501
|
Zhong X, Bao X, Zhong H, Zhou Y, Zhang Z, Lu Y, Dai Q, Yang Q, Ke P, Xia Y, Wu L, Sui Z, Lu Y, Han M, Xu W, Gao J. Mitochondrial targeted drug delivery combined with manganese catalyzed Fenton reaction for the treatment of breast cancer. Int J Pharm 2022; 622:121810. [PMID: 35580685 DOI: 10.1016/j.ijpharm.2022.121810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
In previous studies, we found that triphenylphosphine-modified doxorubicin (TPP-DOX) can effectively kill drug-resistant tumor cells, but its effect on sensitive tumor cells is weakened. In this research, with albumin from Bovine Serum (BSA) as a carrier, TPP-DOX@MnBSA (TD@MB) nanoparticles were prepared by co-loading TPP-DOX and manganese which can realize the combination of chemotherapy and chemodynamic therapy (CDT). The uniform and stable nano-spherical nanoparticle can promote drug uptake, achieve mitochondrial-targeted drug delivery, increase intracellular reactive oxygen species (ROS) and catalyze the production of highly toxic oxidative hydroxyl radicals (OH·), further inhibiting the growth of both sensitive and drug-resistant MCF-7 cells. Besides, TD@MB can down-regulate the stemness-related proteins and the metastasis-related proteins, potentially decreasing the tumor stemness and metastasis. In vivo experiment indicated that TD@MB was able to exert desired antitumor effect, good tumor targeting and biocompatibility.
Collapse
Affiliation(s)
- Xincheng Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haiqing Zhong
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yi Zhou
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zhentao Zhang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yiying Lu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qi Dai
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Qiyao Yang
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Peng Ke
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yiyi Xia
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Linjie Wu
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zaiyun Sui
- Shandong Academy of Chinese Medicine, Jinan 250000, PR China
| | - Yan Lu
- Department of Pharmacy, the 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, PR China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, PR China.
| | - WenHong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, PR China.
| | - Jianqing Gao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
502
|
Sun S, Wang Y, Li M, Wu J. Identification of TRP-Related Subtypes, Development of a Prognostic Model, and Characterization of Tumor Microenvironment Infiltration in Lung Adenocarcinoma. Front Mol Biosci 2022; 9:861380. [PMID: 35620481 PMCID: PMC9127446 DOI: 10.3389/fmolb.2022.861380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/30/2022] [Indexed: 01/08/2023] Open
Abstract
The TRP (transient receptor potential) superfamily, as cation channels, is a critical chemosensor for potentially harmful irritants. Their activation is closely related not only to tumor progression and prognosis but also to tumor therapy response. Nevertheless, the TRP-related immune gene (TRIG) expression of the tumor microenvironment (TME) and the associations with prognosis remain unclear. First, we represented the transcriptional and genetic variations in TRIGs in 535 lung adenocarcinoma (LUAD) samples as well as their expression patterns. LUAD samples were divided into two distinct subtypes based on the TRIG variations. Significant differences had been found in prognosis, clinical features, and TME cell-infiltration features between the two subtypes of patients. Second, we framed a TRIG score for predicting overall survival (OS) and validated the predictive capability of the TRIG score in LUAD patients. Accordingly, to enhance the clinical applicability of TRIG score, we developed a considerable nomogram. A low TRIG score, characterized by increased immunity activation, indicated favorable advantages of OS compared with a high TRIG score. Furthermore, the TRIG score was found to have a significant connection with the TME cell-infiltration and immune checkpoint expressions. Our analysis of TRIGs in LUAD showed their potential roles in prognosis, clinical features, and tumor-immune microenvironments. These results may advance our knowledge of TRP genes in LUAD and show a new light on prognosis estimation and the improvement of immunotherapy strategies.
Collapse
|
503
|
Ge R, Wang Z, Cheng L. Tumor microenvironment heterogeneity an important mediator of prostate cancer progression and therapeutic resistance. NPJ Precis Oncol 2022; 6:31. [PMID: 35508696 PMCID: PMC9068628 DOI: 10.1038/s41698-022-00272-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is characterized by a high degree of heterogeneity, which poses a major challenge to precision therapy and drug development. In this review, we discuss how nongenetic factors contribute to heterogeneity of prostate cancer. We also discuss tumor heterogeneity and phenotypic switching related to anticancer therapies. Lastly, we summarize the challenges targeting the tumor environments, and emphasize that continued exploration of tumor heterogeneity is needed in order to offer a personalized therapy for advanced prostate cancer patients.
Collapse
Affiliation(s)
- Rongbin Ge
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zongwei Wang
- Department of Surgery, Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. .,Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
504
|
Tong Y, Kikuhara S, Onodera T, Chen L, Myat AB, Imamichi S, Sasaki Y, Murakami Y, Nozaki T, Fujimori H, Masutani M. Radiosensitization to γ-Ray by Functional Inhibition of APOBEC3G. Int J Mol Sci 2022; 23:5069. [PMID: 35563460 PMCID: PMC9100529 DOI: 10.3390/ijms23095069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
The radiosensitization of tumor cells is one of the promising approaches for enhancing radiation damage to cancer cells and limiting radiation effects on normal tissue. In this study, we performed a comprehensive screening of radiosensitization targets in human lung cancer cell line A549 using an shRNA library and identified apolipoprotein B mRNA editing enzyme catalytic subunit 3G (APOBEC3G: A3G) as a candidate target. APOBEC3G is an innate restriction factor that inhibits HIV-1 infection as a cytidine deaminase. APOBEC3G knockdown with siRNA showed an increased radiosensitivity in several cancer cell lines, including pancreatic cancer MIAPaCa2 cells and lung cancer A549 cells. Cell cycle analysis revealed that APOBEC3G knockdown increased S-phase arrest in MIAPaCa2 and G2/M arrest in A549 cells after γ-irradiation. DNA double-strand break marker γH2AX level was increased in APOBEC3G-knocked-down MIAPaCa2 cells after γ-irradiation. Using a xenograft model of A549 in mice, enhanced radiosensitivity by a combination of X-ray irradiation and APOBEC3G knockdown was observed. These results suggest that the functional inhibition of APOBEC3G sensitizes cancer cells to radiation by attenuating the activation of the DNA repair pathway, suggesting that APOBEC3G could be useful as a target for the radiosensitization of cancer therapy.
Collapse
Affiliation(s)
- Ying Tong
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (Y.T.); (T.O.); (L.C.); (A.B.M.); (S.I.); (Y.S.); (T.N.); (H.F.)
| | - Sota Kikuhara
- Lab of Collaborative Research, Division of Cellular Signaling and Central Radioisotope Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 162-8601, Japan;
| | - Takae Onodera
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (Y.T.); (T.O.); (L.C.); (A.B.M.); (S.I.); (Y.S.); (T.N.); (H.F.)
- Lab of Collaborative Research, Division of Cellular Signaling and Central Radioisotope Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Lichao Chen
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (Y.T.); (T.O.); (L.C.); (A.B.M.); (S.I.); (Y.S.); (T.N.); (H.F.)
- Lab of Collaborative Research, Division of Cellular Signaling and Central Radioisotope Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Aung Bhone Myat
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (Y.T.); (T.O.); (L.C.); (A.B.M.); (S.I.); (Y.S.); (T.N.); (H.F.)
| | - Shoji Imamichi
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (Y.T.); (T.O.); (L.C.); (A.B.M.); (S.I.); (Y.S.); (T.N.); (H.F.)
- Lab of Collaborative Research, Division of Cellular Signaling and Central Radioisotope Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Yuka Sasaki
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (Y.T.); (T.O.); (L.C.); (A.B.M.); (S.I.); (Y.S.); (T.N.); (H.F.)
- Lab of Collaborative Research, Division of Cellular Signaling and Central Radioisotope Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1 Hirakata, Osaka 573-1144, Japan
| | - Yasufumi Murakami
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo 162-8601, Japan;
| | - Tadashige Nozaki
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (Y.T.); (T.O.); (L.C.); (A.B.M.); (S.I.); (Y.S.); (T.N.); (H.F.)
- Department of Pharmacology, Faculty of Dentistry, Osaka Dental University, 8-1 Hirakata, Osaka 573-1144, Japan
| | - Hiroaki Fujimori
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (Y.T.); (T.O.); (L.C.); (A.B.M.); (S.I.); (Y.S.); (T.N.); (H.F.)
- Lab of Collaborative Research, Division of Cellular Signaling and Central Radioisotope Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| | - Mitsuko Masutani
- Department of Molecular and Genomic Biomedicine, Center for Bioinformatics and Molecular Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan; (Y.T.); (T.O.); (L.C.); (A.B.M.); (S.I.); (Y.S.); (T.N.); (H.F.)
- Lab of Collaborative Research, Division of Cellular Signaling and Central Radioisotope Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan;
| |
Collapse
|
505
|
Zhang M, Li X, Wu W, Gao J, Han Q, Sun Z, Zhao RC. Regorafenib induces the apoptosis of gastrointestinal cancer-associated fibroblasts by inhibiting AKT phosphorylation. Stem Cells Dev 2022; 31:383-394. [PMID: 35502476 DOI: 10.1089/scd.2022.0088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of tumor microenvironment and are essential for tumorigenesis and development. Regorafenib is a multikinase inhibitor that targets CAFs and suppresses tumor growth. Here, we investigated the effects of regorafenib on gastrointestinal CAFs and the underlying molecular mechanisms. First, we established two in vivo tumor models, the cancer cell line HCT116 with or without mesenchymal stem cells (MSCs) and treated them with regorafenib. We found that the application of regorafenib potently impaired tumor growth, an effect that was more pronounced in tumors with a high stromal ratio, thus demonstrating that regorafenib can inhibit CAFs proliferation and induce CAFs apoptosis in vivo. Moreover, we showed that regorafenib affected macrophage infiltration by reducing the proportion of CAFs in tumors. Afterward, we induced MSCs into CAFs with exosomes to establish an in vitro model. Then, we used MTS and flow cytometry to detect the effects of regorafenib on the proliferation and apoptosis of CAFs, and Western blot to determine the expression level of apoptosis-related proteins. We found that regorafenib inhibited the proliferation of CAFs and induced the apoptosis of CAFs in vitro. Furthermore, Western blot results showed that regorafenib down-regulated the expression of B-cell lymphoma-2 (Bcl-2) and concurrently up-regulated the expression of Bcl-2-associated X (Bax), and regorafenib inhibited the phosphorylation pathway of AKT in CAFs. In conclusion, our results provide a model in which regorafenib induces CAFs apoptosis by inhibiting the phosphorylation of AKT, and regorafenib affects macrophage infiltration by reducing the proportion of CAFs in tumor tissues.
Collapse
Affiliation(s)
- Mingjia Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Xuechun Li
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Wenjing Wu
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Jingxi Gao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China;
| | - Qin Han
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, Beijing, China;
| | - Zhao Sun
- Peking Union Medical College Hospital, 34732, Department of oncology, Dongcheng-qu, Beijing, China;
| | - Robert Chunhua Zhao
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Basic Medical Sciences, 196536, Centre of Excellence in Tissue Engineering,Chinese Academy of Medical Sciences , Beijing, Beijing, China.,Shanghai University, 34747, School of Life Sciences, Shanghai, Shanghai, China;
| |
Collapse
|
506
|
Vitek RA, Huang W, Geiger PG, Heninger E, Lang JM, Jarrard DF, Beebe DJ, Johnson BP. Fresh tissue procurement and preparation for multicompartment and multimodal analysis of the prostate tumor microenvironment. Prostate 2022; 82:836-849. [PMID: 35226381 PMCID: PMC9010374 DOI: 10.1002/pros.24326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Prostatic cancers include a diverse microenvironment of tumor cells, cancer-associated fibroblasts, and immune components. This tumor microenvironment (TME) is a known driving force of tumor survival after treatment, but the standard-of-care tissue freezing or fixation in pathology practice limit the use of available approaches/tools to study the TME's functionality in tumor resistance. Thus, there is a need for approaches that satisfy both clinical and laboratory endpoints for TME study. Here we present methods for clinical case identification, tissue processing, and analytical workflow that are compatible with standard histopathology while enabling molecular and functional interrogation of prostate TME components. METHODS We first performed a small retrospective review to identify cases where submission of alternate prostate tissue slices and a parallel live tissue processing protocol complement traditional histopathology and enable viable multicompartment analysis of the TME. Then, we tested its compatibility with commonly employed methods to study the microenvironment including quantification of components both in situ and after tissue dissociation. We also evaluated tissue digestion conditions and cell isolation techniques to aid various molecular and functional endpoints. RESULTS We identified Gleason Grade Group 3+ clinical cases where tumor volume was sufficient to allow slicing of unfixed tissue and distribution of alternating tissue slices to standard-of-care histopathology and viable multi-modal TME analyses. No single method was found that preserved cellular sub-types for all downstream readouts; instead, tissues were further divided so techniques could be catered to each endpoint. For instance, we show that incorporating the protease dispase into tissue dissociation improves viability for culture and functional analyses but hinders immune cell analysis by flow cytometry. We also found that flow activated cell sorting provides highly pure cell populations for quantitative reverse-transcription polymerase chain reaction and RNA-seq while isolation using antibody-labeled paramagnetic particles facilitated functional coculture experiments. CONCLUSIONS The identification of candidate cases and use of these techniques enable translational research and the development of molecular and functional assays to facilitate prostate TME study without compromising standard-of-care histopathological diagnosis. This allows bridging clinical histopathology and further interrogation of the prostate TME and promises to advance our understanding of tumor biology and unveil new predictive and prognostic markers of prostate cancer progression.
Collapse
Affiliation(s)
- Ross A. Vitek
- Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of WisconsinMadisonWisconsinUSA
| | - Wei Huang
- Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonWisconsinUSA
| | - Peter G. Geiger
- Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonWisconsinUSA
| | - Erika Heninger
- Carbone Cancer CenterUniversity of WisconsinMadisonWisconsinUSA
| | - Joshua M. Lang
- Carbone Cancer CenterUniversity of WisconsinMadisonWisconsinUSA
- Department of MedicineUniversity of WisconsinMadisonWisconsinUSA
| | | | - David J. Beebe
- Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of WisconsinMadisonWisconsinUSA
- Carbone Cancer CenterUniversity of WisconsinMadisonWisconsinUSA
| | - Brian P. Johnson
- Department of Pathology and Laboratory MedicineUniversity of WisconsinMadisonWisconsinUSA
- Department of Biomedical EngineeringUniversity of WisconsinMadisonWisconsinUSA
- Department of Pharmacology & ToxicologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
507
|
Zheng X, Chen J, Nan T, Zheng L, Lan J, Jin X, Cai Y, Liu H, Chen W. FAM198B promotes colorectal cancer progression by regulating the polarization of tumor-associated macrophages via the SMAD2 signaling pathway. Bioengineered 2022; 13:12435-12445. [PMID: 35587159 PMCID: PMC9276016 DOI: 10.1080/21655979.2022.2075300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. Tumor-associated macrophages (TAMs) promote the progression of CRC, but the mechanism is not completely clear. The present study aimed to reveal the expression and function of FAM198B in TAMs, and the role of FAM198B in mediating macrophage polarization in CRC. The role of FAM198B in macrophage activity, cell cycle, and angiogenesis was evaluated by CCK-8 assay, flow cytometry, and vasculogenic mimicry assay. The effects of FAM198B on macrophage polarization were determined by flow cytometry. The function of FAM198B-mediated macrophage polarization on CRC progression was evaluated by transwell assays. Bioinformatic analyses and rescue assays were performed to identify biological functions and signaling pathways involved in FAM198B regulation of macrophage polarization. Increased FAM198B expression in TAMs is negatively associated with poor CRC prognosis. Functional assays showed that FAM198B promotes M2 macrophage polarization, which leads to CRC cell proliferation, migration, and invasion. Mechanistically, FAM198B regulates the M2 polarization of macrophages by targeting SMAD2, identifying the SMAD2 pathway as a mechanism by which FAM198B promotes CRC progression through regulating macrophage polarization. These findings provide a possible molecular mechanism for FAM198B in TAMs in CRC and suggest that FAM198B may be a novel therapeutic target in CRC.
Collapse
Affiliation(s)
- Xiaoxiao Zheng
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jiabin Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Tianhao Nan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Li Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jiahua Lan
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaoqin Jin
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ying Cai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Hao Liu
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Wei Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
508
|
Qian W, Chen X, Sheng Y, Zhang L, Wang J, Song Z, Li QX, Guo S. Tumor Purity in Preclinical Mouse Tumor Models. CANCER RESEARCH COMMUNICATIONS 2022; 2:353-365. [PMID: 36875715 PMCID: PMC9981214 DOI: 10.1158/2767-9764.crc-21-0126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/26/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022]
Abstract
Tumor biology is determined not only by immortal cancer cells but also by the tumor microenvironment consisting of noncancerous cells and extracellular matrix, together they dictate the pathogenesis and response to treatments. Tumor purity is the proportion of cancer cells in a tumor. It is a fundamental property of cancer and is associated with many clinical features and outcomes. Here we report the first systematic study of tumor purity in patient-derived xenograft (PDX) and syngeneic tumor models using next-generation sequencing data from >9,000 tumors. We found that tumor purity in PDX models is cancer specific and mimics patient tumors, with variation in stromal content and immune infiltration influenced by immune systems of host mice. After the initial engraftment, human stroma in a PDX tumor is quickly replaced by mouse stroma, and tumor purity then stays stable in subsequent transplantations and increases only slightly by passage. Similarly, in syngeneic mouse cancer cell line models, tumor purity also turns out to be an intrinsic property with model and cancer specificities. Computational and pathology analysis confirmed the impact on tumor purity by the diverse stromal and immune profiles. Our study deepens the understanding of mouse tumor models, which will enable their better and novel uses in developing cancer therapeutics, especially ones targeting tumor microenvironment. Significance PDX models are an ideal experimental system to study tumor purity because of its distinct separation of human tumor cells and mouse stromal and immune cells. This study provides a comprehensive view of tumor purity in 27 cancers in PDX models. It also investigates tumor purity in 19 syngeneic models based on unambiguously identified somatic mutations. It will facilitate tumor microenvironment research and drug development in mouse tumor models.
Collapse
Affiliation(s)
- Wubin Qian
- Crown Bioscience Inc., Suzhou, P.R. China
| | | | | | | | | | | | - Qi-Xiang Li
- Crown Bioscience, Inc., Santa Clara, California
| | - Sheng Guo
- Crown Bioscience Inc., Suzhou, P.R. China
| |
Collapse
|
509
|
Guiard E, Baldini C, Pobel C, Assi T, Bernard-Tessier A, Martin-Romano P, Hollebecque A, Verlingue L, Geraud A, Michot JM, Armand JP, Soria JC, Massard C, Ammari S. Radiological patterns of tumour progression in patients treated with a combination of immune checkpoint blockers and antiangiogenic drugs. Eur J Cancer 2022; 167:42-53. [DOI: 10.1016/j.ejca.2022.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/03/2022]
|
510
|
Chen L, Wan X, Shan X, Zha W, Fan R. Smart PROTACs Enable Controllable Protein Degradation for Precision Cancer Therapy. Mol Diagn Ther 2022; 26:283-291. [PMID: 35471699 DOI: 10.1007/s40291-022-00586-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
Abstract
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional chemicals that degrade proteins at the post-translational level, which represent an emerging therapeutic modality to fight cancer and other diseases. Although several PROTACs have now entered clinical trials, potential off-tissue side effects have resulted from nonspecific accumulation at non-cancerous sites after systemic administration, and this remains a major challenge. To this end, in the past 3 years, activatable PROTACs whose activity can only be launched on demand have gained tremendous momentum. In this review, we provide an overview of these new smart activatable PROTACs, which exert protein degradation action only in response to internal or external stimuli. We categorize these activatable PROTACs according to their activation mechanism contributed by different stimuli, including reduction-activatable, hypoxia-activatable, and enzyme-activatable PROTACs and photo-caged or photo-switchable PROTACs. The use of stimuli-responsive chemical blocks in these activatable PROTACs allows local activation of the antitumor effects while reducing the incidence of off-site side effects for precision cancer therapy. The design principle and category of smart PROTACs are introduced along with an overview of their therapeutic prospects and challenges.
Collapse
Affiliation(s)
- Lixia Chen
- Medical College of Nantong University, Nantong, China
| | - Xinqiang Wan
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, Yancheng, China
| | - Xiangxiang Shan
- Department of Geraeology, Yancheng City No. 1 People's Hospital, Yancheng, China
| | - Wenzhang Zha
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, 166 Yulong Road, Yancheng, 224001, China
| | - Rengen Fan
- Department of General Surgery, The Fourth Affiliated Hospital of Nantong University, The First People's Hospital of Yancheng, 166 Yulong Road, Yancheng, 224001, China.
| |
Collapse
|
511
|
Baskar G, Palaniyandi T, Viswanathan S, Rajendran BK, Ravi M, Sivaji A. Development of patient derived organoids for cancer drug screening applications. Acta Histochem 2022; 124:151895. [PMID: 35486967 DOI: 10.1016/j.acthis.2022.151895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 12/15/2022]
Abstract
Cancer is a disease characterised by abnormal cell growth that can invade or spread to other regions of the body. Organoids are three-dimensional ex vivo tissue cultures made from embryonic stem cells, induced pluripotent stem cells, progenitor cells or tissue that serve as a physiological model for cancer research. These are designed to recapitulate the in vivo properties of tumours. Importantly, effective recapitulation of the structure of tissues and function is believed to predict patient response, allowing for the creation of personalised therapy in a timely manner that may be used in the clinic. This Review discusses the pre-clinical model and different types of human organoids as models for the development of high throughput drug screening and also aims to highlight how organoids are shaping the future of cancer research.
Collapse
Affiliation(s)
- Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, Tamil nadu, India
| | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, Tamil nadu, India.
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, Tamil nadu, India
| | | | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil nadu, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, Tamil nadu, India
| |
Collapse
|
512
|
Zong X, Liu L, Yang H, Wu J, Yuan P, Chen X, Yang C, Li X, Li Y, Ji X, Shi C, Xue W, Dai J. Artificial Nanoplatelets Depend on Size for Precisely Inducing Thrombosis in Tumor Vessels. SMALL METHODS 2022; 6:e2101474. [PMID: 35344282 DOI: 10.1002/smtd.202101474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Due to the heterogeneity of a tumor, the tumor vascular interruption-based therapy has become an ideal treatment strategy. Herein, artificial nanoplatelets are reported to induce selective thrombosis in tumor vessels, which can achieve rapid and large-scale necrosis of tumor cells. For one, the nanoplatelets are exploited to specially release thrombin into target regions without affecting the established coagulation factors system. For another, the thrombin elicits vascular infarction to provide tumor-ablation effects. More importantly, the size-dependent effect of nanoplatelets (with diameters of 200, 400, and 800 nm) in vivo on blocking the tumor vessels is evaluated. The results show that the nanoplatelets from nanometer to submicron have achieved different biodistribution and therapeutic effects through the vascular transport. Notably, 400 nm scale nanoplatelets can induce thrombosis in tumor vessels and achieve 83% of the tumor elimination rate, thus manifesting the effectiveness of anti-tumor strategy compared with the other two scales of nanoplatelets (200 and 800 nm). These findings highlight the need of concern about nanoparticle size, providing a promising strategy for the future design of advanced vascular targeting reagents and the clinical translation of tumor vascular interruption-based therapy.
Collapse
Affiliation(s)
- Xiaoqing Zong
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Lamei Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Haiyuan Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Jinpei Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Pengfei Yuan
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xinjie Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Caiqi Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xiaodi Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Yuchao Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Xin Ji
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| | - Changzheng Shi
- Department of Medical Imaging, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China
| | - Jian Dai
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
513
|
Germani MM, Borelli B, Boraschi P, Antoniotti C, Ugolini C, Urbani L, Morelli L, Fontanini G, Masi G, Cremolini C, Moretto R. The management of colorectal liver metastases amenable of surgical resection: How to shape treatment strategies according to clinical, radiological, pathological and molecular features. Cancer Treat Rev 2022; 106:102382. [PMID: 35334281 DOI: 10.1016/j.ctrv.2022.102382] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023]
Abstract
Metastatic colorectal cancer (mCRC) patients have poor chances of long term survival, being < 15% of them still alive after 5 years from diagnosis. Nonetheless, patients with colorectal liver metastases (CRLM) may be eligible for metastases resection thus being able to achieve long-term disease remission and survival. The likelihood for patients with CRLM of being or becoming eligible for liver metastasectomy is increasing, thanks to the evolution of surgical techniques, the availability of active systemic treatments and the widespread diffusion of experienced multidisciplinary boards to manage these patients. However, disease relapse after liver surgery is common and occurs in two-thirds of resected patients. Therefore, adequate radiological staging and risk stratification is crucial for the optimal selection of patients candidate to surgery in order to maximize the benefit-risk ratio of liver metastasectomy and to individualize the treatment strategy. Based on the multidimensional assessment, three possible approaches are available: upfront liver surgery followed by adjuvant chemotherapy, perioperative chemotherapy preceding and following liver surgery, and an upfront systemic treatment including chemotherapy plus a targeted agent, both chosen according to patients' and tumours' characteristics, then followed by liver surgery if indicated. In this review, we describe the most important factors impacting the therapeutic choices in patients with resectable and potentially resectable CRLM, and we discuss the most promising factors that may reshape the future decision-making process of these patients.
Collapse
Affiliation(s)
- Marco Maria Germani
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Beatrice Borelli
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Piero Boraschi
- Department of Diagnostic and Interventional Radiology, and Nuclear Medicine, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Carlotta Antoniotti
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Clara Ugolini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Lucio Urbani
- Unit of General Surgery, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Luca Morelli
- General Surgery, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Gabriella Fontanini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Gianluca Masi
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberto Moretto
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
| |
Collapse
|
514
|
Ranallo N, Bocchini M, Menis J, Pilotto S, Severi S, Liverani C, Bongiovanni A. Delta-like ligand 3 (DLL3): an attractive actionable target in tumors with neuroendocrine origin. Expert Rev Anticancer Ther 2022; 22:597-603. [PMID: 35477310 DOI: 10.1080/14737140.2022.2071703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Neuroendocrine carcinomas are very aggressive tumors with few treatment options. DLL3 seems to be an optimal target for therapeutic intervention, as it is expressed mainly on the membrane of tumor cells with neuroendocrine origin. AREAS COVERED In this article, we outline the preclinical and clinical studies published in the last years on DLL3 in neuroendocrine neoplasm, above all of lung origin. Furthermore, we review the current literature on the interaction between DLL3 and the tumor microenvironment. EXPERT OPINION Several DLL3-targeting strategies have been proposed in the last years with mixed results. Understanding the influence of DLL3 on the tumor (immune) microenvironment and developing adoptive therapies directed against this optimal target might represent the key strategy. Building on the clinical data obtained so far, future trials on in vivo diagnostic tools for predictive purpose and new specific therapies are needed.
Collapse
Affiliation(s)
- Nicoletta Ranallo
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Martine Bocchini
- Immunotherapy, Cell Therapy and Biobank (ITCB), IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Jessica Menis
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Medical Oncology Department, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Sara Pilotto
- Medical Oncology, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Stefano Severi
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Chiara Liverani
- Bioscience Laboratory, IRCCS Istituto Scientifico Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
515
|
Bae J, Choi YS, Cho G, Jang SJ. The Patient-Derived Cancer Organoids: Promises and Challenges as Platforms for Cancer Discovery. Cancers (Basel) 2022; 14:cancers14092144. [PMID: 35565273 PMCID: PMC9105149 DOI: 10.3390/cancers14092144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/01/2023] Open
Abstract
The cancer burden is rapidly increasing in most countries, and thus, new anticancer drugs for effective cancer therapy must be developed. Cancer model systems that recapitulate the biological processes of human cancers are one of the cores of the drug development process. PDCO has emerged as a unique model that preserves the genetic, physiological, and histologic characteristics of original cancer, including inter- and intratumoral heterogeneities. Due to these advantages, the PCDO model is increasingly investigated for anticancer drug screening and efficacy testing, preclinical patient stratification, and precision medicine for selecting the most effective anticancer therapy for patients. Here, we review the prospects and limitations of PDCO compared to the conventional cancer models. With advances in culture success rates, co-culture systems with the tumor microenvironment, organoid-on-a-chip technology, and automation technology, PDCO will become the most promising model to develop anticancer drugs and precision medicine.
Collapse
Affiliation(s)
- JuneSung Bae
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Yun Sik Choi
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Gunsik Cho
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
| | - Se Jin Jang
- Department of Research and Development, OncoClew Co., Ltd., Seoul 04778, Korea; (J.B.); (Y.S.C.); (G.C.)
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Center for Cancer Genome Discovery, Asan Institute for Life Sciences, Seoul 05505, Korea
- Correspondence: ; Tel.: +82-2-498-2644; Fax: +82-2-498-2655
| |
Collapse
|
516
|
Gao H, Liu Y, Hu Y, Ge M, Ding J, Ye Q. Establishment and Application of a Prognostic Risk Score Model Based on Characteristics of Different Immunophenotypes for Lung Adenocarcinoma. Front Genet 2022; 13:850101. [PMID: 35547263 PMCID: PMC9081571 DOI: 10.3389/fgene.2022.850101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022] Open
Abstract
Objective: Lung adenocarcinoma (LUAD) is a highly heterogeneous tumor. Tumor mutations and the immune microenvironment play important roles in LUAD development and progression. This study was aimed at elucidating the characteristics of patients with different tumor immune microenvironment and establishing a prediction model of prognoses and immunotherapy benefits for patients with LUAD. Materials and Methods: We conducted a bioinformatics analysis on data from The Cancer Genome Atlas and Gene Expression Omnibus (training and test sets, respectively). Patients in the training set were clustered into different immunophenotypes based on tumor-infiltrating immune cells (TIICs). The immunophenotypic differentially expressed genes (IDEGs) were used to develop a prognostic risk score (PRS) model. Then, the model was validated in the test set and applied to evaluate 42 surgery patients with early LUAD. Results: Patients in the training set were clustered into high (Immunity_H), medium (Immunity_M), and low (Immunity_L) immunophenotype groups. Immunity_H patients had the best survival and more TIICs than Immunity_L patients. Immunity_M patients had the worst survival, characterized by most CD8+ T and Treg cells and highest expression of PD-1 and PD-L1. The PRS model, which consisted of 14 IDEGs, showed good potential for predicting the prognoses of patients in both training and test sets. In the training set, the low-risk patients had more TIICs, higher immunophenoscores (IPSs) and lower mutation rates of driver genes. The high-risk patients had more mutations of DNA mismatch repair deficiency and APOBEC (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like). The model was also a good indicator of the curative effect for immunotherapy-treated patients. Furthermore, the low-risk group out of 42 patients, which was evaluated by the PRS model, had more TIICs, higher IPSs and better progression-free survival. Additionally, IPSs and PRSs of these patients were correlated with EGFR mutations. Conclusion: The PRS model has good potential for predicting the prognoses and immunotherapy benefits of LUAD patients. It may facilitate the diagnosis, risk stratification, and treatment decision-making for LUAD patients.
Collapse
Affiliation(s)
- Hong Gao
- Biobank of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanhong Liu
- Biobank of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Hu
- Biobank of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Meiling Ge
- Biobank of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Ding
- Biobank of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qing Ye
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
517
|
Jia Q, Wang A, Yuan Y, Zhu B, Long H. Heterogeneity of the tumor immune microenvironment and its clinical relevance. Exp Hematol Oncol 2022; 11:24. [PMID: 35461288 PMCID: PMC9034473 DOI: 10.1186/s40164-022-00277-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/10/2022] [Indexed: 02/08/2023] Open
Abstract
During the course of tumorigenesis and subsequent metastasis, malignant cells gradually diversify and become more heterogeneous. Consequently, the tumor mass might be infiltrated by diverse immune-related components, including the cytokine/chemokine environment, cytotoxic activity, or immunosuppressive elements. This immunological heterogeneity is universally presented spatially or varies temporally along with tumor evolution or therapeutic intervention across almost all solid tumors. The heterogeneity of anti-tumor immunity shows a profound association with the progression of disease and responsiveness to treatment, particularly in the realm of immunotherapy. Therefore, an accurate understanding of tumor immunological heterogeneity is essential for the development of effective therapies. Facilitated by multi-regional and -omics sequencing, single cell sequencing, and longitudinal liquid biopsy approaches, recent studies have demonstrated the potential to investigate the complexity of immunological heterogeneity of the tumors and its clinical relevance in immunotherapy. Here, we aimed to review the mechanism underlying the heterogeneity of the immune microenvironment. We also explored how clinical assessments of tumor heterogeneity might facilitate the development of more effective personalized therapies.
Collapse
Affiliation(s)
- Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Army Military Medical University, Xinqiao Main Street, Chongqing, 400037, China.,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Aoyun Wang
- Institute of Cancer, Xinqiao Hospital, Army Military Medical University, Xinqiao Main Street, Chongqing, 400037, China.,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Yixiao Yuan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Army Military Medical University, Xinqiao Main Street, Chongqing, 400037, China. .,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Army Military Medical University, Xinqiao Main Street, Chongqing, 400037, China. .,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
518
|
Wang J, Chen C, Wang L, Xie M, Ge X, Wu S, He Y, Mou X, Ye C, Sun Y. Patient-Derived Tumor Organoids: New Progress and Opportunities to Facilitate Precision Cancer Immunotherapy. Front Oncol 2022; 12:872531. [PMID: 35449581 PMCID: PMC9016336 DOI: 10.3389/fonc.2022.872531] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer immunotherapy has revolutionized the field of cancer treatment in recent years. However, not all patients receiving cancer immunotherapy exhibit durable responses, and reliable, high-throughput testing platforms are urgently needed to guide personalized cancer immunotherapy. The ability of patient-derived tumor organoids to recapitulate pivotal features of original cancer tissues makes them useful as a preclinical model for cancer research and precision medicine. Nevertheless, many challenges exist in the translation of tumor organoid research to clinical decision making. Herein we discuss the applications of patient-derived tumor organoid models and the advances and potential of using complex immune-organoid systems as testing platforms to facilitate precision cancer immunotherapy. In addition, we highlight intriguing applications of tumor organoids with novel multi-omics in preclinical cancer research, highlighting genetic editing, proteomics, and liquid biopsy.
Collapse
Affiliation(s)
- Ji Wang
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chao Chen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Lu Wang
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, China
| | - Xinyang Ge
- College of Letters and Science, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sufan Wu
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yong He
- Cancer Center, Zhejiang University, Hangzhou, China.,State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China.,Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, China.,Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Xiaozhou Mou
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Sun
- Center for Plastic & Reconstructive Surgery, Department of Plastic & Reconstructive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
519
|
Huldani H, Jasim SA, Sergeenva KN, Bokov DO, Abdelbasset WK, Turakulov R, Al-Gazally ME, Ahmadzadeh B, Jawhar ZH, Siahmansouri H. Mechanisms of cancer stem cells drug resistance and the pivotal role of HMGA2. Pathol Res Pract 2022; 234:153906. [PMID: 35468338 DOI: 10.1016/j.prp.2022.153906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/15/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, the focus of researchers is on perceiving the heterogeneity observed in a tumor. The researchers studied the role of a specific subset of cancer cells with high resistance to traditional treatments, recurrence, and unregulated metastasis. This small population of tumor cells that have stem-cell-like specifications was named Cancer Stem Cells (CSCs). The unique features that distinguish this type of cancer cell are self-renewing, generating clones of the tumor, plasticity, recurrence, and resistance to therapies. There are various mechanisms that contribute to the drug resistance of CSCs, such as CSCs markers, Epithelial mesenchymal transition, hypoxia, other cells, inflammation, and signaling pathways. Recent investigations have revealed the primary role of HMGA2 in the development and invasion of cancer cells. Importantly, HMGA2 also plays a key role in resistance to treatment through their function in the drug resistance mechanisms of CSCs and challenge it. Therefore, a deep understanding of this issue can provide a clearer perspective for researchers in the face of this problem.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Lambung Mangkurat University, Banjarmasin, South Borneo, Indonesia
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Klunko Nataliya Sergeenva
- Department of post-graduate and doctoral programs, Russian New University, Building 5, Radio Street, Moscow City, Russian Federation
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., Bldg. 2, Moscow 119991, Russian Federation
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Rustam Turakulov
- Department of Internal diseases, Tashkent Medical Academy, Tashkent, Uzbekistan
| | | | - Behnam Ahmadzadeh
- Doctoral School of the University of Szczecin, Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Science, Lebanese French University, Kurdistan Region, Iraq
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
520
|
|
521
|
Kim HR, Cho YS, Chung SW, Choi JU, Ko YG, Park SJ, Kim SY, Byun Y. Caspase-3 mediated switch therapy of self-triggered and long-acting prodrugs for metastatic TNBC. J Control Release 2022; 346:136-147. [PMID: 35447298 DOI: 10.1016/j.jconrel.2022.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/25/2022]
Abstract
Triple-negative breast cancer (TNBC) is characterized by its highly heterogeneous microenvironment and propensity for aggressive behavior, both of which represent, along with poor prognosis and high incidence of relapse, the main challenges of curing the disease. Although recent progress in targeted chemotherapy combinations has shown promising outcomes, conventional targeted chemotherapeutic approaches have relied on exploiting the expression of certain molecules or proteins overexpressed on cancer cells as drug targets, which have demonstrated limited clinical benefit against metastatic cancers. Here, we describe a tumoral caspase-3 mediated peptide-doxorubicin conjugates (PDC) switch therapy that adopts two different caspase-3 cleavable PDCs, RGDEVD-DOX (TPD1) and EMC-KGDEVD-DOX (MPD1), for targeting metastatic triple-negative breast cancer (mTNBC). First, using TPD1, an integrin αVβ3 based targeted strategy was utilized to target tumor cells or tumor vasculature associated with the highly malignant progression of mTNBC. TPD1 triggered the tumor cell-specific initial apoptosis and the induction of caspase-3 expression in the target tumor site. Then MPD1 was administered sequentially, which is an albumin-binding prodrug, and activated by induced caspase-3 in order to maintain the tumoral caspase-3 level and release the cytotoxic payload. The PDC switch therapy markedly accumulated doxorubicin in the tumor site and augmented tumor-specific in situ amplification of apoptosis. Importantly, the PDC switch therapy exerted a bystander killing effect on the neighboring cancer cells thus demonstrating potent therapeutic efficacy against both local and metastatic cancers. Given the limited therapeutic outcomes with conventional targeted therapies, our strategy of regulating the expression of caspase-3 level as a drug target could provide as a more durable and effective alternative in the treatment of highly heterogeneous mTNBC.
Collapse
Affiliation(s)
- Ha Rin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Seok Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergent Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Woo Chung
- Center for Nanomedicine, Wilmer Eye Institute and Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jeong Uk Choi
- College of Pharmacy, Chonnam University, Gwangju 61186, Republic of Korea
| | | | - Seong Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Yoon Kim
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
522
|
Mendes BB, Conniot J, Avital A, Yao D, Jiang X, Zhou X, Sharf-Pauker N, Xiao Y, Adir O, Liang H, Shi J, Schroeder A, Conde J. Nanodelivery of nucleic acids. NATURE REVIEWS. METHODS PRIMERS 2022; 2:24. [PMID: 35480987 PMCID: PMC9038125 DOI: 10.1038/s43586-022-00104-y] [Citation(s) in RCA: 296] [Impact Index Per Article: 98.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
There is growing need for a safe, efficient, specific and non-pathogenic means for delivery of gene therapy materials. Nanomaterials for nucleic acid delivery offer an unprecedented opportunity to overcome these drawbacks; owing to their tunability with diverse physico-chemical properties, they can readily be functionalized with any type of biomolecules/moieties for selective targeting. Nucleic acid therapeutics such as antisense DNA, mRNA, small interfering RNA (siRNA) or microRNA (miRNA) have been widely explored to modulate DNA or RNA expression Strikingly, gene therapies combined with nanoscale delivery systems have broadened the therapeutic and biomedical applications of these molecules, such as bioanalysis, gene silencing, protein replacement and vaccines. Here, we overview how to design smart nucleic acid delivery methods, which provide functionality and efficacy in the layout of molecular diagnostics and therapeutic systems. It is crucial to outline some of the general design considerations of nucleic acid delivery nanoparticles, their extraordinary properties and the structure-function relationships of these nanomaterials with biological systems and diseased cells and tissues.
Collapse
Affiliation(s)
- Bárbara B Mendes
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - João Conniot
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Aviram Avital
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Dongbao Yao
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Xingya Jiang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Xiang Zhou
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Noga Sharf-Pauker
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Yuling Xiao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Omer Adir
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion - Israel Institute of Technology, Haifa, Israel
- These authors contributed equally: Bárbara B. Mendes, João Conniot, Aviram Avital, Dongbao Yao, Xingya Jiang, Xiang Zhou, Noga Sharf-Pauker, Yuling Xiao, Omer Adir
| | - Haojun Liang
- Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Avi Schroeder
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - João Conde
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
523
|
Cho HH, Kim H, Nam SY, Lee JE, Han BK, Ko EY, Choi JS, Park H, Ko ES. Measurement of Perfusion Heterogeneity within Tumor Habitats on Magnetic Resonance Imaging and Its Association with Prognosis in Breast Cancer Patients. Cancers (Basel) 2022; 14:1858. [PMID: 35454768 PMCID: PMC9025287 DOI: 10.3390/cancers14081858] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this study was to identify perfusional subregions sharing similar kinetic characteristics from dynamic contrast-enhanced magnetic resonance imaging (MRI) using data-driven clustering, and to evaluate the effect of perfusional heterogeneity based on those subregions on patients' survival outcomes in various risk models. From two hospitals, 308 and 147 women with invasive breast cancer who underwent preoperative MRI between October 2011 and July 2012 were retrospectively enrolled as development and validation cohorts, respectively. Using the Cox-least absolute shrinkage and selection operator model, a habitat risk score (HRS) was constructed from the radiomics features from the derived habitat map. An HRS-only, clinical, combined habitat, and two conventional radiomics risk models to predict patients' disease-free survival (DFS) were built. Patients were classified into low-risk or high-risk groups using the median cutoff values of each risk score. Five habitats with distinct perfusion patterns were identified. An HRS was an independent risk factor for predicting worse DFS outcomes in the HRS-only risk model (hazard ratio = 3.274 [95% CI = 1.378-7.782]; p = 0.014) and combined habitat risk model (hazard ratio = 4.128 [95% CI = 1.744-9.769]; p = 0.003) in the validation cohort. In the validation cohort, the combined habitat risk model (hazard ratio = 4.128, p = 0.003, C-index = 0.760) showed the best performance among five different risk models. The quantification of perfusion heterogeneity is a potential approach for predicting prognosis and may facilitate personalized, tailored treatment strategies for breast cancer.
Collapse
Affiliation(s)
- Hwan-ho Cho
- Department of Medical Artificial Intelligence, Konyang University, Daejon 32992, Korea;
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Korea
| | - Haejung Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.); (B.-K.H.); (E.Y.K.); (J.S.C.)
| | - Sang Yu Nam
- Department of Radiology, Gil Hospital, Gachon University of Medicine and Science, Incheon 21565, Korea;
| | - Jeong Eon Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Boo-Kyung Han
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.); (B.-K.H.); (E.Y.K.); (J.S.C.)
| | - Eun Young Ko
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.); (B.-K.H.); (E.Y.K.); (J.S.C.)
| | - Ji Soo Choi
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.); (B.-K.H.); (E.Y.K.); (J.S.C.)
| | - Hyunjin Park
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 16419, Korea
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Eun Sook Ko
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (H.K.); (B.-K.H.); (E.Y.K.); (J.S.C.)
| |
Collapse
|
524
|
Biomimetic approaches for targeting tumor inflammation. Semin Cancer Biol 2022; 86:555-567. [DOI: 10.1016/j.semcancer.2022.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
|
525
|
Experimental models for ovarian cancer research. Exp Cell Res 2022; 416:113150. [DOI: 10.1016/j.yexcr.2022.113150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
526
|
Uddin MN, Wang X. Identification of breast cancer subtypes based on gene expression profiles in breast cancer stroma. Clin Breast Cancer 2022; 22:521-537. [DOI: 10.1016/j.clbc.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
|
527
|
Lu Y, Zhang J, Chen Y, Kang Y, Liao Z, He Y, Zhang C. Novel Immunotherapies for Osteosarcoma. Front Oncol 2022; 12:830546. [PMID: 35433427 PMCID: PMC9012135 DOI: 10.3389/fonc.2022.830546] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone sarcoma mainly affecting adolescents and young adults, which often progresses to pulmonary metastasis and leads to the death of OS patients. OS is characterized as a highly heterogeneous cancer type and the underlying pathologic mechanisms triggering tumor progress and metastasis are incompletely recognized. Surgery combined with neoadjuvant and postoperative chemotherapy has elevated 5-year survival to over 70% for patients with localized OS tumors, as opposed to only 20% of patients with recurrence and/or metastasis. Therefore, novel therapeutic strategies are needed to overcome the drawbacks of conventional treatments. Immunotherapy is gaining momentum for the treatment of OS with an increasing number of FDA-approved therapies for malignancies resistant to conventional therapies. Here, we review the OS tumor microenvironment and appraise the promising immunotherapies available in the management of OS.
Collapse
Affiliation(s)
- Yubao Lu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiahe Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yutong Chen
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuchen Kang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Zhipeng Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yuanqi He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Cangyu Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
528
|
Singh S, Lamichhane A, Rafsanjani Nejad P, Heiss J, Baumann H, Gudneppanavar R, Leipzig ND, Konopka M, Luker GD, Tavana H. Therapeutic Targeting of Stromal-Tumor HGF-cMET Signaling in an Organotypic Triple Negative Breast Tumor Model. Mol Cancer Res 2022; 20:1166-1177. [PMID: 35348758 DOI: 10.1158/1541-7786.mcr-21-0317] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment (TME) promotes proliferation, drug resistance, and invasiveness of cancer cells. Therapeutic targeting of the TME is an attractive strategy to improve outcomes for patients, particularly in aggressive cancers such as triple negative breast cancer (TNBC) that have a rich stroma and limited targeted therapies. However, lack of preclinical human tumor models for mechanistic understanding of tumor-stromal interactions has been an impediment to identify effective treatments against the TME. To address this need, we developed a three-dimensional (3D) organotypic tumor model to study interactions of patient-derived cancer-associated fibroblasts (CAFs) with TNBC cells and explore potential therapy targets. We found that CAFs predominantly secreted hepatocyte growth factor (HGF) and activated MET receptor tyrosine kinase in TNBC cells. This tumor-stromal interaction promoted invasiveness, epithelial-to-mesenchymal transition, and activities of multiple oncogenic pathways in TNBC cells. Importantly, we established that TNBC cells become resistant to monotherapy and demonstrated a design-driven approach to select drug combinations that effectively inhibit pro-metastatic functions of TNBC cells. Our study also showed that HGF-MET from lung fibroblasts promotes colony formation by TNBC cells, suggesting that blocking HGF-MET signaling potentially could target both primary TNBC tumorigenesis and lung metastasis. Overall, we established the utility of our organotypic tumor model to identify and therapeutically target specific mechanisms of tumor-stromal interactions in TNBC toward the goal of developing targeted therapies against the TME. Implications: Leveraging a state-of-the-art organotypic tumor model, we demonstrated that CAFs-mediated HGF-MET signaling drive tumorigenic activities in TNBC and presents a therapeutic target.
Collapse
Affiliation(s)
- Sunil Singh
- University of Akron, Akron, OH, United States
| | | | | | - Jacob Heiss
- University of Akron, Akron, OH, United States
| | | | | | | | | | - Gary D Luker
- University of Michigan Medical School, Ann Arbor, MI, United States
| | | |
Collapse
|
529
|
Immunological effect of tyrosine kinase inhibitors on the tumor immune environment in non‑small cell lung cancer (Review). Oncol Lett 2022; 23:165. [PMID: 35414830 PMCID: PMC8988264 DOI: 10.3892/ol.2022.13285] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/28/2022] [Indexed: 02/05/2023] Open
Abstract
Acquired resistance to tyrosine kinase inhibitors (TKIs) limits the duration of antitumor effects and impairs the survival of patients with oncogene-driven non-small cell lung cancer (NSCLC). At present, little is known about the immunomodulatory ability of TKIs during the entire treatment period, including the drug-sensitive and drug-resistant periods. The present review aimed to comprehensively explore the dynamic changes in the tumor microenvironment (TME) during TKI treatment in NSCLC. Previous clinical and preclinical studies from medical and health databases related to NSCLC are reviewed. During the response period, cytotoxic immune cells accumulate in the TME and contribute to the formation of an inflammatory microenvironment. During the resistance period, the number of immunosuppressive cells increases, as does the expression of immune checkpoint proteins, which are critical mechanisms for tumor progression. The combination of targeted therapy and immunotherapy has been explored in multiple studies, and preliminary data showed controversial results. Extensive studies are needed to confirm the criteria of the selected patient subgroups and the toxicity profiles of EGFR TKIs and immune checkpoint inhibitors (ICIs). At present, the reagents targeting other immune cells, cytokines and related pathways remain underexplored compared with the revolutionary effect of ICIs in lung cancer. In the future, the precisely selected regimens for combination treatment should be further investigated in carefully designed xenograft models and clinical trials.
Collapse
|
530
|
The Beneficial Effect of IL-12 and IL-18 Transduced Dendritic Cells Stimulated with Tumor Antigens on Generation of an Antitumor Response in a Mouse Colon Carcinoma Model. J Immunol Res 2022; 2022:7508928. [PMID: 35372586 PMCID: PMC8975686 DOI: 10.1155/2022/7508928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/10/2023] Open
Abstract
The main purpose of our study was to determine the effect of dendritic cell (DC) transduction with lentiviral vectors carrying sequences of il18 and/or il12 genes on the level of antitumor activity in vitro and in vivo. We examined the ability of DCs to migrate to the tumor-draining lymph nodes and infiltrate tumor tissue and to activate the local and systemic antitumor response. On the 15th day, DCs genetically modified for production of IL-12 and/or IL-18 were administered peritumorally to C57BL/6 female mice with established MC38 tumors. Lymphoid organs and tumor tissue were collected from mice on the 3rd, 5th, and 7th days after a single administration of DCs for further analysis. Administration of DCs transduced for production of IL-12 alone and in combination with IL-18 increased the inflow and activity of CD4+ and CD8+ T lymphocytes in the tumor microenvironment and tumor-draining lymph nodes. We also found that even a single administration of such modified DCs could trigger a systemic antitumor response as well as inhibit tumor growth. Application of the developed DC-based vaccines may exert a favorable impact on stimulation of an antitumor immune response, especially if these DC vaccines are administered repeatedly.
Collapse
|
531
|
Comprehensive Analysis of ANLN in Human Tumors: A Prognostic Biomarker Associated with Cancer Immunity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5322929. [PMID: 35340220 PMCID: PMC8947880 DOI: 10.1155/2022/5322929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022]
Abstract
Background Anillin (ANLN), a ubiquitously expressed actin-binding protein, plays a critical tumor-promoting role in cell growth, migration, and cytokinesis. Numerous studies have suggested that ANLN is upregulated in many cancer types, as well as significantly associated with patient prognosis and malignant cancer characteristics. Herein, we performed an integrated pan-cancer analysis of ANLN and highlighted its underlying mechanism, which may benefit further exploration of the potential therapeutic options for cancer. Methods ANLN expression data were extracted from online databases, including TCGA, GTEx, and CCLE databases. The TIMER database was used to study the association between ANLN expression with immune checkpoint genes and immunocyte infiltration. The ScanNeo pipeline was adopted for neoantigen discovery. KEGG analysis and the STRING tool were used to elucidate the potential mechanism of ANLN in cancer development. Results ANLN is abnormally overexpressed in almost all cancer tissues compared with normal tissues. The high-ANLN expression level was positively associated with various malignant characteristics, suggesting its potential role in the immune microenvironment and poor prognosis. In addition, ANLN expression was correlated with the number of neoantigens and different phosphorylation pattern in various cancer types, revealing a functional role of genetic mutation accumulation and high phosphorylation in ANLN-mediated oncogenesis. Moreover, we found that ANLN was an important regulatory factor participating in many signaling events, especially the cell cycle and nucleocytoplasmic transport pathways. Conclusions ANLN expression is generally overexpressed in various types of cancers, and it may have an important influence on tumor progression and development. ANLN expression is significantly associated with the immune checkpoint biomarkers and tumor immunity. Together, these findings suggest that ANLN may be a predictive marker for patient prognosis across cancers.
Collapse
|
532
|
Rajthala S, Parajuli H, Dongre HN, Ljøkjel B, Hoven KM, Kvalheim A, Lybak S, Neppelberg E, Sapkota D, Johannessen AC, Costea DE. MicroRNA-138 Abates Fibroblast Motility With Effect on Invasion of Adjacent Cancer Cells. Front Oncol 2022; 12:833582. [PMID: 35371970 PMCID: PMC8968121 DOI: 10.3389/fonc.2022.833582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Background Recent studies have shown aberrant expression of micro-RNAs in cancer-associated fibroblasts (CAFs). This study aimed to investigate miR-138 dysregulation in CAFs in oral squamous cell carcinoma (OSCC) and its effects on their phenotype and invasion of adjacent OSCC cells. Methods Expression of miR-138 was first investigated in OSCC lesions (n = 53) and OSCC-derived CAFs (n = 15). MiR-138 mimics and inhibitors were used to functionally investigate the role of miR-138 on CAF phenotype and the resulting change in their ability to support OSCC invasion. Results Expression of miR-138 showed marked heterogeneity in both OSCC tissues and cultured fibroblasts. Ectopic miR-138 expression reduced fibroblasts’ motility and collagen contraction ability and suppressed invasion of suprajacent OSCC cells, while its inhibition resulted in the opposite outcome. Transcript and protein examination after modulation of miR-138 expression showed changes in CAF phenotype-specific molecules, focal adhesion kinase axis, and TGFβ1 signaling pathway. Conclusions Despite its heterogeneous expression, miR-138 in OSCC-derived CAFs exhibits a tumor-suppressive function.
Collapse
Affiliation(s)
- Saroj Rajthala
- The Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Himalaya Parajuli
- The Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Harsh Nitin Dongre
- The Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Borghild Ljøkjel
- Head and Neck Clinic, Haukeland University Hospital, Bergen, Norway
| | | | | | - Stein Lybak
- Head and Neck Clinic, Haukeland University Hospital, Bergen, Norway
| | - Evelyn Neppelberg
- Head and Neck Clinic, Haukeland University Hospital, Bergen, Norway
- Department of Oral Surgery, Institute of Clinical Dentistry, University of Bergen, Bergen, Norway
| | - Dipak Sapkota
- Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Anne Christine Johannessen
- The Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Daniela-Elena Costea
- The Gade Laboratory for Pathology, Department of Clinical Medicine, Faculty of Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers (CCBIO), Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
- *Correspondence: Daniela-Elena Costea,
| |
Collapse
|
533
|
Yang X, Ding Y, Sun L, Shi M, Zhang P, He A, Zhang X, Huang Z, Li R. WASF2 Serves as a Potential Biomarker and Therapeutic Target in Ovarian Cancer: A Pan-Cancer Analysis. Front Oncol 2022; 12:840038. [PMID: 35359421 PMCID: PMC8964075 DOI: 10.3389/fonc.2022.840038] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/14/2022] [Indexed: 01/22/2023] Open
Abstract
Background Wiskott-Aldrich syndrome protein family member 2 (WASF2) has been shown to play an important role in many types of cancer. Therefore, it is worthwhile to further study expression profile of WASF2 in human cancer, which provides new molecular clues about the pathogenesis of ovarian cancer. Methods We used a series of bioinformatics methods to comprehensively analyze the relationship between WASF2 and prognosis, tumor microenvironment (TME), immune infiltration, tumor mutational burden (TMB), microsatellite instability (MSI), and tried to find the potential biological processes of WASF2 in ovarian cancer. Biological behaviors of ovarian cancer cells were investigated through CCK8 assay, scratch test and transwell assay. We also compared WASF2 expression between epithelial ovarian cancer tissues and normal ovarian tissues by using immunohistochemical staining. Results In the present study, we found that WASF2 was abnormally expressed across the diverse cancer and significantly correlated with overall survival (OS) and progression-free interval (PFI). More importantly, the WASF2 expression level also significantly related to the TME. Our results also showed that the expression of WASF2 was closely related to immune infiltration and immune-related genes. In addition, WASF2 expression was associated with TMB, MSI, and antitumor drugs sensitivity across various cancer types. Functional bioinformatics analysis demonstrated that the WASF2 might be involved in several signaling pathways and biological processes of ovarian cancer. A risk factor model was found to be predictive for OS in ovarian cancer based on the expression of WASF2. Moreover, in vitro experiments, it was demonstrated that the proliferative, migratory and invasive capacity of ovarian cancer cells was significantly inhibited due to WASF2 knockdown. Finally, the immunohistochemistry data confirmed that WASF2 were highly expressed in ovarian cancer. Conclusions Our study demonstrated that WASF2 expression was associated with a poor prognosis and may be involved in the development of ovarian cancer, which might be explored as a potential prognostic marker and new targeted treatments.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuzhen Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Meiting Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Andong He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaotan Zhang
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengrui Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Ruiman Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Ruiman Li,
| |
Collapse
|
534
|
Luo L, Ma Y, Zheng Y, Su J, Huang G. Application Progress of Organoids in Colorectal Cancer. Front Cell Dev Biol 2022; 10:815067. [PMID: 35273961 PMCID: PMC8902504 DOI: 10.3389/fcell.2022.815067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Currently, colorectal cancer is still the third leading cause of cancer-related mortality, and the incidence is rising. It is a long time since the researchers used cancer cell lines and animals as the study subject. However, these models possess various limitations to reflect the cancer progression in the human body. Organoids have more clinical significance than cell lines, and they also bridge the gap between animal models and humans. Patient-derived organoids are three-dimensional cultures that simulate the tumor characteristics in vivo and recapitulate tumor cell heterogeneity. Therefore, the emergence of colorectal cancer organoids provides an unprecedented opportunity for colorectal cancer research. It retains the molecular and cellular composition of the original tumor and has a high degree of homology and complexity with patient tissues. Patient-derived colorectal cancer organoids, as personalized tumor organoids, can more accurately simulate colorectal cancer patients’ occurrence, development, metastasis, and predict drug response in colorectal cancer patients. Colorectal cancer organoids show great potential for application, especially preclinical drug screening and prediction of patient response to selected treatment options. Here, we reviewed the application of colorectal cancer organoids in disease model construction, basic biological research, organoid biobank construction, drug screening and personalized medicine, drug development, drug toxicity and safety, and regenerative medicine. In addition, we also displayed the current limitations and challenges of organoids and discussed the future development direction of organoids in combination with other technologies. Finally, we summarized and analyzed the current clinical trial research of organoids, especially the clinical trials of colorectal cancer organoids. We hoped to lay a solid foundation for organoids used in colorectal cancer research.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Yucui Ma
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yilin Zheng
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| | - Jiating Su
- The First Clinical College, Guangdong Medical University, Zhanjiang, China
| | - Guoxin Huang
- Clinical Research Center, Shantou Central Hospital, Shantou, China
| |
Collapse
|
535
|
Xie Y, Liu C, Zhao Y, Gong C, Li Y, Hu S, Song S, Hu X, Yang Z, Wang B. Heterogeneity derived from 18 F-FDG PET/CT predicts immunotherapy outcome for metastatic triple-negative breast cancer patients. Cancer Med 2022; 11:1948-1955. [PMID: 35275444 PMCID: PMC9089221 DOI: 10.1002/cam4.4522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022] Open
Abstract
Background Recently, immunotherapy has been used to treat metastatic triple‐negative breast cancer (mTNBC). Basic research has indicated a relation between tumor heterogeneity and the immune response. Tumor heterogeneity derived from 18F‐FDG PET/CT is a potential predictor of chemotherapy results; however, few studies have focused on immunotherapy. This study aims to develop a convenient and efficient measurement of tumor heterogeneity for the prediction of immunotherapy in mTNBC patients. Methods We enrolled mTNBC patients who received immunotherapy (PD‐1/PD‐L1 antibody) plus chemotherapy as first‐line treatment and underwent 18F‐FDG PET/CT scans before treatment. We defined a novel index representing tumor heterogeneity calculated from the standard uptake value (SUV) as IATH and IETH. Optimal cutoffs were determined using time‐dependent receiver operator characteristics (ROC) analysis. Results A total of 32 patients were enrolled and analyzed in this trial. A significantly longer median PFS was observed in the low SUVmax group than in the high SUVmax group (9.4 vs. 5.8 months, HR = 0.3, 95% CI 0.1–0.9, p = 0.025). The median PFS of low‐IATH patients was significantly longer than that of high‐IATH patients (HR = 0.3, 95% CI 0.1–0.8, p = 0.022). Similarly, patients with low IETH had significantly longer PFS than patients with high IETH (9.4 vs. 4.9 months, HR = 0.3, 95% CI 0.1–0.7, p = 0.01). Multivariate analysis demonstrated IETH as an independent predictor of PFS. Conclusions This study proposed a novel method to assess intratumor and intertumor heterogeneity among metastatic breast cancer patients and determined that baseline IETH derived from 18F‐FDG PET/CT could represent a simple and promising predictor for first‐line immunotherapy among mTNBC patients.
Collapse
Affiliation(s)
- Yizhao Xie
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Yannan Zhao
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chengcheng Gong
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shihui Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shaoli Song
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongyi Yang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Center for Biomedical Imaging, Fudan University, Shanghai, China.,Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
| | - Biyun Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
536
|
Silswal A, Kanojiya A, Koner AL. A Fluorogenic Far Red-Emitting Molecular Viscometer for Ascertaining Lysosomal Stress in Live Cells and Caenorhabditis elegans. Front Chem 2022; 10:840297. [PMID: 35360540 PMCID: PMC8961804 DOI: 10.3389/fchem.2022.840297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 01/16/2023] Open
Abstract
The cellular physiochemical properties such as polarity, viscosity, and pH play a critical role in cellular homeostasis. The dynamic change of lysosomal viscosity in live cells associated with different environmental stress remains enigmatic and needs to be explored. We have developed a new class of Julolidine-based molecular viscometers with an extended π-conjugation to probe the lysosomal viscosity in live cells. High biocompatibility, pH tolerance, and the fluorogenic response with far red-emission (>600 nm) properties make these molecular viscometers suitable for live-cell fluorescence imaging in Caenorhabditis elegans. Among these probes, JIND-Mor is specifically designed to target lysosomes via simple modification. The real-time monitoring of lysosomal viscosity change under cellular stress was achieved. We believe that such a class of molecule viscometers has the potential to monitor lysosomal health in pathogenic conditions.
Collapse
|
537
|
Mehraj U, Mushtaq U, Mir MA, Saleem A, Macha MA, Lone MN, Hamid A, Zargar MA, Ahmad SM, Wani NA. Chemokines in Triple-Negative Breast Cancer Heterogeneity: New Challenges for Clinical Implications. Semin Cancer Biol 2022; 86:769-783. [PMID: 35278636 DOI: 10.1016/j.semcancer.2022.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Tumor heterogeneity is a hallmark of cancer and one of the primary causes of resistance to therapies. Triple-negative breast cancer (TNBC), which accounts for 15% to 20% of all breast cancers and is the most aggressive subtype, is very diverse, connected to metastatic potential and response to therapy. It is a very diverse disease at the molecular, pathologic, and clinical levels. TNBC is substantially more likely to recur and has a worse overall survival rate following diagnosis than other breast cancer subtypes. Chemokines, low molecular weight proteins that stimulate chemotaxis, have been shown to control the cues responsible for TNBC heterogeneity. In this review, we have focused on tumor heterogeneity and the role of chemokines in modulating tumor heterogeneity, since this is the most critical issue in treating TNBC. Additionally, we examined numerous cues mediated by chemokine networks that contribute to the heterogeneity of TNBC. Recent developments in our knowledge of the chemokine networks that regulate TNBC heterogeneity may pave the door for developing difficult-to-treat TNBC treatment options.
Collapse
Affiliation(s)
- Umar Mehraj
- Department of Bioresources, School of Life Sciences, University of Kashmir, Srinagar, Jammu & Kashmir India
| | - Umer Mushtaq
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Manzoor A Mir
- Department of Bioresources, School of Life Sciences, University of Kashmir, Srinagar, Jammu & Kashmir India
| | - Afnan Saleem
- Division of Animal Biotechnology Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science & Technology Awantipora, Jammu & Kashmir, India
| | - Mohammad Nadeem Lone
- Department of Chemistry, School of Physical & Chemical Sciences, Central University of Kashmir, Ganderbal J & K, India
| | - Abid Hamid
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Mohammed A Zargar
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology Faculty of Veterinary Sciences and Animal Husbandry, Shuhama Sher-e- Kashmir University of Agricultural Sciences and Technology-Kashmir, India
| | - Nissar Ahmad Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, J&K, India.
| |
Collapse
|
538
|
Wang Q, Wang C, Li S, Xiong Y, Wang H, Li Z, Wan J, Yang X, Li Z. Influence of Linkers within Stimuli-Responsive Prodrugs on Cancer Therapy: A Case of Five Doxorubicin Dimer-Based Nanoparticles. CHEMISTRY OF MATERIALS 2022; 34:2085-2097. [DOI: 10.1021/acs.chemmater.1c03346] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Affiliation(s)
- Qiang Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Chong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Yuxuan Xiong
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Huimin Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zheng Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiangling Wan
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, P. R. China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
- Wuhan Institute of Biotechnology, High Tech Road 666, East Lake high tech Zone, Wuhan 430040, P. R. China
| |
Collapse
|
539
|
Deciphering Tumour Heterogeneity: From Tissue to Liquid Biopsy. Cancers (Basel) 2022; 14:cancers14061384. [PMID: 35326534 PMCID: PMC8946040 DOI: 10.3390/cancers14061384] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Most malignant tumours are highly heterogeneous at molecular and phenotypic levels. Tumour variability poses challenges for the management of patients, as it arises between patients and even evolves in space and time within a single patient. Currently, treatment-decision making usually relies on the molecular characteristics of a limited tumour tissue sample at the time of diagnosis or disease progression but does not take into account the complexity of the bulk tumours and their constant evolution over time. In this review, we explore the extent of tumour heterogeneity and report the mechanisms that promote and sustain this diversity in cancers. We summarise the clinical strikes of tumour diversity in the management of patients with cancer. Finally, we discuss the current material and technological approaches that are relevant to adequately appreciate tumour heterogeneity. Abstract Human solid malignancies harbour a heterogeneous set of cells with distinct genotypes and phenotypes. This heterogeneity is installed at multiple levels. A biological diversity is commonly observed between tumours from different patients (inter-tumour heterogeneity) and cannot be fully captured by the current consensus molecular classifications for specific cancers. To extend the complexity in cancer, there are substantial differences from cell to cell within an individual tumour (intra-tumour heterogeneity, ITH) and the features of cancer cells evolve in space and time. Currently, treatment-decision making usually relies on the molecular characteristics of a limited tumour tissue sample at the time of diagnosis or disease progression but does not take into account the complexity of the bulk tumours and their constant evolution over time. In this review, we explore the extent of tumour heterogeneity with an emphasis on ITH and report the mechanisms that promote and sustain this diversity in cancers. We summarise the clinical strikes of ITH in the management of patients with cancer. Finally, we discuss the current material and technological approaches that are relevant to adequately appreciate ITH.
Collapse
|
540
|
Radziwon A, Bhangu SK, Fernandes S, Cortez-Jugo C, De Rose R, Dyett B, Wojnilowicz M, Laznickova P, Fric J, Forte G, Caruso F, Cavalieri F. Triggering the nanophase separation of albumin through multivalent binding to glycogen for drug delivery in 2D and 3D multicellular constructs. NANOSCALE 2022; 14:3452-3466. [PMID: 35179174 DOI: 10.1039/d1nr08429a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Engineered nanoparticles for the encapsulation of bioactive agents hold promise to improve disease diagnosis, prevention and therapy. To advance this field and enable clinical translation, the rational design of nanoparticles with controlled functionalities and a robust understanding of nanoparticle-cell interactions in the complex biological milieu are of paramount importance. Herein, a simple platform obtained through the nanocomplexation of glycogen nanoparticles and albumin is introduced for the delivery of chemotherapeutics in complex multicellular 2D and 3D systems. We found that the dendrimer-like structure of aminated glycogen nanoparticles is key to controlling the multivalent coordination and phase separation of albumin molecules to form stable glycogen-albumin nanocomplexes. The pH-responsive glycogen scaffold conferred the nanocomplexes the ability to undergo partial endosomal escape in tumour, stromal and immune cells while albumin enabled nanocomplexes to cross endothelial cells and carry therapeutic agents. Limited interactions of nanocomplexes with T cells, B cells and natural killer cells derived from human blood were observed. The nanocomplexes can accommodate chemotherapeutic drugs and release them in multicellular 2D and 3D constructs. The drugs loaded on the nanocomplexes retained their cytotoxic activity, which is comparable with the activity of the free drugs. Cancer cells were found to be more sensitive to the drugs in the presence of stromal and immune cells. Penetration and cytotoxicity of the drug-loaded nanocomplexes in tumour mimicking tissues were validated using a 3D multicellular-collagen construct in a perfusion bioreactor. The results highlight a simple and potentially scalable strategy for engineering nanocomplexes made entirely of biological macromolecules with potential use for drug delivery.
Collapse
Affiliation(s)
- Agata Radziwon
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Sukhvir K Bhangu
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Soraia Fernandes
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Robert De Rose
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Brendan Dyett
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Marcin Wojnilowicz
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Petra Laznickova
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Jan Fric
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center (ICRC), St Anne's University Hospital, CZ-65691 Brno, Czech Republic
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Francesca Cavalieri
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| |
Collapse
|
541
|
Sun D, Liu Z, Li T, Wu Q, Wang C. STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing. Nucleic Acids Res 2022; 50:e42. [PMID: 35253896 PMCID: PMC9023289 DOI: 10.1093/nar/gkac150] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/10/2022] [Accepted: 02/19/2022] [Indexed: 02/05/2023] Open
Abstract
The recent advances in spatial transcriptomics have brought unprecedented opportunities to understand the cellular heterogeneity in the spatial context. However, the current limitations of spatial technologies hamper the exploration of cellular localizations and interactions at single-cell level. Here, we present spatial transcriptomics deconvolution by topic modeling (STRIDE), a computational method to decompose cell types from spatial mixtures by leveraging topic profiles trained from single-cell transcriptomics. STRIDE accurately estimated the cell-type proportions and showed balanced specificity and sensitivity compared to existing methods. We demonstrated STRIDE’s utility by applying it to different spatial platforms and biological systems. Deconvolution by STRIDE not only mapped rare cell types to spatial locations but also improved the identification of spatially localized genes and domains. Moreover, topics discovered by STRIDE were associated with cell-type-specific functions and could be further used to integrate successive sections and reconstruct the three-dimensional architecture of tissues. Taken together, STRIDE is a versatile and extensible tool for integrated analysis of spatial and single-cell transcriptomics and is publicly available at https://github.com/wanglabtongji/STRIDE.
Collapse
Affiliation(s)
- Dongqing Sun
- Department of Urology, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Zhaoyang Liu
- Department of Urology, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiu Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cells,School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chenfei Wang
- Department of Urology, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
542
|
Application of m6A and TME in Predicting the Prognosis and Treatment of Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2910491. [PMID: 35281520 PMCID: PMC8916893 DOI: 10.1155/2022/2910491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
Background Previous studies have shown that RNA N6-methyladenosine (m6A) plays an important role in the construction of the tumor microenvironment (TME). However, how m6A plays a role in the TME of clear cell renal cell carcinoma remains unclear. Methods Based on 23 m6A modulators, we applied consensus cluster analysis to explore the different m6A modification profiles of ccRCC. The CIBERSORT method was employed to reveal the correlation between TME immune cell infiltration and different m6A modification patterns. A m6A score was constructed using a principal component analysis algorithm to assess and quantify the m6A modification patterns of individual tumors. Results Three distinct m6A modification patterns of ccRCC were identified. The characteristics of TME cell infiltration in these three patterns were consistent with immune rejection phenotype, immune inflammation phenotype, and immune desert phenotype. In particular, when m6A scores were high, TME was characterized by immune cell infiltration and patient survival was higher (p < 0.05). When m6A scores were low, TME was characterized by immunosuppression and patient survival was lower (p < 0.05). The immunotherapy cohort confirmed that patients with higher m6A scores had significant therapeutic advantages and clinical benefits. Conclusions The m6A modification plays an important role in the formation of TME. The m6A scoring system allows the identification of m6A modification patterns in individual tumors, discriminates the immune infiltrative features of TME, and provides more effective prognostic indicators and treatment strategies for immunotherapy.
Collapse
|
543
|
Guiren Fritah H, Rovelli R, Lai-Lai Chiang C, Kandalaft LE. The current clinical landscape of personalized cancer vaccines. Cancer Treat Rev 2022; 106:102383. [DOI: 10.1016/j.ctrv.2022.102383] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022]
|
544
|
Bennedsen ALB, Furbo S, Bjarnsholt T, Raskov H, Gögenur I, Kvich L. The gut microbiota can orchestrate the signaling pathways in colorectal cancer. APMIS 2022; 130:121-139. [PMID: 35007370 DOI: 10.1111/apm.13206] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
Abstract
Current evidence suggests that bacteria contribute to the development of certain cancers, such as colorectal cancer (CRC), partly by stimulating chronic inflammation. However, little is known about the bacterial impact on molecular pathways in CRC. Recent studies have demonstrated how specific bacteria can influence the major CRC-related pathways, i.e., Wnt, PI3K-Akt, MAPK, TGF-β, EGFR, mTOR, and p53. In order to advance the current understanding and facilitate the choice of pathways to investigate, we have systematically collected and summarized the current knowledge within bacterial altered major pathways in CRC. Several pro-tumorigenic and anti-tumorigenic bacterial species and their respective metabolites interfere with the major signaling pathways addressed in this review. Not surprisingly, some of these studies investigated known CRC drivers, such as Escherichia coli, Fusobacterium nucleatum, and Bacteroides fragilis. Interestingly, some metabolites produced by bacterial species typically considered pathogenic, e.g., Vibrio cholera, displayed anti-tumorigenic activities, emphasizing the caution needed when classifying healthy and unhealthy microorganisms. The results collectively emphasize the complexity of the relationship between the microbiota and the tumorigenesis of CRC, and future studies should verify these findings in more realistic models, such as organoids, which constitute a promising platform. Moreover, future trials should investigate the clinical potential of preventive modulation of the gut microbiota regarding CRC development.
Collapse
Affiliation(s)
- Astrid L B Bennedsen
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Sara Furbo
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Hans Raskov
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark
| | - Ismail Gögenur
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Kvich
- Department of Surgery, Center for Surgical Science, Zealand University Hospital, Koege, Denmark.,Department of Immunology and Microbiology, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
545
|
Wei B, Feng H, Wu H. Reduced CCR2 Can Improve the Prognosis of Sarcoma by Remodeling the Tumor Microenvironment. Int J Gen Med 2022; 15:3043-3053. [PMID: 35308572 PMCID: PMC8932926 DOI: 10.2147/ijgm.s349295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background Aim Methods and Results Conclusion
Collapse
Affiliation(s)
- Baixing Wei
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Hao Feng
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Han Wu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence: Han Wu, Tel +86 043189876902, Email
| |
Collapse
|
546
|
Jimenez JE, Dai D, Xu G, Zhao R, Li T, Pan T, Wang L, Lin Y, Wang Z, Jaffray D, Hazle JD, Macapinlac HA, Wu J, Lu Y. Lesion-Based Radiomics Signature in Pretherapy 18F-FDG PET Predicts Treatment Response to Ibrutinib in Lymphoma. Clin Nucl Med 2022; 47:209-218. [PMID: 35020640 PMCID: PMC8851692 DOI: 10.1097/rlu.0000000000004060] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of this study was to develop a pretherapy PET/CT-based prediction model for treatment response to ibrutinib in lymphoma patients. PATIENTS AND METHODS One hundred sixty-nine lymphoma patients with 2441 lesions were studied retrospectively. All eligible lymphomas on pretherapy 18F-FDG PET images were contoured and segmented for radiomic analysis. Lesion- and patient-based responsiveness to ibrutinib was determined retrospectively using the Lugano classification. PET radiomic features were extracted. A radiomic model was built to predict ibrutinib response. The prognostic significance of the radiomic model was evaluated independently in a test cohort and compared with conventional PET metrics: SUVmax, metabolic tumor volume, and total lesion glycolysis. RESULTS The radiomic model had an area under the receiver operating characteristic curve (ROC AUC) of 0.860 (sensitivity, 92.9%, specificity, 81.4%; P < 0.001) for predicting response to ibrutinib, outperforming the SUVmax (ROC AUC, 0.519; P = 0.823), metabolic tumor volume (ROC AUC, 0.579; P = 0.412), total lesion glycolysis (ROC AUC, 0.576; P = 0.199), and a composite model built using all 3 (ROC AUC, 0.562; P = 0.046). The radiomic model increased the probability of accurately predicting ibrutinib-responsive lesions from 84.8% (pretest) to 96.5% (posttest). At the patient level, the model's performance (ROC AUC = 0.811; P = 0.007) was superior to that of conventional PET metrics. Furthermore, the radiomic model showed robustness when validated in treatment subgroups: first (ROC AUC, 0.916; P < 0.001) versus second or greater (ROC AUC, 0.842; P < 0.001) line of defense and single treatment (ROC AUC, 0.931; P < 0.001) versus multiple treatments (ROC AUC, 0.824; P < 0.001). CONCLUSIONS We developed and validated a pretherapy PET-based radiomic model to predict response to treatment with ibrutinib in a diverse cohort of lymphoma patients.
Collapse
Affiliation(s)
- Jorge E Jimenez
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dong Dai
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Guofan Xu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ruiyang Zhao
- Department of Electrical and Computer Engineering, Rice University, Houston, TX
| | - Tengfei Li
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tinsu Pan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yingyan Lin
- Department of Electrical and Computer Engineering, Rice University, Houston, TX
| | - Zhangyang Wang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX
| | - David Jaffray
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - John D. Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Homer A. Macapinlac
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yang Lu
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
547
|
Chen S, Bian H, Duan J. High-Intensity Focused Ultrasound Enhanced Anti-Tumor Activities of Paclitaxel in Breast Cancer in vitro and in vivo. Cancer Manag Res 2022; 14:1303-1312. [PMID: 35386184 PMCID: PMC8978695 DOI: 10.2147/cmar.s349409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
Background Paclitaxel (PTX) is an important oncologic chemotherapeutic agent against breast cancer, but breast cancer patients develop significant resistance to PTX during chemotherapy. Alterations in tubulin and associated proteins have been implicated in resistance to PTX. High-intensity focused ultrasound (HIFU) induces deep tumor penetration of anti-tumor agents in solid tumors. Methods We investigated the influence of HIFU on the anti-tumor activities of PTX in breast cancer. Both in vivo and in vitro experiments were performed in this research: mice were treated with 2 mg/Kg PTX through tail vein injection, while breast cancer cells were treated with 400 nM PTX. Cell viability was analyzed through Cell Counting Kit-8. Cell apoptosis was evaluated through Annexin-V/PI Apoptosis Analysis Kit. The activities of catalase (CAT) and superoxide dismutase (SOD) and the concentration of malondialdehyde (MDA) were evaluated by relative commercial kits. Results HIFU enhanced PTX-inhibited breast cancer cell viability and PTX-induced cell apoptosis. Simultaneous treatment of HIFU and PTX decreased the activities of CAT and SOD and increased the concentration of MDA. In mice bearing MDA-MB-231 tumors, the treatment of HIFU and PTX significantly decreased tumor size, increased body weight and elevated animal survival. HIFU enhanced the distribution of PTX in tumor tissues. Conclusion The performance of HIFU promoted the distribution of PTX and enhanced its anti-tumor activities in breast cancer.
Collapse
Affiliation(s)
- Sha Chen
- Department 2 of Ultrasound, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, People’s Republic of China
- Correspondence: Sha Chen, Department 2 of Ultrasound, Cangzhou Central Hospital, No. 16, Xinhua West Road, Yunhe District, Cangzhou, 061000, Hebei, People’s Republic of China, Tel +86-18232858958, Email
| | - Hao Bian
- Magnetic Resonance Imaging Department, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, People’s Republic of China
| | - Jingyu Duan
- Department 2 of Ultrasound, Cangzhou Central Hospital, Cangzhou, 061000, Hebei, People’s Republic of China
| |
Collapse
|
548
|
Blise KE, Sivagnanam S, Banik GL, Coussens LM, Goecks J. Single-cell spatial architectures associated with clinical outcome in head and neck squamous cell carcinoma. NPJ Precis Oncol 2022; 6:10. [PMID: 35217711 PMCID: PMC8881577 DOI: 10.1038/s41698-022-00253-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
There is increasing evidence that the spatial organization of cells within the tumor-immune microenvironment (TiME) of solid tumors influences survival and response to therapy in numerous cancer types. Here, we report results and demonstrate the applicability of quantitative single-cell spatial proteomics analyses in the TiME of primary and recurrent human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) tumors. Single-cell compositions of a nine patient, primary and recurrent (n = 18), HNSCC cohort is presented, followed by deeper investigation into the spatial architecture of the TiME and its relationship with clinical variables and progression free survival (PFS). Multiple spatial algorithms were used to quantify the spatial landscapes of immune cells within TiMEs and demonstrate that neoplastic tumor-immune cell spatial compartmentalization, rather than mixing, is associated with longer PFS. Mesenchymal (αSMA+) cellular neighborhoods describe distinct immune landscapes associated with neoplastic tumor-immune compartmentalization and improved patient outcomes. Results from this investigation are concordant with studies in other tumor types, suggesting that trends in TiME cellular heterogeneity and spatial organization may be shared across cancers and may provide prognostic value in multiple cancer types.
Collapse
Affiliation(s)
- Katie E Blise
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,The Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Shamilene Sivagnanam
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Grace L Banik
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Otolaryngology-Head & Neck Surgery, Oregon Health & Science University, Portland, OR, USA.,Division of Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa M Coussens
- The Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.,Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Jeremy Goecks
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA. .,The Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
549
|
Feng H, Zhao Y, Yan W, Wei X, Lin J, Jiang P, Wang C, Li B. Identification of Signature Genes and Characterizations of Tumor Immune Microenvironment and Tumor Purity in Lung Adenocarcinoma Based on Machine Learning. Front Med (Lausanne) 2022; 9:843749. [PMID: 35280857 PMCID: PMC8916235 DOI: 10.3389/fmed.2022.843749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 01/12/2022] [Indexed: 12/21/2022] Open
Abstract
The implication of the Estimation of Stromal and Immune cells in Malignant tumor tissues using expression data (ESTIMATE) method to determine the tumor microenvironment (TME) and tumor immune score including tumor purity represents an efficient method to identify and assess biomarkers for immunotherapy response in precision medicine. In this study we utilized a machine learning algorithm to analyze the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus database (GEO) lung adenocarcinoma (LUAD) transcriptome data to evaluate the association between TME and tumor purity. Furthermore, we investigated whether fewer TME components or a few dominant genes can infer tumor purity. The results indicated that the 29 immune infiltrating components determined by the ssGSEA method could screen the 5 TME components [chemokine C-C-Motif receptor (CCR), T-helper-cells, Check-point, Treg, and tumor-infiltrating lymphocytes (TIL)] that significantly contributed the most to tumor purity prediction through regression tree and random forest regression methods. The findings revealed that higher activity of these five immune infiltrating components significantly lowered the tumor purity. Moreover, 5 TME components contributed significantly to the improvement of Mean Square Error (MES); therefore, we selected these five sets' genes and analyzed survival data to establish a prognostic model. We screened out 11 prognostic-related genes and constructed a risk model comprising 11 genes with good predictive value for patients' prognosis. Furthermore, we obtained four genes (GIMAP6, CD80, IL16, and CCR2) that had predictive advantages for tumor purity using random forest classification and random forest regression. The comprehensive score of genes for tumor purity prediction (CSGTPP) was obtained by least absolute shrinkage and selection operator (LASSO) regression indicated that four genes could be successfully used to classify high and low CSGTPP samples and that tumor purity was negatively correlated with CSGTPP. Survival analysis revealed that the higher the CSGTPP, the better the prognosis of patients. The association between a cluster of differentiation 274 (CD274) and CSGTPP revealed a higher expression of CD274 in the high CSGTPP group. Collectively, we speculated that CSGTPP could serve as a predictor of the response to immunotherapy and a promising indicator of immunotherapy effect.
Collapse
Affiliation(s)
- Haiming Feng
- Department of Thoracic Surgery, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ye Zhao
- First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Weijian Yan
- Department of Thoracic Surgery, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaoping Wei
- Department of Thoracic Surgery, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Junping Lin
- Department of Thoracic Surgery, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Peng Jiang
- Department of Thoracic Surgery, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Cheng Wang
- Department of Thoracic Surgery, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bin Li
- Department of Thoracic Surgery, Second Clinical Medical College, Lanzhou University, Lanzhou, China
- *Correspondence: Bin Li
| |
Collapse
|
550
|
HHLA2 Used as a Potential Prognostic and Immunological Biomarker and Correlated with Tumor Microenvironment in Pan-Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3924400. [PMID: 35252444 PMCID: PMC8890892 DOI: 10.1155/2022/3924400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
Abstract
Background The role of HERV–H LTR-associating 2 (HHLA2) in cancer remains still unclear. This study analyzed the correlation between the prognosis and immune infiltrate function of HHLA2 in pan-cancers. Methods HHLA2 expression in pan-cancers was analyzed using the databases of TCGA, GTEx, TIMER, GEPIA, UALCAN, and GSEA databases. Multiple bioinformatic methods were used to investigate the correlation of HHLA2 expression with survival, pathological stage, tumor mutation burden (TMB), microsatellite instability (MSI), tumor microenvironment (TME), immune cell infiltration, and immune checkpoint gene (ICG), and gene functional enrichment was performed by Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA). Results HHLA2 was aberrantly expressed and was strongly correlated with positive or negative prognosis in multiple human cancers, which revealed that HHLA2 might play a vital role during cancer formation and development. Kaplan–Meier (KM) curves across cancers revealed that HHLA2 expression was correlated with overall survival (OS) in eight cancers, disease-specific survival (DSS) in seven cancers, disease-free interval (DFI) in four cancers, and progression-free interval (PFI) in nine cancers. Furthermore, HHLA2 expression was positively correlated with TMB in 6 cancer types and negatively associated with TMB in 7 cancer types, respectively. The former included ESCA, HNSC, KIRP, PAAD, PRAD, and PCPG; the latter contained COAD, LGG, LUAD, LUSC, THYM, THCA, and UCEC. Additionally, we found HHLA2 expression was negatively related to MSI in ACC, COAD, PAAD, and UCEC. More importantly, HHLA2 expression was remarkably correlated with the degree of tumor-infiltrating immune in many cancers, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells and strongly associated with immune checkpoint genes in 13 tumor types. Furthermore, KEGG pathway analyses indicated that HHLA2 could potentially impact cancer etiology or pathogenesis by functioning in amino sugar and nucleotide sugar metabolism, cytosolic DNA sensing pathway, and peroxisome pathways. Meanwhile, GSVA analysis results all indicate that HHLA2 was correlated with TSC/mTOR, RTK, RAS/MAPK, PI3K/AKT, EMT, DNA Damage Response, Cell Cycle, and Apoptosis pathways in various cancers. Conclusion HHLA2 can function as a prognostic biomarker and correlate with tumor immunity in human pan-cancer due to its important role in tumorigenesis and immune infiltration, which provides new insight into developing new targeted treatments in cancers.
Collapse
|