anti-oxidant lignan secoisolariciresinol diglucoside (SDG; LGM2605) would alleviate septic cardiac dysfunction and investigated the underlying mechanism. Using the cecal ligation and puncture (CLP) mouse model of peritonitis-induced sepsis, we observed impairment of cardiac function beginning at 4 h post-CLP surgery. Treatment of mice with LGM2605 (100 mg/kg body weight, i.p.) 6 h post-CLP surgery reduced cardiac ROS accumulation and restored cardiac function. Assessment of mitochondrial respiration (Seahorse XF) in primary cardiomyocytes obtained from adult C57BL/6 mice that had undergone CLP and treatment with LGM2605 showed restored basal and maximal respiration, as well as preserved oxygen consumption rate (OCR) associated with spare capacity. Further analyses aiming to identify the cellular mechanisms that may account for improved cardiac function showed that LGM2605 restored mitochondria abundance, increased mitochondrial calcium uptake and preserved mitochondrial membrane potential. In addition to protecting against cardiac dysfunction, daily treatment with LGM2605 and antibiotic ertapenem (70 mg/kg) protected against CLP-associated mortality and reversed hypothermia when compared against mice receiving ertapenem and saline. Therefore, treatment of septic mice with LGM2605 emerges as a novel pharmacological approach that reduces cardiac ROS accumulation, protects cardiac mitochondrial function, alleviates cardiac dysfunction, and improves survival.
Collapse
Affiliation(s)
- Dimitra Kokkinaki
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Faculty of Medicine, University of Crete, Voutes, Greece
| | - Matthew Hoffman
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Charikleia Kalliora
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Faculty of Medicine, University of Crete, Voutes, Greece
| | - Ioannis D Kyriazis
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| | - Anna Maria Lucchese
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Santhanam Shanmughapriya
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Dhanendra Tomar
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Joon Young Park
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Center for Metabolic Disease Research, Department of Pharmacology Lewis Katz School of Medicine, Temple University, 3500 Broad Street, Philadelphia, PA 19140, USA
| | - Xiao-Feng Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Center for Metabolic Disease Research, Department of Pharmacology Lewis Katz School of Medicine, Temple University, 3500 Broad Street, Philadelphia, PA 19140, USA
| | - Muniswamy Madesh
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Nova Southeastern University College of Pharmacy, Fort Lauderdale, FL, USA
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Melpo Christofidou-Solomidou
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, USA
| | - Konstantinos Drosatos
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
513
|
Daniels RC, Jun H, Tiba H, McCracken B, Herrera-Fierro P, Collinson M, Ward KR. Whole Blood Redox Potential Correlates With Progressive Accumulation of Oxygen Debt and Acts as A Marker of Resuscitation in A Swine Hemorrhagic Shock Model. Shock 2019; 49:345-351. [PMID: 28658006 DOI: 10.1097/shk.0000000000000933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Oxidation-reduction reactions involve electron exchanges that require optimal balance for proper cell function. This balance is measured via redox potential and reflects oxidative stress. Despite the critical role of oxidative stress in critical illness and injury, little is known regarding redox potential. We hypothesize redox potential measurements will correlate with accumulation of O2 debt produced by hemorrhage over time. METHODS Ten swine were studied using a polytrauma hemorrhagic shock model. Whole blood and plasma redox potential measures were obtained at defined stages of O2 debt (20 mL/kg, 40 mL/kg, 60 mL/kg, 80 mL/kg), and through resuscitation. Redox potential was determined by measuring open circuit potential using novel gold nanoporous electrodes with Ag/AgCl reference. RESULTS Whole blood redox potential showed negative change as O2 debt accumulated, exhibiting positive response during resuscitation, and correlated with O2 debt across all animals (P < 0.001). Redox potential changes throughout O2 debt accrual were significant compared with baseline (P≤0.05), and at end resuscitation compared with O2 debt 60 mL/kg (P = 0.05) and 80 mL/kg (P = 0.02). Whole blood redox potential measures also correlated with oxygen extraction ratio, ScvO2, and lactic acid, appearing very sensitive to acute changes. Plasma redox potential showed no correlation with O2 debt. CONCLUSIONS Whole blood redox potential demonstrates significant correlation to O2 debt at all stages in this model. These results set the stage for further study of redox potential as a direct measure of oxidative stress and potential clinical tool. Given redox potential plasma performance, these measures should be made in whole blood versus plasma.
Collapse
Affiliation(s)
- Rodney C Daniels
- Pediatric Critical Care Medicine, University of Michigan, Ann Arbor, Michigan.,Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, Michigan
| | - Hyesun Jun
- Pediatric Critical Care Medicine, University of Michigan, Ann Arbor, Michigan.,Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, Michigan
| | - Hakam Tiba
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, Michigan.,Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan
| | - Brendan McCracken
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, Michigan.,Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan
| | | | - Maryanne Collinson
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia
| | - Kevin R Ward
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, Michigan.,Department of Emergency Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
514
|
Parfitt SE, Hering SL. Recognition and Management of Sepsis in the Obstetric Patient. AACN Adv Crit Care 2019; 29:303-315. [PMID: 30185497 DOI: 10.4037/aacnacc2018171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Sepsis is one of the principal causes of maternal mortality in obstetrics. Physiologic changes that occur during pregnancy create a vulnerable environment, predisposing pregnant patients to the development of sepsis. Furthermore, these changes can mask sepsis indicators normally seen in the nonobstetric population, making it difficult to recognize and treat sepsis in a timely manner. The use of maternal-specific early warning tools for sepsis identification and knowledge of appropriate interventions and their effects on the mother and fetus can help clinicians obtain the best patient outcomes in acute care settings. This article outlines the signs and symptoms of sepsis in obstetric patients and discusses treatment options used in critical care settings.
Collapse
Affiliation(s)
- Sheryl E Parfitt
- Sheryl E. Parfitt is Clinical Educator, HonorHealth Scottsdale Shea Medical Center, 9003 E. Shea Boulevard, Scottsdale, AZ 85260 . Sandra L. Hering is Informatics Support Specialist, Honor-Health Scottsdale Shea Medical Center, Scottsdale, Arizona
| | - Sandra L Hering
- Sheryl E. Parfitt is Clinical Educator, HonorHealth Scottsdale Shea Medical Center, 9003 E. Shea Boulevard, Scottsdale, AZ 85260 . Sandra L. Hering is Informatics Support Specialist, Honor-Health Scottsdale Shea Medical Center, Scottsdale, Arizona
| |
Collapse
|
515
|
Abstract
Vasodilatory shock is the most common type of circulatory shock in critically ill patients; sepsis the predominant cause. Steroid use in septic shock gained favor in the 1970s; however, studies of high-dose steroids demonstrated excess morbidity and mortality. Lower dosage steroid use was driven by trials demonstrating improved hemodynamic status and the possibility of relative adrenal insufficiency; however, divergent results led to uncertainty about hydrocortisone treatment. Two recent trials are likely to reinforce the role of steroids in septic shock and change the recommendation in future clinical practice guidelines. Future work could include elucidating mechanisms of shock reversal, interaction of hydrocortisone with other agents, identifying steroid responsiveness using biochemical or gene signatures, and clarifying the role of fludrocortisone.
Collapse
Affiliation(s)
- Balasubramanian Venkatesh
- Department of Intensive Care, The Wesley Hospital, Coronation Drive, QLD 4066, Australia; Department of Intensive Care, Princess Alexandra Hospital, Ipswich Road, University of Queensland, QLD 4102, Australia; Division of Critical Care, The George Institute for Global Health, University of New South Wales, King Street, NSW 2050, Australia.
| | - Jeremy Cohen
- Department of Intensive Care, The Wesley Hospital, Coronation Drive, QLD 4066, Australia; Department of Intensive Care, The Royal Brisbane and Women's Hospital, University of Queensland, Herston Road, QLD 4066, Australia; Division of Critical Care, The George Institute for Global Health, King Street, Sydney, NSW 2050, Australia
| |
Collapse
|
516
|
Early Vitamin C and Thiamine Administration to Patients with Septic Shock in Emergency Departments: Propensity Score-Based Analysis of a Before-and-After Cohort Study. J Clin Med 2019; 8:jcm8010102. [PMID: 30654592 PMCID: PMC6352246 DOI: 10.3390/jcm8010102] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Intravenous vitamin C and thiamine administration may be a potential adjuvant therapy for septic shock. We aimed to investigate the impact of early vitamin C and thiamine administration in septic shock patients. Methods: This retrospective before-and-after cohort study used data extracted from the Korean Shock Society’s prospective septic shock registry. We compared 28-day and in-hospital mortality rates between patients treated with intravenous vitamin C (3 g/12 h or 1.5 g/6 h) and thiamine (200 mg/12 h) <6 h after shock recognition from July through December 2017 (n = 229) and control patients from October 2015 through June 2017 (n = 915) using propensity score matching. Results: The 28-day (18.3% vs. 17.5%; p = 0.76) and in-hospital (16.6% vs. 18.3%; p = 0.55) mortality rates did not differ between treatment and control groups, nor did 28-day (18.5% vs. 17.5%; p = 0.84) and in-hospital (16.7% vs. 18.4%; p = 0.54) mortality rates after matching. In the subgroup analysis, treatment was associated with lower in-hospital mortality rates in patients with albumin <3.0 mg/dL or a Sequential Organ Failure Assessment (SOFA) score >10. Conclusion: Early vitamin C and thiamine administration in patients with septic shock did not improve survival; however, administration could benefit conditions that are more severe, such as hypoalbuminemia or severe organ failure.
Collapse
|
517
|
|
518
|
Varon J, Baron RM. A current appraisal of evidence for the approach to sepsis and septic shock. Ther Adv Infect Dis 2019; 6:2049936119856517. [PMID: 31308945 PMCID: PMC6613063 DOI: 10.1177/2049936119856517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a life-threatening syndrome of a dysregulated host response to infection. Despite advances in diagnosis and treatment, sepsis remains a significant cause of morbidity and mortality. Many aspects of the diagnosis and clinical management of sepsis require further study and remain controversial. This review aims to summarize relevant literature and controversies regarding the evaluation and management of sepsis and septic shock.
Collapse
Affiliation(s)
- Jack Varon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| |
Collapse
|
519
|
Wentowski C, Mewada N, Nielsen ND. Sepsis in 2018: a review. ANAESTHESIA AND INTENSIVE CARE MEDICINE 2019. [DOI: 10.1016/j.mpaic.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
520
|
Watkins LA. Interventions for Pediatric Sepsis and Their Impact on Outcomes: A Brief Review. Healthcare (Basel) 2018; 7:E2. [PMID: 30597866 PMCID: PMC6473772 DOI: 10.3390/healthcare7010002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/13/2018] [Accepted: 12/24/2018] [Indexed: 12/28/2022] Open
Abstract
In the current era, pediatric sepsis remains a public health problem of significant prevalence and impact. With mortality rates practically unchanged over the years, this review hopes to briefly summarize the epidemiology and the current interventions for pediatric sepsis and point towards possible areas of improvement. Most pediatric studies of sepsis are either small, retrospective or observational. Given information technology spreading across country, and a stronger presence of clinical networks, development of multicenter prospective studies over the next decade should enable better treatments for pediatric sepsis, and improved outcomes.
Collapse
Affiliation(s)
- Laura A Watkins
- Department of Pediatrics/Critical Care, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Ave, Box 667, Rochester, NY 14642, USA.
| |
Collapse
|
521
|
The relationship between vitamin C status, the gut-liver axis, and metabolic syndrome. Redox Biol 2018; 21:101091. [PMID: 30640128 PMCID: PMC6327911 DOI: 10.1016/j.redox.2018.101091] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome (MetS) is a constellation of cardiometabolic risk factors, which together predict increased risk of more serious chronic diseases. We propose that one consequence of dietary overnutrition is increased abundance of Gram-negative bacteria in the gut that cause increased inflammation, impaired gut function, and endotoxemia that further dysregulate the already compromised antioxidant vitamin status in MetS. This discussion is timely because "healthy" individuals are no longer the societal norm and specialized dietary requirements are needed for the growing prevalence of MetS. Further, these lines of evidence provide the foundational basis for investigation that poor vitamin C status promotes endotoxemia, leading to metabolic dysfunction that impairs vitamin E trafficking through a mechanism involving the gut-liver axis. This report will establish a critical need for translational research aimed at validating therapeutic approaches to manage endotoxemia-an early, but inflammation-inducing phenomenon, which not only occurs in MetS, but is also prognostic of more advanced metabolic disorders including type 2 diabetes mellitus, as well as the increasing severity of nonalcoholic fatty liver diseases.
Collapse
|
522
|
Randhawa VK, Grunau BE, Debicki DB, Zhou J, Hegazy AF, McPherson T, Nagpal AD. Cardiac Intensive Care Unit Management of Patients After Cardiac Arrest: Now the Real Work Begins. Can J Cardiol 2018; 34:156-167. [PMID: 29407008 DOI: 10.1016/j.cjca.2017.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
Survival with a good quality of life after cardiac arrest continues to be abysmal. Coordinated resuscitative care does not end with the effective return of spontaneous circulation (ROSC)-in fact, quite the contrary is true. Along with identifying and appropriately treating the precipitating cause, various components of the post-cardiac arrest syndrome also require diligent observation and management, including post-cardiac arrest neurologic injury and myocardial dysfunction, systemic ischemia-reperfusion phenomenon with potential consequent multiorgan failure, and the various sequelae of critical illness. There is growing evidence that an early invasive approach to coronary reperfusion with percutaneous coronary intervention, together with active targeted temperature management and optimization of hemodynamic, ventilator, and metabolic parameters, may improve survival and neurologic outcomes in cardiac arrest survivors. Neuroprognostication is complex, as are survivorship issues and long-term rehabilitation. Our paramedics, emergency physicians, and resuscitation specialists are all to be congratulated for ever-increasing success with ROSC… but now the real work begins.
Collapse
Affiliation(s)
- Varinder K Randhawa
- Division of Cardiology, University of Toronto/University Health Network, Toronto, Ontario, Canada
| | - Brian E Grunau
- Department of Emergency Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek B Debicki
- Department of Clinical Neurologic Sciences, Western University/London Health Sciences Centre, London, Ontario, Canada
| | - Jian Zhou
- Department of Anesthesia and Perioperative Medicine, Western University/London Health Sciences Centre, London, Ontario, Canada
| | - Ahmed F Hegazy
- Critical Care Western, Western University/London Health Sciences Centre, London, Ontario, Canada; Department of Anesthesia and Perioperative Medicine, Western University/London Health Sciences Centre, London, Ontario, Canada
| | - Terry McPherson
- Division of Cardiology, Western University/London Health Sciences Centre, London, Ontario, Canada
| | - A Dave Nagpal
- Division of Cardiac Surgery, Western University/London Health Sciences Centre, London, Ontario, Canada; Critical Care Western, Western University/London Health Sciences Centre, London, Ontario, Canada.
| |
Collapse
|
523
|
Todi SK. Does my septic patient have scurvy? Indian J Anaesth 2018; 62:927-929. [PMID: 30636791 PMCID: PMC6299767 DOI: 10.4103/ija.ija_795_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Subhash Kumar Todi
- Critical Care Department, AMRI Hospital, Kolkata, West Bengal, India. E-mail:
| |
Collapse
|
524
|
Ceccato A, Ferrer M, Barbeta E, Torres A. Adjunctive Therapies for Community-Acquired Pneumonia. Clin Chest Med 2018; 39:753-764. [DOI: 10.1016/j.ccm.2018.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
525
|
Affiliation(s)
- Salman Ahmad
- Division of Acute Care Surgery, Department of Surgery, University of Missouri Healthcare, Columbia, MO
| |
Collapse
|
526
|
Marik PE, Hooper MH. Adjuvant Vitamin C in critically ill patients undergoing renal replacement therapy: What's the right dose? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:320. [PMID: 30466487 PMCID: PMC6249758 DOI: 10.1186/s13054-018-2190-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/12/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, 825 Fairfax Av, Suite 410, Norfolk, VA, 23507, United States of America.
| | - Michael H Hooper
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, 825 Fairfax Av, Suite 410, Norfolk, VA, 23507, United States of America
| |
Collapse
|
527
|
Langlois PL, Manzanares W, Adhikari NKJ, Lamontagne F, Stoppe C, Hill A, Heyland DK. Vitamin C Administration to the Critically Ill: A Systematic Review and Meta-Analysis. JPEN J Parenter Enteral Nutr 2018; 43:335-346. [PMID: 30452091 DOI: 10.1002/jpen.1471] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
Abstract
Vitamin C, an enzyme cofactor and antioxidant, could hasten the resolution of inflammation, oxidative stress, and microvascular dysfunction. While observational studies have demonstrated that critical illness is associated with low levels of vitamin C, randomized controlled trials (RCTs) of vitamin C, alone or in combination with other antioxidants, have yielded contradicting results. We searched MEDLINE, EMBASE, CINAHL, and the Cochrane Central Register of Controlled Trials (inception to December 2017) for RCTs comparing vitamin C, by enteral or parenteral routes, with placebo or none, in intensive care unit (ICU) patients. Two independent reviewers assessed study eligibility without language restrictions and abstracted data. Overall mortality was the primary outcome; secondary outcomes were incident infections, ICU length of stay (LOS), hospital LOS, and duration of mechanical ventilation (MV). We prespecified 5 subgroups hypothesized to benefit more from vitamin C. Eleven randomized trials were included. When 9 RCTs (n = 1322) reporting mortality were pooled, vitamin C was not associated with reduced risk of mortality (risk ratio [RR] 0.72, 95% confidence interval [CI]: 0.43-1.20, P = .21). No effect was found on infections, ICU or hospital LOS, or duration of MV. In multiple subgroup comparison, no statistically significant subgroup effects were observed. However, we did observe a tendency towards a mortality reduction (RR 0.21; 95% CI: 0.04-1.05; P = .06) when intravenous high-dose vitamin C monotherapy was administered. Current evidence does not support supplementing critically ill patients with vitamin C. A moderately large treatment effect may exist, but further studies, particularly of monotherapy administration, are warranted.
Collapse
Affiliation(s)
- Pascal L Langlois
- Department of Anesthesiology and Reanimation, Faculty of Medicine and Health Sciences, Sherbrooke University Hospital, Sherbrooke, Québec, Canada
| | - William Manzanares
- Department of Critical Care, Intensive Care Unit, University Hospital, Faculty of Medicine, Universidad de la Republica, Montevideo, Uruguay
| | - Neill K J Adhikari
- Department of Critical Care Medicine, Sunnybrook Health Sciences Centre, Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - François Lamontagne
- Department of Intensive Care Medicine, Faculty of Medicine and Health Sciences, Sherbrooke University Hospital, Sherbrooke, Québec, Canada
| | - Christian Stoppe
- Department of Intensive Care Medicine, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Aileen Hill
- Department of Intensive Care Medicine, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Daren K Heyland
- Clinical Evaluation Research Unit, Kingston General Hospital, Kingston, Ontario, Canada and Department of Critical Care, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
528
|
Marik PE. Hydrocortisone, Ascorbic Acid and Thiamine (HAT Therapy) for the Treatment of Sepsis. Focus on Ascorbic Acid. Nutrients 2018; 10:nu10111762. [PMID: 30441816 PMCID: PMC6265973 DOI: 10.3390/nu10111762] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/30/2018] [Accepted: 11/08/2018] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a devastating disease that carries an enormous toll in terms of human suffering and lives lost. Over 100 novel pharmacologic agents that targeted specific molecules or pathways have failed to improve the outcome of sepsis. Preliminary data suggests that the combination of Hydrocortisone, Ascorbic Acid and Thiamine (HAT therapy) may reduce organ failure and mortality in patients with sepsis and septic shock. HAT therapy is based on the concept that a combination of readily available, safe and cheap agents, which target multiple components of the host’s response to an infectious agent, will synergistically restore the dysregulated immune response and thereby prevent organ failure and death. This paper reviews the rationale for HAT therapy with a focus on vitamin C.
Collapse
Affiliation(s)
- Paul E Marik
- Division of Pulmonary and Critical Care Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
529
|
Effect of Thiamine Administration on Lactate Clearance and Mortality in Patients With Septic Shock*. Crit Care Med 2018; 46:1747-1752. [DOI: 10.1097/ccm.0000000000003311] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
530
|
|
531
|
Bermejo-Martin JF, Martín-Fernandez M, López-Mestanza C, Duque P, Almansa R. Shared Features of Endothelial Dysfunction between Sepsis and Its Preceding Risk Factors (Aging and Chronic Disease). J Clin Med 2018; 7:E400. [PMID: 30380785 PMCID: PMC6262336 DOI: 10.3390/jcm7110400] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023] Open
Abstract
Acute vascular endothelial dysfunction is a central event in the pathogenesis of sepsis, increasing vascular permeability, promoting activation of the coagulation cascade, tissue edema and compromising perfusion of vital organs. Aging and chronic diseases (hypertension, dyslipidaemia, diabetes mellitus, chronic kidney disease, cardiovascular disease, cerebrovascular disease, chronic pulmonary disease, liver disease, or cancer) are recognized risk factors for sepsis. In this article we review the features of endothelial dysfunction shared by sepsis, aging and the chronic conditions preceding this disease. Clinical studies and review articles on endothelial dysfunction in sepsis, aging and chronic diseases available in PubMed were considered. The main features of endothelial dysfunction shared by sepsis, aging and chronic diseases were: (1) increased oxidative stress and systemic inflammation, (2) glycocalyx degradation and shedding, (3) disassembly of intercellular junctions, endothelial cell death, blood-tissue barrier disruption, (4) enhanced leukocyte adhesion and extravasation, (5) induction of a pro-coagulant and anti-fibrinolytic state. In addition, chronic diseases impair the mechanisms of endothelial reparation. In conclusion, sepsis, aging and chronic diseases induce similar features of endothelial dysfunction. The potential contribution of pre-existent endothelial dysfunction to sepsis pathogenesis deserves to be further investigated.
Collapse
Affiliation(s)
- Jesus F Bermejo-Martin
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| | - Marta Martín-Fernandez
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
| | - Cristina López-Mestanza
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
| | - Patricia Duque
- Anesthesiology and Reanimation Service, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo, 46, 28007 Madrid, Spain.
| | - Raquel Almansa
- Group for Biomedical Research in Sepsis (Bio∙Sepsis), Hospital Clínico Universitario de Valladolid/IECSCYL, Av. Ramón y Cajal, 3, 47003 Valladolid, Spain.
- Centro de Investigación Biomedica En Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Instituto de salud Carlos III (ISCIII), Av. de Monforte de Lemos, 5, 28029 Madrid, Spain.
| |
Collapse
|
532
|
Moskowitz A, Andersen LW, Huang DT, Berg KM, Grossestreuer AV, Marik PE, Sherwin RL, Hou PC, Becker LB, Cocchi MN, Doshi P, Gong J, Sen A, Donnino MW. Ascorbic acid, corticosteroids, and thiamine in sepsis: a review of the biologic rationale and the present state of clinical evaluation. Crit Care 2018; 22:283. [PMID: 30373647 PMCID: PMC6206928 DOI: 10.1186/s13054-018-2217-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/03/2018] [Indexed: 12/12/2022] Open
Abstract
The combination of thiamine, ascorbic acid, and hydrocortisone has recently emerged as a potential adjunctive therapy to antibiotics, infectious source control, and supportive care for patients with sepsis and septic shock. In the present manuscript, we provide a comprehensive review of the pathophysiologic basis and supporting research for each element of the thiamine, ascorbic acid, and hydrocortisone drug combination in sepsis. In addition, we describe potential areas of synergy between these therapies and discuss the strengths/weaknesses of the two studies to date which have evaluated the drug combination in patients with severe infection. Finally, we describe the current state of current clinical practice as it relates to the thiamine, ascorbic acid, and hydrocortisone combination and present an overview of the randomized, placebo-controlled, multi-center Ascorbic acid, Corticosteroids, and Thiamine in Sepsis (ACTS) trial and other planned/ongoing randomized clinical trials.
Collapse
Affiliation(s)
- Ari Moskowitz
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Boston, MA USA
| | - Lars W. Andersen
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA USA
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Anesthesiology, Aarhus University Hospital, Aarhus, Denmark
| | - David T. Huang
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Katherine M. Berg
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Boston, MA USA
| | - Anne V. Grossestreuer
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA USA
| | - Paul E. Marik
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, VA USA
| | - Robert L. Sherwin
- Department of Emergency Medicine, Wayne State University School of Medicine/Detroit Receiving Hospital, Detroit, MI USA
| | - Peter C. Hou
- Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA USA
| | - Lance B. Becker
- Department of Emergency Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
- Feinstein Institute for Medical Research, Manhasset, NY USA
| | - Michael N. Cocchi
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA USA
- Department of Anesthesia Critical Care, Division of Critical Care, Beth Israel Deaconess Medical Center, Boston, MA USA
| | - Pratik Doshi
- Department of Emergency Medicine and Internal Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Jonathan Gong
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health System, New Hyde Park, NY USA
| | - Ayan Sen
- Department of Critical Care Medicine, Mayo Clinic, Phoenix, AZ USA
| | - Michael W. Donnino
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Boston, MA USA
- Beth Israel Deaconess Medical Center, Department of Emergency Medicine, Boston, MA USA
- Beth Israel Deaconess Medical Center, Emergency Medicine, One Deaconess Rd, W/CC 2, Boston, MA 02215 USA
| |
Collapse
|
533
|
L Langlois P, Lamontagne F. Vitamin C for the critically ill: Is the evidence strong enough? Nutrition 2018; 60:185-190. [PMID: 30612038 DOI: 10.1016/j.nut.2018.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/03/2018] [Accepted: 10/07/2018] [Indexed: 12/28/2022]
Abstract
Vitamin C exhibits interesting properties in the context of critical illness, with benefits described in neurologic, cardiovascular, renal, and hematologic systems, both in in vitro and in animal models. Through direct effects on bacterial replication, immunomodulation, and antioxidant reserve of the organism, vitamin C directly affects the pathophysiological process of sepsis, trauma, burn, and systemic inflammation. Even if several observational trials have linked vitamin C deficiency to worse outcomes, the evidence is not such as to provide us with a distinction between causality effects or simple epiphenomenon, and the current focus is on interventional trials. Pharmacokinetic data suggest that a minimal supplementation of 3 g/d intravenously is required to restore normal serum values in critically ill patients with known deficiency. According to these data, only five trials, including a retrospective analysis, studied pharmacologic dose: three as an antioxidant cocktail and two as monotherapy. The largest trial, conducted in 2002, reported reduced incidence of multiorgan failure and duration of mechanical ventilation. Recently a retrospective analysis reported impressive results after administration of vitamin C, thiamine, and hydrocortisone. The two most recent trials reported improved clinical outcomes, including improved mortality, but contained significant methodological limitations. A recent systematic review did not find clinical benefits with the most-studied low-dose oral supplementation, potentially because of suboptimal or insufficient repletion. Current guidelines do not support the administration of high-dose vitamin C in critically ill patients. Future larger trials are required to support any therapy, but the low cost and safety profile can justify supplementation in the meantime. Metabolomics study will further help understand biological effect.
Collapse
Affiliation(s)
- Pascal L Langlois
- Department of Anaesthesiology and Reanimation, Faculty of Medicine and Health Sciences, Sherbrooke University Hospital, Sherbrooke, Québec, Canada.
| | - François Lamontagne
- Department of Intensive Care Medicine, Faculty of Medicine and Health Sciences, Sherbrooke University Hospital, Sherbrooke, Québec, Canada
| |
Collapse
|
534
|
Zhang M, Jativa DF. Vitamin C supplementation in the critically ill: A systematic review and meta-analysis. SAGE Open Med 2018; 6:2050312118807615. [PMID: 30364374 PMCID: PMC6196621 DOI: 10.1177/2050312118807615] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Low plasma levels of vitamin C are associated with adverse outcomes, including increased mortality, in critically ill patients. Several trials have suggested that the administration of intravenous vitamin C in this setting may have beneficial effects, such as reducing the incidence of organ failure and improving survival. However, these studies have generally involved combination therapies consisting of vitamin C along with other antioxidants, confounding the effects of vitamin C alone. The primary objective of this meta-analysis is to investigate the effects of isolated intravenous supplementation of vitamin C in adults with critical illness. METHODS A database search was conducted for studies on the use of intravenous vitamin C in adult patients with critical illness. The primary outcome assessed was mortality at the longest follow-up time available. Secondary outcomes were the duration of mechanical ventilation, duration of vasopressor support, fluid requirements, and urine output in the first 24 h of intensive care unit admission. RESULTS Five studies (four randomized controlled trials and one retrospective review) enrolling a total of 142 patients were included in this meta-analysis. Compared with controls, the administration of intravenous vitamin C was associated with a decreased need for vasopressor support (standardized mean difference -0.71; 95% confidence interval (-1.16 to -0.26); p = 0.002) and decreased duration of mechanical ventilation (standardized mean difference -0.5; 95% confidence interval (-0.93 to -0.06); p = 0.03), but no difference was found in mortality (odds ratio 0.76; 95% confidence interval (0.27 to 2.16); p = 0.6). Trends were also noted toward decreased fluid requirements and increased urine output. No adverse effects were reported. CONCLUSION The administration of intravenous vitamin C may lead to vasopressor sparing effects and a reduced need for mechanical ventilation in the critically ill, without affecting overall mortality. However, these results should be interpreted in light of the limitations of the primary literature and should serve as a preview of upcoming trials in this area.
Collapse
Affiliation(s)
- Michael Zhang
- Department of Medicine, VA Medical Center, Cleveland, OH, USA
| | - David F Jativa
- Department of Medicine, Aventura Hospital & Medical Center, Aventura, FL, USA
| |
Collapse
|
535
|
Smith KE, Brown CS, Manning BM, May T, Riker RR, Lerwick PA, Hayes TL, Fraser GL. Accuracy of Point-of-Care Blood Glucose Level Measurements in Critically Ill Patients with Sepsis Receiving High-Dose Intravenous Vitamin C. Pharmacotherapy 2018; 38:1155-1161. [PMID: 30230568 DOI: 10.1002/phar.2182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
STUDY OBJECTIVE High-dose intravenous vitamin C is a potential treatment option for patients with sepsis and may interfere with point-of-care (POC) blood glucose (BG) testing. This study aimed to determine if vitamin C dosing used for sepsis affected POC BG level results. DESIGN Prospective observational pilot study. SETTING Intensive care unit in a large academic tertiary care medical center. PATIENTS Five consecutive critically ill adults hospitalized between April 1 and June 1, 2017, who received two or more doses of intravenous vitamin C 1500 mg for the treatment of sepsis and had at least two paired POC BG levels and laboratory venous BG levels measured within 1 hour of each other during vitamin C therapy. MEASUREMENTS AND MAIN RESULTS The performance of POC BG level measurement was compared with the reference method of laboratory BG level measurement. The concordance to minimum accuracy criteria for BG meters set forth by the International Organization for Standardization (ISO) 15197:2013, the measurement of agreement between POC BG level and laboratory BG level using the Bland-Altman method, and the clinical accuracy through Parkes error grid analysis were assessed. A total of 16 paired POC and laboratory BG level measurements from the five patients were included. The accuracy of POC BG with laboratory BG level measurements during vitamin C administration according to ISO 15197:2013 criteria was 81.3%, which did not meet the minimum accuracy criteria of 95%. The Bland-Altman analysis showed a mean difference between POC and laboratory BG levels of 8.9 mg/dl, and the Parkes error grid analysis showed that the differences between POC and laboratory BG level measurements would not have resulted in a change in clinical action. CONCLUSION The accuracy and agreement of POC and laboratory BG level measurements in critically ill patients receiving vitamin C were consistent with previously published reports in critically ill patients not receiving vitamin C and did not demonstrate clinically significant interference due to vitamin C dosing for sepsis.
Collapse
Affiliation(s)
- Kathryn E Smith
- Department of Pharmacy, Maine Medical Center, Portland, Maine.,Tufts University School of Medicine, Boston, Massachusetts
| | | | | | - Teresa May
- Department of Critical Care Medicine, Neuroscience Institute, Maine Medical Center, Portland Maine
| | - Richard R Riker
- Tufts University School of Medicine, Boston, Massachusetts.,Department of Critical Care Medicine, Neuroscience Institute, Maine Medical Center, Portland Maine
| | - Patricia A Lerwick
- Department of Critical Care Medicine, Neuroscience Institute, Maine Medical Center, Portland Maine
| | - Timothy L Hayes
- Department of Pathology, Maine Medical Center, Portland, Maine
| | - Gilles L Fraser
- Department of Pharmacy, Maine Medical Center, Portland, Maine.,Tufts University School of Medicine, Boston, Massachusetts.,Department of Critical Care Medicine, Neuroscience Institute, Maine Medical Center, Portland Maine
| |
Collapse
|
536
|
Nabzdyk CS, Bittner EA. Vitamin C in the critically ill - indications and controversies. World J Crit Care Med 2018; 7:52-61. [PMID: 30370227 PMCID: PMC6201324 DOI: 10.5492/wjccm.v7.i5.52] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/04/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Ascorbic acid (vitamin C) elicits pleiotropic effects in the body. Among its functions, it serves as a potent anti-oxidant, a co-factor in collagen and catecholamine synthesis, and a modulator of immune cell biology. Furthermore, an increasing body of evidence suggests that high-dose vitamin C administration improves hemodynamics, end-organ function, and may improve survival in critically ill patients. This article reviews studies that evaluate vitamin C in pre-clinical models and clinical trials with respect to its therapeutic potential.
Collapse
Affiliation(s)
- Christoph S Nabzdyk
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Edward A Bittner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
537
|
Li J. Evidence is stronger than you think: a meta-analysis of vitamin C use in patients with sepsis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:258. [PMID: 30305111 PMCID: PMC6180524 DOI: 10.1186/s13054-018-2191-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022]
Abstract
Two recent publications by Sheikh and Horner and Teng et al. reviewed studies on incorporating vitamin C to treat septic patients; however, a meta-analysis was not offered in either report. This commentary extends both reviews by integrating a meta-analysis and sharing aggregated results. Pooled analyses demonstrated a marked reduction in mortality and duration of vasopressor administration in the group with the use of vitamin C.
Collapse
Affiliation(s)
- Jing Li
- Santa Barbara Cottage Hospital, P.O. Box 689, Santa Barbara, CA, 93102, USA.
| |
Collapse
|
538
|
|
539
|
Jabaley CS, Groff RF, Stentz MJ, Moll V, Lynde GC, Blum JM, O'Reilly-Shah VN. Highly visible sepsis publications from 2012 to 2017: Analysis and comparison of altmetrics and bibliometrics. J Crit Care 2018; 48:357-371. [PMID: 30296750 DOI: 10.1016/j.jcrc.2018.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE We sought to delineate highly visible publications related to sepsis. Within these subsets, elements of altmetrics performance, including mentions on Twitter, and the correlation between altmetrics and conventional citation counts were ascertained. MATERIALS AND METHODS Three subsets of sepsis publications from 2012 to 2017 were synthesized by the overall Altmetric.com attention score, number of mentions by unique Twitter users, and conventional citation counts. For these subsets, geolocated Twitter activity was plotted on a choropleth, the lag between publication date and altmetrics mentions was characterized, and correlations were examined between altmetrics performance and normalized conventional citation counts. RESULTS Of 57,152 PubMed query results, Altmetric.com data was available for 28,344 (49.6%). The top 50 publications by Altmetric.com attention score and Twitter attention represented a mix of original research and other types of work, garnering attention from Twitter users in 143 countries that was highly contemporaneous with publication. Altmetrics performance and conventional citation counts were poorly correlated. CONCLUSIONS While unreliable to gauge impact or future citation potential, altmetrics may be valuable for parties who wish to detect and drive public awareness of research findings and may enable researchers to dynamically explore the reach of their work in novel dimensions.
Collapse
Affiliation(s)
- Craig S Jabaley
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA; Anesthesiology Service Line, Division of Critical Care Medicine, Atlanta Veterans Affairs Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA.
| | - Robert F Groff
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA; Anesthesiology Service Line, Division of Critical Care Medicine, Atlanta Veterans Affairs Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA.
| | - Michael J Stentz
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA.
| | - Vanessa Moll
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA.
| | - Grant C Lynde
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA.
| | - James M Blum
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA; Anesthesiology Service Line, Division of Critical Care Medicine, Atlanta Veterans Affairs Medical Center, 1670 Clairmont Rd, Decatur, GA 30033, USA; Department of Biomedical Informatics, Emory University School of Medicine, 201 Bowman Dr, Atlanta, GA 30322, USA.
| | - Vikas N O'Reilly-Shah
- Department of Anesthesiology, Emory University, 1750 Gambrell Dr, Atlanta, GA 30322, USA; Department of Anesthesiology, Children's Healthcare of Atlanta, 1405 Clifton Rd, Atlanta, GA 30329, USA.
| |
Collapse
|
540
|
ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr 2018; 38:48-79. [PMID: 30348463 DOI: 10.1016/j.clnu.2018.08.037] [Citation(s) in RCA: 1341] [Impact Index Per Article: 223.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 02/07/2023]
Abstract
Following the new ESPEN Standard Operating Procedures, the previous guidelines to provide best medical nutritional therapy to critically ill patients have been updated. These guidelines define who are the patients at risk, how to assess nutritional status of an ICU patient, how to define the amount of energy to provide, the route to choose and how to adapt according to various clinical conditions. When to start and how to progress in the administration of adequate provision of nutrients is also described. The best determination of amount and nature of carbohydrates, fat and protein are suggested. Special attention is given to glutamine and omega-3 fatty acids. Particular conditions frequently observed in intensive care such as patients with dysphagia, frail patients, multiple trauma patients, abdominal surgery, sepsis, and obesity are discussed to guide the practitioner toward the best evidence based therapy. Monitoring of this nutritional therapy is discussed in a separate document.
Collapse
|
541
|
Williams JM, Keijzers G, Macdonald SP, Shetty A, Fraser JF. Review article: Sepsis in the emergency department - Part 3: Treatment. Emerg Med Australas 2018; 30:144-151. [PMID: 29569847 DOI: 10.1111/1742-6723.12951] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 10/17/2022]
Abstract
Although comprehensive guidelines for treatment of sepsis exist, current research continues to refine and revise several aspects of management. Imperatives for rapid administration of broad-spectrum antibiotics for all patients with sepsis may not be supported by contemporary data. Many patients may be better served by a more judicious approach allowing consideration of investigation results and evidence-based guidelines. Conventional fluid therapy has been challenged with early evidence supporting balanced, restricted fluid and early vasopressor use. Albumin, vasopressin and hydrocortisone have each been shown to support blood pressure and reduce catecholamine requirements but without effect on mortality, and as such should be considered for ED patients with septic shock on a case-by-case basis. Measurement of quality care in sepsis should incorporate quality of blood cultures and guideline-appropriateness of antibiotics, as well as timeliness of therapy. Local audit is an essential and effective means to improve practice. Multicentre consolidation of data through agreed minimum sepsis data sets would provide baseline quality data, required for the design and evaluation of interventions.
Collapse
Affiliation(s)
- Julian M Williams
- Emergency and Trauma Centre, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.,School of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Gerben Keijzers
- Department of Emergency Medicine, Gold Coast University Hospital, Gold Coast, Queensland, Australia.,School of Medicine, Bond University, Gold Coast, Queensland, Australia.,School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Stephen Pj Macdonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Department of Emergency Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,Division of Emergency Medicine, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Amith Shetty
- Department of Emergency Medicine, Westmead Hospital, Sydney, New South Wales, Australia.,NHMRC Centre for Research in Critical Infection, Westmead Millennium Institute, Sydney, New South Wales, Australia
| | - John F Fraser
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Critical Care Research Group, The Prince Charles Hospital, Brisbane, Queensland, Australia.,Intensive Care Unit, St Andrew's War Memorial Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
542
|
Sheikh M, Horner D. Bet 2: Does intravenous vitamin C improve mortality in patients with severe sepsis? Emerg Med J 2018; 35:272-274. [PMID: 29559543 DOI: 10.1136/emermed-2018-207608.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2018] [Indexed: 11/03/2022]
Abstract
A shortcut review was carried out to establish whether the use of intravenous vitamin C can reduce mortality or morbidity in patients diagnosed in the early phases of severe sepsis. Three directly relevant papers were found using the reported search strategy. The author, date and country of publication; patient group studied; study type; relevant outcomes; results and study weaknesses of the best papers are tabulated. It is concluded that there is insufficient high-quality research to justify the routine use of vitamin C in severe sepsis. Further multicentre, double-blinded randomised controlled trials are required in order to establish the role of vitamin C in sepsis.
Collapse
|
543
|
Misset B. [Steroids for community-acquired pneumonia: Should we go on searching or should we give up?]. Rev Mal Respir 2018; 35:781-783. [PMID: 30224211 DOI: 10.1016/j.rmr.2018.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Affiliation(s)
- B Misset
- Médecine intensive et réanimation, université Rouen Normandie, CHU de Rouen, 1, rue de Germont, 76000 Rouen, France.
| |
Collapse
|
544
|
Nandhabalan P, Ioannou N, Meadows C, Wyncoll D. Refractory septic shock: our pragmatic approach. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:215. [PMID: 30231909 PMCID: PMC6145185 DOI: 10.1186/s13054-018-2144-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 07/30/2018] [Indexed: 02/08/2023]
Abstract
Despite timely intervention, there exists a small subgroup of patients with septic shock who develop progressive multi-organ failure. Seemingly refractory to conventional therapy, they exhibit a very high mortality. Such patients are often poorly represented in large clinical trials. Consequently, good evidence for effective treatment strategies is lacking. In this article, we describe a pragmatic, multi-faceted approach to managing patients with refractory septic shock based on our experience of toxin-mediated sepsis in a specialist referral centre. Many components of this strategy are inexpensive and widely accessible, and so may offer an opportunity to improve outcomes in these critically ill patients.
Collapse
Affiliation(s)
- Prashanth Nandhabalan
- Department of Critical Care, St Thomas' Hospital, Westminster Bridge Rd., Lambeth, London, SE1 7EH, UK.
| | - Nicholas Ioannou
- Department of Critical Care, St Thomas' Hospital, Westminster Bridge Rd., Lambeth, London, SE1 7EH, UK
| | - Christopher Meadows
- Department of Critical Care, St Thomas' Hospital, Westminster Bridge Rd., Lambeth, London, SE1 7EH, UK
| | - Duncan Wyncoll
- Department of Critical Care, St Thomas' Hospital, Westminster Bridge Rd., Lambeth, London, SE1 7EH, UK
| |
Collapse
|
545
|
Abstract
PURPOSE OF REVIEW The narrative review aims to summarize the relevant studies from the last 2 years and provide contextual information to understand findings. RECENT FINDINGS Recent ICU studies have provided insight in the pathophysiology and time course of catabolism, anabolic resistance, and metabolic and endocrine derangements interacting with the provision of calories and proteins.Early provision of high protein intake and caloric overfeeding may confer harm. Refeeding syndrome warrants caloric restriction and to identify patients at risk phosphate monitoring is mandatory.Infectious complications of parenteral nutrition are associated with overfeeding. In recent studies enteral nutrition is no longer superior over parenteral nutrition.Previously reported benefits of glutamine, selenium, and fish oil seem to have vanished in recent studies; however, studies on vitamin C, thiamine, and corticosteroid combinations show promising results. SUMMARY Studies from the last 2 years will have marked impact on future nutritional support strategies and practice guidelines for critical care nutrition as they challenge several old-fashioned concepts.
Collapse
|
546
|
|
547
|
Wesselink E, Koekkoek WAC, Grefte S, Witkamp RF, van Zanten ARH. Feeding mitochondria: Potential role of nutritional components to improve critical illness convalescence. Clin Nutr 2018; 38:982-995. [PMID: 30201141 DOI: 10.1016/j.clnu.2018.08.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 08/03/2018] [Accepted: 08/25/2018] [Indexed: 12/30/2022]
Abstract
Persistent physical impairment is frequently encountered after critical illness. Recent data point towards mitochondrial dysfunction as an important determinant of this phenomenon. This narrative review provides a comprehensive overview of the present knowledge of mitochondrial function during and after critical illness and the role and potential therapeutic applications of specific micronutrients to restore mitochondrial function. Increased lactate levels and decreased mitochondrial ATP-production are common findings during critical illness and considered to be associated with decreased activity of muscle mitochondrial complexes in the electron transfer system. Adequate nutrient levels are essential for mitochondrial function as several specific micronutrients play crucial roles in energy metabolism and ATP-production. We have addressed the role of B vitamins, ascorbic acid, α-tocopherol, selenium, zinc, coenzyme Q10, caffeine, melatonin, carnitine, nitrate, lipoic acid and taurine in mitochondrial function. B vitamins and lipoic acid are essential in the tricarboxylic acid cycle, while selenium, α-tocopherol, Coenzyme Q10, caffeine, and melatonin are suggested to boost the electron transfer system function. Carnitine is essential for fatty acid beta-oxidation. Selenium is involved in mitochondrial biogenesis. Notwithstanding the documented importance of several nutritional components for optimal mitochondrial function, at present, there are no studies providing directions for optimal requirements during or after critical illness although deficiencies of these specific micronutrients involved in mitochondrial metabolism are common. Considering the interplay between these specific micronutrients, future research should pay more attention to their combined supply to provide guidance for use in clinical practise. REVISION NUMBER: YCLNU-D-17-01092R2.
Collapse
Affiliation(s)
- E Wesselink
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - W A C Koekkoek
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| | - S Grefte
- Human and Animal Physiology, Wageningen University, De Elst 1, 6708 DW, Wageningen, The Netherlands.
| | - R F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - A R H van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Willy Brandtlaan 10, 6716, Ede, The Netherlands.
| |
Collapse
|
548
|
The Emperor Has No Clothes? Searching for Dysregulation in Sepsis. J Clin Med 2018; 7:jcm7090247. [PMID: 30158480 PMCID: PMC6162833 DOI: 10.3390/jcm7090247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/14/2018] [Accepted: 08/25/2018] [Indexed: 12/31/2022] Open
Abstract
The core conception of sepsis—that it is a dysregulated state—is a powerful and durable idea that has inspired decades of research. But is it true that the body’s response to sepsis is dysregulated? To answer that question, this review surveyed the history of trials of experimental sepsis treatments targeting the host response. Sepsis survival is not improved by blocking one or many immune pathways. Similarly, sepsis is resistant to treatment by normalizing one or many physiologic parameters simultaneously. The vast majority of interventions are either ineffective or harmful. With this track record of failure, it is time to consider the alternative hypothesis—regulation instead of dysregulation—and the possibility that sepsis traits are often functional, and that some physiologic alterations in sepsis do more good than harm, while others are neutral. This review discusses the implications of this perspective for the future of sepsis research.
Collapse
|
549
|
Diaphragm Weakness in the Critically Ill: Basic Mechanisms Reveal Therapeutic Opportunities. Chest 2018; 154:1395-1403. [PMID: 30144420 DOI: 10.1016/j.chest.2018.08.1028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022] Open
Abstract
The diaphragm is the primary muscle of inspiration. Its capacity to respond to the load imposed by pulmonary disease is a major determining factor both in the onset of ventilatory failure and in the ability to successfully separate patients from ventilator support. It has recently been established that a very large proportion of critically ill patients exhibit major weakness of the diaphragm, which is associated with poor clinical outcomes. The two greatest risk factors for the development of diaphragm weakness in critical illness are the use of mechanical ventilation and the presence of sepsis. Loss of force production by the diaphragm under these conditions is caused by a combination of defective contractility and reduced diaphragm muscle mass. Importantly, many of the same molecular mechanisms are implicated in the diaphragm dysfunction associated with both mechanical ventilation and sepsis. This review outlines the primary cellular mechanisms identified thus far at the nexus of diaphragm dysfunction associated with mechanical ventilation and/or sepsis, and explores the potential for treatment or prevention of diaphragm weakness in critically ill patients through therapeutic manipulation of these final common pathway targets.
Collapse
|
550
|
Wieruszewski PM, Nei SD, Maltais S, Schaff HV, Wittwer ED. Vitamin C for Vasoplegia After Cardiopulmonary Bypass: A Case Series. A A Pract 2018; 11:96-99. [DOI: 10.1213/xaa.0000000000000752] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|