501
|
Lu S, Su W, Li H, Guo Z. Abscisic acid improves drought tolerance of triploid bermudagrass and involves H2O2- and NO-induced antioxidant enzyme activities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:132-8. [PMID: 19042137 DOI: 10.1016/j.plaphy.2008.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 10/18/2008] [Indexed: 05/18/2023]
Abstract
Drought is a major limiting factor for turfgrass growth. Protection of triploid bermudagrass against drought stress by abscisic acid (ABA) and its association with hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) were investigated. ABA treatment increased relative water content, decreased ion leakage and the percentage of dead plants significantly under drought stress. Superoxide dismutase (SOD) and catalase (CAT) activities increased in both ABA-treated and control plants, but more in ABA-treated plants, under drought stress. Malondialdehyde, an indicator of plant lipid peroxidation, was lower in ABA-treated plants than in control plants, indicating that ABA alleviated drought-induced oxidative injury. ABA treatment increased H(2)O(2) and NO contents. ABA-induced SOD and CAT activities could be blocked by scavengers of H(2)O(2) and NO, and inhibitors of H(2)O(2) and NO generation. The results indicated that H(2)O(2) and NO were essential for ABA-induced SOD and CAT activities. Both H(2)O(2) and NO could induce SOD and CAT activities individually. SOD and CAT induced by H(2)O(2) could be blocked by scavenger of NO and inhibitors of NO generation, while SOD and CAT induced by NO could not be blocked by scavenger of H(2)O(2) and inhibitor of H(2)O(2). The results revealed that ABA-induced SOD and CAT activities were mediated sequentially by H(2)O(2) and NO, and NO acted downstream of H(2)O(2).
Collapse
Affiliation(s)
- Shaoyun Lu
- Biotechnology Laboratory for Forages and Turfgrass, College of Life Science, South China Agricultural University, Wu Shan Street, Guangzhou 510642, China
| | | | | | | |
Collapse
|
502
|
Li Y, Yin H, Wang Q, Zhao X, Du Y, Li F. Oligochitosan induced Brassica napus L. production of NO and H2O2 and their physiological function. Carbohydr Polym 2009. [DOI: 10.1016/j.carbpol.2008.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
503
|
Saito N, Nakamura Y, Mori IC, Murata Y. Nitric oxide functions in both methyl jasmonate signaling and abscisic acid signaling in Arabidopsis guard cells. PLANT SIGNALING & BEHAVIOR 2009; 4:119-20. [PMID: 19649186 PMCID: PMC2637495 DOI: 10.4161/psb.4.2.7537] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 05/21/2023]
Abstract
Intracellular components in methyl jasmonate (MeJA) signaling remain largely unknown, to compare those in well-understood abscisic acid (ABA) signaling. We have reported that nitric oxide (NO) is a signaling component in MeJA-induced stomatal closure, as well as ABA-induced stomatal closure in the previous study. To gain further information about the role of NO in the guard cell signaling, NO production was examined in an ABA- and MeJA-insensitive Arabidopsis mutant, rcn1. Neither MeJA nor ABA induced NO production in rcn1 guard cells. Our data suggest that NO functions downstream of the branch point of MeJA and ABA signaling in Arabidopsis guard cells.
Collapse
Affiliation(s)
- Naoki Saito
- Graduate School of Natural Science and Technology; Okayama University; Tsushima-naka, Okayama, Japan
| | - Yoshimasa Nakamura
- Graduate School of Natural Science and Technology; Okayama University; Tsushima-naka, Okayama, Japan
| | - Izumi C Mori
- Research Institute for Bioresources; Okayama University; Tsushima-naka, Okayama, Japan
| | - Yoshiyuki Murata
- Graduate School of Natural Science and Technology; Okayama University; Tsushima-naka, Okayama, Japan
| |
Collapse
|
504
|
Lehner C, Kerschbaum HH, Lütz-Meindl U. Nitric oxide suppresses growth and development in the unicellular green alga Micrasterias denticulata. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:117-27. [PMID: 18455833 DOI: 10.1016/j.jplph.2008.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 02/20/2008] [Accepted: 02/22/2008] [Indexed: 05/06/2023]
Abstract
Nitric oxide (NO), a key molecule in inter- and intracellular signalling, is implicated in developmental processes, host defense, and apoptosis in higher plants. We investigated the effect of NO on development in the unicellular green alga, Micrasterias denticulata, using two different NO donors, S-nitroso-N-acetyl-dl-penicillamine (SNAP) and sodium nitroprusside (SNP). Investigations at the light microsopic level revealed that both NO donors suppressed cell growth. Ultrastructural analyses were performed with SNAP- as well as SNP-treated cells and, additionally, with the control compound N-acetyl-d-penicillamine (NAP). Cells incubated with NO donors lacked a secondary wall and dictyosomal function was impaired, whereas NAP-treated cells showed no difference in development and organelle structure compared to control cells. Moreover, cisternae of the Golgi stacks were slightly involute and no vesicles were pinched off after SNAP and SNP incubation. The NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, potassium salt) abrogated the effect of SNP, thus confirming that inhibition of cell growth is due to nitric oxide. Addition of iodoacetic acid, an inhibitor of cysteine-containing enzymes, like glyceraldehyde-3-phosphate dehydrogenase (GAPDH), evoked similar effects on cell growth and secondary wall formation as obtained by treatment with NO donors. Therefore, we hypothesize that NO inhibits activity of enzymes involved in the secretory pathway, such as GAPDH, via S-nitrosylation of the cysteine residue and, consequently, modulates cell growth in M. denticulata.
Collapse
Affiliation(s)
- Christine Lehner
- Cell Biology Department, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | | | | |
Collapse
|
505
|
Reichler SA, Torres J, Rivera AL, Cintolesi VA, Clark G, Roux SJ. Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2129-38. [PMID: 19363208 PMCID: PMC2682505 DOI: 10.1093/jxb/erp091] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 05/18/2023]
Abstract
Plant and animal cells release or secrete ATP by various mechanisms, and this activity allows extracellular ATP to serve as a signalling molecule. Recent reports suggest that extracellular ATP induces plant responses ranging from increased cytosolic calcium to changes in auxin transport, xenobiotic resistance, pollen germination, and growth. Although calcium has been identified as a secondary messenger for the extracellular ATP signal, other parts of this signal transduction chain remain unknown. Increasing the extracellular concentration of ATPgammaS, a poorly-hydrolysable ATP analogue, inhibited both pollen germination and pollen tube elongation, while the addition of AMPS had no effect. Because pollen tube elongation is also sensitive to nitric oxide, this raised the possibility that a connection exists between the two pathways. Four approaches were used to test whether the germination and growth effects of extracellular ATPgammaS were transduced via nitric oxide. The results showed that increases in extracellular ATPgammaS induced increases in cellular nitric oxide, chemical agonists of the nitric oxide signalling pathway lowered the threshold of extracellular ATPgammaS that inhibits pollen germination, an antagonist of guanylate cyclase, which can inhibit some nitric oxide signalling pathways, blocked the ATPgammaS-induced inhibition of both pollen germination and pollen tube elongation, and the effects of applied ATPgammaS were blocked in nia1nia2 mutants, which have diminished NO production. The concurrence of these four data sets support the conclusion that the suppression of pollen germination and pollen tube elongation by extracellular nucleotides is mediated in part via the nitric oxide signalling pathway.
Collapse
|
506
|
Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J. Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. THE NEW PHYTOLOGIST 2009; 183:1030-1042. [PMID: 19522839 DOI: 10.1111/j.1469-8137.2009.02899.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) has been reported to be involved in breaking seed dormancy but its mechanism of action is unclear. Here, we report that a rapid accumulation of NO induced an equally rapid decrease of abscisic acid (ABA) that is required for this action in Arabidopsis. Results of quantitative real-time polymerase chain reaction (QRT-PCR) and Western blotting indicate that the NO-induced ABA decrease correlates with the regulation of CYP707A2 transcription and (+)-abscisic acid 8'-hydroxylase (encoded by CYP707A2) protein expression. By analysing cyp707a1, cyp707a2 and cyp707a3 mutants, we found that CYP707A2 plays a major role in ABA catabolism during the first stage of imbibition. Fluorescent images demonstrate that NO is released rapidly in the early hours at the endosperm layer during imbibition. Evidently, such response precedes the enhancement of ABA catabolism which is required for subsequent seed germination.
Collapse
Affiliation(s)
- Yinggao Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Lin Shi
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Nenghui Ye
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Rui Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Wensuo Jia
- College of Agriculture and Biotechnology, China Agricultural University, Beijing, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
507
|
Bright J, Hiscock SJ, James PE, Hancock JT. Pollen generates nitric oxide and nitrite: a possible link to pollen-induced allergic responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:49-55. [PMID: 18964065 DOI: 10.1016/j.plaphy.2008.09.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 06/16/2008] [Accepted: 09/03/2008] [Indexed: 05/20/2023]
Abstract
Reactive nitrogen species (RNS), such as nitric oxide (NO), are ubiquitous and diverse signalling molecules involved in a wide range of physiological and pathophysiological processes in both animals and plants. Nitrite, a metabolite of NO turnover, has also been recently characterised as an important mediator of fundamental physiological mechanisms in mammalian cells, and is a substrate for NO production in several plant cell signalling processes. A previous study demonstrated that during plant reproductive processes, intracellular NO is produced by pollen, and that such NO could be important in signalling interactions between pollen and stigma. The aim of this study was to establish whether pollen releases NO and nitrite, using a wide range of plant species. Using a fluorimetric assay in conjunction with electron paramagnetic resonance (EPR) spectroscopy, the present study demonstrated that all hydrating pollen examined released NO, although some appeared to have more activity than others. Additionally, gas phase ozone-based chemiluminescence data showed that nitrite is also released from hydrating pollen. Given that pollen has interactions with other cells, for example in allergenic rhinitis (hay fever) in humans, it suggests that NO might be involved in mediating the responses of both plant and animal cells to pollen. These findings may have important implications for future allergy research, as it is possible that pollen-derived NO and nitrite may impact on mammalian cells during pollen-induced allergic responses.
Collapse
Affiliation(s)
- Jo Bright
- Centre for Research in Plant Science, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | | | | | | |
Collapse
|
508
|
|
509
|
Abstract
In numerous plant signal transduction pathways, Ca2+ is a versatile second messenger which controls the activation of many downstream actions in response to various stimuli. There is strong evidence to indicate that information encoded within these stimulus-induced Ca2+ oscillations can provide signalling specificity. Such Ca2+ signals, or 'Ca2+ signatures', are generated in the cytosol, and in noncytosolic locations including the nucleus and chloroplast, through the coordinated action of Ca2+ influx and efflux pathways. An increased understanding of the functions and regulation of these various Ca2+ transporters has improved our appreciation of the role these transporters play in specifically shaping the Ca2+ signatures. Here we review the evidence which indicates that Ca2+ channel, Ca2+-ATPase and Ca2+ exchanger isoforms can indeed modulate specific Ca2+ signatures in response to an individual signal.
Collapse
Affiliation(s)
- Martin R McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK;Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jon K Pittman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK;Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
510
|
Ribeiro DM, Desikan R, Bright J, Confraria A, Harrison J, Hancock JT, Barros RS, Neill SJ, Wilson ID. Differential requirement for NO during ABA-induced stomatal closure in turgid and wilted leaves. PLANT, CELL & ENVIRONMENT 2009; 32:46-57. [PMID: 19021879 DOI: 10.1111/j.1365-3040.2008.01906.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA)-induced stomatal closure is mediated by a complex, guard cell signalling network involving nitric oxide (NO) as a key intermediate. However, there is a lack of information concerning the role of NO in the ABA-enhanced stomatal closure seen in dehydrated plants. The data herein demonstrate that, while nitrate reductase (NR)1-mediated NO generation is required for the ABA-induced closure of stomata in turgid leaves, it is not required for ABA-enhanced stomatal closure under conditions leading to rapid dehydration. The results also show that NO signalling in the guard cells of turgid leaves requires the ABA-signalling pathway to be both capable of function and active. The alignment of this NO signalling with guard cell Ca(2+)-dependent/independent ABA signalling is discussed. The data also highlight a physiological role for NO signalling in turgid leaves and show that stomatal closure during the light-to-dark transition requires NR1-mediated NO generation and signalling.
Collapse
Affiliation(s)
- Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
511
|
Zhang W, He SY, Assmann SM. The plant innate immunity response in stomatal guard cells invokes G-protein-dependent ion channel regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:984-96. [PMID: 18702674 PMCID: PMC2804871 DOI: 10.1111/j.1365-313x.2008.03657.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Stomata in the epidermis of terrestrial plants are important for CO2 absorption and transpirational water loss, and are also potential points of entry for pathogens. Stomatal opening and closure are controlled by distinct mechanisms. Arabidopsis stomata have been shown to close in response to bacteria and pathogen-associated molecular patterns (PAMPs) as part of PAMP-triggered immunity (PTI). Here we show that flg22, a PAMP derived from bacterial flagellin, also inhibits light-induced stomatal opening. Consistent with our observations on stomatal opening, flg22 inhibits the inward K+ channels (K+ (in) currents) of guard cells that mediate K+ uptake during stomatal opening. Similar to previously documented K+ current changes triggered by exogenous elevation of H(2)O(2) and nitric oxide (NO), with prolonged duration of flg22 exposure the outward K+ channels (K+ (out) currents) of guard cells are also inhibited. In null mutants of the flg22 receptor, FLS2, flg22 regulation of stomatal opening, K+ (in) currents, and K+ (out) currents is eliminated. flg22 also fails to elicit these responses in null mutants of the sole canonical G-protein alpha subunit, GPA1. The bacterial toxin, coronatine, produced by several pathogenic strains of Pseudomonas syringae, reverses the inhibitory effects of flg22 on both K+ (in) currents and stomatal opening, indicating interplay between plant and pathogen in the regulation of plant ion channels. Thus, the PAMP-triggered stomatal response involves K+ channel regulation, and this regulation is dependent on signaling via cognate PAMP receptors and a heterotrimeric G-protein. These new findings provide insights into the largely elusive signaling process underlying PTI-associated guard cell responses.
Collapse
Affiliation(s)
- Wei Zhang
- Biology Department, Penn State University, University Park, PA 16802-5301, USA
| | | | | |
Collapse
|
512
|
She XP, Song XG. Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1539-48. [PMID: 19093972 DOI: 10.1111/j.1744-7909.2008.00716.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here the regulatory role of CO during stomatal movement in Vicia faba L. was surveyed. Results indicated that, like hydrogen peroxide (H(2)O(2)), CO donor Hematin induced stomatal closure in dose- and time-dependent manners. These responses were also proven by the addition of gaseous CO aqueous solution with different concentrations, showing the first time that CO and H(2)O(2) exhibit the similar regulation role in the stomatal movement. Moreover, our data showed that ascorbic acid (ASA, an important reducing substrate for H(2)O(2) removal) and diphenylene iodonium (DPI, an inhibitor of the H(2)O(2)-generating enzyme NADPH oxidase) not only reversed stomatal closure by CO, but also suppressed the H(2)O(2) fluorescence induced by CO, implying that CO induced-stomatal closure probably involves H(2)O(2) signal. Additionally, the CO/NO scavenger hemoglobin (Hb) and CO specific synthetic inhibitor ZnPPIX, ASA and DPI reversed the darkness-induced stomatal closure and H(2)O(2) fluorescence. These results show that, perhaps like H(2)O(2), the levels of CO in guard cells of V. faba are higher in the dark than in light, HO-1 and NADPH oxidase are the enzyme systems responsible for generating endogenous CO and H(2)O(2) in darkness respectively, and that CO is involved in darkness-induced H(2)O(2) synthesis in V. faba guard cells.
Collapse
Affiliation(s)
- Xiao-Ping She
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| | | |
Collapse
|
513
|
Tovar-Mendez A, Todd CD, Polacco JC. The mitochondrial connection: Arginine degradation versus arginine conversion to nitric oxide. PLANT SIGNALING & BEHAVIOR 2008; 3:1106-8. [PMID: 19704448 PMCID: PMC2634469 DOI: 10.4161/psb.3.12.7007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/16/2008] [Indexed: 05/28/2023]
Abstract
Arg catabolism to cytoplasmic urea and glutamate is initiated by two mitochondrial enzymes, arginase and ornithine aminotransferase. Mutation of either enzyme leads to Arg sensitivity, and at least in the former, an arginine-induced seedling morphology similar to exogenous auxin treatment. We reported that single mutants lacking either of two arginase isozymes exhibited more NO accumulation and efflux, and increased responses to auxin (measured by DR5 reporter expression and auxin-induced lateral roots). We discuss evidence for stimulation of NO by arginine, either directly, or via polyamines derived from arginine. We favor the "direct" route because mitochondria are sites of NO 'hot spots,' and the location of arginine-degrading enzymes and the NO-associated protein1. The polyamine "branch" invokes more than one cell compartment, at least two intermediates (polyamines and H(2)O(2)) between Arg and NO, and is not consistent with enhanced lateral root formation in arginine decarboxylase mutants. Genetic tools are at our disposal to test the two possible routes of arginine-derived NO.
Collapse
|
514
|
Velikova V, Fares S, Loreto F. Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress. PLANT, CELL & ENVIRONMENT 2008; 31:1882-1894. [PMID: 18811730 DOI: 10.1111/j.1365-3040.2008.01893.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Isoprene and nitric oxide (NO) are two volatile molecules that are produced in leaves. Both compounds were suggested to have an important protective role against stresses. We tested, in two isoprene-emitting species, Populus nigra and Phragmites australis, whether: (1) NO emission outside leaves is measurable and is affected by oxidative stresses; and (2) isoprene and NO protect leaves against oxidative stresses, both singularly and in combination. The emission of NO was undetectable, and the compensation point was very low in control poplar leaves. Both emission and compensation point increased dramatically in stressed leaves. NO emission was inversely associated with stomatal conductance. More NO was emitted in leaves that were isoprene-inhibited, and more isoprene was emitted when NO was reduced by NO scavenger c-PTIO. Both isoprene and NO reduced oxidative damages. Isoprene-emitting leaves which were also fumigated with NO, or treated with NO donor, showed low damage to photosynthesis, a reduced accumulation of H(2)O(2) and a reduced membrane denaturation. We conclude that measurable amounts of NO are only produced and emitted by stressed leaves, that both isoprene and NO are effective antioxidant molecules and that an additional protection is achieved when both molecules are released.
Collapse
Affiliation(s)
- Violeta Velikova
- Bulgarian Academy of Sciences - Institute of Plant Physiology, Sofia, Bulgaria
| | | | | |
Collapse
|
515
|
Kwak JM, Mäser P, Schroeder JI. The Clickable Guard Cell, Version II: Interactive Model of Guard Cell Signal Transduction Mechanisms and Pathways. THE ARABIDOPSIS BOOK 2008; 6:e0114. [PMID: 22303239 PMCID: PMC3243356 DOI: 10.1199/tab.0114] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Guard cells are located in the leaf epidermis and pairs of guard cells surround and form stomatal pores, which regulate CO(2) influx from the atmosphere into leaves for photosynthetic carbon fixation. Stomatal guard cells also regulate water loss of plants via transpiration to the atmosphere. Signal transduction mechanisms in guard cells integrate a multitude of different stimuli to modulate stomatal apertures. Stomata open in response to light. Stomata close in response to drought stress, elevated CO(2), ozone and low humidity. In response to drought, plants synthesize the hormone abscisic acid (ABA) that triggers closing of stomatal pores. Guard cells have become a highly developed model system for dissecting signal transduction mechanisms in plants and for elucidating how individual signaling mechanisms can interact within a network in a single cell. Many new findings have been made in the last few years. This chapter is an update of an electronic interactive chapter in the previous edition of The Arabidopsis Book (Mäser et al. 2003). Here we focus on mechanisms for which genes and mutations have been characterized, including signaling components for which there is substantial signaling, biochemical and genetic evidence. Ion channels have been shown to represent targets of early signal transduction mechanisms and provide functional signaling and quantitative analysis points to determine where and how mutations affect branches within the guard cell signaling network. Although a substantial number of genes and proteins that function in guard cell signaling have been identified in recent years, there are many more left to be identified and the protein-protein interactions within this network will be an important subject of future research. A fully interactive clickable electronic version of this publication can be accessed at the following web site: http://www-biology.ucsd.edu/labs/schroeder/clickablegc2/. The interactive clickable version includes the following features: Figure 1. Model for the roles of ion channels in ABA signaling.Figure 2. Blue light signaling pathways in guard cells.Figure 3. ABA signaling pathways in guard cells.Figure 1 is linked to explanations that appear upon mouse-over. Figure 2 and Figure 3 are clickable and linked to info boxes, which in turn are linked to TAIR, to relevant abstracts in PubMed, and to updated background explanations from Schroeder et al (2001), used with permission of Annual Reviews of Plant Biology.
Collapse
Affiliation(s)
- June M. Kwak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Pascal Mäser
- Institute of Cell Biology, University of Berne, CH-3012 Bern, Switzerland
| | - Julian I. Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0116
| |
Collapse
|
516
|
Gonugunta VK, Srivastava N, Puli MR, Raghavendra AS. Nitric oxide production occurs after cytosolic alkalinization during stomatal closure induced by abscisic acid. PLANT, CELL & ENVIRONMENT 2008; 31:1717-24. [PMID: 18721267 DOI: 10.1111/j.1365-3040.2008.01872.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Abscisic acid (ABA) raised the cytosolic pH and nitric oxide (NO) levels in guard cells while inducing stomatal closure in epidermis of Pisum sativum. Butyrate (a weak acid) reduced the cytosolic pH/NO production and prevented stomatal closure by ABA. Methylamine (a weak base) enhanced the cytosolic alkalinization and aggravated stomatal closure by ABA. The rise in guard cell pH because of ABA became noticeable after 6 min and peaked at 12 min, while NO production started at 9 min and peaked at 18 min. These results suggested that NO production was downstream of the rise in cytosolic pH. The ABA-induced increase in NO of guard cells and stomatal closure was prevented by 2-phenyl-4,4,5,5-tetramethyl imidazoline-1-oxyl 3-oxide (cPTIO, a NO scavenger) and partially by N-nitro-L-Arg-methyl ester (L-NAME, an inhibitor of NO synthase). In contrast, cPTIO or L-NAME had only a marginal effect on the pH rise induced by ABA. Ethylene glycol tetraacetic acid (EGTA, a calcium chelator) prevented ABA-induced stomatal closure while restricting cytosolic pH rise and NO production. We suggest that during ABA-induced stomatal closure, a rise in cytosolic pH is necessary for NO production. Calcium may act upstream of cytosolic alkalinization and NO production, besides its known function as a downstream component.
Collapse
Affiliation(s)
- Vijay K Gonugunta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | | | | | | |
Collapse
|
517
|
Qiao W, Fan LM. Nitric oxide signaling in plant responses to abiotic stresses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:1238-46. [PMID: 19017111 DOI: 10.1111/j.1744-7909.2008.00759.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) plays important roles in diverse physiological processes in plants. NO can provoke both beneficial and harmful effects, which depend on the concentration and location of NO in plant cells. This review is focused on NO synthesis and the functions of NO in plant responses to abiotic environmental stresses. Abiotic stresses mostly induce NO production in plants. NO alleviates the harmfulness of reactive oxygen species, and reacts with other target molecules, and regulates the expression of stress responsive genes under various stress conditions.
Collapse
Affiliation(s)
- Weihua Qiao
- Peking-Yale Joint Center for Plant Molecular Genetics and Agro-Biotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
518
|
Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF. AtNOS/AtNOA1 is a functional Arabidopsis thaliana cGTPase and not a nitric-oxide synthase. J Biol Chem 2008; 283:32957-67. [PMID: 18801746 DOI: 10.1074/jbc.m804838200] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AtNOS1 was previously identified as a potential nitric-oxide synthase (NOS) in Arabidopsis thaliana, despite lack of sequence similarity to animal NOSs. Although the dwarf and yellowish leaf phenotype of Atnos1 knock-out mutant plants can be rescued by treatment with exogenous NO, doubts have recently been raised as to whether AtNOS1 is a true NOS. Moreover, depending on the type of physiological responses studied, Atnos1 is not always deficient in NO induction and/or detection, as previously reported. Here, we present experimental evidence showing that AtNOS1 is unable to bind and oxidize arginine to NO. These results support the argument that AtNOS1 is not a NOS. We also show that the renamed NO-associated protein 1 (AtNOA1) is a member of the circularly permuted GTPase family (cGTPase). AtNOA1 specifically binds GTP and hydrolyzes it. Complementation experiments of Atnoa1 mutant plants with different constructs of AtNOA1 show that GTP hydrolysis is necessary but not sufficient for the physiological function of AtNOA1. Mutant AtNOA1 lacking the C-terminal domain, although retaining GTPase activity, failed to complement Atnoa1, suggesting that this domain plays a crucial role in planta. cGTPases appear to be RNA-binding proteins, and the closest homolog of AtNOA1, the Bacillus subtilis YqeH, has been shown to participate in ribosome assembly and stability. We propose a similar function for AtNOA1 and discuss it in the light of its potential role in NO accumulation and plant development.
Collapse
Affiliation(s)
- Magali Moreau
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
519
|
Saito N, Munemasa S, Nakamura Y, Shimoishi Y, Mori IC, Murata Y. Roles of RCN1, regulatory A subunit of protein phosphatase 2A, in methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid. PLANT & CELL PHYSIOLOGY 2008; 49:1396-1401. [PMID: 18650210 DOI: 10.1093/pcp/pcn106] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Methyl jasmonate (MeJA) as well as abscisic acid (ABA) induces stomatal closure with their signal crosstalk. We investigated the function of a regulatory A subunit of protein phosphatase 2A, RCN1, in MeJA signaling. Both MeJA and ABA failed to induce stomatal closure in Arabidopsis rcn1 knockout mutants unlike in wild-type plants. Neither MeJA nor ABA induced reactive oxygen species (ROS) production and suppressed inward-rectifying potassium channel activities in rcn1 mutants but not in wild-type plants. These results suggest that RCN1 functions upstream of ROS production and downstream of the branch point of MeJA signaling and ABA signaling in Arabidopsis guard cells.
Collapse
Affiliation(s)
- Naoki Saito
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
520
|
Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1067-75. [PMID: 18616403 DOI: 10.1094/mpmi-21-8-1067] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Root colonization of plants with certain rhizobacteria, such as Pseudomonas chlororaphis O6, induces tolerance to biotic and abiotic stresses. Tolerance to drought was correlated with reduced water loss in P. chlororaphis O6-colonized plants and with stomatal closure, indicated by size of stomatal aperture and percentage of closed stomata. Stomatal closure and drought resistance were mediated by production of 2R,3R-butanediol, a volatile metabolite of P. chlororaphis O6. Root colonization with bacteria deficient in 2R,3R-butanediol production showed no induction of drought tolerance. Studies with Arabidopsis mutant lines indicated that induced drought tolerance required the salicylic acid (SA)-, ethylene-, and jasmonic acid-signaling pathways. Both induced drought tolerance and stomatal closure were dependent on Aba-1 and OST-1 kinase. Increases in free SA after drought stress of P. chlororaphis O6-colonized plants and after 2R,3R-butanediol treatment suggested a primary role for SA signaling in induced drought tolerance. We conclude that the bacterial volatile 2R,3R-butanediol was a major determinant in inducing resistance to drought in Arabidopsis through an SA-dependent mechanism.
Collapse
Affiliation(s)
- Song Mi Cho
- Department of Floriculture, Chunnam Techno College, Jeonnam, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
521
|
Besson-Bard A, Griveau S, Bedioui F, Wendehenne D. Real-time electrochemical detection of extracellular nitric oxide in tobacco cells exposed to cryptogein, an elicitor of defence responses. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3407-14. [PMID: 18653691 PMCID: PMC2529233 DOI: 10.1093/jxb/ern189] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 06/25/2008] [Indexed: 05/20/2023]
Abstract
It was previously reported that cryptogein, an elicitor of defence responses, induces an intracellular production of nitric oxide (NO) in tobacco. Here, the possibility was explored that cryptogein might also trigger an increase of NO extracellular content through two distinct approaches, an indirect method using the NO probe 4,5-diaminofluorescein (DAF-2) and an electrochemical method involving a chemically modified microelectrode probing free NO in biological media. While the chemical nature of DAF-2-reactive compound(s) is still uncertain, the electrochemical modified microelectrodes provide real-time evidence that cryptogein induces an increase of extracellular NO. Direct measurement of free extracellular NO might offer important new insights into its role in plants challenged by biotic stresses.
Collapse
Affiliation(s)
- Angélique Besson-Bard
- UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, BP 86510, 17 rue Sully, 21000 Dijon, France
| | - Sophie Griveau
- CNRS, UMR 8151, Ecole Nationale Supérieure de Chimie de Paris, INSERM, U640, University Paris Descartes. ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris cedex 05, France
| | - Fethi Bedioui
- CNRS, UMR 8151, Ecole Nationale Supérieure de Chimie de Paris, INSERM, U640, University Paris Descartes. ENSCP, 11 rue Pierre et Marie Curie, 75231 Paris cedex 05, France
| | - David Wendehenne
- UMR INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, BP 86510, 17 rue Sully, 21000 Dijon, France
| |
Collapse
|
522
|
Nitric oxide suppresses stomatal opening by inhibiting inward-rectifying K in + channels in Arabidopsis guard cells. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
523
|
Correa-Aragunde N, Lombardo C, Lamattina L. Nitric oxide: an active nitrogen molecule that modulates cellulose synthesis in tomato roots. THE NEW PHYTOLOGIST 2008; 179:386-396. [PMID: 19086177 DOI: 10.1111/j.1469-8137.2008.02466.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) is a bioactive molecule involved in several growth and developmental processes in plants. These processes are mostly characterized by changes in primary and secondary metabolism. Here, the effect of NO on cellulose synthesis in tomato (Solanum lycopersicum) roots was studied. The phenotype of roots, cellulose content, the incorporation of 14C-glucose into cellulosic fraction and the expression of tomato cellulose synthase (CESA) transcripts in roots treated with the NO donor sodium nitroprusside (SNP) were analysed. Nitric oxide affected cellulose content in roots in a dose dependent manner. Low concentrations of SNP (pmoles of NO) increased cellulose content in roots while higher concentrations of SNP (nmoles of NO) had the opposite effect. This result correlated with assays of 14C-glucose incorporation into cellulose in roots. The effect of NO on 14C-glucose incorporation into cellulose was transient and reversible. Microscopic analysis of roots suggested that NO affected primary cell wall cellulose synthesis. Three tomato cellulose synthase (SICESA) transcripts were identified. Reverse transcriptase polymerase chain reaction experiments were carried out and indicated that SICESA1 and SICESA3 levels were affected by high NO concentrations. Together, these results support the hypothesis that variations in NO levels influence cellulose synthesis and content in roots.
Collapse
Affiliation(s)
- Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. CC 1245, 7600 Mar del Plata, Argentina
| | - Cristina Lombardo
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. CC 1245, 7600 Mar del Plata, Argentina
- Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. CC 1245, 7600 Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata. CC 1245, 7600 Mar del Plata, Argentina
| |
Collapse
|
524
|
Prado AM, Colaço R, Moreno N, Silva AC, Feijó JA. Targeting of pollen tubes to ovules is dependent on nitric oxide (NO) signaling. MOLECULAR PLANT 2008; 1:703-14. [PMID: 19825574 DOI: 10.1093/mp/ssn034] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The guidance signals that drive pollen tube navigation inside the pistil and micropyle targeting are still, to a great extent, unknown. Previous studies in vitro showed that nitric oxide (NO) works as a negative chemotropic cue for pollen tube growth in lily (Lilium longiflorum). Furthermore, Arabidopsis thaliana Atnos1 mutant plants, which show defective NO production, have reduced fertility. Here, we focus in the role of NO in the process of pollen-pistil communication, using Arabidopsis in-vivo and lily semi-vivo assays. Cross-pollination between wild-type and Atnos1 plants shows that the mutation affects the pistil tissues in a way that is compatible with abnormal pollen tube guidance. Moreover, DAF-2DA staining for NO in kanadi floral mutants showed the presence of NO in an asymmetric restricted area around the micropyle. The pollen-pistil interaction transcriptome indicates a time-course-specific modulation of transcripts of AtNOS1 and two Nitrate Reductases (nr1 and nr2), which collectively are thought to trigger a putative NO signaling pathway. Semi-vivo assays with isolated ovules and lily pollen further showed that NO is necessary for micropyle targeting to occur. This evidence is supported by CPTIO treatment with subsequent formation of balloon tips in pollen tubes facing ovules. Activation of calcium influx in pollen tubes partially rescued normal pollen tube morphology, suggesting that this pathway is also dependent on Ca(2+) signaling. A role of NO in modulating Ca(2+) signaling was further substantiated by direct imaging the cytosolic free Ca(2+) concentration during NO-induced re-orientation, where two peaks of Ca(2+) occur-one during the slowdown/stop response, the second during re-orientation and growth resumption. Taken together, these results provide evidence for the participation of NO signaling events during pollen-pistil interaction. Of special relevance, NO seems to directly affect the targeting of pollen tubes to the ovule's micropyle by modulating the action of its diffusible factors.
Collapse
Affiliation(s)
- Ana Margarida Prado
- Instituto Gulbenkian de Ciência, Centro de Biologia do Desenvolvimento, PT-2780-156 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
525
|
The Inhibitory Effects of Auxin and Cytokinin on Dark- and ABA-induced Stomatal Closure in Broad Bean. ZUOWU XUEBAO 2008. [DOI: 10.3724/sp.j.1006.2008.01034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
526
|
Desikan R, Horák J, Chaban C, Mira-Rodado V, Witthöft J, Elgass K, Grefen C, Cheung MK, Meixner AJ, Hooley R, Neill SJ, Hancock JT, Harter K. The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS One 2008; 3:e2491. [PMID: 18560512 PMCID: PMC2424244 DOI: 10.1371/journal.pone.0002491] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 05/22/2008] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Stomatal guard cells monitor and respond to environmental and endogenous signals such that the stomatal aperture is continually optimised for water use efficiency. A key signalling molecule produced in guard cells in response to plant hormones, light, carbon dioxide and pathogen-derived signals is hydrogen peroxide (H(2)O(2)). The mechanisms by which H(2)O(2) integrates multiple signals via specific signalling pathways leading to stomatal closure is not known. PRINCIPAL FINDINGS Here, we identify a pathway by which H(2)O(2), derived from endogenous and environmental stimuli, is sensed and transduced to effect stomatal closure. Histidine kinases (HK) are part of two-component signal transduction systems that act to integrate environmental stimuli into a cellular response via a phosphotransfer relay mechanism. There is little known about the function of the HK AHK5 in Arabidopsis thaliana. Here we report that in addition to the predicted cytoplasmic localisation of this protein, AHK5 also appears to co-localise to the plasma membrane. Although AHK5 is expressed at low levels in guard cells, we identify a unique role for AHK5 in stomatal signalling. Arabidopsis mutants lacking AHK5 show reduced stomatal closure in response to H(2)O(2), which is reversed by complementation with the wild type gene. Over-expression of AHK5 results in constitutively less stomatal closure. Abiotic stimuli that generate endogenous H(2)O(2), such as darkness, nitric oxide and the phytohormone ethylene, also show reduced stomatal closure in the ahk5 mutants. However, ABA caused closure, dark adaptation induced H(2)O(2) production and H(2)O(2) induced NO synthesis in mutants. Treatment with the bacterial pathogen associated molecular pattern (PAMP) flagellin, but not elf peptide, also exhibited reduced stomatal closure and H(2)O(2) generation in ahk5 mutants. SIGNIFICANCE Our findings identify an integral signalling function for AHK5 that acts to integrate multiple signals via H(2)O(2) homeostasis and is independent of ABA signalling in guard cells.
Collapse
Affiliation(s)
- Radhika Desikan
- Division of Biology, Imperial College London, London, United Kingdom
- Centre for Research in Plant Science, University of the West of England, Bristol, United Kingdom
| | - Jakub Horák
- Zentrum für Molekularbiologie der Pflanzen / Pflanzenphysiologie, Universität Tübingen, Tübingen, Germany
| | - Christina Chaban
- Zentrum für Molekularbiologie der Pflanzen / Pflanzenphysiologie, Universität Tübingen, Tübingen, Germany
| | - Virtudes Mira-Rodado
- Zentrum für Molekularbiologie der Pflanzen / Pflanzenphysiologie, Universität Tübingen, Tübingen, Germany
| | - Janika Witthöft
- Zentrum für Molekularbiologie der Pflanzen / Pflanzenphysiologie, Universität Tübingen, Tübingen, Germany
| | - Kirstin Elgass
- Department of Nano Optics, Institute for Physical and Theoretical Chemistry, Universität Tübingen, Tübingen, Germany
| | - Christopher Grefen
- Zentrum für Molekularbiologie der Pflanzen / Pflanzenphysiologie, Universität Tübingen, Tübingen, Germany
| | - Man-Kim Cheung
- Centre for Research in Plant Science, University of the West of England, Bristol, United Kingdom
| | - Alfred J. Meixner
- Department of Nano Optics, Institute for Physical and Theoretical Chemistry, Universität Tübingen, Tübingen, Germany
| | - Richard Hooley
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Steven John Neill
- Centre for Research in Plant Science, University of the West of England, Bristol, United Kingdom
| | - John Travers Hancock
- Centre for Research in Plant Science, University of the West of England, Bristol, United Kingdom
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen / Pflanzenphysiologie, Universität Tübingen, Tübingen, Germany
| |
Collapse
|
527
|
Kolbert Z, Bartha B, Erdei L. Exogenous auxin-induced NO synthesis is nitrate reductase-associated in Arabidopsis thaliana root primordia. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:967-75. [PMID: 17936409 DOI: 10.1016/j.jplph.2007.07.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/27/2007] [Accepted: 07/30/2007] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) functions in various physiological and developmental processes in plants. However, the source of this signaling molecule in the diversity of plant responses is not well understood. It is known that NO mediates auxin-induced adventitious and lateral root (LR) formation. In this paper, we provide genetic and pharmacological evidence that the production of NO is associated with the nitrate reductase (NR) enzyme during indole-3-butyric acid (IBA)-induced lateral root development in Arabidopsis thaliana L. NO production was detected using 4,5-diaminofluorescein diacetate (DAF-2DA) in the NR-deficient nia1, nia2 and Atnoa1 (former Atnos1) mutants of A. thaliana. An inhibitor for nitric oxide synthase (NOS) N(G)-monomethyl-l-arginine (l-NMMA) was applied. Our data clearly show that IBA increased LR frequency in the wild-type plant and the LR initials emitted intensive NO-dependent fluorescence of the triazol product of NO and DAF-2DA. Increased levels of NO were restricted only to the LR initials in contrast to primary root (PR) sections, where NO remained at the control level. The mutants had different NO levels in their control state (i.e. without IBA treatment): nia1, nia2 showed lower NO fluorescence than Atnoa1 or the wild-type plant. The role of NR in IBA-induced NO formation in the wild type was shown by the zero effects of the NOS inhibitors l-NMMA. Finally, it was clearly demonstrated that IBA was able to induce NO generation in both the wild-type and Atnoa1 plants, but failed to induce NO in the NR-deficient mutant. It is concluded that the IBA-induced NO production is nitrate reductase-associated during lateral root development in A. thaliana.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, POB 654, 6701 Szeged, Hungary
| | | | | |
Collapse
|
528
|
Wilson ID, Neill SJ, Hancock JT. Nitric oxide synthesis and signalling in plants. PLANT, CELL & ENVIRONMENT 2008; 31:622-31. [PMID: 18034772 DOI: 10.1111/j.1365-3040.2007.01761.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As with all organisms, plants must respond to a plethora of external environmental cues. Individual plant cells must also perceive and respond to a wide range of internal signals. It is now well-accepted that nitric oxide (NO) is a component of the repertoire of signals that a plant uses to both thrive and survive. Recent experimental data have shown, or at least implicated, the involvement of NO in reproductive processes, control of development and in the regulation of physiological responses such as stomatal closure. However, although studies concerning NO synthesis and signalling in animals are well-advanced, in plants there are still fundamental questions concerning how NO is produced and used that need to be answered. For example, there is a range of potential NO-generating enzymes in plants, but no obvious plant nitric oxide synthase (NOS) homolog has yet been identified. Some studies have shown the importance of NOS-like enzymes in mediating NO responses in plants, while other studies suggest that the enzyme nitrate reductase (NR) is more important. Still, more published work suggests the involvement of completely different enzymes in plant NO synthesis. Similarly, it is not always clear how NO mediates its responses. Although it appears that in plants, as in animals, NO can lead to an increase in the signal cGMP which leads to altered ion channel activity and gene expression, it is not understood how this actually occurs. NO is a relatively reactive compound, and it is not always easy to study. Furthermore, its biological activity needs to be considered in conjunction with that of other compounds such as reactive oxygen species (ROS) which can have a profound effect on both its accumulation and function. In this paper, we will review the present understanding of how NO is produced in plants, how it is removed when its signal is no longer required and how it may be both perceived and acted upon.
Collapse
Affiliation(s)
- Ian D Wilson
- Centre for Research in Plant Science, Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | | | | |
Collapse
|
529
|
Asai S, Ohta K, Yoshioka H. MAPK signaling regulates nitric oxide and NADPH oxidase-dependent oxidative bursts in Nicotiana benthamiana. THE PLANT CELL 2008; 20:1390-406. [PMID: 18515503 PMCID: PMC2438462 DOI: 10.1105/tpc.107.055855] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 04/13/2008] [Accepted: 05/07/2008] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) and reactive oxygen species (ROS) act as signals in innate immunity in plants. The radical burst is induced by INF1 elicitin, produced by the oomycete pathogen Phytophthora infestans. NO ASSOCIATED1 (NOA1) and NADPH oxidase participate in the radical burst. Here, we show that mitogen-activated protein kinase (MAPK) cascades MEK2-SIPK/NTF4 and MEK1-NTF6 participate in the regulation of the radical burst. NO generation was induced by conditional activation of SIPK/NTF4, but not by NTF6, in Nicotiana benthamiana leaves. INF1- and SIPK/NTF4-mediated NO bursts were compromised by the knockdown of NOA1. However, ROS generation was induced by either SIPK/NTF4 or NTF6. INF1- and MAPK-mediated ROS generation was eliminated by silencing Respiratory Burst Oxidase Homolog B (RBOHB), an inducible form of the NADPH oxidase. INF1-induced expression of RBOHB was compromised in SIPK/NTF4/NTF6-silenced leaves. These results indicated that INF1 regulates NOA1-mediated NO and RBOHB-dependent ROS generation through MAPK cascades. NOA1 silencing induced high susceptibility to Colletotrichum orbiculare but not to P. infestans; conversely, RBOHB silencing decreased resistance to P. infestans but not to C. orbiculare. These results indicate that the effects of the radical burst on the defense response appear to be diverse in plant-pathogen interactions.
Collapse
Affiliation(s)
- Shuta Asai
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
530
|
Xing Y, Jia W, Zhang J. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:440-51. [PMID: 18248592 DOI: 10.1111/j.1365-313x.2008.03433.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Catalase controls cellular H(2)O(2) and plays important roles in the adaptation of plants to various stresses, but little is known about the signaling events that lead to the expression of CAT1 and the production of H(2)O(2). Here we report the dependence of CAT1 expression and H(2)O(2) production on a mitogen-activated protein kinase (MAPK) cascade. CAT1 transcript was induced in an ABA-dependent way and the induction was abolished in the T-DNA insertion mutant mkk1 (SALK_015914), while AtMKK1 overexpression significantly enhanced the ABA-induced CAT1 expression and H(2)O(2) production. AtMPK6, another component in the MAPK cascade, was also involved: mpk6 mutant blocked and overexpressing AtMPK6 enhanced the ABA-dependent expression of CAT1 and H(2)O(2) production. The activity of AtMPK6 was increased by ABA in an AtMKK1-dependent manner. These data clearly suggest an ABA-dependent signaling pathway connecting CAT1 expression through a phosphorelay including AtMKK1 and AtMPK6. In further support of this view, mkk1 mutant reduced both the sensitivity to ABA during germination and the drought tolerance of seedlings, whereas the AtMKK1 overexpression line showed the opposite responses when compared with the wild type. The data suggest AtMKK1-AtMPK6 to be a key module in an ABA-dependent signaling cascade causing H(2)O(2) production and stress responses.
Collapse
Affiliation(s)
- Yu Xing
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | | | | |
Collapse
|
531
|
Chao YE, Zhang M, Tian SK, Lu LL, Yang XE. Differential generation of hydrogen peroxide upon exposure to zinc and cadmium in the hyperaccumulating plant species (Sedum alfredii Hance). J Zhejiang Univ Sci B 2008; 9:243-9. [PMID: 18357627 DOI: 10.1631/jzus.b0710624] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sedum alfredii Hance has been identified as zinc (Zn) and cadmium (Cd) co-hyperaccumulator. In this paper the relationships of Zn or Cd hyperaccumulation to the generation and the role of H2O2 in Sedum alfredii H. were examined. The results show that Zn and Cd contents in the shoots of Sedum alfredii H. treated with 1000 micromol/L Zn2+ and/or 200 micromol/L Cd2+ increased linearly within 15 d. Contents of total S, glutathione (GSH) and H2O2 in shoots also increased within 15 d, and then decreased. Total S and GSH contents in shoots were higher under Cd2+ treatment than under Zn2+ treatment. However, reverse trends of H2O2 content in shoots were obtained, in which much higher H2O2 content was observed in Zn2+-treated shoots than in Cd2+-treated shoots. Similarly, the microscopic imaging of H2O2 accumulation in leaves using H2O2 probe technique showed that much higher H2O2 accumulation was observed in the Zn2+-treated leaf than in the Cd2+-treated one. These results suggest that there are different responses in the generation of H2O2 upon exposure to Zn2+ and Cd2+ for the hyperaccumulator Sedum alfredii H. And this is the first report that the generation of H2O2 may play an important role in Zn hyperaccumulation in the leaves. Our results also imply that GSH may play an important role in the detoxification of dissociated Zn/Cd and the generation of H2O2.
Collapse
Affiliation(s)
- Yue-en Chao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | |
Collapse
|
532
|
Song XG, She XP, Zhang B. Carbon monoxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis. PHYSIOLOGIA PLANTARUM 2008; 132:514-25. [PMID: 18334004 DOI: 10.1111/j.1399-3054.2007.01026.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Recently, in animals, carbon monoxide (CO), like nitric oxide (NO), was implicated as another important physiological messenger or bioactive molecule. Previous researches indicate that heme oxygenase (HO)-1 (EC 1.14.99.3) catalyzes the oxidative conversion of heme to CO and biliverdin IXa (BV) with the concomitant release of iron. However, little is known about the physiological roles of CO in plant, especially in stomatal movement of guard cells. In the present paper, the regulatory role of CO during stomatal movement in Vicia faba was surveyed. Results indicated that, like sodium nitroprusside (SNP), CO donor hematin induced stomatal closure in dose- and time-dependent manners. These responses were also proved by the addition of gaseous CO aqueous solution with different concentrations, showing for the first time that CO and NO exhibit similar regulation role in the stomatal movement. Moreover, our data showed that 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO)/N(G)-nitro-L-arginine-methyl ester (L-NAME) not only reversed stomatal closure by CO, but also suppressed the NO fluorescence induced by CO, implying that CO-induced stomatal closure probably involves NO/nitric oxide synthase (NOS) signal system. Additionally, the CO/NO scavenger hemoglobin (Hb) and CO-specific synthetic inhibitor zinc protoporphyrin IX (ZnPPIX), NO scavenger cPTIO and NOS inhibitor L-NAME reversed the darkness-induced stomatal closure and NO fluorescence. These results show that, maybe like NO, the levels of CO in guard cells of V. faba is higher in dark than that in light, HO-1 and NOS are the enzyme systems responsible for generating endogenous CO and NO in darkness, respectively, and that CO being from HO-1 mediates darkness-induced NO synthesis in guard cells' stomatal closure of V. faba.
Collapse
Affiliation(s)
- Xi-Gui Song
- School of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | | | | |
Collapse
|
533
|
Rearrangements of microtubule cytoskeleton in stomatal closure of Arabidopsis induced by nitric oxide. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0142-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
534
|
Cross-talk between calcium-calmodulin and nitric oxide in abscisic acid signaling in leaves of maize plants. Cell Res 2008; 18:577-88. [DOI: 10.1038/cr.2008.39] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
535
|
Besson-Bard A, Courtois C, Gauthier A, Dahan J, Dobrowolska G, Jeandroz S, Pugin A, Wendehenne D. Nitric oxide in plants: production and cross-talk with Ca2+ signaling. MOLECULAR PLANT 2008; 1:218-28. [PMID: 19825534 DOI: 10.1093/mp/ssm016] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nitric oxide (NO) is a diatomic gas that performs crucial functions in a wide array of physiological processes in animals. The past several years have revealed much about its roles in plants. It is well established that NO is synthesized from nitrite by nitrate reductase (NR) and via chemical pathways. There is increasing evidence for the occurrence of an alternative pathway in which NO production is catalysed from L-arginine by a so far non-identified enzyme. Contradictory results have been reported regarding the respective involvement of these enzymes in specific physiological conditions. Although much remains to be proved, we assume that these inconsistencies can be accounted for by the limited specificity of the pharmacological agents used to suppress NO synthesis but also by the reduced content of L-arginine as well as the inactivity of nitrate-permeable anion channels in nitrate reductase- and/or nitrate/nitrite-deficient plants. Another unresolved issue concerns the molecular mechanisms underlying NO effects in plants. Here, we provide evidence that the second messenger Ca2+, as well as protein kinases including MAPK and SnRK2, are very plausible mediators of the NO signals. These findings open new perspectives about NO-based signaling in plants.
Collapse
Affiliation(s)
- Angélique Besson-Bard
- Unité Mixte de Recherche INRA 1088/CNRS 5184/Université de Bourgogne, Plante-Microbe-Environnement, 17 rue Sully, BP 86510, 21065 Dijon cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
536
|
Slesak I, Slesak H, Libik M, Miszalski Z. Antioxidant response system in the short-term post-wounding effect in Mesembryanthemum crystallinum leaves. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:127-37. [PMID: 17928099 DOI: 10.1016/j.jplph.2007.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 02/26/2007] [Accepted: 03/02/2007] [Indexed: 05/08/2023]
Abstract
Mechanical wounding of Mesembryanthemum crystallinum leaves in planta induced a fast decrease in stomatal conductance, which was related to accumulation of hydrogen peroxide (H(2)O(2)). Higher levels of H(2)O(2) were accompanied by an increase in total activity of superoxide dismutase (SOD) and a decrease in catalase (CAT) activity. Among SOD forms, manganese SOD (MnSOD) and copper/zinc SOD (Cu/ZnSOD) seem to be especially important sources of H(2)O(2) at early stages of wounding response. Moreover, NADP-malic enzyme (NADP-ME), one of the key enzymes of primary carbon metabolism, which is also involved in stress responses, showed a strong increase in activity in wounded leaves. All these symptoms: high accumulation of H(2)O(2), high activities of Cu/ZnSOD and NADP-ME, together with the decrease of CAT activity, were also observed in the major veins of unwounded leaves. The potential role of veinal tissues as an important source of H(2)O(2) during wounding response is discussed.
Collapse
Affiliation(s)
- Ireneusz Slesak
- Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland.
| | | | | | | |
Collapse
|
537
|
Shi FM, Li YZ. Verticillium dahliae toxins-induced nitric oxide production in Arabidopsis is major dependent on nitrate reductase. BMB Rep 2008; 41:79-85. [DOI: 10.5483/bmbrep.2008.41.1.079] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
538
|
Quan LJ, Zhang B, Shi WW, Li HY. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2008; 50:2-18. [PMID: 18666947 DOI: 10.1111/j.1744-7909.2007.00599.x] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants often face the challenge of severe environmental conditions, which include various biotic and abiotic stresses that exert adverse effects on plant growth and development. During evolution, plants have evolved complex regulatory mechanisms to adapt to various environmental stressors. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species (ROS), which are subsequently converted to hydrogen peroxide (H(2)O(2)). Even under normal conditions, higher plants produce ROS during metabolic processes. Excess concentrations of ROS result in oxidative damage to or the apoptotic death of cells. Development of an antioxidant defense system in plants protects them against oxidative stress damage. These ROS and, more particularly, H(2)O(2,) play versatile roles in normal plant physiological processes and in resistance to stresses. Recently, H(2)O(2) has been regarded as a signaling molecule and regulator of the expression of some genes in cells. This review describes various aspects of H(2)O(2) function, generation and scavenging, gene regulation and cross-links with other physiological molecules during plant growth, development and resistance responses.
Collapse
Affiliation(s)
- Li-Juan Quan
- MOE Key Laboratory of Arid and Grassland Ecology, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | | | | |
Collapse
|
539
|
Gaupels F, Furch ACU, Will T, Mur LAJ, Kogel KH, van Bel AJE. Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. THE NEW PHYTOLOGIST 2008; 178:634-46. [PMID: 18312539 DOI: 10.1111/j.1469-8137.2008.02388.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Vascular tissue was recently shown to be capable of producing nitric oxide (NO), but the production sites and sources were not precisely determined. Here, NO synthesis was analysed in the phloem of Vicia faba in response to stress- and pathogen defence-related compounds. The chemical stimuli were added to shallow paradermal cortical cuts in the main veins of leaves attached to intact plants. NO production in the bare-lying phloem area was visualized by real-time confocal laser scanning microscopy using the NO-specific fluorochrome 4,5-diaminofluorescein diacetate (DAF-2 DA). Abundant NO generation in companion cells was induced by 500 microm salicylic acid (SA) and 10 microm hydrogen peroxide (H(2)O(2)), but the fungal elicitor chitooctaose was much less effective. Phloem NO production was found to be dependent on Ca(2+) and mitochondrial electron transport and pharmacological approaches found evidence for activity of a plant NO synthase but not a nitrate reductase. DAF fluorescence increased most strongly in companion cells and was occasionally observed in phloem parenchyma cells. Significantly, accumulation of NO in sieve elements could be demonstrated. These findings suggest that the phloem perceives and produces stress-related signals and that one mechanism of distal signalling involves the production and transport of NO in the phloem.
Collapse
Affiliation(s)
- Frank Gaupels
- Institute of Phytopathology and Applied Zoology, IFZ, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
540
|
Besson-Bard A, Pugin A, Wendehenne D. New insights into nitric oxide signaling in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:21-39. [PMID: 18031216 DOI: 10.1146/annurev.arplant.59.032607.092830] [Citation(s) in RCA: 471] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A decade-long investigation of nitric oxide (NO) functions in plants has led to its characterization as a biological mediator involved in key physiological processes. Despite the wealth of information gathered from the analysis of its functions, until recently little was known about the mechanisms by which NO exerts its effects. In the past few years, part of the gap has been bridged. NO modulates the activity of proteins through nitrosylation and probably tyrosine nitration. Furthermore, NO can act as a Ca(2+)-mobilizing messenger, and researchers are beginning to unravel the mechanisms underlying the cross talk between NO and Ca(2+). Nonetheless, progress in this area of research is hindered by our ignorance of the pathways for NO production in plants. This review summarizes the basic concepts of NO signaling in animals and discusses new insights into NO enzymatic sources and molecular signaling in plants.
Collapse
Affiliation(s)
- Angélique Besson-Bard
- Unité Mixte de Recherche Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université de Bourgogne, Plante-Microbe-Environnement, 21065 Dijon Cedex, France.
| | | | | |
Collapse
|
541
|
Wu SJ, Wu JY. Extracellular ATP-induced NO production and its dependence on membrane Ca2+ flux in Salvia miltiorrhiza hairy roots. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4007-16. [PMID: 18977749 PMCID: PMC2576636 DOI: 10.1093/jxb/ern242] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 05/20/2023]
Abstract
Extracellular ATP (eATP) is a novel signalling agent, and nitric oxide (NO) is a well-established signal molecule with diverse functions in plant growth and development. This study characterizes NO production induced by exogenous ATP and examines its relationship with other important signalling agents, Ca(2+) and H(2)O(2) in Salvia miltiorrhiza hairy root culture. Exogenous ATP was applied at 10-500 microM to the hairy root cultures and stimulated NO production was detectable within 30 min. The NO level increased with ATP dose from 10-100 microM but decreased from 100-200 muM or higher. The ATP-induced NO production was mimicked by a non-hydrolysable ATP analogue ATPgammaS, but only weakly by ADP, AMP or adenosine. The ATP-induced NO production was blocked by Ca(2+) antagonists, but not affected by a protein kinase inhibitor. ATP also induced H(2)O(2) production, which was dependent on both Ca(2+) and protein kinases, and also on NO biosynthesis. On the other hand, ATP induced a rapid increase in the intracellular Ca(2+) level, which was dependent on NO but not H(2)O(2). The results suggest that NO is implicated in ATP-induced responses and signal transduction in plant cells, and ATP signalling is closely related to Ca(2+) and ROS signalling.
Collapse
Affiliation(s)
| | - Jian-Yong Wu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
542
|
Abstract
Guard cells can integrate and process multiple complex signals from the environment and respond by opening and closing stomata in order to adapt to the environmental signal. Over the past several years, considerable research progress has been made in our understanding of the role of reactive oxygen species (ROS) as essential signal molecules that mediate abscisic acid (ABA)-induced stomatal closure. In this review, we discuss hydrogen peroxide (H2O2) generation and signalling, H2O2-induced gene expression, crosstalk and the specificity between ABA and H2O2 signalling, and the cellular mechanism for ROS sensing in guard cells. This review focuses especially on the points of connection between ABA and H2O2 signalling in guard cells. The fundamental progress in understanding the role of ABA and ROS in guard cells will continue to provide a rational basis for biotechnological improvements in the development of drought-tolerant crop plants with improved water-use efficiency.
Collapse
Affiliation(s)
- Pengtao Wang
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Chun-Peng Song
- Laboratory of Plant Stress Biology, Department of Biology, Henan University, Kaifeng 475001, China
| |
Collapse
|
543
|
Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK. Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:729-37. [PMID: 18349048 DOI: 10.1093/jxb/erm359] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Control of stomatal aperture is of paramount importance for plant adaptation to the surrounding environment. Here, we report on several parameters related to stomatal dynamics and performance in transgenic tobacco plants (Nicotiana tabacum L., cv. Xanthi) over-expressing cucumber ascorbate oxidase (AO), a cell wall-localized enzyme of uncertain biological function that oxidizes ascorbic acid (AA) to monodehydroascorbic acid which dismutates yielding AA and dehydroascorbic acid (DHA). In comparison to WT plants, leaves of AO over-expressing plants exhibited reduced stomatal conductance (due to partial stomatal closure), higher water content, and reduced rates of water loss on detachment. Transgenic plants also exhibited elevated levels of hydrogen peroxide and a decline in hydrogen peroxide-scavenging enzyme activity. Leaf ABA content was also higher in AO over-expressing plants. Treatment of epidermal strips with either 1 mM DHA or 100 microM hydrogen peroxide resulted in rapid stomatal closure in WT plants, but not in AO-over-expressing plants. This suggests that signal perception and/or transduction associated with stomatal closure is altered by AO over-expression. These data support a specific role for cell wall-localized AA in the perception of environmental cues, and suggest that DHA acts as a regulator of stomatal dynamics.
Collapse
Affiliation(s)
- Vasileios Fotopoulos
- Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognocy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | | | | | | |
Collapse
|
544
|
An Z, Jing W, Liu Y, Zhang W. Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:815-25. [PMID: 18272918 DOI: 10.1093/jxb/erm370] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
H(2)O(2) is an essential signal in absicic acid (ABA)-induced stomatal closure. It can be synthesized by several enzymes in plants. In this study, the roles of copper amine oxidase (CuAO) in H(2)O(2) production and stomatal closure were investigated. Exogenous ABA stimulated apoplast CuAO activity, increased H(2)O(2) production and [Ca(2+)](cyt) levels in Vicia faba guard cells, and induced stomatal closure. These processes were impaired by CuAO inhibitor(s). In the metabolized products of CuAO, only H(2)O(2) could induce stomatal closure. By the analysis of enzyme kinetics and polyamine contents in leaves, putrescine was regarded as a substrate of CuAO. Putrescine showed similar effects with ABA on the regulation of H(2)O(2) production, [Ca(2+)](cyt) levels, as well as stomatal closure. The results suggest that CuAO in V. faba guard cells is an essential enzymatic source for H(2)O(2) production in ABA-induced stomatal closure via the degradation of putrescine. Calcium messenger is an important intermediate in this process.
Collapse
Affiliation(s)
- Zhenfeng An
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | | | | | | |
Collapse
|
545
|
Graziano M, Lamattina L. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:949-60. [PMID: 17892445 DOI: 10.1111/j.1365-313x.2007.03283.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Iron is an essential and commonly limited nutrient for plants. To increase the uptake of iron during times of low iron supply, plants, except the grasses, activate a set of physiological and morphological responses in their roots that include iron reduction, soil acidification, Fe(II) transport and proliferation of root hairs. It is not known how root cells sense and transduce the changes that occur after the onset of iron deficiency. This work presents evidence that nitric oxide (NO) is produced rapidly in the root epidermis of tomato plants (Solanum lycopersicum) that are grown in iron-deficient conditions. The scavenging of NO prevented iron-deficiency-induced upregulation of the basic helix-loop-helix transcription factor FER, the ferric-chelate reductase LeFRO1 and the Fe(II) transporter LeIRT1 genes. On the other hand, exogenous application of the NO donor S-nitrosoglutathione enhanced the accumulation of FER, LeFRO1 and LeIRT1 mRNA in roots of iron-deficient plants. The activity of the root ferric-chelate reductase and the proliferation of root hairs induced by iron deficiency were stimulated by NO supplementation and suppressed by NO scavenging. Nitric oxide was ineffective in inducing iron-deficiency responses in the tomato fer mutant, which indicates that the FER protein is necessary to mediate the action of NO. Furthermore, NO supplementation improved plant growth under low iron supply, which suggests that NO is a key component of the regulatory mechanisms that control iron uptake and homeostasis in plants. In summary, the results of this investigation indicate that an increase in NO production is an early response of roots to iron deprivation that contributes to the improvement of iron availability by (i) modulating the expression of iron uptake-related genes and (ii) regulating the physiological and morphological adaptive responses of roots to iron-deficient conditions.
Collapse
Affiliation(s)
- Magdalena Graziano
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, 7600 Mar del Plata, Argentina
| | | |
Collapse
|
546
|
Wang R, Xing X, Crawford N. Nitrite acts as a transcriptome signal at micromolar concentrations in Arabidopsis roots. PLANT PHYSIOLOGY 2007; 145:1735-45. [PMID: 17951451 PMCID: PMC2151675 DOI: 10.1104/pp.107.108944] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nitrate serves as a potent signal to control gene expression in plants and algae, but little is known about the signaling role of nitrite, the direct product of nitrate reduction. Analysis of several nitrate-induced genes showed that nitrite increases mRNA levels as rapidly as nitrate in nitrogen-starved Arabidopsis (Arabidopsis thaliana) roots. Both nitrite and nitrate induction are apparent at concentrations as low as 100 nm. The response at low nitrite concentrations was not due to contaminating nitrate, which was present at <1% of the nitrite concentration. High levels of ammonium (20 mm) in the growth medium suppressed induction of several genes by nitrate, but had varied effects on the nitrite response. Transcriptome analysis using 250 or 5 microm nitrate or nitrite showed that over one-half of the nitrate-induced genes, which included genes involved in nitrate and ammonium assimilation, energy production, and carbon and nitrogen metabolism responded equivalently to nitrite; however, the nitrite response was more robust and there were many genes that responded specifically to nitrite. Thus, nitrite can serve as a signal as well as if not better than nitrate.
Collapse
Affiliation(s)
- Rongchen Wang
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, La Jolla, California 92093-0116, USA
| | | | | |
Collapse
|
547
|
Vilela BJ, Carvalho LC, Ferreira J, Amâncio S. Gain of function of stomatal movements in rooting Vitis vinifera L. plants: regulation by H(2)O(2) is independent of ABA before the protruding of roots. PLANT CELL REPORTS 2007; 26:2149-57. [PMID: 17690888 DOI: 10.1007/s00299-007-0427-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/10/2007] [Accepted: 07/22/2007] [Indexed: 05/16/2023]
Abstract
Reactive oxygen species (ROS), namely superoxide radical (O2(-)) and hydrogen peroxide (H(2)O(2)) are generated when plant tissues endure a variety of environmental stresses, including light stress. The extremely short life times of ROS makes the study of their production in planta very difficult. The use of ROS-specific tracer dyes, 3-3' diaminobenzidine and nitroblue tetrazolium, together with high-resolution imaging provides the opportunity to identify sites of photooxidative stress response by ROS accumulation. This technique was applied to grapevine during the first 7 days after transfer from in vitro to ex vitro under an irradiance 4-fold higher than in vitro. ROS accumulation was detected in the first days of analysis, which gradually decreased to levels comparable to greenhouse leaves. (O2(-)) was uniformly distributed while H(2)O(2) accumulated preferentially in veins, wounds and stomatal guard and surrounding cells. To evaluate the role of H(2)O(2 )in stomatal functioning and its crosstalk with abscisic acid (ABA) we focused on the percentage of coloured structures, stomatal aperture and ABA concentration. We propose that the high H(2)O(2) level triggered by increased light is responsible for the activation of a signalling pathway over stomatal cells, in a process apparently irrespective of ABA regulation prior to root protrusion. This could explain the gain of function of a low yet consistent percentage of stomatal cells, essential for plant survival during the ontogenic period in analysis.
Collapse
Affiliation(s)
- B Jorge Vilela
- DBEB/CBAA, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | | | | | | |
Collapse
|
548
|
Garcia-Mata C, Lamattina L. Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium- and nitric oxide-mediated signaling pathways. Nitric Oxide 2007; 17:143-51. [PMID: 17889574 DOI: 10.1016/j.niox.2007.08.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 08/06/2007] [Accepted: 08/07/2007] [Indexed: 11/15/2022]
Abstract
Nitric oxide (NO) is an important signaling component of ABA-induced stomatal closure. However, only fragmentary data are available about NO effect on the inhibition of stomatal opening. Here, we present results supporting that, in Vicia faba guard cells, there is a critical Ca2+-dependent NO increase required for the ABA-mediated inhibition of stomatal opening. Light-induced stomatal opening was inhibited by exogenous NO in V. faba epidermal strips. Furthermore, ABA-mediated inhibition of stomatal opening was blocked by the specific NO scavenger cPTIO, supporting the involvement of endogenous NO in this process. Since the raise in Ca2+ concentration is a pre-requisite in ABA-mediated inhibition of stomatal opening, it was interesting to establish how does Ca2+, NO and ABA interact in the inhibition of light-induced stomatal opening. The permeable Ca2+ specific buffer BAPTA-AM blocked both ABA- and Ca2+- but not NO-mediated inhibition of stomatal opening. The NO synthase (NOS) specific inhibitor L-NAME prevented Ca2+-mediated inhibition of stomatal opening, indicating that a NOS-like activity was required for Ca2+ signaling. Furthermore, experiments using the NO specific fluorescent probe DAF-2DA indicated that Ca2+ induces an increase of endogenous NO. These results indicate that, in addition to the roles in ABA-triggered stomatal closure, both NO and Ca2+ are active components of signaling events acting in ABA inhibition of light-induced stomatal opening. Results also support that Ca2+ induces the NO production through the activation of a NOS-like activity.
Collapse
Affiliation(s)
- Carlos Garcia-Mata
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, B7602AYJ Mar del Plata, Buenos Aires, Argentina
| | | |
Collapse
|
549
|
Zhao J. Interplay among nitric oxide and reactive oxygen species: a complex network determining cell survival or death. PLANT SIGNALING & BEHAVIOR 2007; 2:544-547. [PMID: 19704554 PMCID: PMC2634364 DOI: 10.4161/psb.2.6.4802] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 07/29/2007] [Indexed: 05/28/2023]
Abstract
Programmed cell death (PCD) is an integrated cellular process occurring in plant growth, development, and defense responses to facilitate normal growth and development and better survival against various stresses as a whole. As universal toxic chemicals in plant and animal cells, reactive oxygen or nitrogen species (ROS or RNS), mainly superoxide anion (O(2) (-*)), hydrogen peroxide (H(2)O(2)) or nitric oxide ((*)NO), have been studied extensively for their roles in PCD induction. Physiological and genetic studies have convincingly shown their essential roles. However, the details and mechanisms by which ROS and (*)NO interplay and induce PCD are not well understood. Our recent study on Cupressus lusitanica culture cell death revealed the elicitor-induced co-accumulation of ROS and (*)NO and interactions between (*)NO and H(2)O(2) or O(2)-(*) in different ways to regulate cell death. (*)NO and H(2)O(2) reciprocally enhanced the production of each other whereas (*)NO and O(2) (-*) showed reciprocal suppression on each other's production. It was the interaction between (*)NO and O(2)-(*) but not between (*)NO and H(2)O(2) that induced PCD, probably through peroxynitrite (ONOO(-)). In this addendum, some unsolved issues in the study were discussed based on recent studies on the complex network of ROS and (*)NO leading to PCD in animals and plants.
Collapse
|
550
|
Sarath G, Hou G, Baird LM, Mitchell RB. ABA, ROS and NO are Key Players During Switchgrass Seed Germination. PLANT SIGNALING & BEHAVIOR 2007; 2:492-3. [PMID: 19704595 PMCID: PMC2634345 DOI: 10.4161/psb.2.6.4575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 06/12/2007] [Indexed: 05/21/2023]
Abstract
Seed dormancy and germination are complex physiological processes usually under hormonal control. Germination of seeds from many plants including switchgrass, are inhibited by ABA and promoted by NO or ROS. However, ABA apparently requires both ROS and NO as intermediates in its action, with ROS produced by membrane-bound NADPH-oxidases responsive to ABA. In switchgrass seeds, externally supplied hydrogen peroxide (ROS), but not NO will overcome ABA-imposed inhibition of germination. Stimulation of germination by external ROS can be partially blocked by NO-scavengers, suggesting that NO is required for seed germination in switchgrass as well as for ABA-induced inhibition of germination. Collectively, these data suggest that multiple mechanisms might be required to sense and respond to varying levels of ABA, NO and ROS in switchgrass seeds.
Collapse
Affiliation(s)
- Gautam Sarath
- Grain, Forage and Bioenergy Research Unit; USDA-ARS; East Campus; University of Nebraska—Lincoln; Lincoln, Nebraska USA
| | - Guichuan Hou
- CAS Microscopy Facility; Appalachian State University; Boone, North Carolina USA
| | - Lisa M Baird
- Biology Department; University of San Diego; San Diego, California USA
| | - Robert B Mitchell
- Grain, Forage and Bioenergy Research Unit; USDA-ARS; East Campus; University of Nebraska—Lincoln; Lincoln, Nebraska USA
| |
Collapse
|