501
|
Marsili G, Remoli AL, Sgarbanti M, Perrotti E, Fragale A, Battistini A. HIV-1, interferon and the interferon regulatory factor system: an interplay between induction, antiviral responses and viral evasion. Cytokine Growth Factor Rev 2012; 23:255-70. [PMID: 22748237 DOI: 10.1016/j.cytogfr.2012.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Thirty years after the first isolation of the etiological agent of AIDS, the virus HIV-1 is still a major threat worldwide with millions of individuals currently infected. Although current combination therapies allow viral replication to be controlled, HIV-1 is not eradicated and persists in drug- and immune system-insensitive reservoirs and a cure is still lacking. Pathogens such as HIV-1 that cause chronic infections are able to adapt to the host in a manner that ensures long term residence and survival, via the evolution of numerous mechanisms that evade various aspects of the innate and adaptive immune response. One such mechanism is targeted to members of the interferon (IFN) regulatory factor (IRF) family of proteins. These transcription factors regulate a variety of biological processes including interferon induction, immune cell activation and downstream pattern recognition receptors (PRRs). HIV-1 renders IRFs harmless and hijacks them to its own advantage in order to facilitate its replication and evasion of immune responses. Type I interferon (IFN), the canonical antiviral innate response, can be induced in both acute and chronic HIV-1 infection in vivo, but in the majority of individuals this initial response is not protective and can contribute to disease progression. Type I IFN expression is largely inhibited in T cells and macrophages in order to successfully establish productive infection, whereas sustained IFN production by plasmacytoid dendritic cells is considered an important source of chronic immune activation, a hallmark to AIDS progression.
Collapse
Affiliation(s)
- Giulia Marsili
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, Rome 00161, Italy
| | | | | | | | | | | |
Collapse
|
502
|
Brandariz-Nuñez A, Valle-Casuso JC, White TE, Laguette N, Benkirane M, Brojatsch J, Diaz-Griffero F. Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac. Retrovirology 2012; 9:49. [PMID: 22691373 PMCID: PMC3410799 DOI: 10.1186/1742-4690-9-49] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SAMHD1 is a nuclear protein that blocks lentiviral infection before reverse transcription in macrophages and dendritic cells. The viral accessory protein Vpx overcomes the SAMHD1-mediated lentiviral block by inducing its proteasomal degradation. RESULTS Here, we identified the nuclear localization signal (NLS) of SAMHD1, and studied its contribution to restriction of HIV-1 and SIVmac. By studying the cellular distribution of different SAMHD1 variants, we mapped the nuclear localization of SAMHD1 to residues 11KRPR14. Mutagenesis of these residues changed the cellular distribution of SAMHD1 from the nucleus to the cytoplasm. SAMHD1 mutants that lost nuclear localization restricted HIV-1 and SIV as potently as the wild type protein. Interestingly, SAMHD1 mutants that localized to the cytoplasm were not degraded by nuclear Vpx alleles. Therefore, nuclear Vpx alleles require nuclear localization of SAMHD1 in order to induce its degradation. In agreement, SIVmac viruses encoding Vpx did not overcome the restriction imposed by the cytoplasmic variants of SAMHD1. CONCLUSIONS We mapped the NLS of SAMHD1 to residues 11KRPR14 and studied the contribution of SAMHD1 nuclear localization to restriction of HIV-1 and SIV. These experiments demonstrate that cytoplasmic variants of SAMHD1 potently block lentiviral infection and are resistant to Vpx-mediated degradation. The nuclear Vpx alleles studied here are only capable of degrading a nuclearly localized SAMHD1 suggesting that Vpx-mediated degradation of SAMHD1 is initiated in the nucleus.
Collapse
Affiliation(s)
- Alberto Brandariz-Nuñez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine Bronx, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
503
|
Reijns M, Rabe B, Rigby R, Mill P, Astell K, Lettice L, Boyle S, Leitch A, Keighren M, Kilanowski F, Devenney P, Sexton D, Grimes G, Holt I, Hill R, Taylor M, Lawson K, Dorin J, Jackson A. Enzymatic removal of ribonucleotides from DNA is essential for mammalian genome integrity and development. Cell 2012; 149:1008-22. [PMID: 22579044 PMCID: PMC3383994 DOI: 10.1016/j.cell.2012.04.011] [Citation(s) in RCA: 362] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/21/2012] [Accepted: 04/23/2012] [Indexed: 12/01/2022]
Abstract
The presence of ribonucleotides in genomic DNA is undesirable given their increased susceptibility to hydrolysis. Ribonuclease (RNase) H enzymes that recognize and process such embedded ribonucleotides are present in all domains of life. However, in unicellular organisms such as budding yeast, they are not required for viability or even efficient cellular proliferation, while in humans, RNase H2 hypomorphic mutations cause the neuroinflammatory disorder Aicardi-Goutières syndrome. Here, we report that RNase H2 is an essential enzyme in mice, required for embryonic growth from gastrulation onward. RNase H2 null embryos accumulate large numbers of single (or di-) ribonucleotides embedded in their genomic DNA (>1,000,000 per cell), resulting in genome instability and a p53-dependent DNA-damage response. Our findings establish RNase H2 as a key mammalian genome surveillance enzyme required for ribonucleotide removal and demonstrate that ribonucleotides are the most commonly occurring endogenous nucleotide base lesion in replicating cells.
Collapse
Affiliation(s)
- Martin A.M. Reijns
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Björn Rabe
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Rachel E. Rigby
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Pleasantine Mill
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Katy R. Astell
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Laura A. Lettice
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Shelagh Boyle
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrea Leitch
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Margaret Keighren
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Fiona Kilanowski
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Paul S. Devenney
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David Sexton
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Graeme Grimes
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Ian J. Holt
- Medical Research Council Mitochondrial Biology Unit, Cambridge CB2 0XY, UK
| | - Robert E. Hill
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Martin S. Taylor
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kirstie A. Lawson
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Julia R. Dorin
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Andrew P. Jackson
- Medical Research Council Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
504
|
Kim B, Nguyen LA, Daddacha W, Hollenbaugh JA. Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages. J Biol Chem 2012; 287:21570-4. [PMID: 22589553 DOI: 10.1074/jbc.c112.374843] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recently, SAMHD1 has come under intense focus as a host anti-HIV factor. SAMHD1 is a dNTP triphosphohydrolase, which leads to the regulation of DNA metabolism in host cells. HIV-2/SIV (simian immunodeficiency virus) viral protein x (Vpx) has been shown to promote the degradation of SAMHD1. In this study, we examine the kinetics of SAMHD1 degradation, the increase in the dNTP pool level, and the efficiency of proviral DNA synthesis in Vpx+ virus-like particle (VLP)-treated monocyte-derived macrophages (MDMs). Our results indicate a very close temporal link with a reduction in SAMHD1 detected within the first few hours of Vpx+ VLP treatment. This loss of SAMHD1 is followed by a significant increase in cellular dNTP levels by 8 h after Vpx+ VLP addition, ultimately leading to the enhancement of the HIV proviral DNA synthesis rate and HIV infection in MDMs. Finally, the pretreatment of MDMs with the Vpx+ VLPs, which is a widely used protocol, displayed identical proviral DNA synthesis as compared with MDMs co-treated with Vpx+ VLP and HIV vector. These findings further indicate that Vpx degradation of SAMHD1 is sufficiently rapid to enable appropriate progression of reverse transcription in MDMs, even when present at the time of infection. Overall, this study demonstrates a tight interplay between SAMHD1 level, dNTP levels, and HIV proviral DNA synthesis kinetics in MDMs.
Collapse
Affiliation(s)
- Baek Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, USA.
| | | | | | | |
Collapse
|
505
|
Thippeshappa R, Ruan H, Kimata JT. Breaking Barriers to an AIDS Model with Macaque-Tropic HIV-1 Derivatives. BIOLOGY 2012; 1:134-64. [PMID: 23336082 PMCID: PMC3546514 DOI: 10.3390/biology1020134] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 12/15/2022]
Abstract
The development of an animal model of human immunodeficiency virus type 1 (HIV-1)/AIDS that is suitable for preclinical testing of antiretroviral therapy, vaccines, curative strategies, and studies of pathogenesis has been hampered by the human-specific tropism of HIV-1. Although simian immunodeficiency virus (SIV) or HIV-1/SIV chimeric viruses (SHIVs)-rhesus macaque models are excellent surrogates for AIDS research, the genetic differences between SIV or SHIV and HIV-1 limit their utility as model systems. The identification of innate retro viral restriction factors has increased our understanding about blockades to HIV-1 replication in macaques and provided a guide for the construction of macaque-tropic HIV-1 clones. However, while these viruses replicate in macaque cells in vitro, they are easily controlled and have not caused AIDS in host animals, indicating that we may not fully understand the restrictive barriers of innate immunity. In this review, we discuss recent findings regarding HIV-1 restriction factors, particularly as they apply to cross-species transmission of primate lentiviruses and the development of a macaque model of HIV-1/AIDS.
Collapse
Affiliation(s)
| | | | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.T.); (H.R.)
| |
Collapse
|
506
|
Abstract
Retroviral replication involves the formation of a DNA provirus integrated into the host genome. Through this process, retroviruses can colonize the germ line to form endogenous retroviruses (ERVs). ERV inheritance can have multiple adverse consequences for the host, some resembling those resulting from exogenous retrovirus infection but others arising by mechanisms unique to ERVs. Inherited retroviruses can also confer benefits on the host. To meet the different threats posed by endogenous and exogenous retroviruses, various host defences have arisen during evolution, acting at various stages on the retrovirus life cycle. In this Review, I describe our current understanding of the distribution and architecture of ERVs, the consequences of their acquisition for the host and the emerging details of the intimate evolutionary relationship between virus and vertebrate host.
Collapse
|
507
|
Co-evolution of primate SAMHD1 and lentivirus Vpx leads to the loss of the vpx gene in HIV-1 ancestor. PLoS One 2012; 7:e37477. [PMID: 22574228 PMCID: PMC3345027 DOI: 10.1371/journal.pone.0037477] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/23/2012] [Indexed: 01/27/2023] Open
Abstract
Cross-species transmission and adaptation of simian immunodeficiency viruses (SIVs) to humans have given rise to human immunodeficiency viruses (HIVs). HIV type 1 (HIV-1) and type 2 (HIV-2) were derived from SIVs that infected chimpanzee (SIVcpz) and sooty mangabey (SIVsm), respectively. The HIV-1 restriction factor SAMHD1 inhibits HIV-1 infection in human myeloid cells and can be counteracted by the Vpx protein of HIV-2 and the SIVsm lineage. However, HIV-1 and its ancestor SIVcpz do not encode a Vpx protein and HIV-1 has not evolved a mechanism to overcome SAMHD1-mediated restriction. Here we show that the co-evolution of primate SAMHD1 and lentivirus Vpx leads to the loss of the vpx gene in SIVcpz and HIV-1. We found evidence for positive selection of SAMHD1 in orangutan, gibbon, rhesus macaque, and marmoset, but not in human, chimpanzee and gorilla that are natural hosts of Vpx-negative HIV-1, SIVcpz and SIVgor, respectively, indicating that vpx drives the evolution of primate SAMHD1. Ancestral host state reconstruction and temporal dynamic analyses suggest that the most recent common ancestor of SIVrcm, SIVmnd, SIVcpz, SIVgor and HIV-1 was a SIV that had a vpx gene; however, the vpx gene of SIVcpz was lost approximately 3643 to 2969 years ago during the infection of chimpanzees. Thus, HIV-1 could not inherit the lost vpx gene from its ancestor SIVcpz. The lack of Vpx in HIV-1 results in restricted infection in myeloid cells that are important for antiviral immunity, which could contribute to the AIDS pandemic by escaping the immune responses.
Collapse
|
508
|
Goncalves A, Karayel E, Rice GI, Bennett KL, Crow YJ, Superti-Furga G, Bürckstümmer T. SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutières syndrome-associated mutations. Hum Mutat 2012; 33:1116-22. [PMID: 22461318 DOI: 10.1002/humu.22087] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 03/07/2012] [Indexed: 01/19/2023]
Abstract
Aicardi-Goutières syndrome (AGS) is a rare inherited autoimmune disease caused by mutations in genes encoding the RNase H2 subunits A, B, and C; the DNase three prime repair exonuclease 1 (TREX1); and sterile alpha motif (SAM) domain and HD domain-containing protein 1 (SAMHD1). Using unbiased affinity purification coupled to protein mass spectrometry, we identify SAMHD1 as a nucleic-acid-binding protein displaying a preference for RNA over DNA. In contrast to TREX1 and the RNase H2 complex, SAMHD1 has no obvious nuclease activity. In addition, interrogating truncation mutants of SAMHD1 observed in AGS patients, we map the nucleic-acid-binding domain to residues 164-442, thus overlapping with the HD domain. Furthermore, we show that although wild-type SAMHD1 displays almost exclusive nuclear localization, 11 of 12 SAMHD1 mutants show at least partial mislocalization to the cytosol. Overall, these data suggest that SAMHD1 has a role in the nucleus that, if disrupted by mutation, leads to cytosolic accumulation of SAMHD1 and autoimmune disease.
Collapse
Affiliation(s)
- Adriana Goncalves
- CeMM - Research Center for Molecular Medicine, Austrian Academy of Sciences, Lazarettgasse 14, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
509
|
Prinz M, Knobeloch KP. Type I interferons as ambiguous modulators of chronic inflammation in the central nervous system. Front Immunol 2012; 3:67. [PMID: 22566948 PMCID: PMC3342377 DOI: 10.3389/fimmu.2012.00067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/19/2012] [Indexed: 12/25/2022] Open
Abstract
Type I interferons (IFNs) were originally identified as antiviral effector molecules that exert pleiotropic physiological processes ranging from immune modulation, control of proliferation, apoptosis to antitumor activity. However, type I IFNs were recently also shown to apply both beneficial and detrimental effects to the central nervous system (CNS) and a tightly balanced equilibrium between cellular activation and inhibition seems to be essential to maintain homeostasis within the CNS. In inflammatory pathologies affecting the CNS, type I IFNs are in the center of attention not only because interferon beta (IFN-β) is used as a standard therapeutic in the treatment of relapsing–remitting multiple sclerosis (MS), but also as type I IFN expression is associated with distinct pathologies. Despite the great efficiency of IFN-β in reducing MS relapses and attenuation of novel inflammatory lesions is well documented, underlying molecular mechanisms and cellular target specificities are just beginning to emerge. In contrast to the curative effects, aberrant activation of the type I IFN response were also recently shown to be associated with detrimental effects exemplified by the Aicardi–Goutières syndrome (AGS), a severe disabling autoimmune inflammatory encephalopathy. This review will highlight the dual role of type I interferons during chronic CNS inflammation. Recently uncovered molecular and cellular mechanisms in the etiology of AGS and experimental autoimmune encephalomyelitis (EAE), the murine model of MS will be highlighted.
Collapse
Affiliation(s)
- Marco Prinz
- Department of Neuropathology, University Clinic Freiburg Freiburg, Germany
| | | |
Collapse
|
510
|
Lazzaro F, Novarina D, Amara F, Watt DL, Stone JE, Costanzo V, Burgers PM, Kunkel TA, Plevani P, Muzi-Falconi M. RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Mol Cell 2012; 45:99-110. [PMID: 22244334 PMCID: PMC3262129 DOI: 10.1016/j.molcel.2011.12.019] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/28/2011] [Accepted: 12/06/2011] [Indexed: 01/08/2023]
Abstract
The chemical identity and integrity of the genome is challenged by the incorporation of ribonucleoside triphosphates (rNTPs) in place of deoxyribonucleoside triphosphates (dNTPs) during replication. Misincorporation is limited by the selectivity of DNA replicases. We show that accumulation of ribonucleoside monophosphates (rNMPs) in the genome causes replication stress and has toxic consequences, particularly in the absence of RNase H1 and RNase H2, which remove rNMPs. We demonstrate that postreplication repair (PRR) pathways-MMS2-dependent template switch and Pol ζ-dependent bypass-are crucial for tolerating the presence of rNMPs in the chromosomes; indeed, we show that Pol ζ efficiently replicates over 1-4 rNMPs. Moreover, cells lacking RNase H accumulate mono- and polyubiquitylated PCNA and have a constitutively activated PRR. Our findings describe a crucial function for RNase H1, RNase H2, template switch, and translesion DNA synthesis in overcoming rNTPs misincorporated during DNA replication, and may be relevant for the pathogenesis of Aicardi-Goutières syndrome.
Collapse
Affiliation(s)
- Federico Lazzaro
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
511
|
Goldbach-Mansky R. Immunology in clinic review series; focus on autoinflammatory diseases: update on monogenic autoinflammatory diseases: the role of interleukin (IL)-1 and an emerging role for cytokines beyond IL-1. Clin Exp Immunol 2012; 167:391-404. [PMID: 22288582 DOI: 10.1111/j.1365-2249.2011.04533.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED OTHER THEMES PUBLISHED IN THIS IMMUNOLOGY IN THE CLINIC REVIEW SERIES Allergy, Host Responses, Cancer, Type 1 diabetes and viruses, Metabolic diseases. SUMMARY The disease-based discovery of the molecular basis for autoinflammatory diseases has led not only to a rapidly growing number of clinically and genetically identifiable disorders, but has unmantled key inflammatory pathways such as the potent role of the alarm cytokine interleukin (IL)-1 in human disease. Following its initial failures in the treatment of sepsis and the moderate success in the treatment of rheumatoid arthritis, IL-1 blocking therapies had a renaissance in the treatment of a number of autoinflammatory conditions, and IL-1 blocking therapies have been Food and Drug Administration (FDA)-approved for the treatment of the autoinflammatory conditions: cryopyrin-associated periodic syndromes (CAPS). CAPS and deficiency of the IL-1 receptor antagonist (DIRA), both genetic conditions with molecular defects in the IL-1 pathway, have provided a pathogenic rationale to IL-1 blocking therapies, and the impressive clinical results confirmed the pivotal role of IL-1 in human disease. Furthermore, IL-1 blocking strategies have shown clinical benefit in a number of other genetically defined autoinflammatory conditions, and diseases with clinical similarities to the monogenic disorders and not yet identified genetic causes. The discovery that IL-1 is not only triggered by infectious danger signals but also by danger signals released from metabolically 'stressed' or even dying cells has extended the concept of autoinflammation to disorders such as gout, and those that were previously not considered inflammatory, such as type 2 diabetes, coronary artery disease, obesity and some degenerative diseases, and provided the conceptual framework to target IL-1 in these diseases. Despite the tremendous success of IL-1 blocking therapy, the use of these agents in a wider spectrum of autoinflammatory conditions has uncovered disease subsets that are not responsive to IL-1 blockade, including the recently discovered proteasome-associated autoinflammatory syndromes such as chronic atypical neutrophilic dermatitis with lipodystrophy and elevated temperatures (CANDLE), Japanese autoinflammatory syndrome with lipodystrophy (JASL), Nakajo-Nishimura syndrome (NNS) and joint contractures, muscle atrophy, panniculitis induced lipodystrophy (JMP), and urge the continued quest to characterize additional dysregulated innate immune pathways that cause autoinflammatory conditions.
Collapse
Affiliation(s)
- R Goldbach-Mansky
- Translational Autoinflammatory Disease Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
512
|
Abstract
Intrinsic antiviral immunity refers to a form of innate immunity that directly restricts viral replication and assembly, thereby rendering a cell nonpermissive to a specific class or species of viruses. Intrinsic immunity is conferred by restriction factors that are mostly preexistent in certain cell types, although these factors can be further induced by viral infection. Intrinsic virus-restriction factors recognize specific viral components, but unlike other pattern-recognition receptors that inhibit viral infection indirectly by inducing interferons and other antiviral molecules, intrinsic antiviral factors block viral replication immediately and directly. This review focuses on recent advances in understanding of the roles of intrinsic antiviral factors that restrict infection by human immunodeficiency virus and influenza virus.
Collapse
|
513
|
Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 2012; 13:223-228. [PMID: 22327569 PMCID: PMC3771401 DOI: 10.1038/ni.2236] [Citation(s) in RCA: 668] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/13/2012] [Indexed: 02/06/2023]
Abstract
SAMHD1 restricts the infection of dendritic and other myeloid cells by human immunodeficiency virus type 1 (HIV-1), but in lentiviruses of the simian immunodeficiency virus of sooty mangabey (SIVsm)-HIV-2 lineage, SAMHD1 is counteracted by the virion-packaged accessory protein Vpx. Here we found that SAMHD1 restricted infection by hydrolyzing intracellular deoxynucleoside triphosphates (dNTPs), lowering their concentrations to below those required for the synthesis of the viral DNA by reverse transcriptase (RT). SAMHD1-mediated restriction was alleviated by the addition of exogenous deoxynucleosides. An HIV-1 with a mutant RT with low affinity for dNTPs was particularly sensitive to SAMHD1-mediated restriction. Vpx prevented the SAMHD1-mediated decrease in dNTP concentration and induced the degradation of human and rhesus macaque SAMHD1 but had no effect on mouse SAMHD1. Nucleotide-pool depletion could be a general mechanism for protecting cells from infectious agents that replicate through a DNA intermediate.
Collapse
Affiliation(s)
- Hichem Lahouassa
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Waaqo Daddacha
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Henning Hofmann
- New York University School of Medicine, Microbiology Department, 550 First Ave., New York, NY 10016, USA
| | - Diana Ayinde
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Eric C. Logue
- New York University School of Medicine, Microbiology Department, 550 First Ave., New York, NY 10016, USA
| | - Loïc Dragin
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Nicolin Bloch
- New York University School of Medicine, Microbiology Department, 550 First Ave., New York, NY 10016, USA
| | - Claire Maudet
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Matthieu Bertrand
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Thomas Gramberg
- Virologisches Institut, Klinische und Molekulare Virologie, Universitat Erlangen-Nurnberg, 91054 Erlangen
| | - Gianfranco Pancino
- Institut Pasteur, Unité de Régulation des Infections Rétrovirales, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Stéphane Priet
- Laboratoire d’Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS-Universitéd’Aix-Marseille, 13288 Marseille cedex 09, France
| | - Bruno Canard
- Laboratoire d’Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS-Universitéd’Aix-Marseille, 13288 Marseille cedex 09, France
| | - Nadine Laguette
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France
| | - Monsef Benkirane
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France
| | - Catherine Transy
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| | - Nathaniel R. Landau
- New York University School of Medicine, Microbiology Department, 550 First Ave., New York, NY 10016, USA
| | - Baek Kim
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Florence Margottin-Goguet
- Inserm, U1016, Institut Cochin, 27 rue du faubourg St Jacques, Bat G. Roussy, 75014 Paris France
- Cnrs, UMR8104, Paris, France
- Univ Paris Descartes, Paris, France
| |
Collapse
|
514
|
Nakamura K, Kato M, Sasaki A, Kanai M, Hayasaka K. Congenital dysplastic microcephaly and hypoplasia of the brainstem and cerebellum with diffuse intracranial calcification. J Child Neurol 2012; 27:218-21. [PMID: 21940696 DOI: 10.1177/0883073811416239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Congenital microcephaly with intracranial calcification is a rare condition presented in heterogeneous diseases. Here, we report the case of a 1-year-old boy with severe congenital microcephaly and diffuse calcification. Neuroimaging studies showed a diffuse simplified gyral pattern; a very thin cortex; ventricular dilatation; very small basal ganglia, thalamus, and brainstem; and cerebellar hypoplasia with diffuse calcification. Clinical features of intrauterine infections, such as neonatal jaundice, hepatomegaly, and thrombocytopenia, were not found. Serological tests, cultures, and polymerase chain reaction analysis were negative for viral infections. The etiology of pseudo-toxoplasmosis, rubella, cytomegalovirus, and herpes simplex syndrome is still unknown. This study describes the most severe form of pseudo-toxoplasmosis, rubella, cytomegalovirus, and herpes simplex syndrome reported to date, with the patient showing microcephaly and calcification or band-like intracranial calcification with simplified gyration and polymirogyria.
Collapse
Affiliation(s)
- Kazuyuki Nakamura
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan.
| | | | | | | | | |
Collapse
|
515
|
Laguette N, Rahm N, Sobhian B, Chable-Bessia C, Münch J, Snoeck J, Sauter D, Switzer WM, Heneine W, Kirchhoff F, Delsuc F, Telenti A, Benkirane M. Evolutionary and functional analyses of the interaction between the myeloid restriction factor SAMHD1 and the lentiviral Vpx protein. Cell Host Microbe 2012; 11:205-17. [PMID: 22305291 DOI: 10.1016/j.chom.2012.01.007] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/08/2011] [Accepted: 01/12/2012] [Indexed: 12/21/2022]
Abstract
SAMHD1 has recently been identified as an HIV-1 restriction factor operating in myeloid cells. As a countermeasure, the Vpx accessory protein from HIV-2 and certain lineages of SIV have evolved to antagonize SAMHD1 by inducing its ubiquitin-proteasome-dependent degradation. Here, we show that SAMHD1 experienced strong positive selection episodes during primate evolution that occurred in the Catarrhini ancestral branch prior to the separation between hominoids (gibbons and great apes) and Old World monkeys. The identification of SAMHD1 residues under positive selection led to mapping the Vpx-interaction domain of SAMHD1 to its C-terminal region. Importantly, we found that while SAMHD1 restriction activity toward HIV-1 is evolutionarily maintained, antagonism of SAMHD1 by Vpx is species-specific. The distinct evolutionary signature of SAMHD1 sheds light on the development of its antiviral specificity.
Collapse
Affiliation(s)
- Nadine Laguette
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Unité Propre de Recherche 1142, Laboratoires de Virologie Moléculaire, 34000 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
516
|
Lim ES, Fregoso OI, McCoy CO, Matsen FA, Malik HS, Emerman M. The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx. Cell Host Microbe 2012; 11:194-204. [PMID: 22284954 DOI: 10.1016/j.chom.2012.01.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/05/2011] [Accepted: 12/15/2011] [Indexed: 11/26/2022]
Abstract
The human SAMHD1 protein potently restricts lentiviral infection in dendritic cells and monocyte/macrophages but is antagonized by the primate lentiviral protein Vpx, which targets SAMHD1 for degradation. However, only two of eight primate lentivirus lineages encode Vpx, whereas its paralog, Vpr, is conserved across all extant primate lentiviruses. We find that not only multiple Vpx but also some Vpr proteins are able to degrade SAMHD1, and such antagonism led to dramatic positive selection of SAMHD1 in the primate subfamily Cercopithecinae. Residues that have evolved under positive selection precisely determine sensitivity to Vpx/Vpr degradation and alter binding specificity. By overlaying these functional analyses on a phylogenetic framework of Vpr and Vpx evolution, we can decipher the chronology of acquisition of SAMHD1-degrading abilities in lentiviruses. We conclude that vpr neofunctionalized to degrade SAMHD1 even prior to the birth of a separate vpx gene, thereby initiating an evolutionary arms race with SAMHD1.
Collapse
Affiliation(s)
- Efrem S Lim
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | |
Collapse
|
517
|
Abstract
Aicardi-Goutières syndrome (AGS) is a hereditary neurodegenerative disorder characterized mainly by early onset progressive encephalopathy, concomitant with an increase in interferon-α levels in the cerebrospinal fluid. Although it was initially mistaken for intrauterine viral infections, AGS has now been genetically attributed to a lack of adequate processing of cellular nucleic acid debris, which culminates in the perpetual trigger of the innate and acquired immune responses. Although the exact mechanisms governing AGS are not fully understood, significant strides have been recently achieved in better characterizing the disorder and the molecular functions of the five known proteins found mutated in AGS. Studies have now uncovered that AGS is tightly linked with the predisposition to other autoimmune disorders such as familial chilblain lupus and systemic lupus erythematosus. Moreover, at least two of the proteins mutated in AGS, namely TREX1 and SAMHD1, also seem to have antagonistic roles in safeguarding humans from human immunodeficiency virus (HIV) infections. We hereby synthesize the current developments into the greater framework of AGS and suggest that a better understanding of AGS might help usher a better treatment not only for some autoimmune disorders but also possibly for patients suffering from HIV infections, too.
Collapse
Affiliation(s)
- C Chahwan
- Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
518
|
Abstract
Monogenic autoimmune syndromes provide a rare yet powerful glimpse into the fundamental mechanisms of immunologic tolerance. Such syndromes reveal not only the contribution of an individual breakpoint in tolerance but also patterns in the pathogenesis of autoimmunity. Disturbances in innate immunity, a system built for ubiquitous sensing of danger signals, tend to generate systemic autoimmunity. For example, defects in the clearance of self-antigens and chronic stimulation of type 1 interferons lead to the systemic autoimmunity seen in C1q deficiency, SPENCDI, and AGS. In contrast, disturbances of adaptive immunity, which is built for antigen specificity, tend to produce organ-specific autoimmunity. Thus, the loss of lymphocyte homeostasis, whether through defects in apoptosis, suppression, or negative selection, leads to organ-specific autoimmunity in ALPS, IPEX, and APS1. We discuss the unique mechanisms of disease in these prominent syndromes as well as how they contribute to the spectrum of organ-specific or systemic autoimmunity. The continued study of rare variants in autoimmune disease will inform future investigations and treatments directed at rare and common autoimmune diseases alike.
Collapse
Affiliation(s)
- Mickie H. Cheng
- Diabetes Center; Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Francisco, San Francisco, California 94143;
| | - Mark S. Anderson
- Diabetes Center; Department of Medicine, Division of Endocrinology and Metabolism, University of California at San Francisco, San Francisco, California 94143;
| |
Collapse
|
519
|
Teleshova N, Derby N, Martinelli E, Pugach P, Calenda G, Robbiani M. Simian immunodeficiency virus interactions with macaque dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:155-81. [PMID: 22975875 DOI: 10.1007/978-1-4614-4433-6_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This chapter summarizes advances in the following areas: (1) dendritic cell (DC)-mediated simian immunodeficiency virus (SIV) transmission, (2) role of DCs in innate and adaptive immunity against SIV, and (3) approaches to harness DC function to induce anti-SIV responses. The nonhuman primate (NHP) model of human immunodeficiency virus (HIV) infection in rhesus macaques and other Asian NHP species is highly relevant to advance the understanding of virus-host interactions critical for transmission and disease pathogenesis. HIV infection is associated with changes in frequency, phenotype, and function of the two principal subsets of DCs, myeloid DCs and plasmacytoid DCs. DC biology during pathogenic SIV infection is strikingly similar to that observed in HIV-infected patients. The NHP models provide an opportunity to dissect the requirements for DC-driven SIV infection and to understand how SIV distorts the DC system to its advantage. Furthermore, the SIV model of mucosal transmission enables the study of the earliest events of infection at the portal of entry that cannot be studied in humans, and, importantly, the involvement of DCs. Nonpathogenic infection in African NHP hosts allows investigations into the role of DCs in disease control. Understanding how DCs are altered during SIV infection is critical to the design of therapeutic and preventative strategies against HIV.
Collapse
Affiliation(s)
- Natalia Teleshova
- HIV and AIDS Program, Center for Biomedical Research, Population Council, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
520
|
Ahmed Z, Czubala M, Blanchet F, Piguet V. HIV impairment of immune responses in dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:201-38. [PMID: 22975877 DOI: 10.1007/978-1-4614-4433-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Dendritic cells and their subsets are diverse populations of immune cells in the skin and mucous membranes that possess the ability to sense the presence of microbes and orchestrate an efficient and adapted immune response. Dendritic cells (DC) have the unique ability to act as a bridge between the innate and adaptive immune responses. These cells are composed of a number of subsets behaving with preferential and specific features depending on their location and surrounding environment. Langerhans cells (LC) or dermal DC (dDC) are readily present in mucosal areas. Other DC subsets such as plasmacytoid DC (pDC), myeloid DC (myDC), or monocyte-derived DC (MDDC) are thought to be recruited or differentiated in sites of pathogenic challenge. Upon HIV infection, DC and their subsets are likely among the very first immune cells to encounter incoming pathogens and initiate innate and adaptive immune responses. However, as evidenced during HIV infection, some pathogens have evolved subtle strategies to hijack key cellular machineries essential to generate efficient antiviral responses and subvert immune responses for spread and survival.In this chapter, we review recent research aimed at investigating the involvement of DC subtypes in HIV transmission at mucosal sites, concentrating on HIV impact on cellular signalling and trafficking pathways in DC leading to DC-mediated immune response alterations and viral immune evasion. We also address some aspects of DC functions during the chronic immune pathogenesis and conclude with an overview of the current and novel therapeutic and prophylactic strategies aimed at improving DC-mediated immune responses, thus to potentially tackle the early events of mucosal HIV infection and spread.
Collapse
Affiliation(s)
- Zahra Ahmed
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine, Cardiff, Wales, UK
| | | | | | | |
Collapse
|
521
|
Izzotti A, Longobardi M, Cartiglia C, Anzuini F, Arrigo P, Fazzi E, Orcesi S, Piana RL, Pulliero A. Different mutations in three prime repair exonuclease 1 and ribonuclease H2 genes affect clinical features in Aicardi-Goutieres syndrome. J Child Neurol 2012; 27:51-60. [PMID: 21862834 DOI: 10.1177/0883073811413582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aicardi-Goutières syndrome is a rare encephalopathy of mutational origin characterized by increased levels of interferon alpha in cerebrospinal fluid. The aim of this study was to explore the influence of different Aicardi-Goutières syndrome genotypes on the clinical course of patients, seeking to identify specific gene expression profiles able to explain Aicardi-Goutières syndrome phenotype differences. We detected the occurrence of Aicardi-Goutières syndrome mutations in 21 patients and compared microarray gene-expression data of cerebrospinal fluid lymphocytes with clinical variables. The levels of interferon alpha in cerebrospinal fluid were high in all patients; we found differences in the expression of genes encoding for Toll-like receptor, endogenous RNases, T lymphocyte activation, angiogenesis inhibition, and peripheral interferon alpha production. These results indicate that further to interferon alpha production in the central nervous system, a variety of other pathogenic mechanisms is activated in Aicardi-Goutières syndrome to various degrees in different patients, thus explaining the interindividual difference in Aicardi-Goutières syndrome course.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, University of Genoa, Genoa, 16132, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
522
|
Silvin A, Manel N. Interactions between HIV-1 and innate immunity in dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:183-200. [PMID: 22975876 DOI: 10.1007/978-1-4614-4433-6_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Dendritic cells couple pathogen sensing with induction of innate and adaptive immune responses. Pathogen sensing in dendritic cells relies on interactions between molecular patterns of the pathogens and germline-encoded, also referred to as innate, receptors. In this chapter, we analyze some of the interactions between HIV-1 and the innate immune system in dendritic cells. The HIV-1 replication cycle is constituted by an extracellular and an intracellular phase. The two phases of the cycle provide distinct opportunities for interactions with cell-extrinsic and cell-intrinsic mechanisms in dendritic cells. According to the types of dendritic cells, the mechanisms of innate interactions between dendritic cells and HIV-1 lead to specific responses. These innate interactions may contribute to influencing and shaping the adaptive immune response against the virus.
Collapse
Affiliation(s)
- Aymeric Silvin
- Department of Immunity and Cancer, Institut Curie-INSERM U932, Paris, France
| | | |
Collapse
|
523
|
Kawasaki T, Kawai T, Akira S. Recognition of nucleic acids by pattern-recognition receptors and its relevance in autoimmunity. Immunol Rev 2011; 243:61-73. [PMID: 21884167 PMCID: PMC7165622 DOI: 10.1111/j.1600-065x.2011.01048.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Summary: Host cells trigger signals for innate immune responses upon recognition of conserved structures in microbial pathogens. Nucleic acids, which are critical components for inheriting genetic information in all species including pathogens, are key structures sensed by the innate immune system. The corresponding receptors for foreign nucleic acids include members of Toll‐like receptors, RIG‐I‐like receptors, and intracellular DNA sensors. While nucleic acid recognition by these receptors is required for host defense against the pathogen, there is a potential risk to the host of self‐nucleic acids recognition, thus precipitating autoimmune and autoinflammatory diseases. In this review, we discuss the roles of nucleic acid‐sensing receptors in guarding against pathogen invasion, discriminating between self and non‐self, and contributing to autoimmunity and autoinflammatory diseases.
Collapse
Affiliation(s)
- Takumi Kawasaki
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
524
|
Gavery MR, Roberts SB. Characterizing short read sequencing for gene discovery and RNA-Seq analysis in Crassostrea gigas. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2011; 7:94-9. [PMID: 22244882 DOI: 10.1016/j.cbd.2011.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 12/21/2022]
Abstract
Advances in DNA sequencing technology have provided opportunities to produce new transcriptomic resources for species that lack completely sequenced genomes. However, there are limited examples that rely solely on ultra-short read sequencing technologies (e.g. Solexa, SOLiD) for transcript discovery and gene expression analysis (i.e. RNA-Seq). Here we use SOLiD sequencing to examine gene expression patterns in Pacific oyster (Crassostrea gigas) populations exposed to varying degrees of anthropogenic impact. Novel transcripts were identified and RNA-Seq analysis revealed several hundred differentially expressed genes. Gene enrichment analysis determined that in addition to biological processes predicted to be associated with anthropogenic influences (e.g. immune response), other processes play important roles including cell recognition and cell adhesion. To evaluate the effectiveness of restricting characterization solely to short read sequences, mapping and RNA-Seq analysis were also performed using publicly available transcriptome sequence data as a scaffold. This study demonstrates that ultra-short read sequencing technologies can effectively generate novel transcriptome information, identify differentially expressed genes, and will be important for examining environmental physiology of non-model organisms.
Collapse
Affiliation(s)
- Mackenzie R Gavery
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA 98105, USA.
| | | |
Collapse
|
525
|
How SAMHD1 changes our view of viral restriction. Trends Immunol 2011; 33:26-33. [PMID: 22177690 DOI: 10.1016/j.it.2011.11.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 10/31/2011] [Accepted: 11/02/2011] [Indexed: 01/21/2023]
Abstract
Recent studies have uncovered sterile alpha motif and HD domain 1 (SAMHD1) as the restriction factor that blocks HIV-1 replication in myeloid cells. In contrast to previously identified HIV-1 restriction factors, SAMHD1 does not meet a countermeasure developed by HIV-1. However, HIV-2 and certain simian immunodeficiency virus (SIV) strains express the auxiliary protein Vpx that potently blocks SAMHD1. It is therefore perplexing why this function has been lost or not acquired during the course of lentiviral evolution. This article summarizes the similarities and differences between SAMHD1 and other HIV-1 restriction factors, while highlighting the new questions that are emerging about the crosstalk between restriction factors and innate immune responses.
Collapse
|
526
|
Manry J, Laval G, Patin E, Fornarino S, Itan Y, Fumagalli M, Sironi M, Tichit M, Bouchier C, Casanova JL, Barreiro LB, Quintana-Murci L. Evolutionary genetic dissection of human interferons. ACTA ACUST UNITED AC 2011; 208:2747-59. [PMID: 22162829 PMCID: PMC3244034 DOI: 10.1084/jem.20111680] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As revealed by population genetic analyses, different human interferon genes evolved under distinct selective constraints and signatures of positive selection vary according to geographic region, suggesting that some sequence changes may have conferred an advantage by increasing resistance to viral infection. Interferons (IFNs) are cytokines that play a key role in innate and adaptive immune responses. Despite the large number of immunological studies of these molecules, the relative contributions of the numerous IFNs to human survival remain largely unknown. Here, we evaluated the extent to which natural selection has targeted the human IFNs and their receptors, to provide insight into the mechanisms that govern host defense in the natural setting. We found that some IFN-α subtypes, such as IFN-α6, IFN-α8, IFN-α13, and IFN-α14, as well as the type II IFN-γ, have evolved under strong purifying selection, attesting to their essential and nonredundant function in immunity to infection. Conversely, selective constraints have been relaxed for other type I IFNs, particularly for IFN-α10 and IFN-ε, which have accumulated missense or nonsense mutations at high frequencies within the population, suggesting redundancy in host defense. Finally, type III IFNs display geographically restricted signatures of positive selection in European and Asian populations, indicating that genetic variation at these genes has conferred a selective advantage to the host, most likely by increasing resistance to viral infection. Our population genetic analyses show that IFNs differ widely in their biological relevance, and highlight evolutionarily important determinants of host immune responsiveness.
Collapse
Affiliation(s)
- Jérémy Manry
- Unit of Human Evolutionary Genetics, Department of Genomes and Genetics, Institut Pasteur, F-75015 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
527
|
Berger A, Sommer AFR, Zwarg J, Hamdorf M, Welzel K, Esly N, Panitz S, Reuter A, Ramos I, Jatiani A, Mulder LCF, Fernandez-Sesma A, Rutsch F, Simon V, König R, Flory E. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog 2011; 7:e1002425. [PMID: 22174685 PMCID: PMC3234228 DOI: 10.1371/journal.ppat.1002425] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/25/2011] [Indexed: 12/05/2022] Open
Abstract
Myeloid blood cells are largely resistant to infection with human immunodeficiency virus type 1 (HIV-1). Recently, it was reported that Vpx from HIV-2/SIVsm facilitates infection of these cells by counteracting the host restriction factor SAMHD1. Here, we independently confirmed that Vpx interacts with SAMHD1 and targets it for ubiquitin-mediated degradation. We found that Vpx-mediated SAMHD1 degradation rendered primary monocytes highly susceptible to HIV-1 infection; Vpx with a T17A mutation, defective for SAMHD1 binding and degradation, did not show this activity. Several single nucleotide polymorphisms in the SAMHD1 gene have been associated with Aicardi-Goutières syndrome (AGS), a very rare and severe autoimmune disease. Primary peripheral blood mononuclear cells (PBMC) from AGS patients homozygous for a nonsense mutation in SAMHD1 (R164X) lacked endogenous SAMHD1 expression and support HIV-1 replication in the absence of exogenous activation. Our results indicate that within PBMC from AGS patients, CD14+ cells were the subpopulation susceptible to HIV-1 infection, whereas cells from healthy donors did not support infection. The monocytic lineage of the infected SAMHD1 -/- cells, in conjunction with mostly undetectable levels of cytokines, chemokines and type I interferon measured prior to infection, indicate that aberrant cellular activation is not the cause for the observed phenotype. Taken together, we propose that SAMHD1 protects primary CD14+ monocytes from HIV-1 infection confirming SAMHD1 as a potent lentiviral restriction factor. Lentiviral accessory proteins play important roles in antagonizing host proteins aimed at suppressing HIV-1 replication at a cellular level. The SIV/HIV-2 protein Vpx counteracts SAMHD1, a previously unknown antiviral factor within myeloid blood cells, rendering these cells permissive to primate immunodeficiency viruses. We confirm in this study that Vpx interacts with SAMHD1 leading to ubiquitin-mediated degradation of SAMHD1, and renders CD14 positive monocytes susceptible to HIV-1 infection. We provide new insights into the ability of SAMHD1 to protect monocytic cells from HIV-1 infection by using primary cells from patients with Aicardi-Goutières syndrome (AGS) lacking endogenous SAMHD1 expression. We show that peripheral monocytic cells of AGS patients are highly permissive to HIV-1. Thus, our study demonstrates that SAMHD1 is critical for restriction of HIV-1 infection in monocytes adding SAMHD1 as a novel innate defense factor.
Collapse
Affiliation(s)
- André Berger
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Andreas F. R. Sommer
- Research Group “Host-Pathogen Interactions”, Paul-Ehrlich-Institute, Langen, Germany
| | - Jenny Zwarg
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Matthias Hamdorf
- Research Group “Host-Pathogen Interactions”, Paul-Ehrlich-Institute, Langen, Germany
| | - Karin Welzel
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Nicole Esly
- Research Group “Host-Pathogen Interactions”, Paul-Ehrlich-Institute, Langen, Germany
| | - Sylvia Panitz
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Andreas Reuter
- Division of Allergology, Paul-Ehrlich-Institute, Langen, Germany
| | - Irene Ramos
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Asavari Jatiani
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lubbertus C. F. Mulder
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ana Fernandez-Sesma
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- The Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children's Hospital, Münster, Germany
| | - Viviana Simon
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
- The Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Renate König
- Research Group “Host-Pathogen Interactions”, Paul-Ehrlich-Institute, Langen, Germany
- Infectious & Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail: (RK); (EF)
| | - Egbert Flory
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
- * E-mail: (RK); (EF)
| |
Collapse
|
528
|
Pulliero A, Fazzi E, Cartiglia C, Orcesi S, Balottin U, Uggetti C, La Piana R, Olivieri I, Galli J, Izzotti A. The Aicardi-Goutières syndrome. Molecular and clinical features of RNAse deficiency and microRNA overload. Mutat Res 2011; 717:99-108. [PMID: 21524657 DOI: 10.1016/j.mrfmmm.2011.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 02/24/2011] [Accepted: 03/31/2011] [Indexed: 05/30/2023]
Abstract
Intracellular RNAses are involved in various functions, including microRNA maturation and turnover. Mutations occurring in genes encoding RNAses cause Aicardi-Goutiéres syndrome (AGS). AGS mutations silence RNAse activity, thus inducing accumulation of endogenous RNAs, mainly consisting of short RNAs and microRNAs. Overload of intracellular RNA triggers Toll like receptor-dependent interferon-alpha production in the brain, which in turn activates neurotoxic lymphocytes and inhibits angiogenesis thus inducing the typical clinical phenotype of AGS. However, these pathogenic mechanisms are attenuated after three years of age by the endogenous production of DNAJP58IPK and Cystatin F, which arrest AGS progression. Because RNAses are involved in microRNA turnover, we evaluated the expression of 957 microRNAs in lymphocytes from AGS patients and control patients. Our results indicate that microRNA overload occurs in AGS patients. This upregulation inhibits microRNA turnover impeding the synthesis of the novel microRNAs required for the differentiation and myelination of the brain during the initial period of postnatal life. These pathogenic mechanisms result in AGS, a neurological syndrome characterized by irritability, mild hyperpyrexia, pyramidal and extrapyramidal signs, and spastic-dystonic tetraplegia. Typical cerebrospinal fluid alterations include lymphocytosis and elevated interferon-alpha levels. Brain imaging demonstrates cerebral calcifications, white matter abnormalities, and progressive cerebral atrophy.Thus, evidence exists that mutations silencing intracellular RNases affect microRNA turnover resulting in the severe clinical consequences in the brain characterizing the clinical feature of AGS.
Collapse
Affiliation(s)
- A Pulliero
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
529
|
|
530
|
Carr IM, Diggle CP, Touqan N, Anwar R, Sheridan EG, Bonthron DT, Johnson CA, Ali M, Markham AF. Identification of autosomal recessive disease loci using out-bred nuclear families. Hum Mutat 2011; 33:338-42. [PMID: 22052625 DOI: 10.1002/humu.21645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/18/2011] [Indexed: 11/05/2022]
Abstract
Autozygosity mapping has been a powerful method for the identification of autosomal recessive disease genes. However, the approach is limited by the availability of suitable consanguineous pedigrees. While rare autosomal recessive diseases are overrepresented in consanguineous families, a significant proportion of affected patients nonetheless originate in families where the parents are apparently unrelated. However, due to their relative rarity and the heterogeneity of disease alleles, it has proved difficult to use these patients to identify disease loci. Therefore, we developed "Phaser," a computer application that is able to infer the phase of SNP alleles and so haplotype entire chromosomes in small nuclear families (http://dna.leeds.ac.uk/Phaser). Once the index case's chromosomes have been haplotyped, it is then possible to deduce those of the parents and subsequently identify the parental origin of all the siblings' DNA. By combining information from a small number of nuclear families, it may then be possible to identify linkage to the recessive disease locus, in both in-bred and out-bred families. We have illustrated the program's utility by using it to correctly identify both the cystic fibrosis locus (using two unrelated compound heterozygous CEPH families) and a new gene mutated in early-onset myopathy with respiratory distress and dysphagia locus in a single consanguineous pedigree.
Collapse
Affiliation(s)
- Ian M Carr
- School of Medicine, University of Leeds, Leeds, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
531
|
Powell RD, Holland PJ, Hollis T, Perrino FW. Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 2011; 286:43596-43600. [PMID: 22069334 DOI: 10.1074/jbc.c111.317628] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SAMHD1 protein is an HIV-1 restriction factor that is targeted by the HIV-2 accessory protein Vpx in myeloid lineage cells. Mutations in the SAMHD1 gene cause Aicardi-Goutières syndrome, a genetic disease that mimics congenital viral infection. To determine the physiological function of the SAMHD1 protein, the SAMHD1 gene was cloned, recombinant protein was produced, and the catalytic activity of the purified enzyme was identified. We show that SAMHD1 contains a dGTP-regulated deoxynucleotide triphosphohydrolase. We propose that Vpx targets SAMHD1 for degradation in a viral strategy to control cellular deoxynucleotide levels for efficient replication.
Collapse
Affiliation(s)
- Rebecca D Powell
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Paul J Holland
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Thomas Hollis
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Fred W Perrino
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157.
| |
Collapse
|
532
|
HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 2011; 480:379-82. [DOI: 10.1038/nature10623] [Citation(s) in RCA: 618] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/11/2011] [Indexed: 12/20/2022]
|
533
|
Ramantani G, Häusler M, Niggemann P, Wessling B, Guttmann H, Mull M, Tenbrock K, Lee-Kirsch MA. Aicardi-Goutières syndrome and systemic lupus erythematosus (SLE) in a 12-year-old boy with SAMHD1 mutations. J Child Neurol 2011; 26:1425-8. [PMID: 21670392 DOI: 10.1177/0883073811408310] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aicardi-Goutières syndrome is an early-onset encephalopathy with a presumed immune pathogenesis caused by inherited defects in nucleic acid metabolism. The clinical picture resembles a congenital viral infection despite negative investigations for common viruses. In addition to leukoencephalopathy with calcifications of basal ganglia, patients show increased levels of the antiviral cytokine interferon-α in cerebrospinal fluid. We report on a 12-year-old boy with Aicardi-Goutières syndrome and systemic lupus erythematosus (SLE) due to mutations in the SAMHD1 (sterile alpha motif domain and HD domain-containing protein 1) gene, illustrating an emerging pattern of the natural history of Aicardi-Goutières syndrome characterized by neurological disease followed by symptoms of systemic autoimmunity. Thus, Aicardi-Goutières syndrome constitutes a model disease for systemic autoimmunity triggered by the activation of the innate immune system. Recognition of the etiologic link between Aicardi-Goutières syndrome and systemic lupus erythematosus has direct implications on therapeutic management and suggests that early immune modulatory intervention can improve neurological outcome.
Collapse
|
534
|
Theofilopoulos AN, Kono DH, Beutler B, Baccala R. Intracellular nucleic acid sensors and autoimmunity. J Interferon Cytokine Res 2011; 31:867-86. [PMID: 22029446 DOI: 10.1089/jir.2011.0092] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A collection of molecular sensors has been defined by studies in the last decade that can recognize a diverse array of pathogens and initiate protective immune and inflammatory responses. However, if the molecular signatures recognized are shared by both foreign and self-molecules, as is the case of nucleic acids, then the responses initiated by these sensors may have deleterious consequences. Notably, this adverse occurrence may be of primary importance in autoimmune disease pathogenesis. In this case, microbe-induced damage or mishandled physiologic processes could lead to the generation of microparticles containing self-nucleic acids. These particles may inappropriately gain access to the cytosol or endolysosomes and, hence, engage resident RNA and DNA sensors. Evidence, as reviewed here, strongly indicates that these sensors are primary contributors to autoimmune disease pathogenesis, spearheading efforts toward development of novel therapeutics for these disorders.
Collapse
Affiliation(s)
- Argyrios N Theofilopoulos
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92137, USA.
| | | | | | | |
Collapse
|
535
|
Zielonka J, Münk C. Cellular restriction factors of feline immunodeficiency virus. Viruses 2011; 3:1986-2005. [PMID: 22069525 PMCID: PMC3205391 DOI: 10.3390/v3101986] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 11/16/2022] Open
Abstract
Lentiviruses are known for their narrow cell- and species-tropisms, which are determined by cellular proteins whose absence or presence either support viral replication (dependency factors, cofactors) or inhibit viral replication (restriction factors). Similar to Human immunodeficiency virus type 1 (HIV-1), the cat lentivirus Feline immunodeficiency virus (FIV) is sensitive to recently discovered cellular restriction factors from non-host species that are able to stop viruses from replicating. Of particular importance are the cellular proteins APOBEC3, TRIM5α and tetherin/BST-2. In general, lentiviruses counteract or escape their species’ own variant of the restriction factor, but are targeted by the orthologous proteins of distantly related species. Most of the knowledge regarding lentiviral restriction factors has been obtained in the HIV-1 system; however, much less is known about their effects on other lentiviruses. We describe here the molecular mechanisms that explain how FIV maintains its replication in feline cells, but is largely prevented from cross-species infections by cellular restriction factors.
Collapse
Affiliation(s)
- Jörg Zielonka
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany; E-Mail:
- Roche Glycart AG, Schlieren 8952, Switzerland
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-221-8110887; Fax: +49-221-8115431
| |
Collapse
|
536
|
Kuki I, Kawawaki H, Okazaki S, Kimura-Ohba S, Nakano T, Fukushima H, Inoue T, Tomiwa K, Itoh M. Progressive leukoencephalopathy with intracranial calcification, congenital deafness, and developmental deterioration. Am J Med Genet A 2011; 155A:2832-7. [PMID: 21964701 DOI: 10.1002/ajmg.a.34256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 06/27/2011] [Indexed: 11/08/2022]
Abstract
We report on a 12-year-old male with a unique cerebral white matter disease. His initial symptoms were congenital hearing loss and multiple intracranial calcifications on head CT. He developed severe intellectual disability and epilepsy. MRI showed signal abnormalities in the posterior limbs of the internal capsules, thalami, and cerebral white matter. The abnormalities were progressive over time. The neuropathology revealed diffuse and severe disruption of myelin and axons of the cerebral white matter and cerebrospinal tracts. We performed various metabolic examinations, detailed pathological investigations and genetic analyses, but could not identify the cause. To our knowledge his clinical course has not been described in the literature.
Collapse
Affiliation(s)
- Ichiro Kuki
- Department of Pediatrics, Medical Center for Children, Osaka City General Hospital, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
537
|
Berger G, Durand S, Fargier G, Nguyen XN, Cordeil S, Bouaziz S, Muriaux D, Darlix JL, Cimarelli A. APOBEC3A is a specific inhibitor of the early phases of HIV-1 infection in myeloid cells. PLoS Pathog 2011; 7:e1002221. [PMID: 21966267 PMCID: PMC3178557 DOI: 10.1371/journal.ppat.1002221] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/30/2011] [Indexed: 11/19/2022] Open
Abstract
Myeloid cells play numerous roles in HIV-1 pathogenesis serving as a vehicle for viral spread and as a viral reservoir. Yet, cells of this lineage generally resist HIV-1 infection when compared to cells of other lineages, a phenomenon particularly acute during the early phases of infection. Here, we explore the role of APOBEC3A on these steps. APOBEC3A is a member of the APOBEC3 family that is highly expressed in myeloid cells, but so far lacks a known antiviral effect against retroviruses. Using ectopic expression of APOBEC3A in established cell lines and specific silencing in primary macrophages and dendritic cells, we demonstrate that the pool of APOBEC3A in target cells inhibits the early phases of HIV-1 infection and the spread of replication-competent R5-tropic HIV-1, specifically in cells of myeloid origins. In these cells, APOBEC3A affects the amount of vDNA synthesized over the course of infection. The susceptibility to the antiviral effect of APOBEC3A is conserved among primate lentiviruses, although the viral protein Vpx coded by members of the SIV(SM)/HIV-2 lineage provides partial protection from APOBEC3A during infection. Our results indicate that APOBEC3A is a previously unrecognized antiviral factor that targets primate lentiviruses specifically in myeloid cells and that acts during the early phases of infection directly in target cells. The findings presented here open up new venues on the role of APOBEC3A during HIV infection and pathogenesis, on the role of the cellular context in the regulation of the antiviral activities of members of the APOBEC3 family and more generally on the natural functions of APOBEC3A.
Collapse
Affiliation(s)
- Gregory Berger
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Stéphanie Durand
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Guillaume Fargier
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Xuan-Nhi Nguyen
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Stéphanie Cordeil
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Serge Bouaziz
- UMR 8015 CNRS, University Paris Descartes, Paris, France
| | - Delphine Muriaux
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Jean-Luc Darlix
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
| | - Andrea Cimarelli
- Department of Human Virology, ENS-L, Lyon, France
- INSERM, U758, Lyon, France
- University of Lyon, Lyon I, IFR128, Lyon, France
- * E-mail:
| |
Collapse
|
538
|
Power C, Hui E, Vivithanaporn P, Acharjee S, Polyak M. Delineating HIV-associated neurocognitive disorders using transgenic models: the neuropathogenic actions of Vpr. J Neuroimmune Pharmacol 2011; 7:319-31. [PMID: 21918813 DOI: 10.1007/s11481-011-9310-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
HIV-associated neurocognitive disorders (HAND) represent a constellation of neurological disabilities defined by neuropsychological impairments, neurobehavioral abnormalities and motor deficits. To gain insights into the mechanisms underlying the development of these disabilities, several transgenic models have been developed over the past two decades, which have provided important information regarding the cellular and molecular factors contributing to the neuropathogenesis of HAND. Herein, we concentrate on the neuropathogenic effects of HIV-1 Vpr expressed under the control of c-fms, resulting transgene expression in myeloid cells in both the central and peripheral nervous systems. Vpr's actions, possibly through its impact on cell cycle machinery, in brain culminate in neuronal and astrocyte injury and death through apoptosis involving activation of caspases-3, -6 and -9 depending on the individual target cell type. Indeed, these outcomes are also induced by soluble Vpr implying Vpr's effects stem from direct interaction with target cells. Remarkably, in vivo transgenic Vpr expression induces a neurodegenerative phenotype defined by neurobehavioral deficits and neuronal loss in the absence of frank inflammation. Implantation of another viral protein, hepatitis C virus (HCV) core, into Vpr transgenic animals' brains stimulated neuroinflammation and amplified the neurodegenerative disease phenotype, thereby recapitulating HCV's putative neuropathogenic actions. The availability of different transgenic models to study HIV neuropathogenesis represents exciting and innovative approaches to understanding disease mechanisms and perhaps developing new therapeutic strategies in the future.
Collapse
Affiliation(s)
- Christopher Power
- Department of Medicine (Neurology), University of Alberta, Heritage Medical Research Center, Edmonton, AB, Canada.
| | | | | | | | | |
Collapse
|
539
|
Planelles V. Restricted access to myeloid cells explained. Viruses 2011; 3:1624-33. [PMID: 21994799 PMCID: PMC3187686 DOI: 10.3390/v3091624] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/24/2011] [Accepted: 08/27/2011] [Indexed: 11/16/2022] Open
Abstract
The lentiviral accessory protein, Vpx, is known to counteract a restriction factor that is specific to myeloid cells, such as macrophages and dendritic cells. This review summarizes the findings in two seminal studies that identify SAMHD1 as the cellular protein that is responsible for myeloid cell restriction, and establish the existence of other types of restriction in these cells.
Collapse
Affiliation(s)
- Vicente Planelles
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Emma Eccles Jones Building, 15 North Medical Drive East 2100, Room 2520, Salt Lake City, UT 84112, USA.
| |
Collapse
|
540
|
St Gelais C, Wu L. SAMHD1: a new insight into HIV-1 restriction in myeloid cells. Retrovirology 2011; 8:55. [PMID: 21740548 PMCID: PMC3142215 DOI: 10.1186/1742-4690-8-55] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/08/2011] [Indexed: 11/10/2022] Open
Abstract
Human myeloid-lineage cells are refractory to HIV-1 infection. The Vpx proteins from HIV-2 and sooty mangabey SIV render these cells permissive to HIV-1 infection through proteasomal degradation of a putative restriction factor. Two recent studies discovered the cellular protein SAMHD1 to be this restriction factor, demonstrating that Vpx induces proteasomal degradation of SAMHD1 and enhances HIV-1 infection in myeloid-lineage cells. SAMHD1 functions as a myeloid-cell-specific HIV-1 restriction factor by inhibiting viral DNA synthesis. Here we discuss the implications of these findings in delineating the mechanisms of HIV-1 restriction in myeloid-lineage cells and the potential role of Vpx in lentiviral pathogenesis.
Collapse
Affiliation(s)
- Corine St Gelais
- Center for Retrovirus Research, Department of Veterinary Bioscience, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | | |
Collapse
|
541
|
|
542
|
Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011; 474:658-61. [PMID: 21720370 PMCID: PMC3179858 DOI: 10.1038/nature10195] [Citation(s) in RCA: 964] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 05/10/2011] [Indexed: 01/04/2023]
Abstract
Macrophages and dendritic cells have key roles in viral infections, providing virus reservoirs that frequently resist antiviral therapies and linking innate virus detection to antiviral adaptive immune responses. Human immunodeficiency virus 1 (HIV-1) fails to transduce dendritic cells and has a reduced ability to transduce macrophages, due to an as yet uncharacterized mechanism that inhibits infection by interfering with efficient synthesis of viral complementary DNA. In contrast, HIV-2 and related simian immunodeficiency viruses (SIVsm/mac) transduce myeloid cells efficiently owing to their virion-associated Vpx accessory proteins, which counteract the restrictive mechanism. Here we show that the inhibition of HIV-1 infection in macrophages involves the cellular SAM domain HD domain-containing protein 1 (SAMHD1). Vpx relieves the inhibition of lentivirus infection in macrophages by loading SAMHD1 onto the CRL4(DCAF1) E3 ubiquitin ligase, leading to highly efficient proteasome-dependent degradation of the protein. Mutations in SAMHD1 cause Aicardi-Goutières syndrome, a disease that produces a phenotype that mimics the effects of a congenital viral infection. Failure to dispose of endogenous nucleic acid debris in Aicardi-Goutières syndrome results in inappropriate triggering of innate immune responses via cytosolic nucleic acids sensors. Thus, our findings show that macrophages are defended from HIV-1 infection by a mechanism that prevents an unwanted interferon response triggered by self nucleic acids, and uncover an intricate relationship between innate immune mechanisms that control response to self and to retroviral pathogens.
Collapse
|
543
|
Reply to du Moulin et al.: Cerebral vasculopathy is a common hallmark in individuals with
SAMHD1
mutations. Proc Natl Acad Sci U S A 2011. [DOI: 10.1073/pnas.1105431108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
544
|
Nomaguchi M, Fujita M, Adachi A. The Fourth Major Restriction Factor Against HIV/SIV. Front Microbiol 2011; 2:132. [PMID: 21713064 PMCID: PMC3114160 DOI: 10.3389/fmicb.2011.00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 11/13/2022] Open
Affiliation(s)
- Masako Nomaguchi
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School Tokushima, Japan
| | | | | |
Collapse
|
545
|
Mizuno Y, Takahashi K, Igarashi T, Saito M, Mizuguchi M. Congenital infection-like syndrome with intracranial calcification. Brain Dev 2011; 33:530-3. [PMID: 20926212 DOI: 10.1016/j.braindev.2010.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/17/2010] [Accepted: 09/08/2010] [Indexed: 11/25/2022]
Abstract
Congenital infection-like syndrome includes multiple disorders. Although novel syndromes have recently been described and their genetic defects identified, many cases remain unclassified. Here we report a patient with neuroradiologic findings of intracranial calcification and cerebellar hypoplasia, and clinical features of growth retardation, progressive pancytopenia, interstitial pneumonia, and immune abnormality. Our patient had a phenotypic overlap with Aicardi-Goutières syndrome and Hoyeraal-Hreidarsson syndrome, despite the absence of mutation in their responsible genes.
Collapse
Affiliation(s)
- Yoko Mizuno
- Department of Pediatrics, Graduate School of Medicine, the University of Tokyo
| | | | | | | | | |
Collapse
|
546
|
Cerebral vasculopathy is a common feature in Aicardi-Goutieres syndrome associated with SAMHD1 mutations. Proc Natl Acad Sci U S A 2011; 108:E232; author reply E233. [PMID: 21633013 DOI: 10.1073/pnas.1104699108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
547
|
Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Ségéral E, Yatim A, Emiliani S, Schwartz O, Benkirane M. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011; 474:654-7. [PMID: 21613998 DOI: 10.1038/nature10117] [Citation(s) in RCA: 1193] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 04/18/2011] [Indexed: 12/12/2022]
Abstract
The primate lentivirus auxiliary protein Vpx counteracts an unknown restriction factor that renders human dendritic and myeloid cells largely refractory to HIV-1 infection. Here we identify SAMHD1 as this restriction factor. SAMHD1 is a protein involved in Aicardi-Goutières syndrome, a genetic encephalopathy with symptoms mimicking congenital viral infection, that has been proposed to act as a negative regulator of the interferon response. We show that Vpx induces proteasomal degradation of SAMHD1. Silencing of SAMHD1 in non-permissive cell lines alleviates HIV-1 restriction and is associated with a significant accumulation of viral DNA in infected cells. Concurrently, overexpression of SAMHD1 in sensitive cells inhibits HIV-1 infection. The putative phosphohydrolase activity of SAMHD1 is probably required for HIV-1 restriction. Vpx-mediated relief of restriction is abolished in SAMHD1-negative cells. Finally, silencing of SAMHD1 markedly increases the susceptibility of monocytic-derived dendritic cells to infection. Our results demonstrate that SAMHD1 is an antiretroviral protein expressed in cells of the myeloid lineage that inhibits an early step of the viral life cycle.
Collapse
Affiliation(s)
- Nadine Laguette
- Institut de Génétique Humaine, Laboratoire de Virologie Moléculaire, CNRS UPR1142, Montpellier 34000, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
548
|
Affiliation(s)
- Shruti Sharma
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Katherine A. Fitzgerald
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
549
|
Munot P, Crow YJ, Ganesan V. Paediatric stroke: genetic insights into disease mechanisms and treatment targets. Lancet Neurol 2011; 10:264-74. [PMID: 21349441 DOI: 10.1016/s1474-4422(10)70327-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In children, stroke is as common as brain tumour and causes substantial mortality and long-term morbidity, with recurrence in up to 20%. There are three sets of international clinical guidelines relating to childhood stroke; however, acute and preventive treatment recommendations are based on interventions effective in adults, rather than data regarding efficacy in children. A wide spectrum of risk factors underlies childhood stroke, and these risk factors vary from those encountered in adults. Specific disease mechanisms implicated in childhood arterial ischaemic stroke have received little attention, but an increased understanding of disease pathogenesis could lead to novel targeted treatment approaches. Here, we consider insights into the pathogenesis of childhood arterial ischaemic stroke and cerebral arteriopathy, provided by current knowledge of Mendelian diseases that are associated with an increased risk of these conditions. We give particular attention to aspects of vascular development, homoeostasis, and response to environmental effects. Our analysis highlights a potential role for interventions already licensed for pharmaceutical use, as well as new therapeutic targets and avenues for further research.
Collapse
Affiliation(s)
- Pinki Munot
- Department of Neurology, Great Ormond Street Hospital for Children NHS Trust, London, UK.
| | | | | |
Collapse
|
550
|
Coffin SR, Hollis T, Perrino FW. Functional consequences of the RNase H2A subunit mutations that cause Aicardi-Goutieres syndrome. J Biol Chem 2011; 286:16984-91. [PMID: 21454563 DOI: 10.1074/jbc.m111.228833] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in the three genes encoding the heterotrimeric RNase H2 complex cause Aicardi-Goutières Syndrome (AGS). Our mouse RNase H2 structure revealed that the catalytic RNase H2A subunit interfaces mostly with the RNase H2C subunit that is intricately interwoven with the RNase H2B subunit. We mapped the positions of AGS-causing RNase H2A mutations using the mouse RNase H2 structure and proposed that these mutations cause varied effects on catalytic potential. To determine the functional consequences of these mutations, heterotrimeric human RNase H2 complexes containing the RNase H2A subunit mutations were prepared, and catalytic efficiencies and nucleic acid binding properties were compared with the wild-type (WT) complex. These analyses reveal a dramatic range of effects with mutations at conserved positions G37S, R186W, and R235Q, reducing enzymatic activities and substrate binding affinities by as much as a 1000-fold, whereas mutations at non-conserved positions R108W, N212I, F230L, T240M, and R291H reduced activities and binding modestly or not at all. All mutants purify as three-subunit complexes, further supporting the required heterotrimeric structure in eukaryotic RNase H2. These kinetic properties reveal varied functional consequences of AGS-causing mutations in the catalytic RNase H2A subunit and reflect the complex mechanisms of nuclease dysfunction that include catalytic deficiencies and altered protein-nucleic acid interactions relevant in AGS.
Collapse
Affiliation(s)
- Stephanie R Coffin
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|