501
|
Drouet J, Delteil C, Lefrançois J, Concannon P, Salles B, Calsou P. DNA-dependent protein kinase and XRCC4-DNA ligase IV mobilization in the cell in response to DNA double strand breaks. J Biol Chem 2004; 280:7060-9. [PMID: 15520013 DOI: 10.1074/jbc.m410746200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Repair of DNA double strand breaks (DSBs) by the non-homologous end joining (NHEJ) pathway in mammals requires at least the DNA-dependent protein kinase (DNA-PK) and the DNA ligase IV-XRCC4 protein complexes. DNA-PK comprises the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs. Here we report the first description of the nuclear mobilization of endogenous NHEJ proteins after exposure of human cells to double strand-breaking agents. DSB infliction specifically induced a dose- and time-dependent mobilization of Ku70/80, DNA-PKcs, XRCC4, and DNA ligase IV proteins from a soluble nucleoplasmic compartment to a less extractable nuclear fraction. XRCC4 recruitment was accompanied by its DNA-PK-dependent phosphorylation. The recruited proteins co-immunoprecipitated, indicating that they had assembled into complexes. However, DNA-PK was attached to chromatin, whereas XRCC4-ligase IV resisted solubilization by DNase I. The rates of appearance and dissolution of NHEJ proteins paralleled that of histone variant H2AX phosphorylation and dephosphorylation. We established that under conditions of genomic DSB infliction 1) Ku recruitment was not dependent on the co-recruitment of the other NHEJ proteins, 2) DNA-PKcs was physically required for the mobilization of the XRCC4-ligase IV complex, 3) DNA ligase IV was physically necessary for stable recruitment of XRCC4, and 4) phosphorylation of either H2AX or XRCC4 was unnecessary for DNA-PK or XRCC4-ligase IV recruitment. Altogether these results offer insights into the interplay between key NHEJ proteins during this repair process in the cell.
Collapse
Affiliation(s)
- Jérôme Drouet
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, 205 route de Narbonne, 31077 Toulouse, Cedex 4, France
| | | | | | | | | | | |
Collapse
|
502
|
Thai TH, Kearney JF. Distinct and opposite activities of human terminal deoxynucleotidyltransferase splice variants. THE JOURNAL OF IMMUNOLOGY 2004; 173:4009-19. [PMID: 15356150 DOI: 10.4049/jimmunol.173.6.4009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Evidence for potential human TdT (hTdT) isoforms derived from hTdT genomic sequences led us to identify the short isoform (hTdTS), as well as mature long transcripts containing exon XII (hTdTL1) and another including exon VII (hTdTL2) in lymphoid cells. Normal B and T lymphocytes express exclusively hTdTS and hTdTL2, whereas hTdTL1 expression appears to be restricted to transformed lymphoid cell lines. In in vitro recombination and primer assays, both long isoforms were shown to have 3'-->5' exonuclease activity. Overexpression of hTdTS or hTdTL2 greatly reduced the efficiency of recombination, which was reverted to normal levels by the simultaneous expression of both enzymes. Therefore, alternative splicing may prevent the adverse effects of unchecked elongation or diminution of coding ends during V(D)J recombination, thus affecting the survival of a B or T cell precursor during receptor gene rearrangements. Finally, the newly discovered hTdT isoforms should be considered in future screening of human leukemias.
Collapse
Affiliation(s)
- To-Ha Thai
- Division of Developmental and Clinical Immunology, University of Alabama, Birmingham 35294, USA
| | | |
Collapse
|
503
|
Poinsignon C, de Chasseval R, Soubeyrand S, Moshous D, Fischer A, Haché RJG, de Villartay JP. Phosphorylation of Artemis following irradiation-induced DNA damage. Eur J Immunol 2004; 34:3146-55. [PMID: 15468306 DOI: 10.1002/eji.200425455] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Artemis is a DNA repair factor required for V(D)J recombination, repair of DNA damage induced by ionizing radiation (IR) or radiomimetic drugs, and the maintenance of genome integrity. During V(D)J recombination, Artemis participates in the resolution of hairpin-sealed coding ends, a step crucial to the constitution of the gene encoding for the antigen receptor of lymphocytes. The precise role of Artemis in the repair of IR-induced DNA damage remains to be elucidated. Here we show that Artemis is constitutively phosphorylated in cultured cells and undergoes additional phosphorylation events after irradiation. The IR-induced phosphorylation is mainly, although not solely, dependent on Ataxia-telangiectasia-mutated kinase (ATM). The physiological role of these phosphorylation events remains unknown, as in vitro-generated Artemis mutants, which present impaired IR-induced phosphorylation, still display an activity sufficient to complement the V(D)J recombination defect and the increased radiosensibility of Artemis-deficient cells. Thus, Artemis is an effector of DNA repair that can be phosphorylated by ATM, and possibly by DNA-PKcs and ATR depending upon the type of DNA damage.
Collapse
Affiliation(s)
- Catherine Poinsignon
- Développement Normal et Pathologique du Système Immunitaire (INSERM U429), Hôpital Necker Enfants Malades, Paris, France
| | | | | | | | | | | | | |
Collapse
|
504
|
Demuth I, Digweed M, Concannon P. Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation. Oncogene 2004; 23:8611-8. [PMID: 15467758 DOI: 10.1038/sj.onc.1207895] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA interstrand crosslinks (ICLs) are critical lesions for the mammalian cell since they affect both DNA strands and block transcription and replication. The repair of ICLs in the mammalian cell involves components of different repair pathways such as nucleotide-excision repair and the double-strand break/homologous recombination repair pathways. However, the mechanistic details of mammalian ICL repair have not been fully delineated. We describe here the complete coding sequence and the genomic organization of hSNM1B, one of at least three human homologs of the Saccharomyces cerevisiae PSO2 gene. Depletion of hSNM1B by RNA interference rendered cells hypersensitive to ICL-inducing agents. This requirement for hSNM1B in the cellular response to ICL has been hypothesized before but never experimentally verified. In addition, siRNA knockdown of hSNM1B rendered cells sensitive to ionizing radiation, suggesting the possibility of hSNM1B involvement in homologous recombination repair of double-strand breaks arising as intermediates of ICL repair. Monoubiquitination of FANCD2, a key step in the FANC/BRCA pathway, is not affected in hSNM1B-depleted HeLa cells, indicating that hSNM1B is probably not a part of the Fanconi anemia core complex. Nonetheless, similarities in the phenotype of hSNM1B-depleted cells and cultured cells from patients suffering from Fanconi anemia make hSNM1B a candidate for one of the as yet unidentified Fanconi anemia genes not involved in monoubiquitination of FANCD2.
Collapse
Affiliation(s)
- Ilja Demuth
- Molecular Genetics Program, Benaroya Research Institute, Seattle, WA 98101-2795, USA
| | | | | |
Collapse
|
505
|
Molinier J, Stamm ME, Hohn B. SNM-dependent recombinational repair of oxidatively induced DNA damage in Arabidopsis thaliana. EMBO Rep 2004; 5:994-9. [PMID: 15448639 PMCID: PMC1299156 DOI: 10.1038/sj.embor.7400256] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 07/28/2004] [Accepted: 08/23/2004] [Indexed: 01/14/2023] Open
Abstract
Two different roles for SNM (sensitive to nitrogen mustard) proteins have already been described: the SNM1/PSO2-related proteins are involved in the repair of the interstrand crosslink (ICL) and the ARTEMIS proteins are involved in the V(D)J recombination process. Our study shows that an Arabidopsis SNM protein, although structurally closer to the SNM1/PSO2 members, shares some properties with ARTEMIS but also has novel characteristics. Arabidopsis plants defective for the expression of AtSNM1 did not show hypersensitivity to the ICL-forming agents but to the chemotherapeutic agent bleomycin and to H(2)O(2). AtSNM1 mutant plants are delayed in the repair of oxidative damage and did not show enhancement of the frequency of somatic homologous recombination on exposure to H(2)O(2) and to the bacterial elicitor flagellin, both inducing oxidative stress, as observed in the control plants. Therefore, our results suggest the existence, in plants, of a novel SNM-dependent recombinational repair process of oxidatively induced DNA damage.
Collapse
Affiliation(s)
- Jean Molinier
- Friedrich Miescher-Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
| | | | | |
Collapse
|
506
|
von Kalle C, Fehse B, Layh-Schmitt G, Schmidt M, Kelly P, Baum C. Stem cell clonality and genotoxicity in hematopoietic cells: Gene activation side effects should be avoidable. Semin Hematol 2004; 41:303-18. [PMID: 15508116 DOI: 10.1053/j.seminhematol.2004.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Two serious adverse events involving activation of the LMO2 oncogene through retrovirus vector insertion in the otherwise extremely successful first gene therapy trial for X-linked severe combined immunodeficieny type 1 (SCID-X1) had initially caused widespread concern in the patient and research communities. Careful consideration 1 year after diagnosis of the second case still finds 12 of the treated patients clearly benefiting from gene therapy (freedom from treatment failure, 80%; survival 100%), a situation that should not portend the end of gene therapy for this disease, and is, in fact encouraging. While current approaches are justified to treat patients with otherwise life-threatening disorders, a broad consensus has developed that systematic basic research is required to further understand the pathophysiology of these serious adverse events and to provide new insights, enabling safer and more effective gene therapy strategies. With the continued success of SCID-X1 gene therapy in the majority of patients treated, it is of even greater importance to understand exactly which vector element or combination of elements predispose to toxicity. An in-depth study of the mechanisms behind the activation of the LMO2 and gammac genes will be highly instructive for the development of safer procedures and vectors. We summarize the central observations, ongoing experimental approaches, new concepts, and developments relevant to understanding, interpreting, and eventually overcoming the real and perceived obstacles posed by insertional mutagenesis due to gene transfer vectors.
Collapse
Affiliation(s)
- C von Kalle
- Division of Experimental Hematology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
507
|
Friedrich W, Müller SM. Allogeneic stem cell transplantation for treatment of immunodeficiency. ACTA ACUST UNITED AC 2004; 26:109-18. [PMID: 15368077 DOI: 10.1007/s00281-004-0158-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Accepted: 04/18/2004] [Indexed: 11/28/2022]
Abstract
Primary immunodeficiencies constitute a group of highly complex congenital disorders commonly characterized by an extremely poor prognosis. Allogeneic hematopoietic stem cell transplantation has the potential to establish a permanently functioning immune system and represents a curative approach in many of these disorders. In this review several aspects of stem cell transplantation are presented, with an emphasis on the mechanism of immune reconstitution in severe combined immunodeficiency diseases. In this disorder transplant modalities vary, and also include transplantation without cytoreductive conditioning. Clinical results are summarized based on recent analysis performed in large patient cohorts, which have shown steady improvements and have led to a marked change in the prognosis of patients with primary immunodeficiencies.
Collapse
Affiliation(s)
- Wilhelm Friedrich
- Department of Pediatrics, University of Ulm, Prittwitzstrasse 43, 89075 Ulm, Germany.
| | | |
Collapse
|
508
|
Tseng HM, Tomkinson AE. Processing and joining of DNA ends coordinated by interactions among Dnl4/Lif1, Pol4, and FEN-1. J Biol Chem 2004; 279:47580-8. [PMID: 15342630 DOI: 10.1074/jbc.m404492200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The repair of DNA double-strand breaks is critical for maintaining genetic stability. In the non-homologous end-joining pathway, DNA ends are brought together by end-bridging factors. However, most in vivo DNA double-strand breaks have terminal structures that cannot be directly ligated. Thus, the DNA ends are aligned using short regions of sequence microhomology followed by processing of the aligned DNA ends by DNA polymerases and nucleases to generate ligatable termini. Genetic studies in Saccharomyces cerevisiae have implicated the DNA polymerase Pol4 and the DNA structure-specific endonuclease FEN-1(Rad27) in the processing of DNA ends to be joined by Dnl4/Lif1. In this study, we demonstrated that FEN-1(Rad27) physically and functionally interacted with both Pol4 and Dnl4/Lif1 and that together these proteins coordinately processed and joined DNA molecules with incompatible 5' ends. Because Pol4 also interacts with Dnl4/Lif1, our results have revealed a series of pair-wise interactions among the factors that complete the repair of DNA double-strand breaks by non-homologous end-joining and provide a conceptual framework for delineating the end-processing reactions in higher eukaryotes.
Collapse
Affiliation(s)
- Hui-Min Tseng
- Molecular Medicine Graduate Program, Institute of Biotechnology, The University of Texas Health Sciences Center at San Antonio, San Antonio, Texas 78245, USA
| | | |
Collapse
|
509
|
Dumont M, Frank D, Moisan AM, Tranchant M, Soucy P, Breton R, Labrie F, Tavtigian SV, Simard J. Structure of primate and rodent orthologs of the prostate cancer susceptibility gene ELAC2. ACTA ACUST UNITED AC 2004; 1679:230-47. [PMID: 15358515 DOI: 10.1016/j.bbaexp.2004.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 07/07/2004] [Accepted: 07/19/2004] [Indexed: 11/30/2022]
Abstract
The human ELAC2 gene was the first candidate prostate cancer susceptibility gene identified by linkage analysis and positional cloning. DNA sequence indicates a protein of 826 amino acids encoded by 24 exons. In the present study, we characterized the coding sequence of chimpanzee and gorilla ELAC2 orthologs by direct sequencing of genomic fragments, and of cynomolgus monkey and rat orthologs by screening cDNA libraries. The orthologs characterized in the chimpanzee, gorilla and cynomolgus monkey also encode proteins of 826 amino acids, sharing 98.9%, 98.5% and 93.7% sequence identity with the human protein. Our analyses of the mouse ELAC2 gene identified two alternative mRNA transcripts. One is translated into a protein of 824 a.a. (mouse ELAC2), whereas the other one encodes a protein of 831 amino acids (mouse ELAC2A) resulting from an alternatively spliced form of 25 exons. The rat ELAC2 gene ortholog also expressed two similar alternatively spliced transcripts. These two forms are ubiquitously expressed in mouse and rat tissues. The highest levels of expression of the ELAC2 form are observed in the testis while the lowest levels are seen in the prostate and in the muscle. However, it is of interest to note that the relative abundance of the rat and mouse ELAC2 transcripts, measured by real-time quantitative PCR, is higher than the respective ELAC2A forms in all surveyed tissues except for the prostate and the muscle. The ELAC2A transcript levels are 4.1 to 5.0-fold higher than the ELAC2 levels in the prostate of rat and mouse, respectively. A fine analysis of the conserved domains on the primary structure of ELAC2 orthologs revealed the presence of a putative beta-CASP domain shared by the PSO2 (SNM1) DNA interstrand cross-link repair proteins, and the 73-kDa subunit of mRNA 3' end cleavage and polyadenylation specificity factor (CPSF73) as well as Artemis proteins, thus suggesting a potential interaction of ELAC2 gene product with nucleic acids and more specifically with RNA targets. Taken together, these data offer useful tools to further study the regulation and cellular function of ELAC2 gene in experimental models and provide further insight concerning conserved amino acid motifs that could have biological significance.
Collapse
Affiliation(s)
- Martine Dumont
- Canada Research Chair in Oncogenetics and Cancer Genomics Laboratory, CHUL Research Center and Laval University, 2705 Laurier Boulevard, Sainte-Foy, Quebec City, Canada G1V 4G2
| | | | | | | | | | | | | | | | | |
Collapse
|
510
|
van Heemst D, Brugmans L, Verkaik NS, van Gent DC. End-joining of blunt DNA double-strand breaks in mammalian fibroblasts is precise and requires DNA-PK and XRCC4. DNA Repair (Amst) 2004; 3:43-50. [PMID: 14697758 DOI: 10.1016/j.dnarep.2003.09.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA double-strand break repair by non-homologous end-joining (NHEJ) is generally considered to be an imprecise repair pathway. In order to study repair of a blunt, 5' phosphorylated break in the DNA of mammalian fibroblasts, we used the E. coli cut-and-paste type transposon Tn5. We found that the Tn5 transposase can mediate transposon excision in Chinese hamster cell lines. Interestingly, a blunt 5' phosphorylated break could efficiently be repaired without loss of nucleotides in wild type fibroblasts. Catalytic subunit of DNA-dependent protein kinase (DNA-PK(CS)) deficiency reduced the efficiency of joining four-fold without reducing precision, whereas both efficiency and accuracy of joining were affected in Ku80 or XRCC4 mutant cell lines. These results show that both the DNA-PK and the XRCC4/ligase IV complexes are required for NHEJ and that other, more error-prone, repair processes cannot efficiently substitute for joining of blunt breaks produced in living cells. Interestingly, the severity of the end-joining defect differs between the various mutants, which may explain the difference in the severity of the phenotypes, which have been observed in the corresponding mouse models.
Collapse
Affiliation(s)
- Diana van Heemst
- Department of Cell Biology and Genetics, Erasmus Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
511
|
Lieber MR, Ma Y, Pannicke U, Schwarz K. The mechanism of vertebrate nonhomologous DNA end joining and its role in V(D)J recombination. DNA Repair (Amst) 2004; 3:817-26. [PMID: 15279766 DOI: 10.1016/j.dnarep.2004.03.015] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The vertebrate immune system generates double-strand DNA (dsDNA) breaks to generate the antigen receptor repertoire of lymphocytes. After those double-strand breaks have been created, the DNA joinings required to complete the process are carried out by the nonhomologous DNA end joining pathway, or NHEJ. The NHEJ pathway is present not only in lymphocytes, but in all eukaryotic cells ranging from yeast to humans. The NHEJ pathway is needed to repair these physiologic breaks, as well as challenging pathologic breaks that arise from ionizing radiation and oxidative damage to DNA.
Collapse
Affiliation(s)
- Michael R Lieber
- USC Norris Comprehensive Cancer Ctr., Rm. 5428, University of Southern California Keck School of Medicine, Department of Pathology, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|
512
|
Affiliation(s)
- David G Schatz
- Howard Hughes Medical Institute, Section of Immunobiology, Yale University School of Medicine, New Haven, CT 06520-8011, USA.
| |
Collapse
|
513
|
Abstract
One of the most toxic insults a cell can incur is a disruption of its linear DNA in the form of a double-strand break (DSB). Left unrepaired, or repaired improperly, these lesions can result in cell death or neoplastic transformation. Despite these dangers, lymphoid cells purposely introduce DSBs into their genome to maximize the diversity and effector functions of their antigen receptor genes. While the generation of breaks requires distinct lymphoid-specific factors, their resolution requires various ubiquitously expressed DNA-repair proteins, known collectively as the non-homologous end-joining pathway. In this review, we discuss the factors that constitute this pathway as well as the evidence of their involvement in two lymphoid-specific DNA recombination events.
Collapse
Affiliation(s)
- Sean Rooney
- Howard Hughes Medical Institute, The Children's Hospital, The Department of Genetics, Harvard Medical School and The Center for Blood Research, Boston, MA 02115, USA
| | | | | |
Collapse
|
514
|
Le Deist F, Poinsignon C, Moshous D, Fischer A, de Villartay JP. Artemis sheds new light on V(D)J recombination. Immunol Rev 2004; 200:142-55. [PMID: 15242402 DOI: 10.1111/j.0105-2896.2004.00169.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
V(D)J recombination represents one of the three mechanisms that contribute to the diversity of the immune repertoire of B lymphocytes and T lymphocytes. It also constitutes a major checkpoint during the development of the immune system. Indeed, any V(D)J recombination deficiency leads to a block of B-cell and T-cell maturation in humans and animal models, leading to severe combined immunodeficiency (T-B-SCID). Nine factors have been identified so far to participate in V(D)J recombination. The discovery of Artemis, mutated in a subset of T-B-SCID, provided some new information regarding one of the missing V(D)J recombinase activities: hairpin opening at coding ends prior to DNA repair of the recombination activating genes 1/2-generated DNA double-strand break. New conditions of immune deficiency in humans are now under investigations and should lead to the identification of additional V(D)J recombination/DNA repair factors.
Collapse
Affiliation(s)
- Françoise Le Deist
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Paris, France
| | | | | | | | | |
Collapse
|
515
|
Yamazoe M, Sonoda E, Hochegger H, Takeda S. Reverse genetic studies of the DNA damage response in the chicken B lymphocyte line DT40. DNA Repair (Amst) 2004; 3:1175-85. [PMID: 15279806 DOI: 10.1016/j.dnarep.2004.03.039] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the 'post-genome' era, reverse genetics is one of the most informative and powerful means to investigate protein function. The chicken B lymphocyte line DT40 is widely used for reverse genetics because the cells have a number of advantages, including efficient gene targeting as well as a remarkably stable phenotype. Furthermore, the absence of functional p53 in DT40 cells enables identification of DNA damage using chromosome analysis by suppressing damage-induced apoptosis during interphase. This review summarizes the contribution of DT40 cells to reverse genetic studies of DNA damage response pathways in higher eukaryotic cells.
Collapse
Affiliation(s)
- Mitsuyoshi Yamazoe
- CRESTO, The Japan Science and Technology Corporation, Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
516
|
O'Driscoll M, Gennery AR, Seidel J, Concannon P, Jeggo PA. An overview of three new disorders associated with genetic instability: LIG4 syndrome, RS-SCID and ATR-Seckel syndrome. DNA Repair (Amst) 2004; 3:1227-35. [PMID: 15279811 DOI: 10.1016/j.dnarep.2004.03.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Around 15-20 hereditary disorders associated with impaired DNA damage response mechanisms have been previously described. The range of clinical features associated with these disorders attests to the significant role that these pathways play during development. Recently, three new such disorders have been reported extending the importance of the damage response pathways to human health. LIG4 syndrome is conferred by hypomorphic mutations in DNA ligase IV, an essential component of DNA non-homologous end-joining (NHEJ), and is associated with pancytopaenia, developmental and growth delay and dysmorphic facial features. Radiosensitive severe combined immunodeficiency (RS-SCID) is caused by mutations in Artemis, a protein that plays a subsidiary role in non-homologous end-joining although it is not an essential component. RS-SCID is characterised by severe combined immunodeficiency but patients have no overt developmental abnormalities. ATR-Seckel syndrome is caused by mutations in ataxia telangiectasia and Rad3 related protein (ATR), a component of a DNA damage signalling pathway. ATR-Seckel syndrome patients have dramatic microcephaly and marked growth and developmental delay. The clinical features of these patients are considered in the light of the function of the defective protein.
Collapse
Affiliation(s)
- M O'Driscoll
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton, East Sussex BN1 9RQ, UK
| | | | | | | | | |
Collapse
|
517
|
Arosio D, Costantini S, Kong Y, Vindigni A. Fluorescence anisotropy studies on the Ku-DNA interaction: anion and cation effects. J Biol Chem 2004; 279:42826-35. [PMID: 15284231 DOI: 10.1074/jbc.m406529200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA non-homologous end joining starts with the binding of Ku heterodimers to double strand breaks. In this work, we characterized the thermodynamics of the Ku-DNA interaction by fluorescence anisotropy of the probe-labeled DNA. We determined that the microscopic dissociation constant (kd) for the binding of Ku to a DNA binding site of the proper length (>20 bp) ranges from 22 to 29 nm at 300 mm NaCl. The binding isotherms for DNA duplexes with two or three heterodimers were analyzed with two independent models considering the presence and absence of overlapping binding sites. This analysis demonstrated that there is no or very weak nearest-neighbor cooperativity among the Ku molecules. These models can most likely be applied to study the interaction of Ku with duplexes of any length. Furthermore, our salt dependence studies indicated that electrostatic interactions play a major role in the binding of Ku to DNA and that the kd decreases approximately 60-fold as the salt concentration is lowered from 300 to 200 mm. The slope (Gammasalt) of the plot of log kd versus log[NaCl] is 12.4 +/- 0.1. This value is among the highest reported in the literature for a protein-DNA interaction and suggests that approximately 12 ions are released upon formation of the Ku-DNA complex. In addition, comparison of the slope values measured upon varying the type of cation and anion indicated that approximately nine cations and three anions are released from DNA and Ku, respectively, when the complex is formed.
Collapse
Affiliation(s)
- Daniele Arosio
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34012 Trieste, Italy
| | | | | | | |
Collapse
|
518
|
Nagawa F, Hirose S, Nishizumi H, Nishihara T, Sakano H. Joining mutants of RAG1 and RAG2 that demonstrate impaired interactions with the coding-end DNA. J Biol Chem 2004; 279:38360-8. [PMID: 15249552 DOI: 10.1074/jbc.m405485200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In V(D)J joining of antigen receptor genes, two recombination signal sequences (RSSs), 12- and 23-RSSs, form a complex with the protein products of recombination activating genes, RAG1 and RAG2. DNaseI footprinting demonstrates that the interaction of RAG proteins with substrate RSS DNA is not just limited to the signal region but involves the coding sequence as well. Joining mutants of RAG1 and RAG2 demonstrate impaired interactions with the coding region in both pre- and postcleavage type complexes. A possible role of this RAG coding region interaction is discussed in the context of V(D)J recombination.
Collapse
Affiliation(s)
- Fumikiyo Nagawa
- Department of Biophysics and Biochemistry, Graduate School of Science, and Core Research for Evolutional Science and Technology Program of the Japan Science and Technology Agency, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
519
|
Wang YG, Nnakwe C, Lane WS, Modesti M, Frank KM. Phosphorylation and regulation of DNA ligase IV stability by DNA-dependent protein kinase. J Biol Chem 2004; 279:37282-90. [PMID: 15194694 DOI: 10.1074/jbc.m401217200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA ligase IV (Lig4), x-ray cross-complementation group 4 (XRCC4), and DNA-dependent protein kinase (DNA-PK) are essential mammalian nonhomologous end joining proteins used for V(D)J recombination and DNA repair. Previously a Lig4 peptide was reported to be an in vitro substrate for DNA-PK, but the phosphorylation state of Lig4 protein in vivo is not known. In this study, we report that a full-length Lig4 construct was expressed as a phosphoprotein in the cell. Also the full-length Lig4 protein, in complex with XRCC4, was an in vitro substrate for DNA-PK. Using tandem mass spectrometry, we identified a DNA-PK phosphorylation site at Thr-650 in human Lig4 and a potential second phosphorylation site at Ser-668 or Ser-672. Phosphorylation of Lig4 per se was not required for Lig4 DNA end joining activity. Substitution of these amino acids with alanine, individually or in combination, led to changes in Lig4 protein stability of mouse Lig4. The phosphomimetic mutation S650D returned Lig4 stability to that of the wild-type protein. Furthermore DNA-PK was found to negatively regulate Lig4 protein stability. Our results suggest that Lig4 stability is regulated by multiple factors, including interaction with XRCC4, phosphorylation status, and possibly Lig4 conformation.
Collapse
Affiliation(s)
- Yu-Gang Wang
- Department of Pathology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
520
|
Nishihara T, Nagawa F, Nishizumi H, Kodama M, Hirose S, Hayashi R, Sakano H. In vitro processing of the 3'-overhanging DNA in the postcleavage complex involved in V(D)J joining. Mol Cell Biol 2004; 24:3692-702. [PMID: 15082765 PMCID: PMC387758 DOI: 10.1128/mcb.24.9.3692-3702.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The postcleavage complex involved in V(D)J joining is known to possess a transpositional strand transfer activity, whose physiological role is yet to be clarified. Here we report that RAG1 and RAG2 proteins in the signal end (SE) complex cleave the 3'-overhanging structure of the synthetic coding-end (CE) DNA in two successive steps in vitro. The 3'-overhanging structure is attacked by the SE complex imprecisely, near the double-stranded/single-stranded (ds/ss) junction, and transferred to the SE. The transferred overhang is then resolved and cleaved precisely at the ds/ss junction, generating either the linear or the circular cleavage products. Thus, the blunt-end structure is restored for the SE and variably processed ends are generated for the synthetic CE. This 3'-processing activity is observed not only with the core RAG2 but also with the full-length protein.
Collapse
Affiliation(s)
- Tadashi Nishihara
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
521
|
Cavazzana-Calvo M, Hacein-Bey-Abina S, Fischer A. Gene therapy of X-linked severe combined immunodeficiency. Curr Opin Allergy Clin Immunol 2004; 2:507-9. [PMID: 14752333 DOI: 10.1097/00130832-200212000-00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review addresses several questions in the light of the results recently obtained by a gene therapy trial for the treatment of X-linked severe combined immunodeficiency. This primary immunodeficiency, characterized by a complete absence of T and natural killer lymphocytes, appeared as a good model for the application of gene therapy, combining an expected selective advantage for transduced cells, an absence of immunological response to the vector and/or the therapeutic transgene together with accessibility to hematopoietic stem cells. After a brief description of the disease and its physiopathology we summarize the clinical results of the gene therapy trial putting them in perspective with those obtained following allogeneic hematopoietic stem cell transplantation. Definitive conclusions cannot be thrown due to the limited number of gene therapy-treated patients and their relatively short follow-up.
Collapse
|
522
|
Pannicke U, Ma Y, Hopfner KP, Niewolik D, Lieber MR, Schwarz K. Functional and biochemical dissection of the structure-specific nuclease ARTEMIS. EMBO J 2004; 23:1987-97. [PMID: 15071507 PMCID: PMC404326 DOI: 10.1038/sj.emboj.7600206] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 03/18/2004] [Indexed: 01/14/2023] Open
Abstract
During V(D)J recombination, the RAG1 and RAG2 proteins form a complex and initiate the process of rearrangement by cleaving between the coding and signal segments and generating hairpins at the coding ends. Prior to ligation of the coding ends by DNA ligase IV/XRCC4, these hairpins are opened by the ARTEMIS/DNA-PKcs complex. ARTEMIS, a member of the metallo-beta-lactamase superfamily, shares several features with other family members that act on nucleic acids. ARTEMIS exhibits exonuclease and, in concert with DNA-PKcs, endonuclease activities. To characterize amino acids essential for its catalytic activities, we mutated nine evolutionary conserved histidine and aspartic acid residues within ARTEMIS. Biochemical analyses and a novel in vivo V(D)J recombination assay allowed the identification of eight mutants that were defective in both overhang endonucleolytic and hairpin-opening activities; the 5' to 3' exonuclease activity of ARTEMIS, however, was not impaired by these mutations. These results indicate that the hairpin-opening activity of ARTEMIS and/or its overhang endonucleolytic activity are necessary but its exonuclease activity is not sufficient for the process of V(D)J recombination.
Collapse
Affiliation(s)
- Ulrich Pannicke
- Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm, Department of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Yunmei Ma
- Departments of Pathology, Biochemistry & Molecular Biology, Biological Sciences, and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Karl-Peter Hopfner
- Institute of Biochemistry and Gene Center, University of Munich, Munich, Germany
| | - Doris Niewolik
- Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm, Department of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Michael R Lieber
- Departments of Pathology, Biochemistry & Molecular Biology, Biological Sciences, and Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Klaus Schwarz
- Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm, Department of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
523
|
Rieger KE, Hong WJ, Tusher VG, Tang J, Tibshirani R, Chu G. Toxicity from radiation therapy associated with abnormal transcriptional responses to DNA damage. Proc Natl Acad Sci U S A 2004; 101:6635-40. [PMID: 15096622 PMCID: PMC404097 DOI: 10.1073/pnas.0307761101] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Toxicity from radiation therapy is a grave problem for cancer patients. We hypothesized that some cases of toxicity are associated with abnormal transcriptional responses to radiation. We used microarrays to measure responses to ionizing and UV radiation in lymphoblastoid cells derived from 14 patients with acute radiation toxicity. The analysis used heterogeneity-associated transformation of the data to account for a clinical outcome arising from more than one underlying cause. To compute the risk of toxicity for each patient, we applied nearest shrunken centroids, a method that identifies and cross-validates predictive genes. Transcriptional responses in 24 genes predicted radiation toxicity in 9 of 14 patients with no false positives among 43 controls (P = 2.2 x 10(-7)). The responses of these nine patients displayed significant heterogeneity. Of the five patients with toxicity and normal responses, two were treated with protocols that proved to be highly toxic. These results may enable physicians to predict toxicity and tailor treatment for individual patients.
Collapse
Affiliation(s)
- Kerri E Rieger
- Department of Medicine and Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
524
|
Rooney S, Sekiguchi J, Whitlow S, Eckersdorff M, Manis JP, Lee C, Ferguson DO, Alt FW. Artemis and p53 cooperate to suppress oncogenic N-myc amplification in progenitor B cells. Proc Natl Acad Sci U S A 2004; 101:2410-5. [PMID: 14983023 PMCID: PMC356964 DOI: 10.1073/pnas.0308757101] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The nonhomologous DNA end-joining (NHEJ) pathway contains six known components, including Artemis, a nuclease mutated in a subset of human severe combined immunodeficient patients. Mice doubly deficient for the five previously analyzed NHEJ factors and p53 inevitably develop progenitor B lymphomas harboring der(12)t(12;15) translocations and immunoglobin heavy chain (IgH)/c-myc coamplification mediated by a breakage-fusion-bridge mechanism. In this report, we show that Artemis/p53-deficient mice also succumb reproducibly to progenitor B cell tumors, demonstrating that Artemis is a tumor suppressor in mice. However, the majority of Artemis/p53-deficient tumors lacked der(12)t(12;15) translocations and c-myc amplification and instead coamplified IgH and N-myc through an intra- or interchromosome 12 breakage-fusion-bridge mechanism. We discuss this finding in the context of potential implications for mechanisms that may target IgH locus translocations to particular oncogenes.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/cytology
- B-Lymphocytes/physiology
- Base Sequence
- Chromosome Mapping
- DNA Repair
- Endonucleases
- Genes, myc
- Genes, p53
- Immunoglobulin Heavy Chains/genetics
- Leukemia, B-Cell/genetics
- Lymphoma, B-Cell/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Neoplasms, Experimental/genetics
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Suppression, Genetic/genetics
- Survival Rate
- Translocation, Genetic
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Sean Rooney
- Howard Hughes Medical Institute, Children's Hospital, Department of Genetics, Harvard Medical School, and Center for Blood Research, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
525
|
Kühne M, Riballo E, Rief N, Rothkamm K, Jeggo PA, Löbrich M. A double-strand break repair defect in ATM-deficient cells contributes to radiosensitivity. Cancer Res 2004; 64:500-8. [PMID: 14744762 DOI: 10.1158/0008-5472.can-03-2384] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ATM protein, which is mutated in individuals with ataxia telangiectasia (AT), is central to cell cycle checkpoint responses initiated by DNA double-strand breaks (DSBs). ATM's role in DSB repair is currently unclear as is the basis underlying the radiosensitivity of AT cells. We applied immunofluorescence detection of gamma-H2AX nuclear foci and pulsed-field gel electrophoresis to quantify the repair of DSBs after X-ray doses between 0.02 and 80 Gy in confluence-arrested primary human fibroblasts from normal individuals and patients with mutations in ATM and DNA ligase IV, a core component of the nonhomologous end-joining (NHEJ) repair pathway. Cells with hypomorphic mutations in DNA ligase IV exhibit a substantial repair defect up to 24 h after treatment but continue to repair for several days and finally reach a level of unrepaired DSBs similar to that of wild-type cells. Additionally, the repair defect in NHEJ mutants is dose dependent. ATM-deficient cells, in contrast, repair the majority of DSBs with normal kinetics but fail to repair a subset of breaks, irrespective of the initial number of lesions induced. Significantly, after biologically relevant radiation doses and/or long repair times, the repair defect in AT cells is more pronounced than that of NHEJ mutants and correlates with radiosensitivity. NHEJ-defective cells analyzed for survival following delayed plating after irradiation show substantial recovery while AT cells fail to show any recovery. These data argue that the DSB repair defect underlies a significant component of the radiosensitivity of AT cells.
Collapse
Affiliation(s)
- Martin Kühne
- Fachrichtung Biophysik, Universität des Saarlandes, Homburg/Saar, Germany.
| | | | | | | | | | | |
Collapse
|
526
|
Abstract
Mutations in nine different genes have been found to cause the human severe combined immunodeficiency syndrome. The products of three of the genes--IL-2RG, Jak3, and IL-7R alpha--are components of cytokine receptors, and the products of three more-RAG1, RAG2, and Artemis-are essential for effecting antigen receptor gene rearrangement. Additionally, a deficiency of CD3 delta, a component of the T-cell antigen receptor, results in a near absence of circulating mature CD3+ T cells and a complete lack of gamma/delta T cells. Adenosine deaminase deficiency results in toxic accumulations of metabolites that cause T cell apoptosis. Finally, a deficiency of CD45, a critical regulator of signaling thresholds in immune cells, also causes SCID. Approaches to immune reconstitution have included bone marrow transplantation and gene therapy. Bone marrow transplantation, both HLA identical unfractionated and T cell-depleted HLA haploidentical, has been very successful in effecting immune reconstitution if done in the first 3.5 months of life and without pretransplant chemotherapy. Gene therapy was highly successful in nine infants with X-linked SCID, but the trials have been placed on hold due to the development of a leukemic process in two of the children because of insertional oncogenesis.
Collapse
Affiliation(s)
- Rebecca H Buckley
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
527
|
Schwarz K, Ma Y, Pannicke U, Lieber MR. Human severe combined immune deficiency and DNA repair. Bioessays 2004; 25:1061-70. [PMID: 14579247 DOI: 10.1002/bies.10344] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human severe combined immune deficiency (SCID) is the most serious inherited immunological deficit. Recent work has revealed defects in the predominant pathway for double-strand break repair called nonhomologous DNA end joining, or NHEJ. Progress in the biochemistry and genetics of NHEJ and of human SCID has proven to be synergistic between these two fields in a manner that covers the range from biochemical etiology to considerations about possible gene therapy for the B- SCID patients.
Collapse
Affiliation(s)
- Klaus Schwarz
- Department of Transfusion Medicine, University of Ulm, Germany.
| | | | | | | |
Collapse
|
528
|
Roberts JL, Lengi A, Brown SM, Chen M, Zhou YJ, O'Shea JJ, Buckley RH. Janus kinase 3 (JAK3) deficiency: clinical, immunologic, and molecular analyses of 10 patients and outcomes of stem cell transplantation. Blood 2004; 103:2009-18. [PMID: 14615376 DOI: 10.1182/blood-2003-06-2104] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
We found 10 individuals from 7 unrelated families among 170 severe combined immunodeficiency (SCID) patients who exhibited 9 different Janus kinase 3 (JAK3) mutations. These included 3 missense and 2 nonsense mutations, 1 insertion, and 3 deletions. With the exception of 1 individual with persistence of transplacentally transferred maternal lymphocytes, all infants presented with a T–B+NK– phenotype. The patient mutations all resulted in abnormal B-cell Janus kinase 3 (JAK3)–dependent interleukin-2 (IL-2)–induced signal transducer and activator of transcription-5 (STAT5) phosphorylation. Additional analyses of mutations permitting protein expression revealed the N-terminal JH7 (del58A) and JH6 (D169E) domain mutations each inhibited receptor binding and catalytic activity, whereas the G589S JH2 mutation abrogated kinase activity but did not affect γc association. Nine of the 10 patients are currently alive from between 4 years and 18 years following stem cell transplantation, with all exhibiting normal T-cell function. Reconstitution of antibody function was noted in only 3 patients. Natural killer (NK) function was severely depressed at presentation in the 4 patients studied, whereas after transplantation the only individuals with normal NK lytic activity were patients 1 and 5. Hence, bone marrow transplantation is an effective means for reconstitution of T-cell immunity in this defect but is less successful for restoration of B-cell and NK cell functions.
Collapse
Affiliation(s)
- Joseph L Roberts
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
529
|
Ismail IH, Mårtensson S, Moshinsky D, Rice A, Tang C, Howlett A, McMahon G, Hammarsten O. SU11752 inhibits the DNA-dependent protein kinase and DNA double-strand break repair resulting in ionizing radiation sensitization. Oncogene 2004; 23:873-82. [PMID: 14661061 DOI: 10.1038/sj.onc.1207303] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Loss of the DNA-dependent protein kinase (DNA-PK) results in increased sensitivity to ionizing radiation due to inefficient repair of DNA double-strand breaks. Overexpression of DNA-PK in tumor cells conversely results in resistance to ionizing radiation. It is therefore possible that inhibition of DNA-PK will enhance the preferential killing of tumor cells by radiotherapy. Available inhibitors of DNA-PK, like wortmannin, are cytotoxic and stop the cell cycle because they inhibit phoshatidylinositol-3-kinases at 100-fold lower concentrations required to inhibit DNA-PK. In an effort to develop a specific DNA-PK inhibitor, we have characterized SU11752, from a three-substituted indolin-2-ones library. SU11752 and wortmannin were equally potent inhibitors of DNA-PK. In contrast, inhibition of the phoshatidylinositol-3-kinase p110gamma required 500-fold higher concentration of SU11752. Thus, SU11752 was a more selective inhibitor of DNA-PK than wortmannin. Inhibition kinetics and a direct assay for ATP binding showed that SU11752 inhibited DNA-PK by competing with ATP. SU11752 inhibited DNA double-strand break repair in cells and gave rise to a five-fold sensitization to ionizing radiation. At concentrations of SU11752 that inhibited DNA repair, cell cycle progression was still normal and ATM kinase activity was not inhibited. We conclude that SU11752 defines a new class of drugs that may serve as a starting point for the development of specific DNA-PK inhibitors.
Collapse
Affiliation(s)
- Ismail Hassan Ismail
- Department of Clinical Chemistry, Göteborg University, Sahlgrenska University Hospital, Göteborg 41345, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
530
|
Tabori U, Mark Z, Amariglio N, Etzioni A, Golan H, Biloray B, Toren A, Rechavi G, Dalal I. Detection of RAG mutations and prenatal diagnosis in families presenting with either T-B- severe combined immunodeficiency or Omenn's syndrome. Clin Genet 2004; 65:322-6. [PMID: 15025726 DOI: 10.1111/j.1399-0004.2004.00227.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been recently shown that mutations in both of the recombination activating genes RAG1 and RAG2 are involved in each of the two different types of severe combined immunodeficiency (SCID) syndromes: T-B- SCID and Omenn's syndrome (OS). The objective of the study was to search for novel mutations in the RAG genes and to offer prenatal diagnosis for families that have been identified as at risk of T-B- SCID or OS. Mutation analyses of polymerase chain reaction products of RAG1/RAG2 genes were performed in 14 cases (T-B- SCID = 6 and OS = 8). Consanguinity was reported in seven (50%) families. Four missense mutations in the RAG2 gene in six of eight OS patients and in four of six T-B- SCID patients were detected. The C1845T transition leading to a Tre215Ile substitution is a novel mutation. All but one of the patients were homozygous for the detected mutations, possibly reflecting the consanguinity in these families and the relative rarity of the disease-causing mutations. In addition, three putative polymorphic sites were found. Prenatal diagnosis was offered to seven families, but three of them declined genetic counseling for religious reasons. In the remaining families, four pregnancies were successfully completed, and in one case, the family chose to have an abortion because of a homozygous mutation. Mutations in RAG1/RAG2 genes were detected in only some of the T-B- SCID or OS patients, and the molecular basis for the remaining cases has yet to be elucidated. Important factors such as religious beliefs need to be considered when offering prenatal diagnosis to certain families.
Collapse
Affiliation(s)
- U Tabori
- Pediatric Hematology-Oncology, Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
531
|
Harris R, Esposito D, Sankar A, Maman JD, Hinks JA, Pearl LH, Driscoll PC. The 3D solution structure of the C-terminal region of Ku86 (Ku86CTR). J Mol Biol 2004; 335:573-82. [PMID: 14672664 DOI: 10.1016/j.jmb.2003.10.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In eukaryotes the non-homologous end-joining repair of double strand breaks in DNA is executed by a series of proteins that bring about the synapsis, preparation and ligation of the broken DNA ends. The mechanism of this process appears to be initiated by the obligate heterodimer (Ku70/Ku86) protein complex Ku that has affinity for DNA ends. Ku then recruits the DNA-dependent protein kinase catalytic subunit (DNA-PKcs). The three-dimensional structures of the major part of the Ku heterodimer, representing the DNA-binding core, both free and bound to DNA are known from X-ray crystallography. However, these structures lack a region of ca 190 residues from the C-terminal region (CTR) of the Ku86 subunit (also known as Lupus Ku autoantigen p86, Ku80, or XRCC5) that includes the extreme C-terminal tail that is reported to be sufficient for DNA-PKcs-binding. We have examined the structural characteristics of the Ku86CTR protein expressed in bacteria. By deletion mutagenesis and heteronuclear NMR spectroscopy we localised a globular domain consisting of residues 592-709. Constructs comprising additional residues either to the N-terminal side (residues 543-709), or the C-terminal side (residues 592-732), which includes the putative DNA-PKcs-binding motif, yielded NMR spectra consistent with these extra regions lacking ordered structure. The three-dimensional solution structure of the core globular domain of the C-terminal region of Ku86 (Ku86CTR(592-709)) has been determined using heteronuclear NMR spectroscopy and dynamical simulated annealing using structural restraints from nuclear Overhauser effect spectroscopy, and scalar and residual dipolar couplings. The polypeptide fold comprises six regions of alpha-helical secondary structure that has an overall superhelical topology remotely homologous to the MIF4G homology domain of the human nuclear cap binding protein 80 kDa subunit and the VHS domain of the Drosophila protein Hrs, though strict analysis of the structures suggests that these domains are not functionally related. Two prominent hydrophobic pockets in the gap between helices alpha2 and alpha4 suggest a potential ligand-binding characteristic for this globular domain.
Collapse
Affiliation(s)
- Richard Harris
- Bloomsbury Centre for Structural Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
532
|
Kalman L, Lindegren ML, Kobrynski L, Vogt R, Hannon H, Howard JT, Buckley R. Mutations in genes required for T-cell development:IL7R, CD45, IL2RG, JAK3, RAG1, RAG2, ARTEMIS, and ADA and severe combined immunodeficiency: HuGE review. Genet Med 2004; 6:16-26. [PMID: 14726805 DOI: 10.1097/01.gim.0000105752.80592.a3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Severe combined immunodeficiency (SCID) is an inherited immune disorder characterized by T-cell lymphopenia (TCLP), a profound lack of cellular (T-cell) and humoral (B-cell) immunity and, in some cases, decreased NK-cell number and function. Affected children develop severe bacterial and viral infections within the first 6 months of life and die before 1 year of age without treatment. Mutations in any of eight known genes: IL2RG, ARTEMIS, RAG1, RAG2, ADA, CD45, JAK3, and IL7R cause SCID. Mutations in unidentified genes may also cause SCID. Population-based genotype and allelic frequencies of these gene defects have not been measured. Some minimal estimates of SCID prevalence are presented. Currently, hematopoietic stem cell transplants are the standard treatment. In clinical trials, gene therapy has been used to reconstitute immune function in patients with IL2RG and ADA defects. The availability of effective therapies, plus the short asymptomatic period after birth, (when stem-cell transplantation is most effective), make SCID a potentially good candidate for newborn screening. Dried blood spots are currently collected from all infants at birth for newborn metabolic screening. Tests for TCLP on dried blood spots could be developed as a screen for SCID. Because SCID may be unrecognized, with infant deaths from infection attributed to other causes, newborn screening is the only way to ascertain true birth prevalence. Validated tests and pilot population studies are necessary to determine newborn screening's potential for identifying infants with SCID.
Collapse
Affiliation(s)
- Lisa Kalman
- Centers for Disease Control and Prevention, Newborn Screening Quality Assurance Program, Office of Genomics and Disease Prevention, Atlanta, Georgia, USA
| | | | | | | | | | | | | |
Collapse
|
533
|
Friedberg EC, McDaniel LD, Schultz RA. The role of endogenous and exogenous DNA damage and mutagenesis. Curr Opin Genet Dev 2004; 14:5-10. [PMID: 15108798 DOI: 10.1016/j.gde.2003.11.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The field of DNA damage responsiveness in general, and the consequences of endogenous and exogenous base damage in DNA, in particular, has made new and exciting contributions to our increasing understanding of the initiation and progression of neoplasia in humans. This article presents some of the highlights in this area of investigation, with a particular emphasis on DNA repair, the tolerance of DNA damage and its contribution to mutagenesis, and DNA damage checkpoint regulation.
Collapse
Affiliation(s)
- Errol C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA.
| | | | | |
Collapse
|
534
|
Poinsignon C, Moshous D, Callebaut I, de Chasseval R, Villey I, de Villartay JP. The metallo-beta-lactamase/beta-CASP domain of Artemis constitutes the catalytic core for V(D)J recombination. ACTA ACUST UNITED AC 2004; 199:315-21. [PMID: 14744996 PMCID: PMC2211804 DOI: 10.1084/jem.20031142] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The V(D)J recombination/DNA repair factor Artemis belongs to the metallo-β-lactamase (β-Lact) superfamily of enzymes. Three regions can be defined within the Artemis protein sequence: (a) the β-Lact homology domain, to which is appended (b) the β-CASP region, specific of members of the β-Lact superfamily acting on nucleic acids, and (c) the COOH-terminal domain. Using in vitro mutagenesis, here we show that the association of the β-Lact and the β-CASP regions suffices for in vivo V(D)J recombination of chromosome-integrated substrates. Single amino acid mutants point to critical catalytic residues for V(D)J recombination activity. The results presented here define the β-Lact/β-CASP domain of Artemis as the minimal core catalytic domain needed for V(D)J recombination and suggest that Artemis uses one or two Zn(II) ions to exert its catalytic activity, like bacterial class B β-Lact enzymes hydrolyzing β-lactam compounds.
Collapse
Affiliation(s)
- Catherine Poinsignon
- Développement Normal et Pathologique de Système Immunitaire, INSERM U429, Hôpital Necker Enfants Malades, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
535
|
de Villartay JP, Fischer A, Durandy A. The mechanisms of immune diversification and their disorders. Nat Rev Immunol 2004; 3:962-72. [PMID: 14647478 DOI: 10.1038/nri1247] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jean-Pierre de Villartay
- Dévelopement Normal et Pathologique du Système Immunitaire (INSERM U429), Hôpital Necker Enfants Malades, 149 rue de Sèvres, 75015 Paris, France.
| | | | | |
Collapse
|
536
|
Abstract
Several recent studies point to the possibility that telomere maintenance may constitute a potential genetic marker of radiosensitivity. For example, the human diseases ataxia telangiectasia and Nijmegen breakage syndrome, which are characterized by clinical radiosensitivity, show alterations in telomere maintenance. In addition, Fanconi's anemia patients, who are characterized by mild cellular radiosensitivity and in some cases marked clinical radiosensitivity, have altered telomere maintenance. Similarly, a correlation between telomere maintenance and cellular radiosensitivity was reported in a group of breast cancer patients. Another study demonstrated that radiosensitivity may be more pronounced in human fibroblasts with short telomeres than in their counterparts with long telomeres. Several mouse models including mice deficient in Ku, DNA-PKcs (Prkdc), Parp and Atm, all of which are radiosensitive in vivo, show clear telomere alterations. The link between telomere maintenance and radiosensitivity is also apparent in mice genetically engineered to have dysfunctional telomeres. Finally, studies using non-mammalian model systems such as C. elegans and yeast point to the link between radiosensitivity and telomere maintenance. These results warrant further investigation to identify the extent to which these two phenotypes, namely radiosensitivity and telomere maintenance, are linked.
Collapse
Affiliation(s)
- Predrag Slijepcevic
- Brunel Institute of Cancer Genetics & Pharmacogenomics, Brunel University, Kingston Lane, Uxbridge, Middlesex, UB8 3PH, United Kingdom.
| |
Collapse
|
537
|
Tippin B, Pham P, Bransteitter R, Goodman MF. Somatic Hypermutation: A Mutational Panacea. ACTA ACUST UNITED AC 2004; 69:307-35. [PMID: 15588848 DOI: 10.1016/s0065-3233(04)69011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Brigette Tippin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
538
|
Durandy A, Revy P, Fischer A. Human models of inherited immunoglobulin class switch recombination and somatic hypermutation defects (hyper-IgM syndromes). Adv Immunol 2004; 82:295-330. [PMID: 14975260 DOI: 10.1016/s0065-2776(04)82007-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anne Durandy
- INSERM U429, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | | | | |
Collapse
|
539
|
Modesti M, Junop MS, Ghirlando R, van de Rakt M, Gellert M, Yang W, Kanaar R. Tetramerization and DNA ligase IV interaction of the DNA double-strand break repair protein XRCC4 are mutually exclusive. J Mol Biol 2003; 334:215-28. [PMID: 14607114 DOI: 10.1016/j.jmb.2003.09.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The XRCC4 protein is of critical importance for the repair of broken chromosomal DNA by non-homologous end joining (NHEJ). The absence of XRCC4 abolishes chromosomal NHEJ almost completely. One reason for this severe phenotype is that XRCC4 binds and modulates the stability and activity of the NHEJ-specific ligase, DNA ligase IV. XRCC4 in solution is in equilibrium between the dimeric and tetrameric forms. Previous structural studies have shown that the interface between dimers is located in the same region as that implicated in DNA ligase IV interaction. With the use of equilibrium sedimentation analysis, we show here that only the XRCC4 dimer can associate with DNA ligase IV, forming a monodisperse complex of 2:1 stoichiometry in solution. In addition, physical analysis of XRCC4/DNA ligase IV complex formation, combined with mutational analysis of XRCC4, indicates that tetramerization and DNA ligase IV binding are mutually exclusive. We propose that the putative function of the XRCC4 tetramer is distinct from its DNA ligase IV-associated function.
Collapse
Affiliation(s)
- Mauro Modesti
- Department of Cell Biology and Genetics, Erasmus Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
540
|
Abstract
The human genome, comprising three billion base pairs coding for 30000-40000 genes, is constantly attacked by endogenous reactive metabolites, therapeutic drugs and a plethora of environmental mutagens that impact its integrity. Thus it is obvious that the stability of the genome must be under continuous surveillance. This is accomplished by DNA repair mechanisms, which have evolved to remove or to tolerate pre-cytotoxic, pre-mutagenic and pre-clastogenic DNA lesions in an error-free, or in some cases, error-prone way. Defects in DNA repair give rise to hypersensitivity to DNA-damaging agents, accumulation of mutations in the genome and finally to the development of cancer and various metabolic disorders. The importance of DNA repair is illustrated by DNA repair deficiency and genomic instability syndromes, which are characterised by increased cancer incidence and multiple metabolic alterations. Up to 130 genes have been identified in humans that are associated with DNA repair. This review is aimed at updating our current knowledge of the various repair pathways by providing an overview of DNA-repair genes and the corresponding proteins, participating either directly in DNA repair, or in checkpoint control and signaling of DNA damage.
Collapse
Affiliation(s)
- Markus Christmann
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | | | | | |
Collapse
|
541
|
Abstract
The recent identification of the genes involved in many primary immunodeficiency disorders has led to a significant increase in our understanding of the pathogenesis of these defects. Many of these disorders share a clinical phenotype with common features such as recurrent infections, chronic inflammation, and autoimmunity. Although some of these immune defects have mild presentations and better outcomes, others result in severe infections and significant morbidity and mortality. For these, early diagnosis and treatment are critical. This review provides an overview of the genetic defects and clinical features of primary immune deficiencies due to defects in lymphocytes.
Collapse
Affiliation(s)
- Steven J Simonte
- Division of Clinical Immunology, Department of Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
542
|
Gennery AR, O'Driscoll M. Unravelling the web of DNA repair disorders. Clin Exp Immunol 2003; 134:385-7. [PMID: 14632741 PMCID: PMC1808886 DOI: 10.1111/j.1365-2249.2003.02316.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2003] [Indexed: 11/30/2022] Open
|
543
|
Gorski MM, Eeken JCJ, de Jong AWM, Klink I, Loos M, Romeijn RJ, van Veen BL, Mullenders LH, Ferro W, Pastink A. TheDrosophila melanogasterDNALigase IVGene Plays a Crucial Role in the Repair of Radiation-Induced DNA Double-Strand Breaks and Acts Synergistically WithRad54. Genetics 2003; 165:1929-41. [PMID: 14704177 PMCID: PMC1462910 DOI: 10.1093/genetics/165.4.1929] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractDNA Ligase IV has a crucial role in double-strand break (DSB) repair through nonhomologous end joining (NHEJ). Most notably, its inactivation leads to embryonic lethality in mammals. To elucidate the role of DNA Ligase IV (Lig4) in DSB repair in a multicellular lower eukaryote, we generated viable Lig4-deficient Drosophila strains by P-element-mediated mutagenesis. Embryos and larvae of mutant lines are hypersensitive to ionizing radiation but hardly so to methyl methanesulfonate (MMS) or the crosslinking agent cis-diamminedichloroplatinum (cisDDP). To determine the relative contribution of NHEJ and homologous recombination (HR) in Drosophila, Lig4; Rad54 double-mutant flies were generated. Survival studies demonstrated that both HR and NHEJ have a major role in DSB repair. The synergistic increase in sensitivity seen in the double mutant, in comparison with both single mutants, indicates that both pathways partially overlap. However, during the very first hours after fertilization NHEJ has a minor role in DSB repair after exposure to ionizing radiation. Throughout the first stages of embryogenesis of the fly, HR is the predominant pathway in DSB repair. At late stages of development NHEJ also becomes less important. The residual survival of double mutants after irradiation strongly suggests the existence of a third pathway for the repair of DSBs in Drosophila.
Collapse
Affiliation(s)
- Marcin M Gorski
- Department of Toxicogenetics, Leiden University Medical Center, 2333 AL, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
544
|
Clatworthy AE, Valencia MA, Haber JE, Oettinger MA. V(D)J recombination and RAG-mediated transposition in yeast. Mol Cell 2003; 12:489-99. [PMID: 14536087 DOI: 10.1016/s1097-2765(03)00305-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antigen receptor genes are assembled during lymphoid development by a specialized recombination reaction normally observed only in cells of the vertebrate immune system. Here, we show that expression in Saccharomyces cerevisiae of murine RAG1 and RAG2, the lymphoid-specific components of the V(D)J recombinase, is sufficient to induce V(D)J cleavage and rejoining in this lower eukaryote. The RAG proteins cleave recombination substrates introduced into yeast cells, generating signal ends that can be joined to form signal joints. These signal joints are precise, as in mammalian cells, and their formation is dependent on a yeast nonhomologous end-joining protein, the XRCC4 homolog LIF1. Moreover, joining of SmaI-generated blunt ends is generally imprecise in the yeast strain used here, suggesting that the RAG proteins influence signal-end joining. Cleaved signal ends are also transposed into new sites in DNA, allowing RAG-induced transposition to be studied in vivo.
Collapse
Affiliation(s)
- Anne E Clatworthy
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
545
|
Boldogh I, Roy G, Lee MS, Bacsi A, Hazra TK, Bhakat KK, Das GC, Mitra S. Reduced DNA double strand breaks in chlorambucil resistant cells are related to high DNA-PKcs activity and low oxidative stress. Toxicology 2003; 193:137-52. [PMID: 14599773 DOI: 10.1016/j.tox.2003.08.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Modulation of DNA repair represents a strategy to overcome acquired drug resistance of cells to genotoxic chemotherapeutic agents, including nitrogen mustards (NM). These agents induce DNA inter-strand cross-links, which in turn produce double strand breaks (dsbs). These breaks are primarily repaired via the nonhomologous end-joining (NHEJ) pathway. A DNA-dependent protein kinase (DNA-PK) complex plays an important role in NHEJ, and its increased level/activity is associated with acquired drug resistance of human tumors. We show in this report that the DNA-PK complex has comparable levels and kinase activity of DNA-PK catalytic subunit (DNA-PKcs) in a nearly isogenic pair of drug-sensitive (A2780) and resistant (A2780/100) cells; however, treatment with chlorambucil (Cbl), a NM-type of drug, induced differential effects in these cells. The kinase activity of DNA-PKcs was increased up to 2h after Cbl treatment in both cell types; however, it subsequently decreased only in sensitive cells, which is consistent with increased levels of DNA dsbs. The decreased kinase activity of DNA-PKcs was not due to a change in its amount or the levels of Ku70 and Ku86, their subcellular distribution, cell cycle progression or caspase-mediated degradation of DNA-PK. In addition to DNA cross-links, Cbl treatment of cells causes a 2.2-fold increase in the level of reactive oxygen species (ROS) in both cell types. However, the ROS in A2780/100 cells were reduced to the basal level after 3-4h, while sensitive cells continued to produce ROS and undergo apoptosis. Pre-treatment of A2780 cells with the glutathione (GSH) precursor, N-acetyl-L-cysteine prevented Cbl-induced increase in ROS, augmented the kinase activity of DNA-PKcs, decreased the levels of DNA dsbs and increased cell survival. Depletion in GSH from A2780/100 cells by L-buthionine sulfoximine (BSO) resulted in sustained production of ROS, lowered DNA-PKcs kinase activity, enhanced levels of DNA dsbs, and increased cell killing by Cbl. We propose that oxidative stress decreases repair of DNA dsbs via lowering kinase activity of DNA-PKcs and that induction of ROS could be the basis for adjuvant therapies for sensitizing tumor cells to nitrogen mustards and other DNA cross-linking drugs.
Collapse
Affiliation(s)
- Istvan Boldogh
- Department of Microbiology and Immunology, Sealy Center for Molecular Sciences, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA.
| | | | | | | | | | | | | | | |
Collapse
|
546
|
Collins AM, Sewell WA, Edwards MR. Immunoglobulin gene rearrangement, repertoire diversity, and the allergic response. Pharmacol Ther 2003; 100:157-70. [PMID: 14609718 DOI: 10.1016/j.pharmthera.2003.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immunoglobulin repertoire arises as a consequence of combinatorial diversity, junctional diversity, and the process of somatic point mutation. Each of these processes involves biases that limit and shape the available immunoglobulin repertoire. The expressed repertoire is further shaped by selection, to the extent that biased gene usage can become apparent in many disease states. The study of rearranged immunoglobulin genes therefore may not only provide insights into the molecular processes involved in the generation of antibody diversity but also inform us of pathogenic processes and perhaps identify particular lymphocyte clones as therapeutic targets. Partly as a consequence of the low numbers of circulating IgE-committed B-cells, studies of rearranged IgE genes in allergic individuals have commenced relatively recently. In this review, recent advances in our understanding of the processes of immunoglobulin gene rearrangement and somatic point mutation are described, and biases inherent to these processes are discussed. The evidence that some diseases may be associated with particular gene rearrangements is then considered, with a particular focus on allergic disease. Reviewed data suggest that an important contribution to the IgE response may come from cells that use relatively rare heavy chain V (V(H)) segment genes, which display little somatic point mutation. Some IgE antibodies also seem to display polyreactive binding. In other contexts, these 3 characteristics have been associated with antibodies of the B-1 B-cell subset, and the possibility that B-1 B-cells contribute to the allergic response is therefore considered.
Collapse
Affiliation(s)
- A M Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
547
|
Abstract
Non-homologous DNA end-joining (NHEJ) is a major pathway of double strand break (DSB) repair in human cells. Here we show that vanillin (3-methoxy-4-hydroxybenzaldehyde)--a naturally occurring food component and an acknowledged antimutagen, anticlastogen and anticarcinogen--is an inhibitor of NHEJ. Vanillin blocked DNA end-joining by human cell extracts by directly inhibiting the activity of DNA-PK, a crucial NHEJ component. Inhibition was selective and vanillin had no detectable effect on other steps of the NHEJ process, on an unrelated protein kinase or on DNA mismatch repair by cell extracts. Subtoxic concentrations of vanillin did not affect the ATM/ATR-dependent phosphorylation of Chk2 or the S-phase checkpoint response after ionising radiation. They significantly potentiated the cytotoxicity of cisplatin, but did not affect sensitivity to UVC. A limited screen of structurally related compounds identified two substituted vanillin derivatives that were 100- and 50-fold more potent than vanillin as DNA-PK inhibitors. These compounds also sensitised cells to cisplatin. The inhibition of NHEJ is consistent with the antimutagenic and other biological properties of vanillin, possibly altering the balance between DSB repair by NHEJ and homologous recombination.
Collapse
Affiliation(s)
- Stephen Durant
- Mammalian DNA Repair, Cancer Research UK, London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar, Herts, EN6 3LD, UK.
| | | |
Collapse
|
548
|
Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003; 4:712-20. [PMID: 14506474 DOI: 10.1038/nrm1202] [Citation(s) in RCA: 707] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Non-homologous DNA end-joining (NHEJ)--the main pathway for repairing double-stranded DNA breaks--functions throughout the cell cycle to repair such lesions. Defects in NHEJ result in marked sensitivity to ionizing radiation and ablation of lymphocytes, which rely on NHEJ to complete the rearrangement of antigen-receptor genes. NHEJ is typically imprecise, a characteristic that is useful for immune diversification in lymphocytes, but which might also contribute to some of the genetic changes that underlie cancer and ageing.
Collapse
Affiliation(s)
- Michael R Lieber
- Norris Comprehensive Cancer Center, Department of Pathology, University of Southern California School of Medicine, 1441 Eastlake Avenue, MS 9176, Los Angeles, California 90089, USA.
| | | | | | | |
Collapse
|
549
|
de Villartay JP, Poinsignon C, de Chasseval R, Buck D, Le Guyader G, Villey I. Human and animal models of V(D)J recombination deficiency. Curr Opin Immunol 2003; 15:592-8. [PMID: 14499270 DOI: 10.1016/s0952-7915(03)00101-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
V(D)J recombination not only comprises the molecular mechanism that insures diversity of the immune system but also constitutes a critical checkpoint in the developmental program of B and T lymphocytes. The analysis of human patients with severe combined immune deficiency (SCID) has enabled (and will enable in the future) the discovery of important factors involved in this reaction. The finding that the V(D)J recombinase apparatus includes components of the general DNA repair machinery of the cells has provided some new and interesting insights into the role of V(D)J recombination deficiency in the development of lymphoid malignancies, a hypothesis that has been tackled and proven in several animal models.
Collapse
Affiliation(s)
- Jean-Pierre de Villartay
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Hôpital Necker Enfants Malades, 149 rue de Sèvres, 75015 Paris, France.
| | | | | | | | | | | |
Collapse
|
550
|
Conley ME. Immunogenetics. Curr Opin Immunol 2003; 15:567-70. [PMID: 14499266 DOI: 10.1016/s0952-7915(03)00106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|