501
|
Naka T, Fujimoto M, Tsutsui H, Yoshimura A. Negative regulation of cytokine and TLR signalings by SOCS and others. Adv Immunol 2005; 87:61-122. [PMID: 16102572 DOI: 10.1016/s0065-2776(05)87003-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tetsuji Naka
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
502
|
Abstract
Toll-like receptors (TLRs) have been revealed to recognize specific patterns of microbial components. Recognition of microbial components by TLRs initiates signal transduction pathways, triggering expression of genes, which products control innate immune responses and further instruct development of antigen-specific acquired immunity. TIR domain-containing adaptors, such as MyD88, TIRAP, TRIF, and TRAM, play pivotal roles in TLR signaling pathways. Differential utilization of these TIR domain-containing adaptors provides specificity of individual TLR-mediated signaling pathways. TLR-mediated activation of innate immunity, when in excess, leads to immune disorders such as inflammatory bowel diseases. Therefore, several mechanisms that negatively control TLR signaling pathways and thereby prevent overactivation of innate immunity have been elucidated. Nuclear IkappaB proteins, such as Bcl-3 and IkappaBNS, have been revealed to be responsible for this process, by differentially inhibiting TLR-dependent cytokine production.
Collapse
Affiliation(s)
- Kiyoshi Takeda
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University
| |
Collapse
|
503
|
Felderhoff-Mueser U, Sifringer M, Polley O, Dzietko M, Leineweber B, Mahler L, Baier M, Bittigau P, Obladen M, Ikonomidou C, Bührer C. Caspase-1-processed interleukins in hyperoxia-induced cell death in the developing brain. Ann Neurol 2004; 57:50-9. [PMID: 15622543 DOI: 10.1002/ana.20322] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Infants born prematurely may develop neurocognitive deficits without an obvious cause. Oxygen, which is widely used in neonatal medicine, constitutes one possible contributing neurotoxic factor, because it can trigger neuronal apoptosis in the developing brain of rodents. We hypothesized that two caspase-1-processed cytokines, interleukin (IL)-1beta and IL-18, are involved in oxygen-induced neuronal cell death. Six-day-old Wistar rats or C57/BL6 mice were exposed to 80% oxygen for various time periods (2, 6, 12, 24, and 48 hours). Neuronal cell death in the brain, as assessed by Fluoro-Jade B and silver staining, peaked at 12 to 24 hours and was preceded by a marked increase in mRNA and protein levels of caspase 1, IL-1beta, IL-18, and IL-18 receptor alpha (IL-18Ralpha). Intraperitoneal injection of recombinant human IL-18-binding protein, a specific inhibitor of IL-18, attenuated hyperoxic brain injury. Mice deficient in IL-1 receptor-associated kinase 4 (IRAK-4), which is pivotal for both IL-1beta and IL-18 signal transduction, were protected against oxygen-mediated neurotoxicity. These findings causally link IL-1beta and IL-18 to hyperoxia-induced cell death in the immature brain. These cytokines might serve as useful targets for therapeutic approaches aimed at preserving neuronal function in the immature brain, which is exquisitely sensitive to a variety of iatrogenic measures including oxygen.
Collapse
Affiliation(s)
- Ursula Felderhoff-Mueser
- Department of Neonatology, Charité, Campus Virchow Klinikum, Humboldt University Medical Center, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
504
|
Wu H. Assembly of post-receptor signaling complexes for the tumor necrosis factor receptor superfamily. ACTA ACUST UNITED AC 2004; 68:225-79. [PMID: 15500863 DOI: 10.1016/s0065-3233(04)68007-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The tumor necrosis factor (TNF) receptor (TNFR) superfamily comprises more than 20 type-I transmembrane proteins that are structurally related in their extracellular domains and specifically activated by the corresponding superfamily of TNF-like ligands. Members of this receptor superfamily are widely distributed and play important roles in many crucial biological processes such as lymphoid and neuronal development, innate and adaptive immunity, and maintenance of cellular homeostasis. A remarkable dichotomy of the TNFR superfamily is the ability of these receptors to induce the opposing effects of gene transcription for cell survival, proliferation, and differentiation and of apoptotic cell death. The intracellular signaling proteins known as TNF receptor associated factors (TRAFs) are the major signal transducers for the cell survival effects, while the death-domain-containing proteins mediate cell death induction. This review summarizes recent structural, biochemical, and functional studies of these signal transducers and proposes the molecular mechanisms of the intracellular signal transduction.
Collapse
Affiliation(s)
- Hao Wu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10021, USA
| |
Collapse
|
505
|
Huang Y, Li T, Sane DC, Li L. IRAK1 Serves as a Novel Regulator Essential for Lipopolysaccharide-induced Interleukin-10 Gene Expression. J Biol Chem 2004; 279:51697-703. [PMID: 15465816 DOI: 10.1074/jbc.m410369200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Being one of the key kinases downstream of Toll-like receptors, IRAK1 has initially thought to be responsible for NFkappaB activation. Yet IRAK1 knock-out mice still exhibit NFkappaB activation upon lipopolysaccharide (LPS) challenge, suggesting that IRAK1 may play other un-characterized function. In this report, we show that IRAK1 is mainly involved in Stat3 activation and subsequent interleukin-10 (IL-10) gene expression. Splenocytes from IRAK1-deficient mice fail to exhibit LPS-induced Stat3 serine phosphorylation and IL-10 gene expression yet still maintain normal IL-1beta gene expression upon LPS challenge. Mechanistically, we observe that IRAK1 modification upon LPS challenge leads to its modification, nuclear distribution, and interaction with Stat3. IRAK1 can directly use Stat3 as a substrate and cause Stat3 serine 727 phosphorylation. In addition, nuclear IRAK1 binds directly with IL-10 promoter in vivo upon LPS treatment. Atherosclerosis patients usually have elevated serum IL-10 levels. We document here that IRAK1 is constitutively modified and localized in the nucleus in the peripheral blood mononuclear cells from atherosclerosis patients. These observations reveal the mechanism for the novel role of IRAK1 in the complex Toll-like receptor signaling network and indicate that IRAK1 regulation may be intimately linked with the pathogenesis and/or resolution of atherosclerosis.
Collapse
MESH Headings
- Animals
- Arteriosclerosis/metabolism
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Chromatin Immunoprecipitation
- Cytoplasm/metabolism
- Enhancer Elements, Genetic
- Enzyme Activation
- Escherichia coli/metabolism
- Gene Expression Regulation
- Genes, Reporter
- HeLa Cells
- Humans
- Immunoprecipitation
- Interleukin-1 Receptor-Associated Kinases
- Interleukin-10/biosynthesis
- Interleukin-10/metabolism
- Leukocytes, Mononuclear/metabolism
- Lipopolysaccharides/chemistry
- Lipopolysaccharides/metabolism
- Luciferases/metabolism
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Oligonucleotide Array Sequence Analysis
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- Protein Biosynthesis
- Protein Kinases/metabolism
- Protein Kinases/physiology
- RNA, Messenger/metabolism
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serine/chemistry
- Serine/metabolism
- Signal Transduction
- Spleen/cytology
- Spleen/metabolism
- Toll-Like Receptors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Yingsu Huang
- Department of Medicine, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|
506
|
Abstract
The family of Toll-like receptors (TLRs) senses conserved structures found in a broad range of pathogens, causing innate immune responses that include the production of inflammatory cytokines, chemokines and interferons. The signal transduction is initiated from the Toll/interleukin-1 receptor (TIR) domain of TLRs after pathogen recognition. Almost all TLRs use a TIR-containing adapter MyD88 to activate a common signaling pathway that results in the activation of NF-kappaB to express cytokine genes relevant to inflammation. Recently, three further TIR-containing adapters have been identified and shown to selectively interact with several TLRs. In particular, activation of the TRIF-dependent pathway confers antiviral responses by inducing anti-viral genes including that encoding interferon-beta. Taken together, these results indicate that the interaction between individual TLRs and the different combinations of adapters directs appropriate responses against distinct pathogens.
Collapse
Affiliation(s)
- Taro Kawai
- ERATO, Japan Science and Technology Agency, Osaka, Japan
| | - Shizuo Akira
- ERATO, Japan Science and Technology Agency, Osaka, Japan
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
507
|
Pålsson-McDermott EM, O'Neill LAJ. Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 2004; 113:153-62. [PMID: 15379975 PMCID: PMC1782563 DOI: 10.1111/j.1365-2567.2004.01976.x] [Citation(s) in RCA: 941] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An understanding of lipopolysaccharide (LPS) signal transduction is a key goal in the effort to provide a molecular basis for the lethal effect of LPS during septic shock and point the way to novel therapies. Rapid progress in this field during the last 6 years has resulted in the discovery of not only the receptor for LPS - Toll-like receptor 4 (TLR4) - but also in a better appreciation of the complexity of the signalling pathways activated by LPS. Soon after the discovery of TLR4, the formation of a receptor complex in response to LPS, consisting of dimerized TLR4 and MD-2, was described. Intracellular events following the formation of this receptor complex depend on different sets of adapters. An early response, which is dependent on MyD88 and MyD88-like adapter (Mal), leads to the activation of nuclear factor-kappaB (NF-kappaB). A later response to LPS makes use of TIR-domain-containing adapter-inducing interferon-beta (TRIF) and TRIF-related adapter molecule (TRAM), and leads to the late activation of NF-kappaB and IRF3, and to the induction of cytokines, chemokines, and other transcription factors. As LPS signal transduction is an area of intense research and rapid progress, this review is intended to sum up our present understanding of the events following LPS binding to TLR4, and we also attempt to create a model of the signalling pathways activated by LPS.
Collapse
|
508
|
Abstract
The transcription factor NF-kappaB has been the focus of intense investigation for nearly two decades. Over this period, considerable progress has been made in determining the function and regulation of NF-kappaB, although there are nuances in this important signaling pathway that still remain to be understood. The challenge now is to reconcile the regulatory complexity in this pathway with the complexity of responses in which NF-kappaB family members play important roles. In this review, we provide an overview of established NF-kappaB signaling pathways with focus on the current state of research into the mechanisms that regulate IKK activation and NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Matthew S Hayden
- Section of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
509
|
Verdrengh M, Thomas JA, Hultgren OH. IL-1 receptor-associated kinase 1 mediates protection against Staphylococcus aureus infection. Microbes Infect 2004; 6:1268-72. [PMID: 15555532 DOI: 10.1016/j.micinf.2004.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 08/10/2004] [Indexed: 11/26/2022]
Abstract
The interleukin-1 receptor-associated kinase-1 (IRAK-1) mediates signal transduction from Toll-like/IL-1/IL-18 receptors. Though a critical protective role against Staphylococcus aureus infection has been previously attributed to myeloid differentiation factor 88 (MyD88) and IRAK-4, both also involved in TLR/IL-1/IL-18 signaling, the role of IRAK-1 is unknown. IRAK-1-deficient (IRAK-1-/-) and wild-type mice were inoculated i.v. with 2 x 10(7) or 1 x 10(6) S. aureus per mouse to evaluate the role of IRAK-1 in S. aureus sepsis. Since IRAK-1 transduces IL-1R signals, IL-1R-/- mice were also included in experiments. IRAK-1-/- mice are susceptible to a high dose of S. aureus compared to wild-type controls. In contrast to the high mortality and extensive weight loss seen in IL-1R-deficient mice in response to 1 x 10(6) S. aureus, IRAK-1-/- mice are resistant to this low dose of S. aureus. Thus IRAK-1 plays an important role in the host response to staphylococcal sepsis.
Collapse
Affiliation(s)
- Margareta Verdrengh
- Department of Rheumatology and Inflammation Research, Göteborg University, Guldhedsgatan 10 A, S-413 46 Göteborg, Sweden.
| | | | | |
Collapse
|
510
|
Abstract
Toll-like receptors (TLRs) have been established to play an essential role in the activation of innate immunity by recognizing specific patterns of microbial components. TLR signaling pathways arise from intracytoplasmic TIR domains, which are conserved among all TLRs. Recent accumulating evidence has demonstrated that TIR domain-containing adaptors, such as MyD88, TIRAP, and TRIF, modulate TLR signaling pathways. MyD88 is essential for the induction of inflammatory cytokines triggered by all TLRs. TIRAP is specifically involved in the MyD88-dependent pathway via TLR2 and TLR4, whereas TRIF is implicated in the TLR3- and TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors provide specificity of TLR signaling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/physiology
- Animals
- Antigens, Differentiation/physiology
- Carrier Proteins/physiology
- DNA-Binding Proteins/physiology
- Humans
- I-kappa B Kinase
- Immunity, Innate/immunology
- Immunity, Innate/physiology
- Interferon Regulatory Factor-3
- Interleukin-1 Receptor-Associated Kinases
- Intracellular Signaling Peptides and Proteins
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/physiology
- Models, Biological
- Myeloid Differentiation Factor 88
- Nuclear Proteins/physiology
- Protein Kinases/physiology
- Protein Serine-Threonine Kinases/physiology
- Proteins/physiology
- Receptors, Cell Surface/immunology
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/physiology
- Receptors, Interleukin-1/physiology
- Signal Transduction/immunology
- Signal Transduction/physiology
- TNF Receptor-Associated Factor 6
- Toll-Like Receptor 2
- Toll-Like Receptor 3
- Toll-Like Receptor 4
- Toll-Like Receptors
- Transcription Factors/physiology
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
- Kiyoshi Takeda
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and ERATO, Japan Science and Technology Corporation, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
511
|
Honda K, Yanai H, Mizutani T, Negishi H, Shimada N, Suzuki N, Ohba Y, Takaoka A, Yeh WC, Taniguchi T. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci U S A 2004; 101:15416-21. [PMID: 15492225 PMCID: PMC523464 DOI: 10.1073/pnas.0406933101] [Citation(s) in RCA: 392] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Toll-like receptor (TLR) activation is central to immunity, wherein the activation of the TLR9 subfamily members TLR9 and TLR7 results in the robust induction of type I IFNs (IFN-alpha/beta) by means of the MyD88 adaptor protein. However, it remains unknown how the TLR signal "input" can be processed through MyD88 to "output" the induction of the IFN genes. Here, we demonstrate that the transcription factor IRF-7 interacts with MyD88 to form a complex in the cytoplasm. We provide evidence that this complex also involves IRAK4 and TRAF6 and provides the foundation for the TLR9-dependent activation of the IFN genes. The complex defined in this study represents an example of how the coupling of the signaling adaptor and effector kinase molecules together with the transcription factor regulate the processing of an extracellular signal to evoke its versatile downstream transcriptional events in a cell. Thus, we propose that this molecular complex may function as a cytoplasmic transductional-transcriptional processor.
Collapse
Affiliation(s)
- Kenya Honda
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
512
|
Xu M, Wang Z, Locksley RM. Innate immune responses in peptidoglycan recognition protein L-deficient mice. Mol Cell Biol 2004; 24:7949-57. [PMID: 15340057 PMCID: PMC515053 DOI: 10.1128/mcb.24.18.7949-7957.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) constitute a family of innate immune recognition molecules. In Drosophila, distinct PGRPs bind to peptidoglycans on gram-positive or gram-negative bacteria and provide essential signals upstream of the Toll and Imd pathways required for immunity against infection. Four PGRPs, PGRP-L, -S, -Ialpha, and -Ibeta, are expressed from three genes in mammals. In this paper, we provide direct evidence that the longest family member, PGRP-L, is a secreted serum protein with the capacity to multimerize. Using gene targeting to create PGRP-L-deficient mice, we demonstrate little contribution by PGRP-L to systemic challenge using gram-negative bacteria (Escherichia coli, slightly less susceptible), Gram-positive bacteria (Staphylococcus aureus), or yeast (Candida albicans). Peritoneal macrophages from PGRP-L-deficient mice produced decreased amounts of the inflammatory cytokines interleukin 6 and tumor necrosis factor alpha when stimulated with E. coli or lipopolysaccharide, but comparable amounts when stimulated with S. aureus, C. albicans, or their cell wall components. Additionally, these cells produced similar amounts of cytokines when challenged with gram-positive or -negative peptidoglycans. In contrast to its critical role in immunity in flies, PGRP-L is largely dispensable for mammalian immunity against bacteria and fungi.
Collapse
Affiliation(s)
- Min Xu
- Howard Hughes Medical Institute, Department of Medicine, University of California San Francisco, 94143-0654, USA
| | | | | |
Collapse
|
513
|
Quesniaux V, Fremond C, Jacobs M, Parida S, Nicolle D, Yeremeev V, Bihl F, Erard F, Botha T, Drennan M, Soler MN, Le Bert M, Schnyder B, Ryffel B. Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect 2004; 6:946-59. [PMID: 15310472 DOI: 10.1016/j.micinf.2004.04.016] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The control of Mycobacterium tuberculosis infection depends on recognition of the pathogen and the activation of both the innate and adaptive immune responses. Toll-like receptors (TLR) were shown to play a critical role in the recognition of several pathogens. Mycobacterial antigens recognise distinct TLR resulting in rapid activation of cells of the innate immune system. Recent evidence from in vitro and in vivo investigations, summarised in this review demonstrates TLR-dependent activation of innate immune response, while the induction of adaptive immunity to mycobacteria may be TLR independent.
Collapse
Affiliation(s)
- Valerie Quesniaux
- CNRS, IEM2815, Institut Transgenose, 3B, rue de la Ferollerie, 45071 Orleans, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
514
|
Sly LM, Rauh MJ, Kalesnikoff J, Song CH, Krystal G. LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity 2004; 21:227-39. [PMID: 15308103 DOI: 10.1016/j.immuni.2004.07.010] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 06/14/2004] [Accepted: 06/16/2004] [Indexed: 12/16/2022]
Abstract
An initial exposure to lipopolysaccharide (LPS) induces a transient state of hyporesponsiveness to a subsequent challenge with LPS. The mechanism underlying this phenomenon, termed endotoxin tolerance, remains poorly understood despite a recent resurgence of interest in this area. We demonstrate herein that SHIP(-/-) bone marrow-derived macrophages (BMmphis) and mast cells (BMMCs) do not display endotoxin tolerance. Moreover, an initial LPS treatment of wild-type BMmphis or BMMCs increases the level of SHIP, but not SHIP2 or PTEN, and this increase is critical for the hyporesponsiveness to subsequent LPS stimulation. Interestingly, this increase in SHIP protein is mediated by the LPS-induced production of autocrine-acting TGFbeta and neutralizing antibodies to TGFbeta block LPS-induced endotoxin tolerance. In vivo studies with SHIP(+/+) and SHIP(-/-) mice confirm these in vitro findings and show a correlation between the duration of endotoxin tolerance and elevated SHIP levels.
Collapse
Affiliation(s)
- Laura M Sly
- The Terry Fox Laboratory, BC Cancer Agency, 601 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
| | | | | | | | | |
Collapse
|
515
|
Triantafilou M, Manukyan M, Mackie A, Morath S, Hartung T, Heine H, Triantafilou K. Lipoteichoic Acid and Toll-like Receptor 2 Internalization and Targeting to the Golgi Are Lipid Raft-dependent. J Biol Chem 2004; 279:40882-9. [PMID: 15247273 DOI: 10.1074/jbc.m400466200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lipoteichoic acid (LTA), a key cell wall component of Gram-positive bacteria, seems to function as an immune activator with characteristics very similar to lipopolysaccharide from Gram-negative bacteria. It has been shown that LTA binds CD14 and triggers activation via Toll-like receptor 2, but whether the activation occurs at the cell surface or internalization is required to trigger signaling has yet to be demonstrated. In this work we have investigated LTA binding and internalization and found that LTA and its receptor molecules accumulate in lipid rafts and are subsequently targeted rapidly to the Golgi apparatus. This internalization seems to be lipid raft-dependent because raft-disrupting drugs inhibited LTA/Toll-like receptor 2 colocalization in the Golgi. Similarly to lipopolysaccharide, LTA activation occurs at the cell surface, and the observed trafficking is independent of signaling.
Collapse
Affiliation(s)
- Martha Triantafilou
- Infection and Immunity Group, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
516
|
Puel A, Picard C, Ku CL, Smahi A, Casanova JL. Inherited disorders of NF-kappaB-mediated immunity in man. Curr Opin Immunol 2004; 16:34-41. [PMID: 14734108 DOI: 10.1016/j.coi.2003.11.013] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The transcription factors of the NF-kappaB family play an important role in immunity to infection in animal models. Three human primary immunodeficiencies associated with impaired NF-kappaB signaling were recently described. X-linked recessive anhidrotic ectodermal dysplasia with immunodeficiency (XL-EDA-ID) is caused by hypomorphic mutations in the gene encoding NEMO/IKKgamma, the regulatory subunit of the IkappaB-kinase (IKK) complex. Autosomal dominant EDA-ID (AD-EDA-ID) is caused by a hypermorphic mutation in the gene encoding the inhibitory protein IkappaBalpha. Autosomal recessive immunodeficiency without EDA is caused by mutations in the gene encoding IRAK-4, a kinase acting upstream from the IKK complex in the TIR signaling pathway. The description of the infectious phenotypes associated with these genetic defects has initiated the forward genetic dissection of NF-kappaB-mediated immunity in man.
Collapse
Affiliation(s)
- Anne Puel
- Université de Paris René Descartes, Institut National de la Santé et de la Recherche Médicale U550, Faculté de Médecine Necker, 75015 Paris, France
| | | | | | | | | |
Collapse
|
517
|
Siedlar M, Frankenberger M, Benkhart E, Espevik T, Quirling M, Brand K, Zembala M, Ziegler-Heitbrock L. Tolerance Induced by the Lipopeptide Pam3Cys Is Due to Ablation of IL-1R-Associated Kinase-1. THE JOURNAL OF IMMUNOLOGY 2004; 173:2736-45. [PMID: 15294992 DOI: 10.4049/jimmunol.173.4.2736] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Stimulation of the human monocytic cell line Mono Mac 6 with the synthetic lipopeptide (S)-(2,3-bis(palmitoyloxy)-(2RS)-propyl)-N-palmitoyl-(R)-Cys-(S)-Ser(S)-Lys(4)-OH, trihydrochloride (Pam(3)Cys) at 10 microg/ml induces a rapid expression of the TNF gene in a TLR2-dependent fashion. Preculture of the cells with Pam(3)Cys at 1 microg/ml leads to a reduced response after subsequent stimulation with Pam(3)Cys at 10 microg/ml, indicating that the cells have become tolerant to Pam(3)Cys. The CD14 and TLR2 expression is not decreased on the surface of the tolerant cells, but rather up-regulated. Analysis of the NF-kappaB binding in Pam(3)Cys-tolerant cells shows a failure to mobilize NF-kappaB-p50p65 heterodimers, while NF-kappaB-p50p50 homodimers remain unchanged. Pam(3)Cys-tolerant cells showed neither IkappaBalpha-Ser(32) phosphorylation nor IkappaBalpha degradation but MyD88 protein was unaltered. However, IRAK-1 protein was absent in Pam(3)Cys-induced tolerance, while IRAK-1 mRNA was still detectable at 30% compared with untreated cells. In contrast, in LPS-tolerized cells, p50p50 homodimers were induced, IRAK-1 protein level was only partially decreased, and p50p65 mobilization remained intact. It is concluded that in Mono Mac 6 monocytic cells, inhibition of IRAK-1 expression at the mRNA and protein levels is the main TLR-2-dependent mechanism responsible for Pam(3)Cys-induced tolerance, but not for TLR-4-dependent LPS-induced tolerance.
Collapse
Affiliation(s)
- Maciej Siedlar
- Institute for Immunology, University of Muenchen, Muenchen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
518
|
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/genetics
- Antigens, Differentiation/physiology
- Forecasting
- Humans
- Ligands
- Macromolecular Substances
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/classification
- Membrane Glycoproteins/physiology
- Mice
- Mice, Knockout
- Models, Biological
- Multigene Family
- Myeloid Differentiation Factor 88
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/classification
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Interleukin-1/physiology
- Repetitive Sequences, Amino Acid
- Signal Transduction/physiology
- Toll-Like Receptors
Collapse
Affiliation(s)
- Shizuo Akira
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, and ERATO, Japan Science and Technology Agency, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
519
|
Into T, Shibata KI. Possible Roles of Toll-like Receptor 2/6 and Extracellular ATP in Mycoplasmal Membrane Lipoprotein-induced Cell Activation and Death. J Oral Biosci 2004. [DOI: 10.1016/s1349-0079(04)80017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
520
|
Lye E, Mirtsos C, Suzuki N, Suzuki S, Yeh WC. The role of interleukin 1 receptor-associated kinase-4 (IRAK-4) kinase activity in IRAK-4-mediated signaling. J Biol Chem 2004; 279:40653-8. [PMID: 15292196 DOI: 10.1074/jbc.m402666200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interleukin 1 receptor (IL-1R)-associated kinase-4 (IRAK-4) is required for various responses induced by IL-1R and Toll-like receptor signals. However, the molecular mechanism of IRAK-4 signaling and the role of its kinase activity have remained elusive. In this report, we demonstrate that IRAK-4 is recruited to the IL-1R complex upon IL-1 stimulation and is required for the recruitment of IRAK-1 and its subsequent activation/degradation. By reconstituting IRAK-4-deficient cells with wild type or kinase-inactive IRAK-4, we show that the kinase activity of IRAK-4 is required for the optimal transduction of IL-1-induced signals, including the activation of IRAK-1, NF-kappaB, and JNK, and the maximal induction of inflammatory cytokines. Interestingly, we also discover that the IRAK-4 kinase-inactive mutant is still capable of mediating some signals. These results suggest that IRAK-4 is an integral part of the IL-1R signaling cascade and is capable of transmitting signals both dependent on and independent of its kinase activity.
Collapse
Affiliation(s)
- Elizabeth Lye
- Advanced Medical Discovery Institute, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | | | | | | | | |
Collapse
|
521
|
Abstract
The Toll-like receptors (TLRs) are the key proteins that allow mammals--whether immunologically naive or experienced--to detect microbes. They lie at the core of our inherited resistance to disease, initiating most of the phenomena that occur in the course of infection. Quasi-infectious stimuli that have been used for decades to study inflammatory mechanisms can activate the TLR family of proteins. And it now seems that many inflammatory processes, both sterile and infectious, may depend on TLR signalling. We are in a good position to apply our understanding of TLR signalling to a range of challenges in immunology and medicine.
Collapse
Affiliation(s)
- Bruce Beutler
- Department of Immunology, The Scripps Research Institute, 10550 N Torrey Pines Road, La Jolla, California 92037, USA.
| |
Collapse
|
522
|
Hatao F, Muroi M, Hiki N, Ogawa T, Mimura Y, Kaminishi M, Tanamoto KI. Prolonged Toll-like receptor stimulation leads to down-regulation of IRAK-4 protein. J Leukoc Biol 2004; 76:904-8. [PMID: 15258191 DOI: 10.1189/jlb.0504277] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Interleukin-1 receptor-associated kinase (IRAK)-4 is a key mediator in the Toll-like receptor (TLR) signaling. We found that stimulation of TLR2, TLR4, or TLR9, but not TLR3, caused a decrease in IRAK-4 protein without affecting its mRNA level in a mouse macrophage cell line, RAW 264. The decrease in IRAK-4 was accompanied by the appearance of a smaller molecular weight protein (32 kD), which was recognized by an anti-IRAK-4 antibody raised against the C-terminal region. The decrease in IRAK-4 and the appearance of the 32-kD protein occurred with slower kinetics than the activation of IRAK-1 and were suppressed by inhibitors of the proteasome, inducible inhibitor of kappaBalpha phosphorylation or protein synthesis, but not by caspase inhibitors. These results indicate that prolonged stimulation of TLR2, TLR4, or TLR9 causes a down-regulation of IRAK-4 protein, which may be mediated through cleavage of IRAK-4 by a protease induced by the activation of nuclear factor-kappaB.
Collapse
Affiliation(s)
- Fumihiko Hatao
- National Institute of Health Sciences, Setagaya, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
523
|
Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E. Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. THE JOURNAL OF IMMUNOLOGY 2004; 172:2522-9. [PMID: 14764725 DOI: 10.4049/jimmunol.172.4.2522] [Citation(s) in RCA: 451] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although oxidative stress has been thought to play a general role in the activation of NF-kappaB, the involvement of reactive oxygen species (ROS) in facilitating nuclear translocation of NF-kappaB in neutrophils has not been described. In addition, the mechanisms by which ROS modulate the transcriptional activity of NF-kappaB in response to Toll-like receptor 4 (TLR4)-dependent signaling are not well characterized. To examine these issues, oxidant-dependent signaling events downstream of TLR4 were investigated in neutrophils stimulated with LPS. Pretreatment of neutrophils with the antioxidants N-acetylcysteine or alpha-tocopherol prevented LPS-induced nuclear translocation of NF-kappaB. Antioxidant treatment of LPS-stimulated neutrophils also inhibited the production of proinflammatory cytokines (TNF-alpha, macrophage inflammatory protein-2, and IL-1beta), as well as activation of the kinases IkappaB kinase alpha, IkappaB kinase beta, p38, Akt, and extracellular receptor-activated kinases 1 and 2. The decrease in cytoplasmic levels of IkappaBalpha produced by exposure of neutrophils to LPS was prevented by N-acetylcysteine or alpha-tocopherol. Activation of IL-1R-associated kinase-1 (IRAK-1) and IRAK-4 in response to LPS stimulation was inhibited by antioxidants. These results demonstrate that proximal events in TLR4 signaling, at or antecedent to IRAK-1 and IRAK-4 activation, are oxidant dependent and indicate that ROS can modulate NF-kappaB-dependent transcription through their involvement in early TLR4-mediated cellular responses.
Collapse
Affiliation(s)
- Karim Asehnoune
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | |
Collapse
|
524
|
Moreno C, Merino J, Vázquez B, Ramírez N, Echeverría A, Pastor F, Sánchez-Ibarrola A. Anti-Inflammatory Cytokines Induce Lipopolysaccharide Tolerance in Human Monocytes Without Modifying Toll-Like Receptor 4 Membrane Expression. Scand J Immunol 2004; 59:553-8. [PMID: 15182250 DOI: 10.1111/j.0300-9475.2004.01445.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Toll-like receptor 4 (TLR4) participates in innate immunity by detecting lipopolysaccharides (LPS) of Gram-negative bacterial cell walls. TLR4 macrophage expression in mice is modulated by LPS. This fact constitutes, at least partially, the molecular basis for LPS tolerance. Very recently, the effect of interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, has been described on TLR4 membrane expression of human monocytes. IFN-gamma up-regulates TLR4 expression and antagonizes the LPS-induced TLR4 down-regulation. These data prompted us to study the expression of membrane TLR4 in human mono- cytes in which LPS tolerance was induced by LPS and by anti-inflammatory cytokines [interleukin-10 (IL-10) and transforming growth factor beta1 (TGFbeta1)]. Data concerning this latter model, and more specifically, the effect of anti-inflammatory cytokines over TLR4 expression, are not available at present. We show here that membrane TLR4 expression in human monocytes falls after LPS exposure. The effect was prolonged for 12 h, but then expression returned to normal levels. The incubation of human monocytes with IL-10, TGFbeta1 or a mixture of both induces no alterations in membrane TLR4 expression. However, these cytokines are able to substitute the tolerizing LPS exposure in order to induce LPS tolerance. Our data help to achieve a better understanding of the way cytokines control the cellular expression of TLR.
Collapse
Affiliation(s)
- C Moreno
- Department of Immunology, Clínica Universitaria, Faculty of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
525
|
Russo MP, Schwabe RF, Sartor RB, Jobin C. NF-kappaB-inducing kinase restores defective IkappaB kinase activity and NF-kappaB signaling in intestinal epithelial cells. Cell Signal 2004; 16:741-50. [PMID: 15093615 DOI: 10.1016/j.cellsig.2003.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 11/27/2003] [Accepted: 11/27/2003] [Indexed: 11/25/2022]
Abstract
Cytokine-stimulated IkappaBalpha degradation is impaired in HT-29 and primary intestinal epithelial cells. To gain more insight into the mechanism of this defect, we dissected cytokine-induced NF-kappaB signaling pathway in HT-29 cells. IL-1beta and TNF, alone or in combination with IFNgamma, failed to induce IkappaBalpha or IkappaBbeta degradation in HT-29 cells. Despite similar 125I-IL-1beta binding, HT-29 cells displayed no IRAK degradation, a 75% reduction of IKK activity, and decreased IkappaBalpha phosphorylation, NF-kappaB DNA binding activity and IL-8 mRNA accumulation in response to IL-1beta compared to Caco-2 cells. Selective activation of NF-kappaB pathway by adenoviral delivery of NF-kappaB-inducing kinase (Ad5NIK) or IKKbeta (Ad5IKKbeta) strongly activated IKK activity (>20 fold) in HT-29 cells with concomitant endogenous IkappaBalpha serine 32 phosphorylation and total IkappaBalpha degradation. In addition, NF-kappaB DNA binding activity and IL-8 secretion is higher in Ad5NIK-infected than in IL-1beta-stimulated HT-29 cells. These data show that altered NF-kappaB signaling is associated with impaired stimulation of an upstream IKK activator.
Collapse
Affiliation(s)
- Maria Pia Russo
- Department of Medicine, Division of Gastroenterology and Hepatology, CB #7032, Medical Biomolecular Research Building, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7080, USA
| | | | | | | |
Collapse
|
526
|
Abstract
Human Toll-like receptors (TLRs) are crucial for the recognition of invading pathogens and for the activation of both innate and adaptive immunity. Upon stimulation, TLRs recruit various protein kinases via several adaptor molecules, such as MyD88, leading to the activation of NFkB. The identification of TLR signaling pathways may unravel molecular mechanisms of self-tolerance and the means underlying the development of autoimmunity. The maturation of antigen-presenting cells (APCs), in response to signals received by the innate immune system, may lead to the breakdown of tolerance. This process is mainly activated by TLRs that have been triggered by self-antigens. Auto-reactive B cells are present in the lymphoid tissues of healthy individuals, but since they are subject to self-tolerance mechanisms, they remain silent. However, when tolerance to self-antigens fails, a complex of self-reactive antibodies against self- or cross-reactive DNA co-engages the antigen receptor and the TLRs, leading to a continuous activation of these auto-reactive B cells and the development of autoimmune diseases. The contribution of TLRs to the production of auto antibodies by such dual-engagement suggests that this signaling pathway may become a target for new therapeutic approaches in autoimmune diseases.
Collapse
Affiliation(s)
- Elias Toubi
- Division of Allergy and Clinical Immunology, Bnai Zion Medical Center Haifa, Israel
| | | |
Collapse
|
527
|
Yamamoto M, Takeda K, Akira S. TIR domain-containing adaptors define the specificity of TLR signaling. Mol Immunol 2004; 40:861-8. [PMID: 14698224 DOI: 10.1016/j.molimm.2003.10.006] [Citation(s) in RCA: 260] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The concept that Toll-like receptors (TLRs) recognize specific molecular patterns in various pathogens has been established. In signal transduction via TLRs, MyD88, which harbors a Toll/IL-1 receptor (TIR)-domain and a death domain, has been shown to link between TLRs and MyD88-dependent downstream events leading to proinflammatory cytokine production and splenocyte proliferation. However, recent studies using MyD88-deficient mice have revealed that some TLRs possess a MyD88-independent pathway, which is represented by interferon (IFN)-beta production induced by LPS stimulation. This indicates that additional signaling molecules other than MyD88 exist in the TLR signaling pathway. Indeed, two additional TIR domain-containing adaptors, TIRAP/Mal and TRIF, have recently been identified. Both define the specific biological responses of each TLR.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Animals
- Antigens, Differentiation/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mice
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Protein Structure, Tertiary
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/metabolism
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Signal Transduction/physiology
- Toll-Like Receptors
Collapse
Affiliation(s)
- Masahiro Yamamoto
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
528
|
Wajant H, Scheurich P. Analogies between Drosophila and mammalian TRAF pathways. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2004; 34:47-72. [PMID: 14979664 DOI: 10.1007/978-3-642-18670-7_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A central event in innate immunity is the activation of the NF-kappaB signaling pathway and up-regulation of NF-kappaB-dependent defense genes. Attack of mammals as well as of insects by microorganisms leads, among other things, to the activation of receptors of the Toll-like receptor group. Various adaptor proteins involving members of the TNF receptor-associated factor (TRAF) family channel these receptor-generated signals to conserved intracellular kinase cascades that finally lead to the activation of NF-kappaB and JNK. In vertebrates, TRAF proteins link these pathways also to IL-1R-related molecules and members of the TNF receptor superfamily, which orchestrate a variety of immunoregulatory processes of the innate but also of the adaptive immune system. In this review, we will focus on the similarities but also the differences in TRAF-dependent signaling pathways of mammals and insects.
Collapse
Affiliation(s)
- H Wajant
- Department of Molecular Internal Medicine, Medical Polyclinic, University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | | |
Collapse
|
529
|
Qin J, Jiang Z, Qian Y, Casanova JL, Li X. IRAK4 kinase activity is redundant for interleukin-1 (IL-1) receptor-associated kinase phosphorylation and IL-1 responsiveness. J Biol Chem 2004; 279:26748-53. [PMID: 15084582 DOI: 10.1074/jbc.m400785200] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interleukin-1 (IL-1) stimulation leads to the recruitment of interleukin-1 receptor-associated kinase (IRAK) to the IL-1 receptor, where IRAK is phosphorylated, ubiquitinated, and eventually degraded. Kinase-inactive mutant IRAK is still phosphorylated in response to IL-1 stimulation when it is transfected into IRAK-deficient cells, suggesting that there must be an IRAK kinase in the pathway. The fact that IRAK4, another IRAK family member necessary for the IL-1 pathway, is able to phosphorylate IRAK in vitro suggests that IRAK4 might be the IRAK kinase. However, we now found that the IRAK4 kinase-inactive mutant had the same ability as the wild-type IRAK4 in restoring IL-1-mediated signaling in human IRAK4-deficient cells, including NFkappaB-dependent reporter gene expression, the activation of NFkappaB and JNK, and endogenous IL-8 gene expression. These results strongly indicate that the kinase activity of human IRAK4 is not necessary for IL-1 signaling. Furthermore, we showed that the kinase activity of IRAK4 was not necessary for IL-1-induced IRAK phosphorylation, suggesting that IRAK phosphorylation can probably be achieved either by autophosphorylation or by trans-phosphorylation through IRAK4. In support of this, only the impairment of the kinase activity of both IRAK and IRAK4 efficiently abolished the IL-1 pathway, demonstrating that the kinase activity of IRAK and IRAK4 is redundant for IL-1-mediated signaling. Moreover, consistent with the fact that IRAK4 is a necessary component of the IL-1 pathway, we found that IRAK4 was required for the efficient recruitment of IRAK to the IL-1 receptor complex.
Collapse
Affiliation(s)
- Jinzhong Qin
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
530
|
Fujihara M, Muroi M, Tanamoto KI, Suzuki T, Azuma H, Ikeda H. Molecular mechanisms of macrophage activation and deactivation by lipopolysaccharide: roles of the receptor complex. Pharmacol Ther 2004; 100:171-94. [PMID: 14609719 DOI: 10.1016/j.pharmthera.2003.08.003] [Citation(s) in RCA: 426] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Bacterial lipopolysaccharide (LPS), the major structural component of the outer wall of Gram-negative bacteria, is a potent activator of macrophages. Activated macrophages produce a variety of inflammatory cytokines. Excessive production of cytokines in response to LPS is regarded as the cause of septic shock. On the other hand, macrophages exposed to suboptimal doses of LPS are rendered tolerant to subsequent exposure to LPS and manifest a profoundly altered response to LPS. Increasing evidence suggests that monocytic cells from patients with sepsis and septic shock survivors have characteristics of LPS tolerance. Thus, an understanding of the molecular mechanisms underlying activation and deactivation of macrophages in response to LPS is important for the development of therapeutics for septic shock and the treatment of septic shock survivors. Over the past several years, significant progress has been made in identifying and characterizing several key molecules and signal pathways involved in the regulation of macrophage functions by LPS. In this paper, we summarize the current findings of the functions of the LPS receptor complex, which is composed of CD14, Toll-like receptor 4 (TLR4), and myeloid differentiation protein-2 (MD-2), and the signal pathways of this LPS receptor complex with regard to both activation and deactivation of macrophages by LPS. In addition, recent therapeutic approaches for septic shock targeting the LPS receptor complex are described.
Collapse
Affiliation(s)
- Mitsuhiro Fujihara
- Japanese Red Cross, Hokkaido Red Cross Blood Center, Yamanote 2-2, Nishi-ku, Sapporo 063-0002, Japan.
| | | | | | | | | | | |
Collapse
|
531
|
Day N, Tangsinmankong N, Ochs H, Rucker R, Picard C, Casanova JL, Haraguchi S, Good R. Interleukin receptor-associated kinase (IRAK-4) deficiency associated with bacterial infections and failure to sustain antibody responses. J Pediatr 2004; 144:524-6. [PMID: 15069404 DOI: 10.1016/j.jpeds.2003.11.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We previously described a girl with recurrent episodes of pneumococcal pneumonia with septicemia and other infections,(1) found to have interleukin-1 receptor-associated kinase 4 deficiency (IRAK-4) deficiency.(2) In this report, we show that our patient is unable to sustain antibody responses either to polysaccharide or protein antigens or to a neoantigen-bacteriophage.
Collapse
Affiliation(s)
- Noorbibi Day
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida All Children's Hospital, Box 7070, 801 6th Street South, St Petersburg, FL 33701, USA.
| | | | | | | | | | | | | | | |
Collapse
|
532
|
Takeda K, Akira S. Microbial recognition by Toll-like receptors. J Dermatol Sci 2004; 34:73-82. [PMID: 15033189 DOI: 10.1016/j.jdermsci.2003.10.002] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 10/08/2003] [Indexed: 02/03/2023]
Abstract
Toll-like receptors (TLRs) sense invasion of microorganisms by detecting microbial components that are conserved among pathogens. Recognition of microbial components by TLRs triggers activation of the innate immune system. Signaling pathways via TLRs originate from conserved cytoplasmic Toll/IL-1 receptor (TIR) domains. Recent accumulating evidence demonstrates that TIR domain-containing adaptors, such as MyD88, TIRAP/Mal, TRIF, and TRAM, regulate TLR-mediated signaling pathways. MyD88 is common to all TLR-mediated pathways, which lead to the production of inflammatory cytokines, whereas TRIF mediates induction of IFN-beta in TLR3 and TLR4 signaling pathways. TIRAP/Mal is implicated in the TLR2- and TLR4-mediated MyD88-dependent signaling pathway. TRAM is specifically involved in the TLR4-mediated TRIF-dependent pathway. Thus, TIR domain-containing adaptors play a pivotal role in TLR signaling pathways, which culminate in pathogen-specific immune responses.
Collapse
Affiliation(s)
- Kiyoshi Takeda
- Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, ERATO, Japan Science and Technology Corporation, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|
533
|
Abstract
There is increasing evidence that reactive oxygen species (ROS) are mediators in growth factor and cytokine signaling pathways. Mechanisms by which ROS can interfere with signaling cascades may include regulation of protein activities by the modification of essential cysteines. Modification can be performed chemically or enzyme-catalyzed. Enzymes catalyzing a reversible thiol modification within proteins are to be able to react with both, ROS and protein thiols. If hydroperoxides are involved, promising candidates are peroxiredoxins and glutathione peroxidases (GPx), especially the phospholipid hydroperoxide GPx. Interleukin-1, one of the key players in inflammatory response, stimulates the production of ROS itself, but its signaling cascade can also be influenced by ROS and by thiol modifying agents. Targets are located in early, intermediate, and late events in the signaling cascade. We here summarize what is known about the effects of thiol modifying agents, selenium and glutathione peroxidases, on the assembly of the IL-1 receptor signaling complex as an early event, on the activation of NF-kappa B as an intermediate event, and on the expression of cell adhesion molecules as a late event in IL-1 signaling.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Vitamins and Atheroscerosis, German Institute of Human Nutrition, Potsdam-Rehbruecke, Bergholz-Rehbruecke, Germany.
| | | | | | | |
Collapse
|
534
|
Into T, Kiura K, Yasuda M, Kataoka H, Inoue N, Hasebe A, Takeda K, Akira S, Shibata KI. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. Cell Microbiol 2004; 6:187-99. [PMID: 14706104 DOI: 10.1046/j.1462-5822.2003.00356.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mycoplasmal membrane diacylated lipoproteins not only initiate proinflammatory responses through Toll-like receptor (TLR) 2 and TLR6 via the activation of the transcriptional factor NF-kappaB, but also initiate apoptotic responses. The aim of this study was to clarify the apoptotic machineries. Mycoplasma fermentans lipoproteins and a synthetic lipopeptide, MALP-2, showed cytocidal activity towards HEK293 cells transfected with a TLR2-encoding plasmid. The activity was synergically augmented by co-expression of TLR6, but not by co-expression of other TLRs. Under the condition of co-expression of TLR2 and TLR6, the lipoproteins could induce maximum NF-kappa B activation and apoptotic cell death in the cells 6 h and 24 h after stimulation respectively. Dominant-negative forms of MyD88 and FADD, but not IRAK-4, reduced the cytocidal activity of the lipoproteins. In addition, both dominant-negative forms also downregulated the activation of both NF-kappa B and caspase-8 in the cells. Additionally, the cytocidal activity was sufficiently attenuated by a selective inhibitor of p38 MAPK. These findings suggest that mycoplasmal lipoproteins can trigger TLR2- and TLR6-mediated sequential bifurcate responses: NF-kappa B activation as an early event, which is partially mediated by MyD88 and FADD; and apoptosis as a later event, which is regulated by p38 MAPK as well as by MyD88 and FADD.
Collapse
Affiliation(s)
- Takeshi Into
- Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Nishi 7, Kita 13, Kita-ku, Sapporo 060-8586, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
535
|
Wu H, Arron JR. TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. Bioessays 2004; 25:1096-105. [PMID: 14579250 DOI: 10.1002/bies.10352] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6) is a crucial signaling molecule regulating a diverse array of physiological processes, including adaptive immunity, innate immunity, bone metabolism and the development of several tissues including lymph nodes, mammary glands, skin and the central nervous system. It is a member of a group of six closely related TRAF proteins, which serve as adapter molecules, coupling the TNF receptor (TNFR) superfamily to intracellular signaling events. Among the TRAF proteins, TRAF6 is unique in that, in addition to mediating TNFR family signaling, it is also essential for signaling downstream of an unrelated family of receptors, the interleukin-1 (IL-1) receptor/Toll-like receptor (IL-1R/TLR) superfamily. Gene targeting experiments have identified several indispensable physiological functions of TRAF6, and structural and biochemical studies have revealed the potential mechanisms of its action. By virtue of its many signaling roles, TRAF6 represents an important target in the regulation of many disease processes, including immunity, inflammation and osteoporosis.
Collapse
Affiliation(s)
- Hao Wu
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | |
Collapse
|
536
|
Jiang Z, Mak TW, Sen G, Li X. Toll-like receptor 3-mediated activation of NF-kappaB and IRF3 diverges at Toll-IL-1 receptor domain-containing adapter inducing IFN-beta. Proc Natl Acad Sci U S A 2004; 101:3533-8. [PMID: 14982987 PMCID: PMC373497 DOI: 10.1073/pnas.0308496101] [Citation(s) in RCA: 308] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have previously shown that double-stranded RNA-triggered, Toll-like receptor 3 (TLR3)-mediated signaling is independent of MyD88, IRAK4, and IRAK. Instead, TRAF6, TAK1, and TAB2 are recruited to TLR3 on poly(I.C) stimulation. TRAF6-TAK1-TAB2 are then translocated to the cytosol where TAK1 is phosphorylated and activated, leading to the activation of IkappaB kinase and NFkappaB. The present study addressed two important questions: (i) How are TRAF6, TAK1, and TAB2 recruited to TLR3? (ii) Are TRAF6, TAK1, and TAB2 also required for TLR3-mediated IRF3 activation? Recently, a novel Toll-IL-1 receptor (TIR)-containing adapter, TIR domain-containing adapter inducing IFN-beta (TRIF), was shown to play a critical role in TLR3-mediated activation of NF-kappaB and IRF3. We found that TLR3 recruits TRAF6 via adapter TRIF through a TRAF6-binding sequence in TRIF (PEEMSW, amino acids 250-255). Mutation of this TRAF6-binding sequence abolished the interaction of TRIF with TRAF6, but not with TLR3. Interestingly, mutation of the TRAF6-binding site of TRIF only abolished its ability to activate NF-kappaB but not IRF3, suggesting that TLR3-mediated activation of NF-kappaB and IRF3 might bifurcate at TRIF. In support of this finding, we showed that DN-TRAF6 and DN-TAK1 blocked poly(I.C)-induced NF-kappaB but not IRF3 activation. Furthermore, whereas poly(I.C)-induced NF-kappaB activation is completely abolished inTRAF6-/- MEFs, the signal-induced activation of IRF3 is TRAF6 independent. In conclusion, TRIF recruits TRAF6-TAK1-TAB2 to TLR3 through its TRAF6-binding site, which is required for NF-kappaB but not IRF3 activation. Therefore, double-stranded RNA-induced TLR3/TRIF-mediated NF-kappaB and IRF3 activation diverge at TRIF.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Amino Acid Sequence
- Animals
- Antigens, Differentiation/metabolism
- Binding Sites/genetics
- Cells, Cultured
- DNA-Binding Proteins/metabolism
- HeLa Cells
- Humans
- Interferon Regulatory Factor-3
- Interleukin-1 Receptor-Associated Kinases
- Male
- Membrane Glycoproteins/metabolism
- Models, Biological
- Myeloid Differentiation Factor 88
- NF-kappa B/metabolism
- Protein Kinases/metabolism
- Proteins/genetics
- Proteins/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- Receptors, Cell Surface/metabolism
- Receptors, Immunologic/metabolism
- Signal Transduction
- TNF Receptor-Associated Factor 6
- Toll-Like Receptor 3
- Toll-Like Receptors
- Transcription Factors/metabolism
Collapse
|
537
|
Bellocchio S, Montagnoli C, Bozza S, Gaziano R, Rossi G, Mambula SS, Vecchi A, Mantovani A, Levitz SM, Romani L. The Contribution of the Toll-Like/IL-1 Receptor Superfamily to Innate and Adaptive Immunity to Fungal Pathogens In Vivo. THE JOURNAL OF IMMUNOLOGY 2004; 172:3059-69. [PMID: 14978111 DOI: 10.4049/jimmunol.172.5.3059] [Citation(s) in RCA: 385] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vitro studies have indicated the importance of Toll-like receptor (TLR) signaling in response to the fungal pathogens Candida albicans and Aspergillus fumigatus. However, the functional consequences of the complex interplay between fungal morphogenesis and TLR signaling in vivo remain largely undefined. In this study we evaluate the impact of the IL-1R/TLR/myeloid differentiation primary response gene 88 (MyD88)-dependent signaling pathway on the innate and adaptive Th immunities to C. albicans and A. fumigatus in vivo. It was found that 1) the MyD88-dependent pathway is required for resistance to both fungi; 2) the involvement of the MyD88 adapter may occur through signaling by distinct members of the IL-1R/TLR superfamily, including IL-1R, TLR2, TLR4, and TLR9, with the proportional role of the individual receptors varying depending on fungal species, fungal morphotypes, and route of infection; 3) individual TLRs and IL-1R activate specialized antifungal effector functions on neutrophils, which correlates with susceptibility to infection; and 4) MyD88-dependent signaling on dendritic cells is crucial for priming antifungal Th1 responses. Thus, the finding that the innate and adaptive immunities to C. albicans and A. fumigatus require the coordinated action of distinct members of the IL-1R/TLR superfamily acting through MyD88 makes TLR manipulation amenable to the induction of host resistance to fungi.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antifungal Agents/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/physiology
- Aspergillosis/genetics
- Aspergillosis/immunology
- Aspergillus fumigatus/immunology
- Candida albicans/immunology
- Candidiasis/genetics
- Candidiasis/immunology
- Female
- Genetic Predisposition to Disease
- Immunity, Cellular/genetics
- Immunity, Innate/genetics
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88
- Neutrophils/immunology
- Neutrophils/metabolism
- Neutrophils/microbiology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptors
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Silvia Bellocchio
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
538
|
Abstract
PURPOSE OF REVIEW Innate immune cells act as sensors for environmental pathogens and key regulators of pathogen-specific T-cell effector responses. The expression of Toll-like receptors is essential for these functions. Innate immunity is a rapidly evolving field. Great progress has been made in the past year in characterizing the signaling pathways downstream of Toll-like receptors, and the role of Toll-like receptors in the regulation of pathogen responses. RECENT FINDINGS The ability to control the activation of regulatory T cells has emerged as a key function of innate immunity. Regulatory T cells are involved in the induction of tolerance and the prevention of harmful immune pathology, particularly T-cell responses directed against self-antigens. Toll-like receptor-mediated interactions between pathogen-stimulated innate immune cells and regulatory T cells result in the release of suppression by regulatory T cells, thus allowing pathogen-specific responses. However, pathogenic microorganisms may exploit this interaction to evade the host's response. In addition, recent studies raise the possibility that regulatory T cells may express some Toll-like receptor family members, thereby responding directly to pathogens. SUMMARY A deeper understanding of the complex role of innate immune cells as sensors of the environment and regulators of pathogen responses will probably influence the current models of immune regulation, particularly those centered on the role of the environment in shaping immune responses.
Collapse
Affiliation(s)
- Donata Vercelli
- Funxctional Genomics Laboratory, Arizona Respiratory Center and Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, 85724, USA.
| |
Collapse
|
539
|
Sly LM, Rauh MJ, Kalesnikoff J, Büchse T, Krystal G. SHIP, SHIP2, and PTEN activities are regulated in vivo by modulation of their protein levels: SHIP is up-regulated in macrophages and mast cells by lipopolysaccharide. Exp Hematol 2004; 31:1170-81. [PMID: 14662322 DOI: 10.1016/j.exphem.2003.09.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The phosphatidylinositol-3 kinase (PI3K) pathway plays a central role in regulating numerous biologic processes, including survival, adhesion, migration, metabolic activity, proliferation, differentiation, and end cell activation through the generation of the potent second messenger PI-3,4,5-trisphosphate (PI-3,4,5-P(3)). To ensure that activation of this pathway is appropriately suppressed/terminated, the ubiquitously expressed 54-kDa tumor suppressor PTEN hydrolyzes PI-3,4,5-P(3) to PI-4,5-P(2), whereas the 145-kDa hematopoietic-restricted SH2-containing inositol 5'-phosphatase SHIP (also known as SHIP1), the 104-kDa stem cell-restricted SHIP sSHIP, and the more widely expressed 150-kDa SHIP2 break it down to PI-3,4-P(2). In this review, we focus on the properties of these phospholipid phosphatases and summarize recent data showing that the activities of these negative regulators often are modulated by simply altering their protein levels. We also highlight the critical role that SHIP plays in lipopolysaccharide-induced macrophage activation and in endotoxin tolerance.
Collapse
Affiliation(s)
- Laura M Sly
- The Terry Fox Laboratory, British Columbia Cancer Agency, 601 West 10th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | | | | | | | | |
Collapse
|
540
|
Haller D, Jobin C. Interaction between resident luminal bacteria and the host: can a healthy relationship turn sour? J Pediatr Gastroenterol Nutr 2004; 38:123-36. [PMID: 14734871 DOI: 10.1097/00005176-200402000-00004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dirk Haller
- Center for Nutrition and Food Research, Immunobiolgy of Nutrition, Technical University of Munich, Germany
| | | |
Collapse
|
541
|
78495111110.1016/j.smim.2003.10.003" />
|
542
|
Wan J, Sun L, Mendoza JW, Chui YL, Huang DP, Chen ZJ, Suzuki N, Suzuki S, Yeh WC, Akira S, Matsumoto K, Liu ZG, Wu Z. Elucidation of the c-Jun N-terminal kinase pathway mediated by Estein-Barr virus-encoded latent membrane protein 1. Mol Cell Biol 2004; 24:192-9. [PMID: 14673155 PMCID: PMC303354 DOI: 10.1128/mcb.24.1.192-199.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Epstein-Barr virus (EBV) is associated with several human diseases including infectious mononucleosis and nasopharyngeal carcinoma. EBV-encoded latent membrane protein 1 (LMP1) is oncogenic and indispensable for cellular transformation caused by EBV. Expression of LMP1 in host cells constitutively activates both the c-Jun N-terminal kinase (JNK) and NF-kappaB pathways, which contributes to the oncogenic effect of LMP1. However, the underlying signaling mechanisms are not very well understood. Based mainly on overexpression studies with various dominant-negative constructs, LMP1 was generally thought to functionally mimic members of the tumor necrosis factor (TNF) receptor superfamily in signaling. In contrast to the prevailing paradigm, using embryonic fibroblasts from different knockout mice and the small interfering RNA technique, we find that the LMP1-mediated JNK pathway is distinct from those mediated by either TNF-alpha or interleukin-1. Moreover, we have further elucidated the LMP1-mediated JNK pathway by demonstrating that LMP1 selectively utilizes TNF receptor-associated factor 6, TAK1/TAB1, and c-Jun N-terminal kinase kinases 1 and 2 to activate JNK.
Collapse
Affiliation(s)
- Jun Wan
- Department of Biochemistry, Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
543
|
Netea MG, van der Graaf C, Van der Meer JWM, Kullberg BJ. Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system. J Leukoc Biol 2004; 75:749-55. [PMID: 15075354 DOI: 10.1189/jlb.1103543] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Toll-like receptors (TLRs) have been identified as a major class of pattern-recognition receptors. Recognition of pathogen-associated molecular patterns (PAMPs) by TLRs, alone or in heterodimerization with other TLR or non-TLR receptors, induces signals responsible for the activation of genes important for an effective host defense, especially proinflammatory cytokines. Although a certain degree of redundancy exists between signals induced by the various TLRs, recent studies have identified intracellular pathways specific for individual TLRs. This leads to the release of cytokine profiles specific for particular PAMPs, and thus, TLRs confer a certain degree of specificity to the innate-immune response. In addition to the activation of the innate-immune response, TLR-mediated recognition represents a link between the innate- and acquired-immune systems, by inducing the maturation of dendritic cells and directing the T helper responses. Alternatively, recent data have also suggested TLR-mediated escape mechanisms used by certain pathogenic microorganisms, especially through TLR2 induction of anti-inflammatory cytokines. Finally, the crucial role of TLRs for the host defense against infections has been strengthened recently by the description of patients partially defective in the TLR-activation pathways.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Medicine, University Medical Center St. Radboud, Nijmegen University, The Netherlands.
| | | | | | | |
Collapse
|
544
|
Haase R, Kirschning CJ, Sing A, Schröttner P, Fukase K, Kusumoto S, Wagner H, Heesemann J, Ruckdeschel K. A dominant role of Toll-like receptor 4 in the signaling of apoptosis in bacteria-faced macrophages. THE JOURNAL OF IMMUNOLOGY 2004; 171:4294-303. [PMID: 14530354 DOI: 10.4049/jimmunol.171.8.4294] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conserved bacterial components potently activate host immune cells through transmembrane Toll-like receptors (TLRs), which trigger a protective immune response but also may signal apoptosis. In this study, we investigated the roles of TLR2 and TLR4 as inducers of apoptosis in Yersinia enterocolitica-infected macrophages. Yersiniae suppress activation of the antiapoptotic NF-kappaB signaling pathway in host cells by inhibiting inhibitory kappaB kinase-beta. This leads to macrophage apoptosis under infection conditions. Experiments with mouse macrophages deficient for TLR2, TLR4, or both receptors showed that, although yersiniae could activate signaling through both TLR2 and TLR4, loss of TLR4 solely diminished Yersinia-induced apoptosis. This suggests implication of TLR4, but not of TLR2, as a proapoptotic signal transducer in Yersinia-conferred cell death. In the same manner, agonist-specific activation of TLR4 efficiently mediated macrophage apoptosis in the presence of the proteasome inhibitor MG-132, an effect that was less pronounced for activation through TLR2. Furthermore, the extended stimulation of overexpressed TLR4 elicited cellular death in epithelial cells. A dominant-negative mutant of Fas-associated death domain protein could suppress TLR4-mediated cell death, which indicates that TLR4 may signal apoptosis through a Fas-associated death domain protein-dependent pathway. Together, these data show that TLR4 could act as a potent inducer of apoptosis in macrophages that encounter a bacterial pathogen.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Apoptosis/genetics
- Apoptosis/immunology
- Bacterial Proteins/pharmacology
- Carrier Proteins/physiology
- Cell Line
- Dipeptides/pharmacology
- Fas-Associated Death Domain Protein
- Humans
- Lipopolysaccharides/pharmacology
- Lipoproteins/pharmacology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/microbiology
- Membrane Glycoproteins/agonists
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred MRL lpr
- Mice, Knockout
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Toll-Like Receptor 2
- Toll-Like Receptor 4
- Toll-Like Receptors
- Transfection
- Yersinia enterocolitica/genetics
- Yersinia enterocolitica/immunology
- fas Receptor/physiology
Collapse
Affiliation(s)
- Rudolf Haase
- Max von Pettenkofer-Institute for Hygiene and Medical Microbiology, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
545
|
Abstract
Toll receptors are type I transmembrane proteins that play important roles in development and immunity in animals. Comparison of the genomes of mouse and human on one side and of the fruitfly Drosophila and the mosquito Anopheles (two dipteran insects) on the other, revealed that the four species possess a similar number of Toll receptors (approximately 10). However, phylogenetic analyses indicate that the families of Toll receptors expanded independently in insects and mammals. We review recent results on these receptors, which point to differences in the activation and signaling between Tolls in insects and Toll-like receptors (TLRs) in mammals. Whereas mammalian TLRs appear to be solely dedicated to host-defense, insect Tolls may be predominantly linked to other functions, probably developmental.
Collapse
Affiliation(s)
- Jean-Luc Imler
- Institut de Biologie Moléculaire et Cellulaire, CNRS, 15 rue René Descartes, 67000 Strasbourg, France.
| | | |
Collapse
|
546
|
Doyle SE, O'Connell RM, Miranda GA, Vaidya SA, Chow EK, Liu PT, Suzuki S, Suzuki N, Modlin RL, Yeh WC, Lane TF, Cheng G. Toll-like receptors induce a phagocytic gene program through p38. ACTA ACUST UNITED AC 2003; 199:81-90. [PMID: 14699082 PMCID: PMC1887723 DOI: 10.1084/jem.20031237] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Toll-like receptor (TLR) signaling and phagocytosis are hallmarks of macrophage-mediated innate immune responses to bacterial infection. However, the relationship between these two processes is not well established. Our data indicate that TLR ligands specifically promote bacterial phagocytosis, in both murine and human cells, through induction of a phagocytic gene program. Importantly, TLR-induced phagocytosis of bacteria was found to be reliant on myeloid differentiation factor 88–dependent signaling through interleukin-1 receptor–associated kinase-4 and p38 leading to the up-regulation of scavenger receptors. Interestingly, individual TLRs promote phagocytosis to varying degrees with TLR9 being the strongest and TLR3 being the weakest inducer of this process. We also demonstrate that TLR ligands not only amplify the percentage of phagocytes uptaking Escherichia coli, but also increase the number of bacteria phagocytosed by individual macrophages. Taken together, our data describe an evolutionarily conserved mechanism by which TLRs can specifically promote phagocytic clearance of bacteria during infection.
Collapse
Affiliation(s)
- Sean E Doyle
- Dept. of Microbiology, Immunology and Molecular Genetics, University of California-Los Angeles, 8-240 Factor Building, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
547
|
Luftig M, Prinarakis E, Yasui T, Tsichritzis T, Cahir-McFarland E, Inoue JI, Nakano H, Mak TW, Yeh WC, Li X, Akira S, Suzuki N, Suzuki S, Mosialos G, Kieff E. Epstein-Barr virus latent membrane protein 1 activation of NF-kappaB through IRAK1 and TRAF6. Proc Natl Acad Sci U S A 2003; 100:15595-600. [PMID: 14673102 PMCID: PMC307613 DOI: 10.1073/pnas.2136756100] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epstein-Barr virus latent membrane protein 1 (LMP1) activation of NF-kappaB is critical for Epstein-Barr virus-infected B lymphocyte survival. LMP1 activates the IkappaB kinase complex and NF-kappaB through two cytoplasmic signaling domains that engage tumor necrosis factor receptor-associated factor (TRAF)1/2/3/5 or TRADD and RIP. We now use cells lacking expression of TRAF2, TRAF5, TRAF6, IKKalpha, IKKbeta, IKKgamma, TAB2, IL-1 receptor-associated kinase (IRAK)1, or IRAK4 to assess their roles in LMP1-mediated NF-kappaB activation. LMP1-induced RelA nuclear translocation was similar in IKKalpha knockout (KO) and WT murine embryo fibroblasts (MEFs) but substantially deficient in IKKbeta KO MEFs. NF-kappaB-dependent promoter responses were also substantially deficient in IKKbeta KO MEFs but were hyperactive in IKKalpha KO MEFs. More surprisingly, NF-kappaB responses were near normal in TRAF2 and TRAF5 double-KO MEFs, IKKgamma KO MEFs, TAB2 KO MEFs, and IRAK4 KO MEFs but were highly deficient in TRAF6 KO MEFs and IRAK1 KO HEK293 cells. Consistent with the importance of TRAF6, LMP1-induced NF-kappaB activation in HEK293 cells was inhibited by expression of dominant-negative TAB2 and Ubc13 alleles. These data extend a role for IKKalpha in IKKbeta regulation, identify an unusual IKKbeta-dependent and IKKgamma-independent NF-kappaB activation, and indicate that IRAK1 and TRAF6 are essential for LMP1-induced NF-kappaB activation.
Collapse
Affiliation(s)
- Micah Luftig
- Program in Virology, Department of Microbiology and Molecular Genetics, Harvard Medical School, Channing Laboratory/Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
548
|
Sun H, Towb P, Chiem DN, Foster BA, Wasserman SA. Regulated assembly of the Toll signaling complex drives Drosophila dorsoventral patterning. EMBO J 2003; 23:100-10. [PMID: 14685264 PMCID: PMC1271671 DOI: 10.1038/sj.emboj.7600033] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 11/13/2003] [Indexed: 11/09/2022] Open
Abstract
In Drosophila, the Toll pathway establishes the embryonic dorsoventral axis and triggers innate immune responses to infection. The transmembrane receptor Toll acts through three death domain-containing proteins, the kinase Pelle and the adapters Tube and MyD88, in signaling to downstream NF-kappaB-like transcription factors. Here, we delineate the critical events in the earliest stages of Toll signaling. Mutational studies based on structural modeling reveal that the direct interaction of the bivalent Tube death domain with MyD88 is critical for signaling in vivo. The complex of MyD88 and Tube forms prior to signaling and is localized to the embryonic plasma membrane by MyD88. Upon Toll homodimerization, this complex is rapidly recruited to Toll. Binding of Pelle to the MyD88-Tube complex promotes Pelle activation, leading to degradation of the IkappaB-like inhibitor, Cactus. Together, these experiments convert a linear picture of gene function into a dynamic mechanistic and structural understanding of signaling complex assembly and function.
Collapse
Affiliation(s)
- Huaiyu Sun
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California at San Diego, La Jolla, CA, USA
| | - Par Towb
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California at San Diego, La Jolla, CA, USA
| | - Daniel N Chiem
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California at San Diego, La Jolla, CA, USA
| | - Byron A Foster
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California at San Diego, La Jolla, CA, USA
| | - Steven A Wasserman
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, University of California at San Diego, La Jolla, CA, USA
- Section of Cell and Developmental Biology, Division of Biological Sciences, Center for Molecular Genetics, Rm 301, Mail Code 0634, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0634, USA. Tel.: +1 858 822 2408; Fax: +1 858 534 7073; E-mail:
| |
Collapse
|
549
|
Suzuki N, Suzuki S, Eriksson U, Hara H, Mirtosis C, Chen NJ, Wada T, Bouchard D, Hwang I, Takeda K, Fujita T, Der S, Penninger JM, Akira S, Saito T, Yeh WC. IL-1R-Associated Kinase 4 Is Required for Lipopolysaccharide- Induced Activation of APC. THE JOURNAL OF IMMUNOLOGY 2003; 171:6065-71. [PMID: 14634120 DOI: 10.4049/jimmunol.171.11.6065] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The bacterial product LPS is a critical stimulus for the host immune system in the response against the corresponding bacterial infection. LPS provides an activation stimulus for macrophages and a maturation signal for dendritic cells to set up innate and adaptive immune responses, respectively. The signaling cascade of myeloid differentiation factor 88-->IL-1R-associated kinase (IRAK)-->TNFR-associated factor 6 has been implicated in mediating LPS signaling. In this report, we studied the function of IRAK-4 in various LPS-induced signals. We found that IRAK-4-deficient cells were severely impaired in producing some IFN-regulated genes as well as inflammatory cytokines in response to LPS. Among the critical downstream signaling pathways induced by LPS, NF-kappaB activation but not IFN regulatory factor 3 or STAT1 activation was defective in cells lacking IRAK-4. IRAK-4 was also required for the proper maturation of dendritic cells by LPS stimulation, particularly in terms of cytokine production and the ability to stimulate Th cell differentiation. Our results demonstrate that IRAK-4 is critical for the LPS-induced activations of APCs.
Collapse
Affiliation(s)
- Nobutaka Suzuki
- Advanced Medical Discovery Institute, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
550
|
Kollewe C, Mackensen AC, Neumann D, Knop J, Cao P, Li S, Wesche H, Martin MU. Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem 2003; 279:5227-36. [PMID: 14625308 DOI: 10.1074/jbc.m309251200] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interleukin-1 receptor-associated kinase 1 (IRAK-1) is an important adapter in the signaling complex of the Toll/interleukin-1 (IL-1) receptor family. Formation of the signaling IL-1 receptor complex results in the activation and hyperphosphorylation of IRAK-1, which leads to a pronounced shift of its apparent molecular mass in gel electrophoresis. Presently, the individual residues phosphorylated in IRAK-1 and the consequences for IRAK-1 function are unknown. We define sequential phosphorylation steps in IRAK-1, which are, in vitro, autophosphorylation. First, IRAK-1 is phosphorylated at Thr209. By fluorescence energy transfer experiments, we demonstrate that Thr209 phosphorylation results in a conformational change of the kinase domain, permitting further phosphorylations to take place. Substitution of Thr209 by alanine results in a kinase-inactive IRAK-1. Second, Thr387 in the activation loop is phosphorylated, leading to full enzymatic activity. Third, IRAK-1 autophosphorylates several times in the proline-, serine-, and threonine-rich ProST region between the N-terminal death domain and kinase domain. Hyperphosphorylation of this region leads to dissociation of IRAK-1 from the upstream adapters MyD88 and Tollip but leaves its interaction with the downstream adapter TRAF6 unaffected. This identifies IRAK-1 as a novel type of adapter protein, which employs its own kinase activity to introduce negative charges adjacent to the protein interaction domain, which anchors IRAK-1 at the active receptor complex. Thus, IRAK-1 regulates its own availability as an adapter molecule by sequential autophosphorylation.
Collapse
Affiliation(s)
- Christian Kollewe
- Department of Pharmacology, Hannover Medical School, D-30623 Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|