501
|
Lang KS, Weigert C, Braedel S, Fillon S, Palmada M, Schleicher E, Rammensee HG, Lang F. Inhibition of interferon-gamma expression by osmotic shrinkage of peripheral blood lymphocytes. Am J Physiol Cell Physiol 2003; 284:C200-8. [PMID: 12475762 DOI: 10.1152/ajpcell.00259.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A hypertonic environment, as it prevails in renal medulla or in hyperosmolar states such as hyperglycemia of diabetes mellitus, has been shown to impair the immune response, thus facilitating the development of infection. The present experiments were performed to test whether hypertonicity influences activation of T lymphocytes. To this end, peripheral blood lymphocytes (PBL) of cytomegalovirus (CMV)-positive donors were stimulated by human leukocyte antigen (HLA)-A2-restricted CMV epitope NLVPMVATV to produce interferon (IFN)-gamma at varying extracellular osmolarity. As a result, increasing extracellular osmolarity during exposure to the CMV antigen indeed decreased IFN-gamma formation. Addition of NaCl was more effective than urea. A 50% inhibition was observed at 350 mosM by addition of NaCl. The combined application of the Ca(2+) ionophore ionomycin (1 microg/ml) and the phorbol ester phorbol 12-myristate 13-acetate (PMA; 5 microg/ml) stimulated IFN-gamma production, an effect again reversed by hyperosmolarity. Moreover, hyperosmolarity abrogated the stimulating effect of ionomycin (1 microg/ml) and PMA (5 microg/ml) on the transcription factors activator protein (AP)-1, nuclear factor of activated T cells (NFAT), and NF-kappaB but not Sp1. In conclusion, osmotic cell shrinkage blunts the stimulatory action of antigen exposure on IFN-gamma production, an effect explained at least partially by suppression of transcription factor activation.
Collapse
Affiliation(s)
- K S Lang
- Department of Immunology, University of Tübingen, Gmelinstrasse 5, D-72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
502
|
Small DL, Tauskela J, Xia Z. Role for chloride but not potassium channels in apoptosis in primary rat cortical cultures. Neurosci Lett 2002; 334:95-8. [PMID: 12435480 DOI: 10.1016/s0304-3940(02)01107-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent evidence suggests a predominant role for potassium (K) efflux in apoptotic cell death yet there exists controversy as to the exact nature of this involvement of K. In the present study we tested the anti-apoptotic efficacy of K channel blockers, tetraethylammonium Cl (TEA), and high extracellular K, the sodium (Na) channel blocker, tetrodotoxin (TTX) and the Cl channel blocker, 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid, (SITS) against staurosporine-induced apoptosis in primary rat cortical cultures. Surprisingly, we failed to observe anti-apoptotic effects with TEA, high K or TTX. We did, however, observe significant dose-dependent inhibition of apoptosis with SITS. In conclusion we demonstrate no role for K or Na in neuronal apoptosis, but rather an important role for a SITS-sensitive mechanism such as Cl.
Collapse
Affiliation(s)
- Daniel L Small
- Institute for Biological Sciences, National Research Council, Ottawa, Canada.
| | | | | |
Collapse
|
503
|
Bortner CD, Cidlowski JA. Apoptotic volume decrease and the incredible shrinking cell. Cell Death Differ 2002; 9:1307-10. [PMID: 12478467 DOI: 10.1038/sj.cdd.4401126] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
504
|
Mateo V, Brown EJ, Biron G, Rubio M, Fischer A, Deist FL, Sarfati M. Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: link between phosphatidylserine exposure and cytoskeleton organization. Blood 2002; 100:2882-90. [PMID: 12351399 DOI: 10.1182/blood-2001-12-0217] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Dying cells, apoptotic or necrotic, are swiftly eliminated by professional phagocytes. We previously reported that CD47 engagement by CD47 mAb or thrombospondin induced caspase-independent cell death of chronic lymphocytic leukemic B cells (B-CLL). Here we show that human immature dendritic cells (iDCs) phagocytosed the CD47 mAb-killed leukemic cells in the absence of caspases 3, 7, 8, and 9 activation in the malignant lymphocytes. Yet the dead cells displayed the cytoplasmic features of apoptosis, including cell shrinkage, phosphatidylserine exposure, and decreased mitochondrial transmembrane potential (DeltaPsim). CD47 mAb-induced cell death also occurred in normal resting and activated lymphocytes, with B-CLL cells demonstrating the highest susceptibility. Importantly, iDCs and CD34(+) progenitors were resistant. Structure-function studies in cell lines transfected with various CD47 chimeras demonstrated that killing exclusively required the extracellular and transmembrane domains of the CD47 molecule. Cytochalasin D, an inhibitor of actin polymerization, and antimycin A, an inhibitor of mitochondrial electron transfer, completely suppressed CD47-induced phosphatidylserine exposure. Interestingly, CD47 ligation failed to induce cell death in mononuclear cells isolated from Wiskott-Aldrich syndrome (WAS) patients, suggesting the involvement of Cdc42/WAS protein (WASP) signaling pathway. We propose that CD47-induced caspase-independent cell death be mediated by cytoskeleton reorganization. This form of cell death may be relevant to maintenance of homeostasis and as such might be explored for the development of future therapeutic approaches in lymphoid malignancies.
Collapse
Affiliation(s)
- Véronique Mateo
- Centre de Recherche du Centre Hospitalier Université Montreal, Laboratoire d' Immunorégulation, Université de Montréal, Canada
| | | | | | | | | | | | | |
Collapse
|
505
|
Liu QH, Fleischmann BK, Hondowicz B, Maier CC, Turka LA, Yui K, Kotlikoff MI, Wells AD, Freedman BD. Modulation of Kv channel expression and function by TCR and costimulatory signals during peripheral CD4(+) lymphocyte differentiation. J Exp Med 2002; 196:897-909. [PMID: 12370252 PMCID: PMC2194034 DOI: 10.1084/jem.20020381] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ionic signaling pathways, including voltage-dependent potassium (Kv) channels, are instrumental in antigen-mediated responses of peripheral T cells. However, how Kv channels cooperate with other signaling pathways involved in T cell activation and differentiation is unknown. We report that multiple Kv channels are expressed by naive CD4(+) lymphocytes, and that the current amplitude and kinetics are modulated by antigen receptor-mediated stimulation and costimulatory signals. Currents expressed in naive CD4(+) lymphocytes are consistent with Kv1.1, Kv1.2, Kv1.3, and Kv1.6. Effector CD4(+) cells generated by optimal TCR and costimulation exhibit only Kv1.3 current, but at approximately sixfold higher levels than naive cells. CD4(+) lymphocytes anergized through partial stimulation exhibit similar Kv1.1, Kv1.2, and/or Kv1.6 currents, but approximately threefold more Kv1.3 current than naive cells. To determine if Kv channels contribute to the distinct functions of naive, effector, and anergized T cells, we tested their role in immunoregulatory cytokine production. Each Kv channel is required for maximal IL-2 production by naive CD4(+) lymphocytes, whereas none appears to play a role in IL-2, IL-4, or IFN-gamma production by effector cells. Interestingly, Kv channels in anergized lymphocytes actively suppress IL-4 production, and these functions are consistent with a role in regulating the membrane potential and calcium signaling.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/cytology
- CD4-Positive T-Lymphocytes/immunology
- Calcium Signaling
- Cell Differentiation
- Cell Separation/methods
- Cells, Cultured
- Clonal Anergy
- Lymphocyte Activation
- Lymphocytes/cytology
- Lymphocytes/immunology
- Major Histocompatibility Complex
- Membrane Potentials
- Mice
- Mice, Transgenic
- Potassium Channels, Voltage-Gated/physiology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/deficiency
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/physiology
Collapse
Affiliation(s)
- Qing-Hua Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
506
|
Platoshyn O, Zhang S, McDaniel SS, Yuan JXJ. Cytochrome c activates K+ channels before inducing apoptosis. Am J Physiol Cell Physiol 2002; 283:C1298-305. [PMID: 12225992 DOI: 10.1152/ajpcell.00592.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell shrinkage is an early prerequisite for apoptosis. The apoptotic volume decrease is due primarily to loss of cytoplasmic ions. Increased outward K+ currents have indeed been implicated in the early stage of apoptosis in many cell types. We found that cytoplasmic dialysis of cytochrome c (cyt-c), a mitochondria-dependent apoptotic inducer, increases K+ currents before inducing nuclear condensation and breakage in pulmonary vascular smooth muscle cells. The cyt-c-mediated increase in K+ currents took place rapidly and was not affected by treatment with a specific inhibitor of caspase-9. Cytoplasmic dialysis of recombinant (active) caspase-9 negligibly affected the K+ currents. Furthermore, treatment of the cells with staurosporine (ST), an apoptosis inducer that mediates translocation of cyt-c from mitochondria to the cytosol, also increased K+ currents, caused cell shrinkage, and induced apoptosis (determined by apoptotic nuclear morphology and TdT-UTP nick end labeling assay). The staurosporine-induced increase in K+ currents concurred to the volume decrease but preceded the activation of apoptosis (nuclear condensation and breakage). These results suggest that the cyt-c-induced activation of K+ channels and the resultant K+ loss play an important role in initiating the apoptotic volume decrease when cells undergo apoptosis.
Collapse
Affiliation(s)
- Oleksandr Platoshyn
- Department of Medicine, UCSD Medical Center, University of California-San Diego, 200 W Arbor Drive, San Diego, CA 92103-8382, USA
| | | | | | | |
Collapse
|
507
|
Reinehr R, Graf D, Fischer R, Schliess F, Häussinger D. Hyperosmolarity triggers CD95 membrane trafficking and sensitizes rat hepatocytes toward CD95L-induced apoptosis. Hepatology 2002; 36:602-14. [PMID: 12198652 DOI: 10.1053/jhep.2002.35447] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of hyperosmolarity on CD95 membrane targeting and CD95 ligand (CD95L)-induced apoptosis was studied in rat hepatocytes. CD95 showed a predominant intracellular localization in normoosmotically exposed rat hepatocytes, whereas hyperosmotic exposure induced, within 1 hour, CD95 trafficking to the plasma membrane followed by activation of caspase-3 and -8. Hyperosmotic CD95 membrane targeting was sensitive to inhibition of c-Jun-N-terminal kinase (JNK), protein kinase C (PKC), and cyclic adenosine monophosphate, but not to inhibition of extracellular regulated kinases (Erks) or p38 mitogen activated protein kinase (p38(MAPK)). Hyperosmotic CD95 targeting to the plasma membrane was dose-dependently diminished by glutamine or taurine, probably caused by an augmentation of volume regulatory increase. Despite CD95 trafficking to the plasma membrane and caspase activation, hyperosmolarity per se did not induce apoptosis. Hyperosmolarity, however, sensitized hepatocytes toward CD95L-induced apoptosis, as assessed by annexin V staining and terminal deoxynucleotidyl transferase-mediated X-dUTP nick-end labeling (TUNEL) assay. This sensitization was abolished when hyperosmotic CD95 membrane trafficking was prevented by cyclic adenosine monophosphate, PKC, or JNK inhibition, whereas these effectors had no effect on CD95L-induced apoptosis in normoosmotically exposed hepatocytes. CD95L addition under normoosmotic conditions caused CD95 membrane trafficking, which was sensitive to JNK inhibition, but not to cyclic adenosine monophosphate or inhibition of PKC, Erks, and p38(MAPK). In conclusion, multiple signaling pathways are involved in CD95 membrane trafficking. Hyperosmotic hepatocyte shrinkage induces CD95 trafficking to the plasma membrane, which involves JNK-, PKA-, and PKC-dependent mechanisms and sensitizes hepatocytes toward CD95L-mediated apoptosis.
Collapse
Affiliation(s)
- Roland Reinehr
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
508
|
Abstract
Pulmonary arterial hypertension (PAH) is a hemodynamic abnormality that ultimately results in mortality due to right heart failure. Although the clinical manifestations of primary and secondary PAH are diverse, medial hypertrophy and arterial vasoconstriction are key components in the vascular remodeling leading to PAH. Abnormalities in the homeostasis of intracellular Ca(2+), transmembrane flux of ions, and membrane potential may play significant roles in the processes leading to pulmonary vascular remodeling. Decreased activity of K(+) channels causes membrane depolarization, leading to Ca(2+) influx. The elevated cytoplasmic Ca(2+) is a major trigger for pulmonary vasoconstriction and an important stimulus for vascular smooth muscle proliferation. Dysfunctional K(+) channels have also been linked to inhibition of apoptosis and contribute further to the medial hypertrophy. This review focuses on the relative role of K(+) and Ca(2+) ions and channels in human pulmonary artery smooth muscle cells in the development of PAH.
Collapse
Affiliation(s)
- Mehran Mandegar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, San Diego, USA
| | | | | |
Collapse
|
509
|
Baev D, Li XS, Dong J, Keng P, Edgerton M. Human salivary histatin 5 causes disordered volume regulation and cell cycle arrest in Candida albicans. Infect Immun 2002; 70:4777-84. [PMID: 12183519 PMCID: PMC128240 DOI: 10.1128/iai.70.9.4777-4784.2002] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human salivary histatin 5 (Hst 5) is a nonimmune salivary protein with antifungal activity against an important human pathogen, Candida albicans. The candidacidal activity of histatins appears to be a distinctive multistep mechanism involving depletion of the C. albicans intracellular ATP content as a result of nonlytic ATP efflux. Hst 5 caused a loss of cell viability concomitant with a decrease in cellular volume as determined both by a classical candidacidal assay with exogenous Hst 5 and by using a genetically engineered C. albicans strain expressing Hst 5. Preincubation of C. albicans cells with pharmacological inhibitors of anion transport provided complete or substantial protection from Hst 5-induced killing and volume reduction of cells. Moreover, intracellular expression of Hst 5 resulted in a reduction in the population mean cell volume that was accompanied by an increase in the percentage of unbudded cells and C. albicans cells in the G(1) phase. Following expression of Hst 5, the smallest cells sorted by fluorescence-activated cell sorting from the total population did not replicate and were exclusively in the G(1) phase. Cells with intracellularly expressed Hst 5 had greatly reduced G(1) cyclin transcript levels, indicating that they arrested in the G(1) phase before the onset of Start. Our data demonstrate that a key determinant in the mechanism of Hst 5 toxicity in C. albicans cells is the disruption of regulatory circuits for cell volume homeostasis that is closely coupled with loss of intracellular ATP. This novel process of fungicidal activity by a human salivary protein has highlighted potential interactions of Hst 5 with volume regulatory mechanisms and the process of yeast cell cycle control.
Collapse
Affiliation(s)
- Didi Baev
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, 14214, USA
| | | | | | | | | |
Collapse
|
510
|
Abstract
Apoptosis is a physiological form of death in which cells turn-on an intrinsic genetic program that eventually leads to their destruction in a highly regulated manner. This process renders elimination of "unwanted cells" in the body, and accounts for cellular turnover and homeostasis of tissues in multicellular organisms. Consequently, an imbalance in the apoptotic rate in a particular tissue can lead to profound effects in the whole organism. Exposure of cells to apoptotic stimuli induces a rapid loss of cell volume (apoptotic volume decrease) that plays a pivotal role in the decision of a cell to undergo apoptosis. Interestingly, the apoptotic volume decrease is driven by changes in ionic fluxes across the plasma membrane that promote a decrease in the intracellular ions that ultimately also leads to a reduction in intracellular ionic strength. Despite an intensive research effort however, the cellular and molecular mechanisms that trigger changes in cell volume during apoptosis remain poorly understood. Nevertheless, this apoptotic volume decrease has been shown to be a necessary component of the apoptotic cascade and an important point of modulation for the entire cell death process. In this review, we will focus on the importance of the apoptotic volume decrease in the context of signaling and modulation of programmed cell death.
Collapse
Affiliation(s)
- Mireia Gómez-Angelats
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
511
|
Wendehenne D, Lamotte O, Frachisse JM, Barbier-Brygoo H, Pugin A. Nitrate efflux is an essential component of the cryptogein signaling pathway leading to defense responses and hypersensitive cell death in tobacco. THE PLANT CELL 2002; 14:1937-51. [PMID: 12172032 PMCID: PMC151475 DOI: 10.1105/tpc.002295] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2002] [Accepted: 04/17/2002] [Indexed: 05/18/2023]
Abstract
There is much interest in the transduction pathways by which avirulent pathogens or derived elicitors activate plant defense responses. However, little is known about anion channel functions in this process. The aim of this study was to reveal the contribution of anion channels in the defense response triggered in tobacco by the elicitor cryptogein. Cryptogein induced a fast nitrate (NO(3)(-)) efflux that was sensitive to anion channel blockers and regulated by phosphorylation events and Ca(2+) influx. Using a pharmacological approach, we provide evidence that NO(3)(-) efflux acts upstream of the cryptogein-induced oxidative burst and a 40-kD protein kinase whose activation seems to be controlled by the duration and intensity of anion efflux. Moreover, NO(3)(-) efflux inhibitors reduced and delayed the hypersensitive cell death triggered by cryptogein in tobacco plants. This was accompanied by a delay or a complete suppression of the induction of several defense-related genes, including hsr203J, a gene whose expression is correlated strongly with programmed cell death in plants. Our results indicate that anion channels are involved intimately in mediating defense responses and hypersensitive cell death.
Collapse
Affiliation(s)
- David Wendehenne
- Unité Mixte de Recherche, Institut National de la Recherche Agronomique/Université de Bourgogne, Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-organismes, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France.
| | | | | | | | | |
Collapse
|
512
|
O'Reilly N, Xia Z, Fiander H, Tauskela J, Small DL. Disparity between ionic mediators of volume regulation and apoptosis in N1E 115 mouse neuroblastoma cells. Brain Res 2002; 943:245-56. [PMID: 12101047 DOI: 10.1016/s0006-8993(02)02655-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cellular volume loss or shrinkage is a ubiquitous feature of apoptosis and thus may contribute to this form of degeneration. Chloride (Cl(-)) and potassium (K(+)) efflux has been shown to participate in volume regulation and several recent reports have implicated K(+) efflux in apoptotic neuronal death. Here pharmacological inhibitors of various K(+) and Cl(-) channels and transporters were used to decipher the relationship between cellular volume regulation and apoptosis. Following exposure to a hypotonic media, cells swell but over time gradually recover, returning to their original cell volume in a process known as regulatory volume decrease (RVD). RVD in N1E 115 neuroblastoma cells was monitored using time-lapse videomicroscopy, cell size and DNA degradation were followed using flow cytometry and fragmented apoptotic nuclei were visualized using Hoechst staining. RVD was blocked by high K(+), TEA and 4-AP (K(+) channel blockers), DIDS and niflumic acid but not SITS (Cl(-) channel blockers), ethacrynic acid (Cl(-) pump blocker), bumetanide (Na(+)/K(+)/Cl(-) cotransporter blocker) and furosemide (K(+)/Cl(-) cotransport blocker). In contrast, only DIDS and SITS (blockers of the Cl(-)/HCO(3) exchanger) inhibited apoptosis, suggesting that a common mechanistic link between RVD and apoptosis is the Cl(-)/HCO(3) exchanger. Thus, this study does not support the notion that K(+) channels are universal anti-apoptotic targets. Instead, the Cl(-)/HCO(3) exchanger may prove to be a viable target of therapeutic intervention for treating pathological apoptosis and neurodegeneration.
Collapse
Affiliation(s)
- Natasha O'Reilly
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | | | | | | | | |
Collapse
|
513
|
Lecoeur H, de Oliveira-Pinto LM, Gougeon ML. Multiparametric flow cytometric analysis of biochemical and functional events associated with apoptosis and oncosis using the 7-aminoactinomycin D assay. J Immunol Methods 2002; 265:81-96. [PMID: 12072180 DOI: 10.1016/s0022-1759(02)00072-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Apoptosis and primary necrosis are the two modes of cell death induced by a lethal injury. The majority of structural and biochemical events occurring during cell death can be analysed by flow cytometry. The 7-aminoactinomycin D (7-AAD) assay can be used to detect the loss of membrane integrity during apoptosis of murine thymocytes and human peripheral lymphocytes. We describe here new applications of the 7-AAD assay. It can be applied to a variety of cell lines of different origins, including adherent cell lines, and it allows the co-detection of lipidic antigens such as phosphatidylserine (PS) residues, and biochemical processes linked to apoptosis, such as the loss of mitochondrial transmembrane potential, cardiolipin peroxidation, the expression of the 7A6 mitochondrial antigen and DNA fragmentation. Thus, this assay is a noninvasive method particularly adapted to the analysis of biochemical events associated with cell death. Finally, we show that this assay is not specific for apoptosis since it detects oncosis, the early stage of primary necrosis.
Collapse
Affiliation(s)
- Hervé Lecoeur
- Département de Médecine Moléculaire, Institut Pasteur, 28 Rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
514
|
Carton I, Trouet D, Hermans D, Barth H, Aktories K, Droogmans G, Jorgensen NK, Hoffmann EK, Nilius B, Eggermont J. RhoA exerts a permissive effect on volume-regulated anion channels in vascular endothelial cells. Am J Physiol Cell Physiol 2002; 283:C115-25. [PMID: 12055079 DOI: 10.1152/ajpcell.00038.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell swelling triggers in most cell types an outwardly rectifying anion current, I(Cl,swell), via volume-regulated anion channels (VRACs). We have previously demonstrated in calf pulmonary artery endothelial (CPAE) cells that inhibition of the Rho/Rho kinase/myosin light chain phosphorylation pathway reduces the swelling-dependent activation of I(Cl,swell). However, these experiments did not allow us to discriminate between a direct activator role or a permissive effect. We now show that the Rho pathway did not affect VRAC activity if this pathway was activated by transfecting CPAE cells with constitutively active isoforms of Galpha (a Rho activating heterotrimeric G protein subunit), Rho, or Rho kinase. Furthermore, biochemical and morphological analysis failed to demonstrate activation of the Rho pathway during hypotonic cell swelling. Finally, manipulating the Rho pathway with either guanosine 5'-O-(3-thiotriphosphate) or C3 exoenzyme had no effect on VRACs in caveolin-1-expressing Caco-2 cells. We conclude that the Rho pathway exerts a permissive effect on VRACs in CPAE cells, i.e., swelling-induced opening of VRACs requires a functional Rho pathway, but not an activation of the Rho pathway.
Collapse
Affiliation(s)
- Iris Carton
- Laboratory of Physiology, Katholieke Universiteit Leuven, Campus Gasthuisberg, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
515
|
Ghelli A, Porcelli AM, Zanna C, Rugolo M. 7-Ketocholesterol and staurosporine induce opposite changes in intracellular pH, associated with distinct types of cell death in ECV304 cells. Arch Biochem Biophys 2002; 402:208-17. [PMID: 12051665 DOI: 10.1016/s0003-9861(02)00085-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Incubation of ECV304 cells with 7-ketocholesterol, a lipid component of oxidized low-density lipoproteins, caused a concentration- and time-dependent decrease in the number of viable cells. Other cholesterol oxides, 7 beta-hydroxycholesterol and 25-hydroxycholesterol, but not cholesterol, were only weakly cytotoxic. No evidence for activation of caspase-3 and -8, DNA laddering, or release of cytochrome c from mitochondria into the cytoplasm was obtained in 7-ketocholesterol-treated cells, indicating that cell death was not due to apoptosis. As a positive control for apoptosis, ECV304 cells were treated with staurosporine, which indeed caused significant activation of caspase-3 activity, DNA laddering, and cytochrome c release. Cellular morphology and actin cytoskeletal organization were distinctly different after exposure to the two drugs. Furthermore, staurosporine caused intracellular acidification, whereas 7-ketocholesterol induced a significant alkalinization, which was abolished by 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid. In conclusion, in ECV304 cells 7-ketocholesterol induces some typical hallmarks of necrotic cell death but not of apoptosis.
Collapse
Affiliation(s)
- Anna Ghelli
- Dipartimento di Biologia Ev. Sp., Università di Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
516
|
Hawkins TE, Das D, Young B, Moss SE. DT40 cells lacking the Ca2+-binding protein annexin 5 are resistant to Ca2+-dependent apoptosis. Proc Natl Acad Sci U S A 2002; 99:8054-9. [PMID: 12060752 PMCID: PMC123019 DOI: 10.1073/pnas.132598099] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Annexins are widely expressed Ca(2+)-dependent phospholipid-binding proteins with poorly understood physiological roles. Proposed functions include Ca(2+) channel activity and vesicle trafficking, but neither have been proven in vivo. Here we used targeted gene disruption to generate B-lymphocytes lacking annexin 5 (Anx5) expression and show that this results in reduced susceptibility to a range of apoptotic stimuli. By comparison B-lymphocytes lacking annexin 2 (Anx2) showed no such resistance, providing evidence that this effect is specific to loss of Anx5. The defect in the ANX5(-/-) cells occurs early in the apoptotic program before nuclear condensation, caspase 3 activation, and cell shrinkage, but downstream of an initial Ca(2+) influx. Only UVA/B irradiation induced similar levels of apoptosis in wild-type and ANX5(-/-) cells. Unexpectedly, ANX5(-/-) cells permeabilized in vitro also failed to release mitochondrial cytochrome C, suggesting a possible mechanism for their resistance to apoptosis. These findings demonstrate a role for Anx5 in determining the susceptibility of B-lymphocytes to apoptosis.
Collapse
Affiliation(s)
- Timothy E Hawkins
- Department of Physiology and Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
517
|
Hortelano S, Zeini M, Castrillo A, Alvarez AM, Boscá L. Induction of apoptosis by nitric oxide in macrophages is independent of apoptotic volume decrease. Cell Death Differ 2002; 9:643-650. [PMID: 12032673 DOI: 10.1038/sj.cdd.4401017] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Revised: 12/20/2001] [Accepted: 01/02/2002] [Indexed: 02/07/2023] Open
Abstract
Apoptosis occurs through a sequence of specific biochemical and morphological alterations that define the progress of cell death. The changes of the mitochondrial inner membrane potential (DeltaPsi(m)), the release of cytochrome c to the cytosol, the apoptotic volume decrease (AVD) and the activation of caspases have been measured in RAW 264.7, HeLa and Jurkat T cells incubated with molecules that induce apoptosis through the mitochondrial pathway. Our data show that NO, staurosporine, etoposide and camptothecin increased DeltaPsi(m) in macrophages but not in HeLa and Jurkat cells, that exhibited a DeltaPsi(m) decrease. Moreover, the apoptosis induced by NO in macrophages, but not that promoted by staurosporine, might occur in the absence of AVD. Analysis of the sequence of apoptotic manifestations shows that DeltaPsi(m) precedes AVD and caspase activation in RAW 264.7 cells. Inhibition of AVD abrogates apoptosis in HeLa and Jurkat T cells regardless of the stimuli used. These data suggest that the changes of DeltaPsi(m) are cell-type dependent and that AVD is dispensable for apoptosis in macrophages.
Collapse
Affiliation(s)
- S Hortelano
- Instituto de Bioquímica (Centro Mixto CSIC-UCM), Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
518
|
Abstract
Hepatocytes possess chloride channels at the plasma membrane and in multiple intracellular compartments. These channels are required for cell volume regulation and acidification of intracellular organelles. Evidence also supports a role of chloride channels in modulation of apoptosis and cell growth. Swelling- and Ca(2+)-activated chloride channels have been identified in hepatocyte plasma membranes, and chloride channels have been observed in the membranes of lysosomes, endosomes, Golgi, endoplasmic reticulum, mitochondria, and the nucleus. This review summarizes the functions of these channels and discusses the specific channel molecules they may represent. Chloride channel molecules shown to be expressed in hepatocytes include members of the ClC channel family (ClC-2, ClC-3, ClC-5, and ClC-7), members of the newly identified CLIC family of intracellular chloride channels (CLIC-1 and CLIC-4), the mitochondrial voltage-dependent anion channel, and a newly identified intracellular channel, MCLC (Mid-1 related chloride channel). Current understanding does not include a molecular identification of most of the observed channel functions, but details of the molecular properties of these channel molecules should allow future identification and further understanding of chloride channel function in hepatocytes.
Collapse
Affiliation(s)
- Xinhua Li
- Department of Physiology and Biophysics University of Texas Medical Branch, Galveston, Texas 77555-0641, USA.
| | | |
Collapse
|
519
|
Shen MR, Yang TP, Tang MJ. A novel function of BCL-2 overexpression in regulatory volume decrease. Enhancing swelling-activated Ca(2+) entry and Cl(-) channel activity. J Biol Chem 2002; 277:15592-9. [PMID: 11861644 DOI: 10.1074/jbc.m111043200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cellular function of the oncogene bcl-2, a key regulator of apoptosis, is still debated. The goal of this study was to explore the relationship between BCL-2 overexpression and cell volume regulation by using two independent models, Madin-Darby canine kidney (MDCK) cells stably transfected with BCL-2 and MDCK clones with inducible BCL-2 expression by the lac operator/repressor. BCL-2 overexpression enhanced the capability of regulatory volume decrease (RVD), a cellular defensive process against hypotonic stress. In various clones of MDCK cells, hypotonic stress induced an outwardly rectified Cl(-) current that was significantly up-regulated by BCL-2 overexpression. Other fundamental characteristics of this channel were similar among different MDCK clones, such as sensitivity to Cl(-) channel inhibitor, anion permeability, and time-dependent inactivation at more positive potential. Most importantly, BCL-2 overexpression up-regulates the swelling-activated Ca(2+) transient that is a critical signaling for normal RVD and the activation of swelling-activated Cl(-) channel in MDCK cells. BCL-2 overexpression also enhances the capacitative Ca(2+) entry that can be differentiated from the swelling-activated Ca(2+) transient by kinetic analysis and sensitivity to Gd(3+). Moreover, neutralization of endogenous BCL-2 by antibody blocks the normal RVD response and the activation of swelling-activated Cl(-) channel in human cervical cancer HT-3 cells. These results provide a new insight into the novel function of BCL-2 overexpression in the regulation of cell volume and ion flux.
Collapse
Affiliation(s)
- Meng-Ru Shen
- Department of Obstetrics and Gynecology, National Cheng Kung University Medical College, Tainan 701, Taiwan, Republic of China
| | | | | |
Collapse
|
520
|
Sapozhnikov AM, Baev DV, Gusarova GA. Involvement of heat shock proteins in the phenomenon of cell protection against apoptosis mediated by inhibitors of plasma membrane chlorine channels. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2002; 384:206-8. [PMID: 12134485 DOI: 10.1023/a:1016057222128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- A M Sapozhnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117871 Russia
| | | | | |
Collapse
|
521
|
Mizoguchi K, Maeta H, Yamamoto A, Oe M, Kosaka H. Amelioration of myocardial global ischemia/reperfusion injury with volume-regulatory chloride channel inhibitors in vivo. Transplantation 2002; 73:1185-93. [PMID: 11981408 DOI: 10.1097/00007890-200204270-00002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recently, the apoptotic volume decrease was suggested to be regulated by volume regulatory Cl- channels in cultured cell lines. We thus examined whether inhibition of volume-regulatory Cl- channels is cardioprotective, like caspase inhibition, by hindering the apoptosis of cardiomyocytes induced by global ischemia/reperfusion (I/R) in vivo. METHODS We performed global ischemia for 8 min at 37 degrees C or 4 degrees C in isolated rat hearts, followed by 24-hr reperfusion via heterotopic heart transplantation. The heart tissue was examined by means of the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) method, genomic DNA electrophoresis, and caspase-3 activity. Two blockers of volume-regulatory Cl- channels, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), and a broad-spectrum caspase inhibitor, benzoyloxycarbonyl-Asp-CH2OC(O)-2,6-dichlorobenzene (Z-Asp-DCB), were administered intravenously. Triphenyltetrazolium chloride (TTC) staining and ultrasound cardiography were performed to examine myocardial viability. The TTC-unstained region was assessed by means of horseradish peroxidase (HRP) infiltration and the TUNEL method. RESULTS The transplanted hearts showed TUNEL-positivity and DNA laddering with a peak at 24 hr during reperfusion after ischemia at 37 degrees C, but not at 4 degrees C. NPPB and DIDS were as potent as Z-Asp-DCB for recovery of cardiac function and for blocking the appearance of TUNEL-positivity, DNA laddering, caspase 3 activity, and a TTC-unstained area. TTC-unstained areas were composed of either TUNEL- and slightly HRP-positive or TUNEL-negative and strongly HRP-positive cardiomyocytes. CONCLUSION The present results demonstrated that myocardial DNA fragmentation, caspase activation, and loss of cardiac function after global I/R were blocked by NPPB and DIDS, similar to in the case of Z-Asp-DCB. These results suggest that inhibition of volume-regulatory Cl- channels is also effective for preventing cardiac I/R injury.
Collapse
Affiliation(s)
- Kazuhiro Mizoguchi
- First Department of Surgery and Second Department of Physiology, Kagawa Medical University, Kagawa 761-0793, Japan
| | | | | | | | | |
Collapse
|
522
|
Leonard SE, Kirby R. The role of glutamate, calcium and magnesium in secondary brain injury. J Vet Emerg Crit Care (San Antonio) 2002. [DOI: 10.1046/j.1534-6935.2002.00003.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
523
|
Abstract
Apoptosis, also known as programmed cell death, is a ubiquitous mode of cell death known to play an important role during embryogenesis, development, and adult cellular homeostasis. Disruption of this normal physiological cell death process can result in either excessive or insufficient apoptosis, which can lead to various disease states and pathology. Since most cells contain the machinery that brings about apoptosis, it is clear that living cells must contain inherent repressive mechanisms to keep the death process in check. In this review, we examine several modes of repression of apoptosis that exist in cells.
Collapse
Affiliation(s)
- Carl D Bortner
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
524
|
Shive MS, Brodbeck WG, Colton E, Anderson JM. Shear stress and material surface effects on adherent human monocyte apoptosis. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2002; 60:148-58. [PMID: 11835170 DOI: 10.1002/jbm.10035] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Monocytes play a critical role as both phagocytes and mediators of inflammatory responses in the prevention of cardiovascular device-related infections. However, persistent infection of these devices still occurs and may be attributed to deleterious cellular alterations resulting from monocyte interactions with a foreign material in an environment of dynamic flow. Thus, the effects of both shear stress and adhesion to material surfaces on human monocyte apoptosis were investigated. A rotating disk system generated physiologically relevant shear stress levels (0-14 dyn/cm(2)), and shear-related apoptosis occurring in adherent monocytes was characterized. Using annexin V analysis, apoptosis of polyurethane-adherent monocytes under shear for 4 h increased to levels >70% with increasing shear in a near-linear fashion (r2 = 0.713). It was qualitatively confirmed using confocal microscopy that filamentous (F)-actin distribution was altered, that DNA fragmentation occurred, and that activated caspases were involved in shear-induced apoptosis. Static studies determined that spontaneous apoptosis was material-dependent over 72 h by demonstrating marked differences between apoptosis of monocytes adherent to a polyurethane compared to an alkyl-modified glass. Treatment with TNF-alpha augmented this material dependency in a dose-dependent fashion over time. F-actin content of TNF-alpha-treated cells decreased to <62% of untreated cells. We conclude that concomitant effects from both material surfaces and dynamic flow mediate human monocyte apoptosis and may have serious implications in the context of implanted cardiovascular device infection.
Collapse
Affiliation(s)
- Matthew S Shive
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
525
|
Trimarchi JR, Liu L, Smith PJS, Keefe DL. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am J Physiol Cell Physiol 2002; 282:C588-94. [PMID: 11832344 DOI: 10.1152/ajpcell.00365.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell shrinkage is an incipient hallmark of apoptosis and is accompanied by potassium release that decreases the concentration of intracellular potassium and regulates apoptotic progression. The plasma membrane K+ channel recruited during apoptosis has not been characterized despite its importance as a potential therapeutic target. Here we provide evidence that two-pore domain K+ (K(2P)) channels underlie K+ efflux during apoptotic volume decreases (AVD) in mouse embryos. These K(2P) channels are inhibited by quinine but are not blocked by an array of pharmacological agents that antagonize other K+ channels. The K(2P) channels are uniquely suited to participate in the early phases of apoptosis because they are not modulated by common intracellular messengers such as calcium, ATP, and arachidonic acid, transmembrane voltage, or the cytoskeleton. A K+ channel with similar biophysical properties coordinates regulatory volume decreases (RVD) triggered by changing osmotic conditions. We propose that K(2P) channels are the pathway by which K+ effluxes during AVD and RVD and that apoptosis co-opts mechanisms more routinely employed for homeostatic cell volume regulation.
Collapse
Affiliation(s)
- James R Trimarchi
- Laboratory for Reproductive Medicine, Lillie Bldg., Marine Biological Laboratory, 7 MBL St., Woods Hole, MA 02543, USA
| | | | | | | |
Collapse
|
526
|
Schliess F, Häussinger D. The cellular hydration state: a critical determinant for cell death and survival. Biol Chem 2002; 383:577-83. [PMID: 12033446 DOI: 10.1515/bc.2002.059] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alterations in cellular hydration not only contribute to metabolic regulation, but also critically determine the cellular response to different kinds of stress. Whereas cell swelling triggers anabolic pathways and protects cells from heat and oxidative challenge, cellular dehydration contributes to insulin resistance and catabolism and increases the cellular susceptibility to stress-induced damage. Intracellular accumulation of organic osmolytes, cell cycle delay and the expression of heat shock proteins provide cellular tolerance to hyperosmolarity and protect against stressors under dehydrating conditions. This article discusses some mechanisms by which alterations in cell hydration contribute to cytoprotection or cell damage. In addition, the close relationship between osmotic and oxidative stress and the contribution of isoosmotic shrinkage to apoptotic cell death are considered.
Collapse
Affiliation(s)
- Freimut Schliess
- Clinic for Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
527
|
Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 2002. [PMID: 11850462 DOI: 10.1523/jneurosci.22-04-01350.2002] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Energy deficiency and dysfunction of the Na+, K+-ATPase are common consequences of many pathological insults. The nature and mechanism of cell injury induced by impaired Na+, K+-ATPase, however, are not well defined. We used cultured cortical neurons to examine the hypothesis that blocking the Na+, K+-ATPase induces apoptosis by depleting cellular K+ and, concurrently, induces necrotic injury in the same cells by increasing intracellular Ca2+ and Na+. The Na+, K+-ATPase inhibitor ouabain induced concentration-dependent neuronal death. Ouabain triggered transient neuronal cell swelling followed by cell shrinkage, accompanied by intracellular Ca2+ and Na+ increase, K+ decrease, cytochrome c release, caspase-3 activation, and DNA laddering. Electron microscopy revealed the coexistence of ultrastructural features of both apoptosis and necrosis in individual cells. The caspase inhibitor Z-Val-Ala-Asp(OMe)-fluoromethyl ketone (Z-VAD-FMK) blocked >50% of ouabain-induced neuronal death. Potassium channel blockers or high K+ medium, but not Ca2+ channel blockade, prevented cytochrome c release, caspase activation, and DNA damage. Blocking of K+, Ca2+, or Na+ channels or high K+ medium each attenuated the ouabain-induced cell death; combined inhibition of K+ channels and Ca2+ or Na+ channels resulted in additional protection. Moreover, coapplication of Z-VAD-FMK and nifedipine produced virtually complete neuroprotection. These results suggest that the neuronal death associated with Na+, K+-pump failure consists of concurrent apoptotic and necrotic components, mediated by intracellular depletion of K+ and accumulation of Ca2+ and Na+, respectively. The ouabain-induced hybrid death may represent a distinct form of cell death related to the brain injury of inadequate energy supply and disrupted ion homeostasis.
Collapse
|
528
|
Vu CC, Cidlowski JA. Mechanisms of apoptosis repression. GENETIC ENGINEERING 2002; 23:11-33. [PMID: 11570099 DOI: 10.1007/0-306-47572-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- C C Vu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
529
|
Xiao AY, Wei L, Xia S, Rothman S, Yu SP. Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 2002; 22:1350-62. [PMID: 11850462 PMCID: PMC6757565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Energy deficiency and dysfunction of the Na+, K+-ATPase are common consequences of many pathological insults. The nature and mechanism of cell injury induced by impaired Na+, K+-ATPase, however, are not well defined. We used cultured cortical neurons to examine the hypothesis that blocking the Na+, K+-ATPase induces apoptosis by depleting cellular K+ and, concurrently, induces necrotic injury in the same cells by increasing intracellular Ca2+ and Na+. The Na+, K+-ATPase inhibitor ouabain induced concentration-dependent neuronal death. Ouabain triggered transient neuronal cell swelling followed by cell shrinkage, accompanied by intracellular Ca2+ and Na+ increase, K+ decrease, cytochrome c release, caspase-3 activation, and DNA laddering. Electron microscopy revealed the coexistence of ultrastructural features of both apoptosis and necrosis in individual cells. The caspase inhibitor Z-Val-Ala-Asp(OMe)-fluoromethyl ketone (Z-VAD-FMK) blocked >50% of ouabain-induced neuronal death. Potassium channel blockers or high K+ medium, but not Ca2+ channel blockade, prevented cytochrome c release, caspase activation, and DNA damage. Blocking of K+, Ca2+, or Na+ channels or high K+ medium each attenuated the ouabain-induced cell death; combined inhibition of K+ channels and Ca2+ or Na+ channels resulted in additional protection. Moreover, coapplication of Z-VAD-FMK and nifedipine produced virtually complete neuroprotection. These results suggest that the neuronal death associated with Na+, K+-pump failure consists of concurrent apoptotic and necrotic components, mediated by intracellular depletion of K+ and accumulation of Ca2+ and Na+, respectively. The ouabain-induced hybrid death may represent a distinct form of cell death related to the brain injury of inadequate energy supply and disrupted ion homeostasis.
Collapse
Affiliation(s)
- Ai Ying Xiao
- Department of Neurology and Center for the Study of Nervous System Injury, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
530
|
Zurgil N, Shafran Y, Fixler D, Deutsch M. Analysis of early apoptotic events in individual cells by fluorescence intensity and polarization measurements. Biochem Biophys Res Commun 2002; 290:1573-82. [PMID: 11820802 DOI: 10.1006/bbrc.2002.6382] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis is a dynamic process of variable duration. The ability to continuously detect the death process occurring in single or subgroups of cells is therefore very important in identifying apoptotic cells within a complex population. The Individual Cell Scanner (ICS), a multiparametric, multilaser-based scanning static cytometer, was used in the present report for the continuous monitoring of the apoptosis process. Fluorescence intensity (FI), polarization (FP), kinetic measurements, and cluster analysis of subpopulations were carried out utilizing various fluorescent probes. Hydrogen peroxide-induced apoptosis was monitored online in intact live lymphocytes by continuous sequential measurements of intracellular hyperpolarization. Plasma membrane asymmetry, mitochondrial membrane potential, and lysosomal rupture were monitored in individual cells. Cytoplasmic condensations, due to cell shrinkage and early lysosomal rupture, were found to be very early events of apoptosis. The new analytical capabilities suggested here may provide simple and convenient methods for detecting apoptosis from its earlier stages.
Collapse
Affiliation(s)
- N Zurgil
- Biophysical Interdisciplinary Center for the Research and the Technology of the Cellome and Jerome Schottenstein Center for Early Detection of Cancer, Bar Ilan University, Ramat Gan 52900, Israel
| | | | | | | |
Collapse
|
531
|
Araki T, Hayashi M, Watanabe N, Kanuka H, Yoshino J, Miura M, Saruta T. Down-regulation of Mcl-1 by inhibition of the PI3-K/Akt pathway is required for cell shrinkage-dependent cell death. Biochem Biophys Res Commun 2002; 290:1275-81. [PMID: 11812001 DOI: 10.1006/bbrc.2002.6329] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anti-apoptotic effect of a chloride-bicarbonate exchange blocker has been previously examined in endothelial cells and cardiomyocytes. However, the anti-apoptotic effects of this blocker on epithelial cells and the mechanism of the anti-apoptotic effect remain unknown. We examined the anti-apoptotic effects of a chloride-bicarbonate exchange blocker in a renal epithelial cell line (MDCK cells). Changes in the expression of bcl-2 family proteins, which are known to have anti-apoptotic effects, were also examined. Staurosporine was used to induce apoptotic cell death in the MDCK cells. Staurosporine treatment was sufficient to induce apoptotic cell death, detected by propidium iodide and DNA ladder formation. A chloride-bicarbonate exchange blocker was added 24 h before the staurosporine treatment and during treatment. The chloride-bicarbonate exchange blocker inhibited the staurosporine-induced apoptosis in the MDCK cells in a dose-dependent manner. The expression of bcl-2 family gene products was detected by RT-PCR and Western blotting. No changes in the expression of Bax, Bid and Bik (pro-apoptotic proteins), or Bcl-2 (an anti-apoptotic protein) were detected. However, Mcl-1 expression was reduced by the staurosporine treatment, and this reduction was recovered when the chloride-bicarbonate exchange blocker was added. LY294002, a PI 3-kinase inhibitor, partially inhibited this anti-apoptotic effect. In conclusion, chloride-bicarbonate exchange blockers appear to offer cell-protective effects via Mcl-1 up-regulation.
Collapse
Affiliation(s)
- Takashi Araki
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
532
|
Lemonnier L, Prevarskaya N, Shuba Y, Vanden Abeele F, Nilius B, Mazurier J, Skryma R. Ca2+ modulation of volume-regulated anion channels: evidence for colocalization with store-operated channels. FASEB J 2002; 16:222-4. [PMID: 11744619 DOI: 10.1096/fj.01-0383fje] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Ca2+ regulation of Cl- current induced by cell swelling (I(CI,swell)) in response to hypotonicity was studied in human prostate cancer epithelial cells (LNCaP) by using the patch-clamp technique. Increase of global intracellular Ca2+ ([Ca2+]in) to 1 mM as well as variations of the extracellular Ca2+ ([Ca2+]out) in the 0 to 10 mM range did not affect time course of the development, maximal amplitude, rectification properties, and kinetics of I(CI,swell). However, the presence of 0.1 mM thapsigargin (TG), an inhibitor of endoplasmic reticulum (ER) Ca2+ pump, resulted in a more than 50% inhibition of ICI,swell. The blockade of plasma membrane store-operated channels (SOCs), activated in the presence of TG, by 2 mM Ni2+ prevented TG-conferred I(CI,swell) inhibition by extracellular Ca2+. In the presence of TG and Ca2+, the cells failed to exhibit regulatory volume decrease. We conclude that interaction between volume-regulated anion channels (VRACs) carrying I(CI,swell) and Ca2+ occurs in the microdomains from the inner surface of the membrane that are not accessible to the changes in [Ca2+]in, but can be readily reached by Ca2+ entering the cell via plasma membrane, especially through SOCs. Preferred access of SOC-transported Ca2+ to VRAC suggests colocalization of these channels in the cell membrane.
Collapse
Affiliation(s)
- Loïc Lemonnier
- Laboratoire de Physiologie Cellulaire, INSERM EPI 9938, Bâtiment SN3, USTL, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
533
|
Salido M, Vilches J, López A, Roomans GM. Neuropeptides bombesin and calcitonin inhibit apoptosis-related elemental changes in prostate carcinoma cell lines. Cancer 2002; 94:368-77. [PMID: 11900223 DOI: 10.1002/cncr.10227] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Etoposide-induced apoptosis in prostate carcinoma cells is associated with changes in the elemental content of the cells. The authors previously reported that calcitonin and bombesin inhibited etoposide-induced apoptosis in these cells. In the current study, the authors investigated whether these neuropeptides block the etoposide-induced changes in elemental content. METHODS Cells from the PC-3 and Du 145 prostate carcinoma cell lines were grown either on solid substrates or on thin plastic films on titanium electron microscopy grids, and they were exposed to etoposide for 48 hours in the absence or presence of calcitonin and bombesin. After the exposure, the cells were frozen and freeze dried, and their elemental content was analyzed by energy-dispersive X-ray microanalysis in both in the scanning electron microscope and the scanning transmission electron microscope. RESULTS Etoposide treatment consistently induced an increase in the cellular Na concentration and a decrease in the cellular K concentration, resulting in a marked increase of the Na/K ratio and also an increase in the phosphorus:sulphur (P/S) ratio. Both bombesin and calcitonin inhibited the etoposide-induced changes in the cellular Na/K ratio, and calcitonin, but not bombesin, inhibited the changes in the P/S ratio. No significant elemental changes were found with bombesin or calcitonin alone. CONCLUSIONS The neuropeptides bombesin and calcitonin, which inhibited etoposide-induced apoptosis, also inhibited the etoposide-induced elemental changes in prostate carcinoma cells. This important fact strengthens the link between apoptosis and changes in the intracellular elemental content. This correlation provides an objective basis for the study of neuropeptide target points and may be helpful for alternative therapeutic protocols using neuropeptide inhibitors in the treatment of patients with advanced prostatic carcinoma.
Collapse
Affiliation(s)
- Mercedes Salido
- Department of Medical Cell Biology, University of Uppsala, Sweden.
| | | | | | | |
Collapse
|
534
|
Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 2002; 9:163-73. [PMID: 11804595 DOI: 10.1016/s1097-2765(01)00438-5] [Citation(s) in RCA: 644] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Redox status changes exert critical impacts on necrotic/apoptotic and normal cellular processes. We report here a widely expressed Ca2+-permeable cation channel, LTRPC2, activated by micromolar levels of H2O2 and agents that produce reactive oxygen/nitrogen species. This sensitivity of LTRPC2 to redox state modifiers was attributable to an agonistic binding of nicotinamide adenine dinucleotide (beta-NAD+) to the MutT motif. Arachidonic acid and Ca2+ were important positive regulators for LTRPC2. Heterologous LTRPC2 expression conferred susceptibility to death on HEK cells. Antisense oligonucleotide experiments revealed physiological involvement of "native" LTRPC2 in H2O2- and TNFalpha-induced Ca2+ influx and cell death. Thus, LTRPC2 represents an important intrinsic mechanism that mediates Ca2+ and Na+ overload in response to disturbance of redox state in cell death.
Collapse
Affiliation(s)
- Yuji Hara
- Center for Integrative Bioscience, The Graduate University for Advanced Studies, 444-8585, Okazaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
535
|
Krick S, Platoshyn O, Sweeney M, McDaniel SS, Zhang S, Rubin LJ, Yuan JXJ. Nitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2002; 282:H184-93. [PMID: 11748062 DOI: 10.1152/ajpheart.2002.282.1.h184] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is an endogenous endothelium-derived relaxing factor that regulates vascular smooth muscle cell proliferation and apoptosis. This study investigated underlying mechanisms involved in NO-induced apoptosis in human and rat pulmonary artery smooth muscle cells (PASMC). Exposure of PASMC to NO, which was derived from the NO donor S-nitroso-N-acetyl-penicillamine, increased the percentage of cells undergoing apoptosis. Increasing extracellular K+ concentration to 40 mM or blocking K+ channels with 1 mM tetraethylammonia (TEA), 100 nM iberiotoxin (IBTX), and 5 mM 4-aminopyridine (4-AP) significantly inhibited the NO-induced apoptosis. In single PASMC, NO reversibly increased K+ currents through the large-conductance Ca(2+)-activated K+ (K(Ca)) channels, whereas TEA and IBTX markedly decreased the K(Ca) currents. In the presence of TEA, NO also increased K+ currents through voltage-gated K+ (K(v)) channels, whereas 4-AP significantly decreased the K(v) currents. Opening of K(Ca) channels with 0.3 mM dehydroepiandrosterone increased K(Ca) currents, induced apoptosis, and further enhanced the NO-mediated apoptosis. Furthermore, NO depolarized the mitochondrial membrane potential. These observations indicate that NO induces PASMC apoptosis by activating K(Ca) and K(v) channels in the plasma membrane. The resulting increase in K+ efflux leads to cytosolic K+ loss and eventual apoptosis volume decrease and apoptosis. NO-induced apoptosis may also be related to mitochondrial membrane depolarization in PASMC.
Collapse
Affiliation(s)
- Stefanie Krick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, 200 W. Arbor Dr., San Diego, CA 92103-8382, USA
| | | | | | | | | | | | | |
Collapse
|
536
|
Abstract
Pulmonary hypertension is a hemodynamic abnormality that is common to a variety of conditions. In obliterative pulmonary hypertension, vascular remodeling leads to an obliterative process involving the small muscular pulmonary arteries, thereby increasing pulmonary vascular resistance (PVR) and the pulmonary artery pressure (PAP). This process can be triggered by a defect in the function of K+ channels or by alveolar hypoxia. In fact, hypoxia has been shown to selectively inhibit the function and expression of voltage-gated K+ (KV) channels in pulmonary arterial smooth muscle cells (SMCs). K+ channel dysfunction, therefore, plays an important role in the development of pulmonary hypertension. Activity of K+ channels regulates the membrane potential (Em) of SMCs, which in turn regulates cytoplasmic free Ca2+ concentration ([Ca2+]cyt). Depolarization of the Em leads to an elevated [Ca2+]cyt by opening voltage-dependent Ca2+ channels. Elevated [Ca2+]cyt is implicated in stimulating vascular SMC proliferation and inducing vasomotor tone, and hence, vasoconstriction. Vasoconstriction causes elevation of intravascular pressure and elastic stretch of the SMCs, both of which have been shown to play a role in pulmonary arterial cellular growth and synthetic activity, creating a vicious cycle of cellular hypertrophy, proliferation, and vascular remodeling. Dysfunction of K+ channels has also been linked to decreased apoptosis in pulmonary arterial SMCs, a condition that contributes further to the medial hypertrophy of the arterial walls and vascular remodeling. The goal of this article is to review the current understanding of the function of K+ channels and their contribution to the pathophysiology and cellular mechanisms involved in the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Mehran Mandegar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, 200 West Arbor Drive, San Diego, CA 92103-8382, USA
| | | |
Collapse
|
537
|
Christensen M, Strange K. Developmental regulation of a novel outwardly rectifying mechanosensitive anion channel in Caenorhabditis elegans. J Biol Chem 2001; 276:45024-30. [PMID: 11568185 DOI: 10.1074/jbc.m107652200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nematode Caenorhabditis elegans offers unique experimental advantages for defining the molecular basis of anion channel function and regulation. However, the relative inaccessibility of somatic cells in adult animals greatly limits direct electrophysiological studies of channel activity. We developed methods to routinely isolate and patch clamp C. elegans embryo cells and oocytes and to culture and patch clamp neurons and muscle cells. Dissociated embryonic cells express a robust outwardly rectifying anion current that is activated by membrane stretch and depolarization. This current, termed I(Cl,mec), is inhibited by anion and mechanosensitive channel inhibitors. I(Cl,mec) has broad anion selectivity and the channel has a unitary conductance of 5-7 picosiemens. I(Cl,mec) is not detectable in whole-cell or isolated patch recordings from oocytes, cultured muscle cells, and cultured neurons but is expressed in single cell and later embryos. Channel density is high, and the current is observed in >80% of membrane patches. Macroscopic currents of 40-120 pA at +100 mV are typically observed in inside-out membrane patches formed using low resistance patch pipettes. Isolated membrane patches of early embryonic cells therefore contain 60-200 I(Cl,mec) channels. The apparent activation of I(Cl,mec) shortly after fertilization and its down-regulation in terminally differentiated cells suggests that the channel may play important roles in embryogenesis and/or cytokinesis.
Collapse
Affiliation(s)
- M Christensen
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
538
|
Rosenblatt J, Raff MC, Cramer LP. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol 2001; 11:1847-57. [PMID: 11728307 DOI: 10.1016/s0960-9822(01)00587-5] [Citation(s) in RCA: 447] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Simple epithelia encase developing embryos and organs. Although these epithelia consist of only one or two layers of cells, they must provide tight barriers for the tissues that they envelop. Apoptosis occurring within these simple epithelia could compromise this barrier. How, then, does an epithelium remove apoptotic cells without disrupting its function as a barrier? RESULTS We show that apoptotic cells are extruded from a simple epithelium by the concerted contraction of their neighbors. A ring of actin and myosin forms both within the apoptotic cell and in the cells surrounding it, and contraction of the ring formed in the live neighbors is required for apoptotic cell extrusion, as injection of a Rho GTPase inhibitor into these cells completely blocks extrusion. Addition of apoptotic MDCK cells to an intact monolayer induces the formation of actin cables in the cells contacted, suggesting that the signal to form the cable comes from the dying cell. The signal is produced very early in the apoptotic process, before procaspase activation, cell shrinkage, or phosphatidylserine exposure. Remarkably, electrical resistance studies show that epithelial barrier function is maintained, even when large numbers of dying cells are being extruded. CONCLUSIONS We propose that apoptotic cell extrusion is important for the preservation of epithelial barrier function during cell death. Our results suggest that an early signal from the dying cell activates Rho in live neighbors to extrude the apoptotic cell out of the epithelium.
Collapse
Affiliation(s)
- J Rosenblatt
- Medical Research Council-Laboratory for Molecular Cell Biology, University College London, WC1E 6BT, United Kingdom.
| | | | | |
Collapse
|
539
|
Niemeyer MI, Cid LP, Barros LF, Sepúlveda FV. Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 2001; 276:43166-74. [PMID: 11560934 DOI: 10.1074/jbc.m107192200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular identity of K(+) channels involved in Ehrlich cell volume regulation is unknown. A background K(+) conductance is activated by cell swelling and is also modulated by extracellular pH. These characteristics are most similar to those of newly emerging TASK (TWIK-related acid-sensitive K(+) channels)-type of two pore-domain K(+) channels. mTASK-2, but not TASK-1 or -3, is present in Ehrlich cells and mouse kidney tissue from where the full coding sequences were obtained. Heterologous expression of mTASK-2 cDNA in HEK-293 cells generated K(+) currents in the absence intracellular Ca(2+). Exposure to hypotonicity enhanced mTASK-2 currents and osmotic cell shrinkage led to inhibition. This occurred without altering voltage dependence and with only slight decrease in pK(a) in hypotonicity but no change in hypertonicity. Replacement with other cations yields a permselectivity sequence for mTASK-2 of K(+) > Rb(+) Cs(+) > NH(4)(+) > Na(+) congruent with Li(+), similar to that for the native conductance (I(K, vol)). Clofilium, a quaternary ammonium blocker of I(K, vol), blocked the mTASK-2-mediated K(+) current with an IC(50) of 25 microm. The presence of mTASK-2 in Ehrlich cells, its functional similarities with I(K, vol), and its modulation by changes in cell volume suggest that this two-pore domain K(+) channel participates in the regulatory volume decrease phenomenon.
Collapse
Affiliation(s)
- M I Niemeyer
- Centro de Estudios Cientificos, Av. Arturo Prat 514, Casilla 1469, Valdivia, Chile.
| | | | | | | |
Collapse
|
540
|
Feranchak AP, Berl T, Capasso J, Wojtaszek PA, Han J, Fitz JG. p38 MAP kinase modulates liver cell volume through inhibition of membrane Na+ permeability. J Clin Invest 2001; 108:1495-504. [PMID: 11714741 PMCID: PMC209415 DOI: 10.1172/jci12190] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In hepatocytes, Na+ influx through nonselective cation (NSC) channels represents a key point for regulation of cell volume. Under basal conditions, channels are closed, but both physiologic and pathologic stimuli lead to a large increase in Na+ and water influx. Since osmotic stimuli also activate mitogen-activated protein (MAP) kinase pathways, we have examined regulation of Na+ permeability and cell volume by MAP kinases in an HTC liver cell model. Under isotonic conditions, there was constitutive activity of p38 MAP kinase that was selectively inhibited by SB203580. Decreases in cell volume caused by hypertonic exposure had no effect on p38, but increases in cell volume caused by hypotonic exposure increased p38 activity tenfold. Na+ currents were small when cells were in isotonic media but could be increased by inhibiting constitutive p38 MAP kinase, thereby increasing cell volume. To evaluate the potential inhibitory role of p38 more directly, cells were dialyzed with recombinant p38alpha and its upstream activator, MEK-6, which substantially inhibited volume-sensitive currents. These findings indicate that constitutive p38 activity contributes to the low Na+ permeability necessary for maintenance of cell volume, and that recombinant p38 negatively modulates the set point for volume-sensitive channel opening. Thus, functional interactions between p38 MAP kinase and ion channels may represent an important target for modifying volume-sensitive liver functions.
Collapse
Affiliation(s)
- A P Feranchak
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | | | | | |
Collapse
|
541
|
Feranchak AP, Berl T, Capasso J, Wojtaszek PA, Han J, Fitz JG. p38 MAP kinase modulates liver cell volume through inhibition of membrane Na+ permeability. J Clin Invest 2001. [DOI: 10.1172/jci200112190] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
542
|
Kim SO, Ono K, Han J. Apoptosis by pan-caspase inhibitors in lipopolysaccharide-activated macrophages. Am J Physiol Lung Cell Mol Physiol 2001; 281:L1095-105. [PMID: 11597900 DOI: 10.1152/ajplung.2001.281.5.l1095] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although apoptosis has been observed in macrophages during the course of infections, the mechanism of apoptosis in activated macrophages is not fully understood. This study shows that pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (ZVAD) or t-butyloxycarbonyl-Asp-fluoromethylketone (Boc-D) caused the death of lipopolysaccharide (LPS)-activated macrophages and RAW 264.7 cells with apoptotic features. The apoptosis was also observed in lipoprotein-treated bacteria but not in CpG oligonucleotide- or flagellin-treated macrophages, indicating a difference of cellular responses downstream of different Toll-like receptors. Consistent with the induction of cell death by pan-caspase inhibitors, no activation of known caspases was detected in LPS-ZVAD-treated cells, suggesting an involvement of unknown proapoptotic caspases in the cell death. ZVAD inhibited the activation of extracellular signal-regulated kinase (ERK) and p38 but not of nuclear factor (NF)-kappa B induced by LPS, suggesting that the ZVAD-sensitive molecule lies upstream of the ERK and p38 pathways but downstream of the divergent site of NF-kappa B and mitogen-activated protein kinases. Our results demonstrate that apoptosis of macrophages induced by LPS+ZVAD is independent from the known proapoptotic caspases and suggest that activity of an unidentified ZVAD-sensitive molecule(s) is involved in the survival of LPS-activated macrophages.
Collapse
Affiliation(s)
- S O Kim
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
543
|
Monack DM, Navarre WW, Falkow S. Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation. Microbes Infect 2001; 3:1201-12. [PMID: 11755408 DOI: 10.1016/s1286-4579(01)01480-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Salmonella typhimurium invades host macrophages and can induce either an almost immediate cell death or establish an intracellular niche within the phagocytic vacuole. Rapid cell death depends on the Salmonella pathogenicity island SPI1 and the host protein caspase-1, a member of the pro-apoptotic caspase family of proteases. Caspase-1-dependent cell death leads to the activation of the potent pro-inflammatory cytokines interleukin (IL)-1beta and IL-18 to produce bioactive cytokines. Animal studies indicate that the activation of these cytokines is necessary for efficient colonization of the mouse gastrointestinal tract. Salmonella that reside in the phagocytic vacuole do not cause this early cell death and can trigger a macrophage death at a much later time point. This late-phase cell death is dependent on SPI2-encoded genes and ompR.
Collapse
Affiliation(s)
- D M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
544
|
Vu CC, Bortner CD, Cidlowski JA. Differential involvement of initiator caspases in apoptotic volume decrease and potassium efflux during Fas- and UV-induced cell death. J Biol Chem 2001; 276:37602-11. [PMID: 11431480 DOI: 10.1074/jbc.m104810200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspase activation and apoptotic volume decrease are fundamental features of programmed cell death; however, the relationship between these components is not well understood. Here we provide biochemical and genetic evidence for the differential involvement of initiator caspases in the apoptotic volume decrease during both intrinsic and extrinsic activation of apoptosis. Apoptosis induction in Jurkat T lymphocytes by Fas receptor engagement (intrinsic) or ultraviolet (UV)-C radiation (extrinsic) triggered the loss of cell volume, which was restricted to cells with diminished intracellular K(+) ions. These characteristics kinetically coincided with the proteolytic processing and activation of both initiator and effector caspases. Although the polycaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone completely inhibited the Fas-mediated apoptotic volume decrease and K(+) efflux, it was much less effective in preventing these processes during UV-induced cell death under conditions whereby caspase activities and DNA degradation were blocked. To define the roles of specific initiator caspases, we utilized Jurkat cells genetically deficient in caspase-8 or stably transfected with a dominant-negative mutant of caspase-9. The results show that the activation of caspase-8, but not caspase-9, is necessary for Fas-induced apoptosis. Conversely, caspase-9, but not caspase-8, is important for UV-mediated shrunken morphology and apoptosis progression. Together, these findings indicate that cell shrinkage and K(+) efflux during apoptosis are tightly coupled, but are differentially regulated by either caspase-8 or caspase-9 depending on specific pathways of cell death.
Collapse
Affiliation(s)
- C C Vu
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
545
|
Barros LF, Hermosilla T, Castro J. Necrotic volume increase and the early physiology of necrosis. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:401-9. [PMID: 11913453 DOI: 10.1016/s1095-6433(01)00438-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Whether a lethally injured mammalian cell undergoes necrosis or apoptosis may be determined by the early activation of specific ion channels at the cell surface. Apoptosis requires K+ and Cl- efflux, which leads to cell shrinking, an active phenomenon termed apoptotic volume decrease (AVD). In contrast, necrosis has been shown to require Na+ influx through membrane carriers and more recently through stress-activated non-selective cation channels (NSCCs). These ubiquitous channels are kept dormant in viable cells but become activated upon exposure to free-radicals. The ensuing Na+ influx leads to cell swelling, an active response that may be termed necrotic volume increase (NVI). This review focuses on how AVD and NVI become conflicting forces at the beginning of cell injury, on the events that determine irreversibility and in particular, on the ion fluxes that decide whether a cell is to die by necrosis or by apoptosis.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos CECS, Valdivia, Chile.
| | | | | |
Collapse
|
546
|
Fumarola C, Zerbini A, Guidotti GG. Glutamine deprivation-mediated cell shrinkage induces ligand-independent CD95 receptor signaling and apoptosis. Cell Death Differ 2001; 8:1004-13. [PMID: 11598798 DOI: 10.1038/sj.cdd.4400902] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2001] [Revised: 04/27/2001] [Accepted: 05/02/2001] [Indexed: 11/09/2022] Open
Abstract
Cell shrinkage and loss of cell viability by apoptosis have been examined in cultured CD95(Fas/Apo-1)-expressing leukemia-derived CEM and HL-60 cells subjected to acute deprivation of glutamine, a major compatible osmolyte engaged in cell volume control. Glutamine deprivation-mediated cell shrinkage promoted a ligand-independent activation of the CD95-mediated apoptotic pathway. Cell transfection with plasmids expressing FADD-DN or v-Flip viral proteins pointed to a functional clustering of CD95 receptors at the cell surface with activation of the 'extrinsic pathway' caspase cascade. Accordingly, cell shrinkage did not induce apoptosis in CD95 receptor-negative lymphoma L1210 cells. Replacement of glutamine with surrogate compatible osmolytes counteracted cell volume decrement and protected the CD95-expressing cells from apoptosis. A glutamine deprivation-dependent cell shrinkage with activation of the CD95-mediated pathway was also observed when asparaginase was added to the medium. Asparagine depletion had no role in this process. The cell-size shrinkage-dependent apoptosis induced by glutamine restriction in CD95-expressing leukemic cells may therefore be of clinical relevance in amidohydrolase enzyme therapies.
Collapse
Affiliation(s)
- C Fumarola
- Department of Experimental Medicine, Section of Immunology and Molecular Pathology, University of Parma, 43100 Parma, Italy
| | | | | |
Collapse
|
547
|
Okada Y, Maeno E. Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:377-83. [PMID: 11913451 DOI: 10.1016/s1095-6433(01)00424-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Apoptosis occurs in response to various stimuli under physiological and pathological circumstances. A major hallmark of the programmed cell death is normotonic shrinkage of cells. Induction of the apoptotic volume decrease (AVD) was found to precede cytochrome c release, caspase-3 activation and DNA laddering. A broad-spectrum caspase inhibitor blocked these biochemical apoptotic events but failed to block the AVD. The normotonic AVD induction was coupled to facilitation of the regulatory volume decrease (RVD), which is attained by parallel operation of Cl- and K+ channels, under hypotonic conditions. Both the AVD induction and RVD facilitation were prevented by application of a blocker of volume-regulatory Cl- or K+ channels. Furthermore, apoptotic cell death was rescued by channel blocker-induced prevention of AVD. Thus, it is concluded that the AVD is produced under normotonic conditions by a mechanism similar, though without preceding swelling, to RVD and represents an early prerequisite to apoptotic events leading to cell death. It was previously reported that hypertonic stress triggers apoptosis in cell types that lack the regulatory volume increase (RVI) mechanism. Taken together, it is suggested that 'disordered' or altered cell volume regulation is associated with apoptosis.
Collapse
Affiliation(s)
- Y Okada
- Department of Cell Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | |
Collapse
|
548
|
Krick S, Platoshyn O, McDaniel SS, Rubin LJ, Yuan JX. Augmented K(+) currents and mitochondrial membrane depolarization in pulmonary artery myocyte apoptosis. Am J Physiol Lung Cell Mol Physiol 2001; 281:L887-94. [PMID: 11557592 DOI: 10.1152/ajplung.2001.281.4.l887] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The balance between apoptosis and proliferation in pulmonary artery smooth muscle cells (PASMCs) is important in maintaining normal pulmonary vascular structure. Activity of voltage-gated K(+) (K(V)) channels has been demonstrated to regulate cell apoptosis and proliferation. Treatment of PASMCs with staurosporine (ST) induced apoptosis in PASMCs, augmented K(V) current [I(K(V))], and induced mitochondrial membrane depolarization. High K(+) (40 mM) negligibly affected the ST-induced mitochondrial membrane depolarization but inhibited the ST-induced I(K(V)) increase and apoptosis. Blockade of K(V) channels with 4-aminopyridine diminished I(K(V)) and markedly decreased the ST-mediated apoptosis. Furthermore, the ST-induced apoptosis was preceded by the increase in I(K(V)). These results indicate that ST induces PASMC apoptosis by activation of plasmalemmal K(V) channels and mitochondrial membrane depolarization. The increased I(K(V)) would result in an apoptotic volume decrease due to a loss of cytosolic K(+) and induce apoptosis. The mitochondrial membrane depolarization would cause cytochrome c release, activate the cytosolic caspases, and induce apoptosis. Inhibition of K(V) channels would thus attenuate PASMC apoptosis.
Collapse
Affiliation(s)
- S Krick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, San Diego, California 92103, USA
| | | | | | | | | |
Collapse
|
549
|
Hortelano S, García-Martín ML, Cerdán S, Castrillo A, Alvarez AM, Boscá L. Intracellular water motion decreases in apoptotic macrophages after caspase activation. Cell Death Differ 2001; 8:1022-1028. [PMID: 11598800 DOI: 10.1038/sj.cdd.4400913] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2000] [Revised: 05/16/2001] [Accepted: 05/22/2001] [Indexed: 02/07/2023] Open
Abstract
Triggering of the macrophage cell line RAW 264.7 with lipopolysaccharide and interferon-gamma promoted apoptosis that was prevented by inhibitors of type 2 nitric oxide synthase or caspase. Using (1)H NMR analysis, we have investigated the changes of the intracellular transverse relaxation time (T(2)) and apparent diffusion coefficient (ADC) as parameters reflecting the rotational and translational motions of water in apoptotic macrophages. T(2) values decreased significantly from 287 to 182 ms in cells treated for 18 h with NO-donors. These changes of T(2) were prevented by caspase inhibitors and were not due to mitochondrial depolarization or microtubule depolymerization. The decrease of the intracellular values of T(2) and ADC in apoptotic macrophages was observed after caspase activation, but preceded phosphatidylserine exposure and nucleosomal DNA cleavage. The changes of water motion were accompanied by an enhancement of the hydrophobic properties of the intracellular milieu, as detected by fluorescent probes. These results indicate the occurrence of an alteration in the physicochemical properties of intracellular water during the course of apoptosis.
Collapse
Affiliation(s)
- S Hortelano
- Instituto de Bioquímica, Centro Mixto CSIC-UCM, Facultad de Farmacia, Universidad Complutense. 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
550
|
Segal MS, Beem E. Effect of pH, ionic charge, and osmolality on cytochrome c-mediated caspase-3 activity. Am J Physiol Cell Physiol 2001; 281:C1196-204. [PMID: 11546656 DOI: 10.1152/ajpcell.2001.281.4.c1196] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome c-mediated activation of caspase-3 is the final common pathway for most signals that induce apoptosis. Before release of cytochrome c from mitochondria, K(+) and Cl(-) efflux and intracellular acidification must occur. We have utilized an in vitro assay to examine the role of pH, cations, anions, and uncharged molecules on the process of cytochrome c-mediated activation of procaspase-3. In this cell-free system, a pH above 7.4 severely suppressed the activation of procaspase-3 but not the activity of caspase-3. KCl, NaCl, and other salts all inhibited caspase activation, but uncharged molecules did not. Comparison of the inhibitory capacity of various salts suggests that the crucial element in causing suppression is the cation. The inhibition of alkaline pH could be overcome by increasing concentrations of cytochrome c, whereas the inhibition of ionic charge could not, suggesting that pH and salts affect the activation of caspase-3 by different mechanisms.
Collapse
Affiliation(s)
- M S Segal
- Division of Nephrology, Hypertension and Transplantation, Department of Medicine, University of Florida, Gainesville, Florida 32610, USA.
| | | |
Collapse
|