501
|
The Light and Shadow of Senescence and Inflammation in Cardiovascular Pathology and Regenerative Medicine. Mediators Inflamm 2017; 2017:7953486. [PMID: 29118467 PMCID: PMC5651105 DOI: 10.1155/2017/7953486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023] Open
Abstract
Recent epidemiologic studies evidence a dramatic increase of cardiovascular diseases, especially associated with the aging of the world population. During aging, the progressive impairment of the cardiovascular functions results from the compromised tissue abilities to protect the heart against stress. At the molecular level, in fact, a gradual weakening of the cellular processes regulating cardiovascular homeostasis occurs in aging cells. Atherosclerosis and heart failure are particularly correlated with aging-related cardiovascular senescence, that is, the inability of cells to progress in the mitotic program until completion of cytokinesis. In this review, we explore the intrinsic and extrinsic causes of cellular senescence and their role in the onset of these cardiovascular pathologies. Additionally, we dissect the effects of aging on the cardiac endogenous and exogenous reservoirs of stem cells. Finally, we offer an overview on the strategies of regenerative medicine that have been advanced in the quest for heart rejuvenation.
Collapse
|
502
|
|
503
|
Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, van Deursen JM. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 2017; 16:718-735. [PMID: 28729727 PMCID: PMC5942225 DOI: 10.1038/nrd.2017.116] [Citation(s) in RCA: 843] [Impact Index Per Article: 105.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronological age represents the single greatest risk factor for human disease. One plausible explanation for this correlation is that mechanisms that drive ageing might also promote age-related diseases. Cellular senescence, which is a permanent state of cell cycle arrest induced by cellular stress, has recently emerged as a fundamental ageing mechanism that also contributes to diseases of late life, including cancer, atherosclerosis and osteoarthritis. Therapeutic strategies that safely interfere with the detrimental effects of cellular senescence, such as the selective elimination of senescent cells (SNCs) or the disruption of the SNC secretome, are gaining significant attention, with several programmes now nearing human clinical studies.
Collapse
Affiliation(s)
| | | | - Darren J Baker
- Departments of Biochemistry and Molecular Biology, Mayo Clinic
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, USA
| | - Remi-Martin Laberge
- Unity Biotechnology, 3280 Bayshore Boulevard Suite 100, Brisbane, California 94005, USA
| | - Dan Marquess
- Unity Biotechnology, 3280 Bayshore Boulevard Suite 100, Brisbane, California 94005, USA
| | - Jamie Dananberg
- Unity Biotechnology, 3280 Bayshore Boulevard Suite 100, Brisbane, California 94005, USA
| | - Jan M van Deursen
- Departments of Biochemistry and Molecular Biology, Mayo Clinic
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, USA
| |
Collapse
|
504
|
Rossman MJ, Kaplon RE, Hill SD, McNamara MN, Santos-Parker JR, Pierce GL, Seals DR, Donato AJ. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. Am J Physiol Heart Circ Physiol 2017; 313:H890-H895. [PMID: 28971843 DOI: 10.1152/ajpheart.00416.2017] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 01/27/2023]
Abstract
Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P < 0.05), respectively, in ECs obtained from antecubital veins of older sedentary (60 ± 1 yr, n = 12) versus young sedentary (22 ± 1 yr, n = 9) adults. These age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 (r = -0.49, P = 0.003), p21 (r = -0.38, P = 0.03), and p16 (r = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P < 0.05), respectively, in ECs sampled from brachial arteries of healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed (P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age.NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function.
Collapse
Affiliation(s)
- Matthew J Rossman
- Integrative Physiology, University of Colorado Boulder, Boulder, Colorado;
| | - Rachelle E Kaplon
- Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Sierra D Hill
- Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Molly N McNamara
- Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | | | - Gary L Pierce
- Health and Human Physiology, University of Iowa, Iowa City, Iowa; and
| | - Douglas R Seals
- Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | | |
Collapse
|
505
|
Stout MB, Justice JN, Nicklas BJ, Kirkland JL. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty. Physiology (Bethesda) 2017; 32:9-19. [PMID: 27927801 DOI: 10.1152/physiol.00012.2016] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age.
Collapse
Affiliation(s)
- Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jamie N Justice
- Department of Internal Medicine-Geriatrics, Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Barbara J Nicklas
- Department of Internal Medicine-Geriatrics, Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
506
|
Kim KM, Noh JH, Bodogai M, Martindale JL, Yang X, Indig FE, Basu SK, Ohnuma K, Morimoto C, Johnson PF, Biragyn A, Abdelmohsen K, Gorospe M. Identification of senescent cell surface targetable protein DPP4. Genes Dev 2017; 31:1529-1534. [PMID: 28877934 PMCID: PMC5630018 DOI: 10.1101/gad.302570.117] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/02/2017] [Indexed: 12/13/2022]
Abstract
Kim et al. show that DPP4 (dipeptidyl peptidase 4) was selectively expressed on the surface of senescent human diploid fibroblasts and that this enabled their preferential elimination. Senescent cell accumulation in aging tissues is linked to age-associated diseases and declining function, prompting efforts to eliminate them. Mass spectrometry analysis revealed that DPP4 (dipeptidyl peptidase 4) was selectively expressed on the surface of senescent, but not proliferating, human diploid fibroblasts. Importantly, the differential presence of DPP4 allowed flow cytometry-mediated isolation of senescent cells using anti-DPP4 antibodies. Moreover, antibody-dependent cell-mediated cytotoxicity (ADCC) assays revealed that the cell surface DPP4 preferentially sensitized senescent, but not dividing, fibroblasts to cytotoxicity by natural killer cells. In sum, the selective expression of DPP4 on the surface of senescent cells enables their preferential elimination.
Collapse
Affiliation(s)
- Kyoung Mi Kim
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ji Heon Noh
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Monica Bodogai
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jennifer L Martindale
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Xiaoling Yang
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Fred E Indig
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Sandip K Basu
- National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Kei Ohnuma
- Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Chikao Morimoto
- Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Peter F Johnson
- National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Arya Biragyn
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
507
|
Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, Grassi D, Gregg SQ, Stripay JL, Dorronsoro A, Corbo L, Tang P, Bukata C, Ring N, Giacca M, Li X, Tchkonia T, Kirkland JL, Niedernhofer LJ, Robbins PD. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 2017; 8:422. [PMID: 28871086 PMCID: PMC5583353 DOI: 10.1038/s41467-017-00314-z] [Citation(s) in RCA: 474] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/21/2017] [Indexed: 01/07/2023] Open
Abstract
Aging is the main risk factor for many chronic degenerative diseases and cancer. Increased senescent cell burden in various tissues is a major contributor to aging and age-related diseases. Recently, a new class of drugs termed senolytics were demonstrated to extending healthspan, reducing frailty and improving stem cell function in multiple murine models of aging. To identify novel and more optimal senotherapeutic drugs and combinations, we established a senescence associated β-galactosidase assay as a screening platform to rapidly identify drugs that specifically affect senescent cells. We used primary Ercc1 -/- murine embryonic fibroblasts with reduced DNA repair capacity, which senesce rapidly if grown at atmospheric oxygen. This platform was used to screen a small library of compounds that regulate autophagy, identifying two inhibitors of the HSP90 chaperone family as having significant senolytic activity in mouse and human cells. Treatment of Ercc1 -/∆ mice, a mouse model of a human progeroid syndrome, with the HSP90 inhibitor 17-DMAG extended healthspan, delayed the onset of several age-related symptoms and reduced p16INK4a expression. These results demonstrate the utility of our screening platform to identify senotherapeutic agents as well as identified HSP90 inhibitors as a promising new class of senolytic drugs.The accumulation of senescent cells is thought to contribute to the age-associated decline in tissue function. Here, the authors identify HSP90 inhibitors as a new class of senolytic compounds in an in vitro screening and show that administration of a HSP90 inhibitor reduces age-related symptoms in progeroid mice.
Collapse
Affiliation(s)
| | - Yuan Yuan Ling
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Jing Zhao
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Sara J McGowan
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Yi Zhu
- University of Pittsburgh School of Medicine, Pittsburgh, 15261, PA, USA
| | - Robert W Brooks
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Diego Grassi
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Siobhan Q Gregg
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, 55905, MN, USA
| | - Jennifer L Stripay
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, 55905, MN, USA
| | - Akaitz Dorronsoro
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Lana Corbo
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Priscilla Tang
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Christina Bukata
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Nadja Ring
- International Centre for Genetic Engineering and Biotechnology, Trieste, 34100, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, 34100, Italy
| | - Xuesen Li
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Tamara Tchkonia
- University of Pittsburgh School of Medicine, Pittsburgh, 15261, PA, USA
| | - James L Kirkland
- University of Pittsburgh School of Medicine, Pittsburgh, 15261, PA, USA
| | - Laura J Niedernhofer
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA
| | - Paul D Robbins
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, 33458, FL, USA.
| |
Collapse
|
508
|
Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The Clinical Potential of Senolytic Drugs. J Am Geriatr Soc 2017; 65:2297-2301. [PMID: 28869295 DOI: 10.1111/jgs.14969] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Senolytic drugs are agents that selectively induce apoptosis of senescent cells. These cells accumulate in many tissues with aging and at sites of pathology in multiple chronic diseases. In studies in animals, targeting senescent cells using genetic or pharmacological approaches delays, prevents, or alleviates multiple age-related phenotypes, chronic diseases, geriatric syndromes, and loss of physiological resilience. Among the chronic conditions successfully treated by depleting senescent cells in preclinical studies are frailty, cardiac dysfunction, vascular hyporeactivity and calcification, diabetes mellitus, liver steatosis, osteoporosis, vertebral disk degeneration, pulmonary fibrosis, and radiation-induced damage. Senolytic agents are being tested in proof-of-concept clinical trials. To do so, new clinical trial paradigms for testing senolytics and other agents that target fundamental aging mechanisms are being developed, because use of long-term endpoints such as lifespan or healthspan is not feasible. These strategies include testing effects on multimorbidity, accelerated aging-like conditions, diseases with localized accumulation of senescent cells, potentially fatal diseases associated with senescent cell accumulation, age-related loss of physiological resilience, and frailty. If senolytics or other interventions that target fundamental aging processes prove to be effective and safe in clinical trials, they could transform geriatric medicine by enabling prevention or treatment of multiple diseases and functional deficits in parallel, instead of one at a time.
Collapse
Affiliation(s)
- James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Laura J Niedernhofer
- Department of Molecular Medicine and the Center on Aging, Scripps Research Institute, Jupiter, Florida
| | - Paul D Robbins
- Department of Molecular Medicine and the Center on Aging, Scripps Research Institute, Jupiter, Florida
| |
Collapse
|
509
|
Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 2017; 23:1072-1079. [PMID: 28825716 PMCID: PMC5657592 DOI: 10.1038/nm.4385] [Citation(s) in RCA: 860] [Impact Index Per Article: 107.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/13/2017] [Indexed: 11/08/2022]
Abstract
Aging is associated with increased cellular senescence, which is hypothesized to drive the eventual development of multiple comorbidities. Here we investigate a role for senescent cells in age-related bone loss through multiple approaches. In particular, we used either genetic (i.e., the INK-ATTAC 'suicide' transgene encoding an inducible caspase 8 expressed specifically in senescent cells) or pharmacological (i.e., 'senolytic' compounds) means to eliminate senescent cells. We also inhibited the production of the proinflammatory secretome of senescent cells using a JAK inhibitor (JAKi). In aged (20- to 22-month-old) mice with established bone loss, activation of the INK-ATTAC caspase 8 in senescent cells or treatment with senolytics or the JAKi for 2-4 months resulted in higher bone mass and strength and better bone microarchitecture than in vehicle-treated mice. The beneficial effects of targeting senescent cells were due to lower bone resorption with either maintained (trabecular) or higher (cortical) bone formation as compared to vehicle-treated mice. In vitro studies demonstrated that senescent-cell conditioned medium impaired osteoblast mineralization and enhanced osteoclast-progenitor survival, leading to increased osteoclastogenesis. Collectively, these data establish a causal role for senescent cells in bone loss with aging, and demonstrate that targeting these cells has both anti-resorptive and anabolic effects on bone. Given that eliminating senescent cells and/or inhibiting their proinflammatory secretome also improves cardiovascular function, enhances insulin sensitivity, and reduces frailty, targeting this fundamental mechanism to prevent age-related bone loss suggests a novel treatment strategy not only for osteoporosis, but also for multiple age-related comorbidities.
Collapse
|
510
|
Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, Curran GL, Ogrodnik M, Jurk D, Johnson KO, Lowe V, Tchkonia T, Westendorf JJ, Kirkland JL. Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. J Gerontol A Biol Sci Med Sci 2017; 72:780-785. [PMID: 27516624 PMCID: PMC5861939 DOI: 10.1093/gerona/glw154] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/18/2016] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the leading form of arthritis in the elderly, causing pain, disability, and immobility. OA has been associated with accumulation of senescent cells in or near joints. However, evidence for a causal link between OA and cellular senescence is lacking. Here, we present a novel senescent cell transplantation model involving injection of small numbers of senescent or nonsenescent cells from the ear cartilage of luciferase-expressing mice into the knee joint area of wild-type mice. By using bioluminescence and 18FDG PET imaging, we could track the injected cells in vivo for more than 10 days. Transplanting senescent cells into the knee region caused leg pain, impaired mobility, and radiographic and histological changes suggestive of OA. Transplanting nonsenescent cells had less of these effects. Thus, senescent cells can induce an OA-like state and targeting senescent cells could be a promising strategy for treating OA.
Collapse
Affiliation(s)
- Ming Xu
- Robert and Arlene Kogod Center on Aging
| | | | | | | | | | | | | | - Mikolaj Ogrodnik
- Robert and Arlene Kogod Center on Aging.,Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Diana Jurk
- Newcastle University Institute for Ageing and Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | | | - Jennifer J Westendorf
- Department of Orthopedic Surgery.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
511
|
Hydrogen-rich pure water prevents cigarette smoke-induced pulmonary emphysema in SMP30 knockout mice. Biochem Biophys Res Commun 2017; 492:74-81. [PMID: 28807355 DOI: 10.1016/j.bbrc.2017.08.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is predominantly a cigarette smoke (CS)-triggered disease with features of chronic systemic inflammation. Oxidants derived from CS can induce DNA damage and stress-induced premature cellular senescence in the respiratory system, which play significant roles in COPD. Therefore, antioxidants should provide benefits for the treatment of COPD; however, their therapeutic potential remains limited owing to the complexity of this disease. Recently, molecular hydrogen (H2) has been reported as a preventive and therapeutic antioxidant. Molecular H2 can selectively reduce hydroxyl radical accumulation with no known side effects, showing potential applications in managing oxidative stress, inflammation, apoptosis, and lipid metabolism. However, there have been no reports on the efficacy of molecular H2 in COPD patients. In the present study, we used a mouse model of COPD to investigate whether CS-induced histological damage in the lungs could be attenuated by administration of molecular H2. We administered H2-rich pure water to senescence marker protein 30 knockout (SMP30-KO) mice exposed to CS for 8 weeks. Administration of H2-rich water attenuated the CS-induced lung damage in the SMP30-KO mice and reduced the mean linear intercept and destructive index of the lungs. Moreover, H2-rich water significantly restored the static lung compliance in the CS-exposed mice compared with that in the CS-exposed H2-untreated mice. Moreover, treatment with H2-rich water decreased the levels of oxidative DNA damage markers such as phosphorylated histone H2AX and 8-hydroxy-2'-deoxyguanosine, and senescence markers such as cyclin-dependent kinase inhibitor 2A, cyclin-dependent kinase inhibitor 1, and β-galactosidase in the CS-exposed mice. These results demonstrated that H2-rich pure water attenuated CS-induced emphysema in SMP30-KO mice by reducing CS-induced oxidative DNA damage and premature cell senescence in the lungs. Our study suggests that administration of molecular H2 may be a novel preventive and therapeutic strategy for COPD.
Collapse
|
512
|
Robbins PD, Niedernhofer LJ. Advances in Therapeutic Approaches to Extend Healthspan: a perspective from the 2 nd Scripps Symposium on the Biology of Aging. Aging Cell 2017; 16:610-614. [PMID: 28585366 PMCID: PMC5506446 DOI: 10.1111/acel.12620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2017] [Indexed: 12/18/2022] Open
Abstract
The 2nd Scripps Florida Symposium on The Biology of Aging entitled ‘Advances in Therapeutic Approaches to Extend Healthspan’ was held on January 22nd–25th, 2017 at The Scripps Research Institute in Jupiter, Florida. The meeting highlighted a variety of therapeutic approaches in animal models of aging that either are or soon will be in clinic trials. For example, drugs targeting senescent cells, metformin, rapalogs, NAD precursors, young plasma, mitochondrial‐targeted free radical scavengers, stem cells, and stem cell factors all have shown significant preclinical efficacy. This perspective, based on presentations and discussions at the symposium, outlines the current and future state of development of therapeutic approaches to extend human healthspan.
Collapse
Affiliation(s)
- Paul D. Robbins
- Department of Molecular Medicine and the Center on Aging; The Scripps Research Institute; Jupiter FL 33458 USA
| | - Laura J. Niedernhofer
- Department of Molecular Medicine and the Center on Aging; The Scripps Research Institute; Jupiter FL 33458 USA
| |
Collapse
|
513
|
Mistriotis P, Andreadis ST. Vascular aging: Molecular mechanisms and potential treatments for vascular rejuvenation. Ageing Res Rev 2017; 37:94-116. [PMID: 28579130 DOI: 10.1016/j.arr.2017.05.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
Aging is the main risk factor contributing to vascular dysfunction and the progression of vascular diseases. In this review, we discuss the causes and mechanisms of vascular aging at the tissue and cellular level. We focus on Endothelial Cell (EC) and Smooth Muscle Cell (SMC) aging due to their critical role in mediating the defective vascular phenotype. We elaborate on two categories that contribute to cellular dysfunction: cell extrinsic and intrinsic factors. Extrinsic factors reflect systemic or environmental changes which alter EC and SMC homeostasis compromising vascular function. Intrinsic factors induce EC and SMC transformation resulting in cellular senescence. Replenishing or rejuvenating the aged/dysfunctional vascular cells is critical to the effective repair of the vasculature. As such, this review also elaborates on recent findings which indicate that stem cell and gene therapies may restore the impaired vascular cell function, reverse vascular aging, and prolong lifespan.
Collapse
Affiliation(s)
- Panagiotis Mistriotis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA
| | - Stelios T Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Amherst, NY 14260-4200, USA; Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA.
| |
Collapse
|
514
|
Abstract
The accumulation of 'senescent' cells has long been proposed to act as an ageing mechanism. These cells display a radically altered transcriptome and degenerative phenotype compared with their growing counterparts. Tremendous progress has been made in recent years both in understanding the molecular mechanisms controlling entry into the senescent state and in the direct demonstration that senescent cells act as causal agents of mammalian ageing. The challenges now are to gain a better understanding of how the senescent cell phenotype varies between different individuals and tissues, discover how senescence predisposes to organismal frailty, and develop mechanisms by which the deleterious effects of senescent cells can be ameliorated.
Collapse
Affiliation(s)
- Richard Ga Faragher
- Stress, Ageing and Disease Research Group, School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton, East Sussex, UK
| | - Anne McArdle
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Alison Willows
- Stress, Ageing and Disease Research Group, School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton, East Sussex, UK
| | - Elizabeth L Ostler
- Stress, Ageing and Disease Research Group, School of Pharmacy & Biomolecular Sciences, University of Brighton, Brighton, East Sussex, UK
| |
Collapse
|
515
|
He S, Sharpless NE. Senescence in Health and Disease. Cell 2017; 169:1000-1011. [PMID: 28575665 DOI: 10.1016/j.cell.2017.05.015] [Citation(s) in RCA: 1216] [Impact Index Per Article: 152.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
Abstract
Many cellular stresses activate senescence, a persistent hyporeplicative state characterized in part by expression of the p16INK4a cell-cycle inhibitor. Senescent cell production occurs throughout life and plays beneficial roles in a variety of physiological and pathological processes including embryogenesis, wound healing, host immunity, and tumor suppression. Meanwhile, the steady accumulation of senescent cells with age also has adverse consequences. These non-proliferating cells occupy key cellular niches and elaborate pro-inflammatory cytokines, contributing to aging-related diseases and morbidity. This model suggests that the abundance of senescent cells in vivo predicts "molecular," as opposed to chronologic, age and that senescent cell clearance may mitigate aging-associated pathology.
Collapse
Affiliation(s)
- Shenghui He
- Departments of Medicine and Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA; The Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA
| | - Norman E Sharpless
- Departments of Medicine and Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA; The Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA.
| |
Collapse
|
516
|
Heiss C, Spyridopoulos I, Haendeler J. Interventions to slow cardiovascular aging: Dietary restriction, drugs and novel molecules. Exp Gerontol 2017; 109:108-118. [PMID: 28658611 DOI: 10.1016/j.exger.2017.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023]
Abstract
Cardiovascular aging is a highly dynamic process. Despite the fact that cardiovascular function and structure change with age, they can still be modulated even in aged humans. The most prominent approaches to improve age-dependent vascular changes include dietary restriction and pharmacologic agents interacting with signaling pathways implicated in this context. These include inhibition of TOR, glycolysis, and GH/IGF-1, activation of sirtuins, and AMPK, as well as modulators of inflammation, epigenetic pathways, and telomeres. Promising nutritional approaches include Mediterranean diet and novel dietary bioactives including flavanols, anthocyanins, and lignins. Many plant bioactives improve cardiovascular parameters implied in vascular healthy aging including endothelial function, arterial stiffness, blood pressure, cholesterol, and glycemic control. However, the mechanism of action of most bioactives is not established and it remains to be elucidated whether they act as dietary restriction mimetics or via other modes of action. Even more importantly, whether these interventions can slow or even reverses components of cardiovascular aging itself and can increase healthspan or longevity in humans needs to be determined.
Collapse
Affiliation(s)
- Christian Heiss
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Ioakim Spyridopoulos
- Institute of Genetic Medicine, Medical Faculty, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| | - Judith Haendeler
- Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany.
| |
Collapse
|
517
|
Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, Day CP, Burt A, Palmer A, Anstee QM, Grellscheid SN, Hoeijmakers JHJ, Barnhoorn S, Mann DA, Bird TG, Vermeij WP, Kirkland JL, Passos JF, von Zglinicki T, Jurk D. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun 2017; 8:15691. [PMID: 28608850 PMCID: PMC5474745 DOI: 10.1038/ncomms15691] [Citation(s) in RCA: 726] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) increases with age. Cellular senescence refers to a state of irreversible cell-cycle arrest combined with the secretion of proinflammatory cytokines and mitochondrial dysfunction. Senescent cells contribute to age-related tissue degeneration. Here we show that the accumulation of senescent cells promotes hepatic fat accumulation and steatosis. We report a close correlation between hepatic fat accumulation and markers of hepatocyte senescence. The elimination of senescent cells by suicide gene-meditated ablation of p16Ink4a-expressing senescent cells in INK-ATTAC mice or by treatment with a combination of the senolytic drugs dasatinib and quercetin (D+Q) reduces overall hepatic steatosis. Conversely, inducing hepatocyte senescence promotes fat accumulation in vitro and in vivo. Mechanistically, we show that mitochondria in senescent cells lose the ability to metabolize fatty acids efficiently. Our study demonstrates that cellular senescence drives hepatic steatosis and elimination of senescent cells may be a novel therapeutic strategy to reduce steatosis.
Collapse
Affiliation(s)
- Mikolaj Ogrodnik
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Satomi Miwa
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Dina Tiniakos
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Department of Pathology, Aretaieio Hospital, Medical School, National & Kapodistrian University of Athens, Athens 11528, Greece
| | - Caroline L. Wilson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Albert Lahat
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Christoper P. Day
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Liver Unit, Newcastle upon Tyne Hospitals NHS Trust, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK
| | - Alastair Burt
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- The University of Adelaide, Faculty of Health Science, North Terrace, Adelaide, South Australia 5005, Australia
| | - Allyson Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - Quentin M. Anstee
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | | | - Jan H J. Hoeijmakers
- Department of Molecular Genetics, Erasmus University Medical Center, PO Box 2040, Rotterdam 3000 CA, The Netherlands
- CECAD Forschungszentrum, Universität zu Köln, Joseph-Stelzmann-Straße 26, Köln 50931, Germany
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus University Medical Center, PO Box 2040, Rotterdam 3000 CA, The Netherlands
| | - Derek A. Mann
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas G. Bird
- MRC Centre for Inflammation Research, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Wilbert P. Vermeij
- Department of Molecular Genetics, Erasmus University Medical Center, PO Box 2040, Rotterdam 3000 CA, The Netherlands
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA
| | - João F. Passos
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Thomas von Zglinicki
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| | - Diana Jurk
- Newcastle University Institute for Ageing, Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne NE4 5PL, UK
| |
Collapse
|
518
|
Susnik N, Sen P, Melk A, Schmitt R. Aging, Cellular Senescence, and Kidney Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2017. [DOI: 10.1007/s40139-017-0143-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
519
|
Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 2017; 79:66-86. [PMID: 28476525 DOI: 10.1016/j.neubiorev.2017.04.030] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Aging is a natural process that is associated with cognitive decline as well as functional and social impairments. One structure of particular interest when considering aging and cognitive decline is the hippocampus, a brain region known to play an important role in learning and memory consolidation as well as in affective behaviours and mood regulation, and where both functional and structural plasticity (e.g., neurogenesis) occur well into adulthood. Neurobiological alterations seen in the aging hippocampus including increased oxidative stress and neuroinflammation, altered intracellular signalling and gene expression, as well as reduced neurogenesis and synaptic plasticity, are thought to be associated with age-related cognitive decline. Non-invasive strategies such as caloric restriction, physical exercise, and environmental enrichment have been shown to counteract many of the age-induced alterations in hippocampal signalling, structure, and function. Thus, such approaches may have therapeutic value in counteracting the deleterious effects of aging and protecting the brain against age-associated neurodegenerative processes.
Collapse
Affiliation(s)
- Luis E B Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Luckshi Rajendran
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; UBC Island Medical program, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
520
|
Sritharen Y, Enriquez-Sarano M, Schaff HV, Casaclang-Verzosa G, Miller JD. Pathophysiology of Aortic Valve Stenosis: Is It Both Fibrocalcific and Sex Specific? Physiology (Bethesda) 2017; 32:182-196. [PMID: 28404735 PMCID: PMC6148342 DOI: 10.1152/physiol.00025.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 12/24/2022] Open
Abstract
Our understanding of the fundamental biology and identification of efficacious therapeutic targets in aortic valve stenosis has lagged far behind the fields of atherosclerosis and heart failure. In this review, we highlight the most clinically relevant problems facing men and women with fibrocalcific aortic valve stenosis, discuss the fundamental biology underlying valve calcification and fibrosis, and identify key molecular points of intersection with sex hormone signaling.
Collapse
Affiliation(s)
- Yoginee Sritharen
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | | | - Hartzell V Schaff
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - Grace Casaclang-Verzosa
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Jordan D Miller
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota;
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Surgery, Mayo Clinic, Rochester, Minnesota; and the
- Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
521
|
Niedernhofer LJ, Kirkland JL, Ladiges W. Molecular pathology endpoints useful for aging studies. Ageing Res Rev 2017; 35:241-249. [PMID: 27721062 DOI: 10.1016/j.arr.2016.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/15/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022]
Abstract
The first clinical trial aimed at targeting fundamental processes of aging will soon be launched (TAME: Targeting Aging with Metformin). In its wake is a robust pipeline of therapeutic interventions that have been demonstrated to extend lifespan or healthspan of preclinical models, including rapalogs, antioxidants, anti-inflammatory agents, and senolytics. This ensures that if the TAME trial is successful, numerous additional clinical trials are apt to follow. But a significant impediment to these trials remains the question of what endpoints should be measured? The design of the TAME trial very cleverly skirts around this based on the fact that there are decades of data on metformin in humans, providing unequaled clarity of what endpoints are most likely to yield a positive outcome. But for a new chemical entity, knowing what endpoints to measure remains a formidable challenge. For economy's sake, and to achieve results in a reasonable time frame, surrogate markers of lifespan and healthy aging are desperately needed. This review provides a comprehensive analysis of molecular endpoints that are currently being used as indices of age-related phenomena (e.g., morbidity, frailty, mortality) and proposes an approach for validating and prioritizing these endpoints.
Collapse
Affiliation(s)
- L J Niedernhofer
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, United States.
| | - J L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, United States
| | - W Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
522
|
Cellular Senescence: A Translational Perspective. EBioMedicine 2017; 21:21-28. [PMID: 28416161 PMCID: PMC5514381 DOI: 10.1016/j.ebiom.2017.04.013] [Citation(s) in RCA: 692] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/17/2022] Open
Abstract
Cellular senescence entails essentially irreversible replicative arrest, apoptosis resistance, and frequently acquisition of a pro-inflammatory, tissue-destructive senescence-associated secretory phenotype (SASP). Senescent cells accumulate in various tissues with aging and at sites of pathogenesis in many chronic diseases and conditions. The SASP can contribute to senescence-related inflammation, metabolic dysregulation, stem cell dysfunction, aging phenotypes, chronic diseases, geriatric syndromes, and loss of resilience. Delaying senescent cell accumulation or reducing senescent cell burden is associated with delay, prevention, or alleviation of multiple senescence-associated conditions. We used a hypothesis-driven approach to discover pro-survival Senescent Cell Anti-apoptotic Pathways (SCAPs) and, based on these SCAPs, the first senolytic agents, drugs that cause senescent cells to become susceptible to their own pro-apoptotic microenvironment. Several senolytic agents, which appear to alleviate multiple senescence-related phenotypes in pre-clinical models, are beginning the process of being translated into clinical interventions that could be transformative. Cellular senescence is among the aging processes underlying chronic diseases, loss of resilience, and geriatric syndromes. Senolytics selectively induce senescent cell apoptosis. They delay or alleviate multiple disorders in preclinical studies. If senolytics are demonstrated to be effective and safe in clinical trials, they could be transformative.
Collapse
|
523
|
Toutfaire M, Bauwens E, Debacq-Chainiaux F. The impact of cellular senescence in skin ageing: A notion of mosaic and therapeutic strategies. Biochem Pharmacol 2017; 142:1-12. [PMID: 28408343 DOI: 10.1016/j.bcp.2017.04.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
Abstract
Cellular senescence is now recognized as one of the nine hallmarks of ageing. Recent data show the involvement of senescent cells in tissue ageing and some age-related diseases. Skin represents an ideal model for the study of ageing. Indeed, skin ageing varies between individuals depending on their chronological age but also on their exposure to various exogenous factors (mainly ultraviolet rays). If senescence traits can be detected with ageing in the skin, the senescent phenotype varies among the various skin cell types. Moreover, the origin of cellular senescence in the skin is still unknown, and multiple origins are possible. This reflects the mosaic of skin ageing. Senescent cells can interfere with their microenvironment, either via the direct secretion of factors (the senescence-associated secretory phenotype) or via other methods of communication, such as extracellular vesicles. Knowledge regarding the impact of cellular senescence on skin ageing could be integrated into dermatology research, especially to limit the appearance of senescent cells after photo(chemo)therapy or in age-related skin diseases. Therapeutic approaches include the clearance of senescent cells via the use of senolytics or via the cooperation with the immune system.
Collapse
Affiliation(s)
- Marie Toutfaire
- URBC, NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Namur, Belgium
| | - Emilie Bauwens
- URBC, NAmur Research Institute for LIfe Science (NARILIS), University of Namur, Namur, Belgium
| | | |
Collapse
|
524
|
Senotherapy: growing old and staying young? Pflugers Arch 2017; 469:1051-1059. [PMID: 28389776 DOI: 10.1007/s00424-017-1972-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Cellular senescence, which has been linked to age-related diseases, occurs during normal aging or as a result of pathological cell stress. Due to their incapacity to proliferate, senescent cells cannot contribute to normal tissue maintenance and tissue repair. Instead, senescent cells disturb the microenvironment by secreting a plethora of bioactive factors that may lead to inflammation, regenerative dysfunction and tumor progression. Recent understanding of stimuli and pathways that induce and maintain cellular senescence offers the possibility to selectively eliminate senescent cells. This novel strategy, which so far has not been tested in humans, has been coined senotherapy or senolysis. In mice, senotherapy proofed to be effective in models of accelerated aging and also during normal chronological aging. Senotherapy prolonged lifespan, rejuvenated the function of bone marrow, muscle and skin progenitor cells, improved vasomotor function and slowed down atherosclerosis progression. While initial studies used genetic approaches for the killing of senescent cells, recent approaches showed similar effects with senolytic drugs. These observations open up exciting possibilities with a great potential for clinical development. However, before the integration of senotherapy into patient care can be considered, we need further research to improve our insight into the safety and efficacy of this strategy during short- and long-term use.
Collapse
|
525
|
Cellular senescence mediates fibrotic pulmonary disease. Nat Commun 2017; 8:14532. [PMID: 28230051 PMCID: PMC5331226 DOI: 10.1038/ncomms14532] [Citation(s) in RCA: 1082] [Impact Index Per Article: 135.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 01/09/2017] [Indexed: 11/09/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown. Here we demonstrate elevated abundance of senescence biomarkers in IPF lung, with p16 expression increasing with disease severity. We show that the secretome of senescent fibroblasts, which are selectively killed by a senolytic cocktail, dasatinib plus quercetin (DQ), is fibrogenic. Leveraging the bleomycin-injury IPF model, we demonstrate that early-intervention suicide-gene-mediated senescent cell ablation improves pulmonary function and physical health, although lung fibrosis is visibly unaltered. DQ treatment replicates benefits of transgenic clearance. Thus, our findings establish that fibrotic lung disease is mediated, in part, by senescent cells, which can be targeted to improve health and function.
Collapse
|
526
|
Birch J, Passos JF. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017; 39. [DOI: 10.1002/bies.201600235] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jodie Birch
- Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University Institute for Ageing; Newcastle University; Newcastle Upon Tyne UK
| | - João F. Passos
- Institute for Cell and Molecular Biosciences, Campus for Ageing and Vitality, Newcastle University Institute for Ageing; Newcastle University; Newcastle Upon Tyne UK
| |
Collapse
|
527
|
Rodrigues AMG, Guimarães DO, Konno TUP, Tinoco LW, Barth T, Aguiar FA, Lopes NP, Leal ICR, Raimundo JM, Muzitano MF. Phytochemical Study of Tapirira guianensis Leaves Guided by Vasodilatory and Antioxidant Activities. Molecules 2017; 22:molecules22020304. [PMID: 28218702 PMCID: PMC6155791 DOI: 10.3390/molecules22020304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 01/28/2023] Open
Abstract
The aim of this research was to perform a phytochemical study of the methanol leaves extract of T. guianensis (MET) guided by vasodilatory and antioxidant activities. The chemical profile of MET and the ethyl acetate fraction (EA fraction) was determined by HPLC-UV-MS and EA fraction guided fractionation by reverse-phase chromatography. The vasorelaxant effects of MET, fractions, sub-fractions and constituents were assessed on rat aorta pre-contracted with phenylephrine. Antioxidant activity was evaluated by using a DPPH assay. The results show that MET-induced vasodilation was dependent on NO/cGMP; and that the PI3K/Akt pathway seems to be the main route involved in eNOS activation. The EA fraction showed greater vasodilatory and antioxidant potency and was submitted to further fractionation. This allowed the isolation and characterization of quercetin, quercetin 3-O-(6″-O-galloyl)-β-d-galactopyranoside and 1,4,6-tri-O-galloyl-β-d-glucose. Also, galloyl-HHDP-hexoside and myricetin deoxyhexoside were identified by HPLC-UV-MS. These compounds are being described for the first time for T. guianensis. 1,4,6-tri-O-galloyl-β-d-glucose and quercetin 3-O-(6″-O-galloyl)-β-d-galactopyranoside showed no vasodilatory activity. Quercetin and myricetin glycoside seems to contribute to the MET activity, since they have been reported as vasodilatory flavonoids. MET-induced vasodilation could contribute to the hypotensive effect of T. guianensis previously reported.
Collapse
Affiliation(s)
- Amélia M G Rodrigues
- Laboratório de Biologia do Reconhecer, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Parque Califórnia, Campos dos Goytacazes, 28013-602 Rio de Janeiro, Brazil.
- Laboratório Integrado de Pesquisa, Universidade Federal do Rio de Janeiro, Campus Macaé, Av. Aluízio da Silva Gomes, 50, Novo Cavaleiros, Macaé, 27930-560 Rio de Janeiro, Brazil.
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Polo Novo Cavaleiro-IMCT, R. Alcides da Conceição, 159, Novo Cavaleiros, Macaé, 27933-378 Rio de Janeiro, Brazil.
| | - Denise O Guimarães
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Polo Novo Cavaleiro-IMCT, R. Alcides da Conceição, 159, Novo Cavaleiros, Macaé, 27933-378 Rio de Janeiro, Brazil.
| | - Tatiana U P Konno
- Núcleo de Estudos em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Av. São José Barreto, 764-São José do Barreto. Macaé, 27965-045 Rio de Janeiro, Brazil.
| | - Luzineide W Tinoco
- Instituto de Pesquisa de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Brazil.
| | - Thiago Barth
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Polo Novo Cavaleiro-IMCT, R. Alcides da Conceição, 159, Novo Cavaleiros, Macaé, 27933-378 Rio de Janeiro, Brazil.
| | - Fernando A Aguiar
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n. 14040-020 Ribeirão Preto, Brazil.
- Laboratório de Química, Universidade Federal do Rio de Janeiro-Campus Macaé, Av. Aluízio da Silva Gomes, 50, Novo Cavaleiros. Macaé, 27930-560 Rio de Janeiro, Brazil.
| | - Norberto P Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n. 14040-020 Ribeirão Preto, Brazil.
| | - Ivana C R Leal
- Laboratório de Produtos Naturais e Ensaios Biológicos, Departamento De Produtos Naturais e Alimentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil.
| | - Juliana M Raimundo
- Laboratório Integrado de Pesquisa, Universidade Federal do Rio de Janeiro, Campus Macaé, Av. Aluízio da Silva Gomes, 50, Novo Cavaleiros, Macaé, 27930-560 Rio de Janeiro, Brazil.
| | - Michelle F Muzitano
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Polo Novo Cavaleiro-IMCT, R. Alcides da Conceição, 159, Novo Cavaleiros, Macaé, 27933-378 Rio de Janeiro, Brazil.
| |
Collapse
|
528
|
Stenvinkel P, Luttropp K, McGuinness D, Witasp A, Rashid Qureshi A, Wernerson A, Nordfors L, Schalling M, Ripsweden J, Wennberg L, Söderberg M, Bárány P, Olauson H, Shiels PG. CDKN2A/p16INK4a expression is associated with vascular progeria in chronic kidney disease. Aging (Albany NY) 2017; 9:494-507. [PMID: 28192277 PMCID: PMC5361677 DOI: 10.18632/aging.101173] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 02/03/2017] [Indexed: 04/08/2023]
Abstract
Patients with chronic kidney disease (CKD) display a progeric vascular phenotype linked to apoptosis, cellular senescence and osteogenic transformation. This has proven intractable to modelling appropriately in model organisms. We have therefore investigated this directly in man, using for the first time validated cellular biomarkers of ageing (CDKN2A/p16INK4a, SA-β-Gal) in arterial biopsies from 61 CKD patients undergoing living donor renal transplantation. We demonstrate that in the uremic milieu, increased arterial expression of CDKN2A/p16INK4a associated with vascular progeria in CKD, independently of chronological age. The arterial expression of CDKN2A/p16INK4a was significantly higher in patients with coronary calcification (p=0.01) and associated cardiovascular disease (CVD) (p=0.004). The correlation between CDKN2A/p16INK4a and media calcification was statistically significant (p=0.0003) after correction for chronological age. We further employed correlate expression of matrix Gla protein (MGP) and runt-related transcription factor 2 (RUNX2) as additional pathognomonic markers. Higher expression of CDKN2A/p16INK4a, RUNX2 and MGP were observed in arteries with severe media calcification. The number of p16INK4a and SA-β-Gal positive cells was higher in biopsies with severe media calcification. A strong inverse correlation was observed between CDKN2A/p16INK4a expression and carboxylated osteocalcin levels. Thus, impaired vitamin K mediated carboxylation may contribute to premature vascular senescence.
Collapse
Affiliation(s)
- Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Luttropp
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dagmara McGuinness
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Abdul Rashid Qureshi
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Louise Nordfors
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jonaz Ripsweden
- Division of Radiology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Stockholm, Sweden
| | - Lars Wennberg
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Söderberg
- Pathology, Drug Safety and Metabolism, AstraZeneca, Mölndal, Sweden
| | - Peter Bárány
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
529
|
Soto-Gamez A, Demaria M. Therapeutic interventions for aging: the case of cellular senescence. Drug Discov Today 2017; 22:786-795. [PMID: 28111332 DOI: 10.1016/j.drudis.2017.01.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 12/19/2022]
Abstract
Organismal aging is a multifactorial process characterized by the onset of degenerative conditions and cancer. One of the key drivers of aging is cellular senescence, a state of irreversible growth arrest induced by many pro-tumorigenic stresses. Senescent cells accumulate late in life and at sites of age-related pathologies, where they contribute to disease onset and progression through complex cell and non-cell autonomous effects. Here, we summarize the mechanisms by which cellular senescence can promote aging, and we offer an extensive description of current potential pharmacological interventions for senescent cells, highlighting limitations and suggesting alternatives.
Collapse
Affiliation(s)
- Abel Soto-Gamez
- University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - Marco Demaria
- University of Groningen, European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| |
Collapse
|
530
|
Fielder E, von Zglinicki T, Jurk D. The DNA Damage Response in Neurons: Die by Apoptosis or Survive in a Senescence-Like State? J Alzheimers Dis 2017; 60:S107-S131. [PMID: 28436392 DOI: 10.3233/jad-161221] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons are exposed to high levels of DNA damage from both physiological and pathological sources. Neurons are post-mitotic and their loss cannot be easily recovered from; to cope with DNA damage a complex pathway called the DNA damage response (DDR) has evolved. This recognizes the damage, and through kinases such as ataxia-telangiectasia mutated (ATM) recruits and activates downstream factors that mediate either apoptosis or survival. This choice between these opposing outcomes integrates many inputs primarily through a number of key cross-road proteins, including ATM, p53, and p21. Evidence of re-entry into the cell-cycle by neurons can be seen in aging and diseases such as Alzheimer's disease. This aberrant cell-cycle re-entry is lethal and can lead to the apoptotic death of the neuron. Many downstream factors of the DDR promote cell-cycle arrest in response to damage and appear to protect neurons from apoptotic death. However, neurons surviving with a persistently activated DDR show all the features known from cell senescence; including metabolic dysregulation, mitochondrial dysfunction, and the hyper-production of pro-oxidant, pro-inflammatory and matrix-remodeling factors. These cells, termed senescence-like neurons, can negatively influence the extracellular environment and may promote induction of the same phenotype in surrounding cells, as well as driving aging and age-related diseases. Recently developed interventions targeting the DDR and/or the senescent phenotype in a range of non-neuronal tissues are being reviewed as they might become of therapeutic interest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Edward Fielder
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Thomas von Zglinicki
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| | - Diana Jurk
- The Ageing Biology Centre and Institute for Cell and Molecular Biology, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
531
|
Abstract
Usually, cells balance their growth with their division. Coordinating growth inputs with cell division ensures the proper timing of division when sufficient cell material is available and affects the overall rate of cell proliferation. At a very fundamental level, cellular replicative lifespan-defined as the number of times a cell can divide, is a manifestation of cell cycle control. Hence, control of mitotic cell divisions, especially when the commitment is made to a new round of cell division, is intimately linked to replicative aging of cells. In this chapter, we review our current understanding, and its shortcomings, of how unbalanced growth and division, can dramatically influence the proliferative potential of cells, often leading to cellular and organismal aging phenotypes. The interplay between growth and division also underpins cellular senescence (i.e., inability to divide) and quiescence, when cells exit the cell cycle but still retain their ability to divide.
Collapse
|
532
|
James EL, Lane JAE, Michalek RD, Karoly ED, Parkinson EK. Replicatively senescent human fibroblasts reveal a distinct intracellular metabolic profile with alterations in NAD+ and nicotinamide metabolism. Sci Rep 2016; 6:38489. [PMID: 27924925 PMCID: PMC5141431 DOI: 10.1038/srep38489] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 11/11/2016] [Indexed: 12/30/2022] Open
Abstract
Cellular senescence occurs by proliferative exhaustion (PEsen) or following multiple cellular stresses but had not previously been subject to detailed metabolomic analysis. Therefore, we compared PEsen fibroblasts with proliferating and transiently growth arrested controls using a combination of different mass spectroscopy techniques. PEsen cells showed many specific alterations in both the NAD+ de novo and salvage pathways including striking accumulations of nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR) in the amidated salvage pathway despite no increase in nicotinamide phosphoribosyl transferase or in the NR transport protein, CD73. Extracellular nicotinate was depleted and metabolites of the deamidated salvage pathway were reduced but intracellular NAD+ and nicotinamide were nevertheless maintained. However, sirtuin 1 was downregulated and so the accumulation of NMN and NR was best explained by reduced flux through the amidated arm of the NAD+ salvage pathway due to reduced sirtuin activity. PEsen cells also showed evidence of increased redox homeostasis and upregulated pathways used to generate energy and cellular membranes; these included nucleotide catabolism, membrane lipid breakdown and increased creatine metabolism. Thus PEsen cells upregulate several different pathways to sustain their survival which may serve as pharmacological targets for the elimination of senescent cells in age-related disease.
Collapse
Affiliation(s)
- Emma L James
- Centre for Clinical &Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| | - James A E Lane
- Centre for Clinical &Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| | - Ryan D Michalek
- Metabolon, Inc. 617 Davis Drive, Suite 400, Durham, NC, 27713, USA
| | - Edward D Karoly
- Metabolon, Inc. 617 Davis Drive, Suite 400, Durham, NC, 27713, USA
| | - E Kenneth Parkinson
- Centre for Clinical &Diagnostic Oral Sciences, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London, E1 2AD, UK
| |
Collapse
|
533
|
Petrova NV, Velichko AK, Razin SV, Kantidze OL. Small molecule compounds that induce cellular senescence. Aging Cell 2016; 15:999-1017. [PMID: 27628712 PMCID: PMC6398529 DOI: 10.1111/acel.12518] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
To date, dozens of stress‐induced cellular senescence phenotypes have been reported. These cellular senescence states may differ substantially from each other, as well as from replicative senescence through the presence of specific senescence features. Here, we attempted to catalog virtually all of the cellular senescence‐like states that can be induced by low molecular weight compounds. We summarized biological markers, molecular pathways involved in senescence establishment, and specific traits of cellular senescence states induced by more than fifty small molecule compounds.
Collapse
Affiliation(s)
| | - Artem K. Velichko
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
| | - Sergey V. Razin
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
- Department of Molecular Biology Lomonosov Moscow State University 119991 Moscow Russia
- LIA 1066 French‐Russian Joint Cancer Research Laboratory 94805 Villejuif France
| | - Omar L. Kantidze
- Institute of Gene Biology RAS 34/5 Vavilova Street 119334 Moscow Russia
- LIA 1066 French‐Russian Joint Cancer Research Laboratory 94805 Villejuif France
| |
Collapse
|
534
|
Bochenek ML, Schütz E, Schäfer K. Endothelial cell senescence and thrombosis: Ageing clots. Thromb Res 2016; 147:36-45. [DOI: 10.1016/j.thromres.2016.09.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 01/28/2023]
|
535
|
List EO, Jensen E, Kowalski J, Buchman M, Berryman DE, Kopchick JJ. Diet-induced weight loss is sufficient to reduce senescent cell number in white adipose tissue of weight-cycled mice. ACTA ACUST UNITED AC 2016; 4:95-99. [PMID: 28035346 PMCID: PMC5166516 DOI: 10.3233/nha-1614] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Previously, our laboratory reported that weight-cycled mice outlive their obese counterparts. To gain a better mechanistic understanding of these results, we evaluated cellular senescence in white adipose tissue (WAT) of lean, obese, and weight cycled mice. Our results show that at the end of a 28 day weight loss cycle cellular senescence is significantly reduced in multiple WAT depots compared to obese mice, which also corresponds to a reduction in circulating activin A (a marker of senescence). These findings suggest that a previously undescribed benefit to weight loss may be a reduction of cellular senescence in WAT.
Collapse
Affiliation(s)
- Edward O List
- Edison Biotechnology, Ohio University, Athens, OH, USA; Department of Specialty Medicine, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA; The Diabetes Institute, Ohio University, Athens, OH, USA
| | | | | | | | - Darlene E Berryman
- Edison Biotechnology, Ohio University, Athens, OH, USA; The Diabetes Institute, Ohio University, Athens, OH, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology, Ohio University, Athens, OH, USA; The Diabetes Institute, Ohio University, Athens, OH, USA; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|
536
|
Justice J, Miller JD, Newman JC, Hashmi SK, Halter J, Austad SN, Barzilai N, Kirkland JL. Frameworks for Proof-of-Concept Clinical Trials of Interventions That Target Fundamental Aging Processes. J Gerontol A Biol Sci Med Sci 2016; 71:1415-1423. [PMID: 27535966 PMCID: PMC5055651 DOI: 10.1093/gerona/glw126] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/16/2016] [Indexed: 01/09/2023] Open
Abstract
Therapies targeted at fundamental processes of aging may hold great promise for enhancing the health of a wide population by delaying or preventing a range of age-related diseases and conditions—a concept dubbed the “geroscience hypothesis.” Early, proof-of-concept clinical trials will be a key step in the translation of therapies emerging from model organism and preclinical studies into clinical practice. This article summarizes the outcomes of an international meeting partly funded through the NIH R24 Geroscience Network, whose purpose was to generate concepts and frameworks for early, proof-of-concept clinical trials for therapeutic interventions that target fundamental processes of aging. The goals of proof-of-concept trials include generating preliminary signals of efficacy in an aging-related disease or outcome that will reduce the risk of conducting larger trials, contributing data and biological samples to support larger-scale research by strategic networks, and furthering a dialogue with regulatory agencies on appropriate registration indications. We describe three frameworks for proof-of-concept trials that target age-related chronic diseases, geriatric syndromes, or resilience to stressors. We propose strategic infrastructure and shared resources that could accelerate development of therapies that target fundamental aging processes.
Collapse
Affiliation(s)
- Jamie Justice
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Jordan D Miller
- Department of Surgery.,Department of Physiology and Biomedical Engineering and.,The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - John C Newman
- Division of Geriatrics, University of California San Francisco
| | - Shahrukh K Hashmi
- Department of Hematology and Transplant Center, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey Halter
- Geriatrics Center and Institute of Gerontology, University of Michigan, Ann Arbor
| | - Steve N Austad
- Department of Biology, University of Alabama at Birmingham
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology and.,Institute for Aging Research, Albert Einstein College of Medicine, New York
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering and .,The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
537
|
Abstract
Over the past decade, a growing number of studies have revealed that progressive changes to epigenetic information accompany aging in both dividing and nondividing cells. Functional studies in model organisms and humans indicate that epigenetic changes have a huge influence on the aging process. These epigenetic changes occur at various levels, including reduced bulk levels of the core histones, altered patterns of histone posttranslational modifications and DNA methylation, replacement of canonical histones with histone variants, and altered noncoding RNA expression, during both organismal aging and replicative senescence. The end result of epigenetic changes during aging is altered local accessibility to the genetic material, leading to aberrant gene expression, reactivation of transposable elements, and genomic instability. Strikingly, certain types of epigenetic information can function in a transgenerational manner to influence the life span of the offspring. Several important conclusions emerge from these studies: rather than being genetically predetermined, our life span is largely epigenetically determined; diet and other environmental influences can influence our life span by changing the epigenetic information; and inhibitors of epigenetic enzymes can influence life span of model organisms. These new findings provide better understanding of the mechanisms involved in aging. Given the reversible nature of epigenetic information, these studies highlight exciting avenues for therapeutic intervention in aging and age-associated diseases, including cancer.
Collapse
Affiliation(s)
- Sangita Pal
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Genes and Development Graduate Program, University of Texas Graduate School of the Biomedical Sciences at Houston, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jessica K. Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Corresponding author.
| |
Collapse
|
538
|
Xu M, Tchkonia T, Kirkland JL. Perspective: Targeting the JAK/STAT pathway to fight age-related dysfunction. Pharmacol Res 2016; 111:152-154. [PMID: 27241018 DOI: 10.1016/j.phrs.2016.05.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 01/05/2023]
Abstract
Senescent cells accumulate in a variety of tissues with aging. They can develop a senescence-associated secretory phenotype (SASP) that entails secretion of inflammatory cytokines, chemokines, proteases, and growth factors. These SASP components can alter the microenvironment within tissues and affect the function of neighboring cells, which can eventually lead to local and systemic dysfunction. The JAK pathway is more highly activate in senescent than non-senescent cells. Inhibition of the JAK pathway suppresses the SASP in senescent cells and alleviates age-related tissue dysfunction. Targeting senescent cells could be a promising way to improve healthspan in aged population.
Collapse
Affiliation(s)
- Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States.
| |
Collapse
|
539
|
Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. Exp Gerontol 2016; 86:97-105. [PMID: 26924669 DOI: 10.1016/j.exger.2016.02.013] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 12/15/2022]
Abstract
Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies.
Collapse
|