501
|
Ray TR, Choi J, Bandodkar AJ, Krishnan S, Gutruf P, Tian L, Ghaffari R, Rogers JA. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem Rev 2019; 119:5461-5533. [PMID: 30689360 DOI: 10.1021/acs.chemrev.8b00573] [Citation(s) in RCA: 484] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bio-integrated wearable systems can measure a broad range of biophysical, biochemical, and environmental signals to provide critical insights into overall health status and to quantify human performance. Recent advances in material science, chemical analysis techniques, device designs, and assembly methods form the foundations for a uniquely differentiated type of wearable technology, characterized by noninvasive, intimate integration with the soft, curved, time-dynamic surfaces of the body. This review summarizes the latest advances in this emerging field of "bio-integrated" technologies in a comprehensive manner that connects fundamental developments in chemistry, material science, and engineering with sensing technologies that have the potential for widespread deployment and societal benefit in human health care. An introduction to the chemistries and materials for the active components of these systems contextualizes essential design considerations for sensors and associated platforms that appear in following sections. The subsequent content highlights the most advanced biosensors, classified according to their ability to capture biophysical, biochemical, and environmental information. Additional sections feature schemes for electrically powering these sensors and strategies for achieving fully integrated, wireless systems. The review concludes with an overview of key remaining challenges and a summary of opportunities where advances in materials chemistry will be critically important for continued progress.
Collapse
Affiliation(s)
- Tyler R Ray
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Jungil Choi
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Amay J Bandodkar
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Siddharth Krishnan
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Philipp Gutruf
- Department of Biomedical Engineering University of Arizona Tucson , Arizona 85721 , United States
| | - Limei Tian
- Department of Biomedical Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Roozbeh Ghaffari
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - John A Rogers
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
502
|
Moonian O, Jodheea-Jutton A, Khedo KK, Baichoo S, Nagowah SD, Nagowah L, Mungloo-Dilmohamud Z, Cheerkoot-Jalim S. Recent advances in computational tools and resources for the self-management of type 2 diabetes. Inform Health Soc Care 2019; 45:77-95. [PMID: 30653364 DOI: 10.1080/17538157.2018.1559168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: While healthcare systems are investing resources on type 2 diabetes patients, self-management is becoming the new trend for these patients. Due to the pervasiveness of computing devices, a number of computerized systems are emerging to support the self-management of patients.Objective: The primary objective of this review is to identify and categorize the computational tools that exist for the self-management of type 2 diabetes, and to identify challenges that need to be addressed.Results: The tools have been categorized into web applications, mobile applications, games and ubiquitous diabetes management systems. We provide a detailed description of the salient features of each category along with a comparison of the various tools, listing their challenges and practical implications. A list of platforms that can be used to develop new tools for the self-management of type 2 diabetes, namely mobile applications development, sensor development, cloud computing, social media, and machine learning and predictive analysis platforms, are also provided.Discussions: This paper identifies a number of challenges in the existing categories of computational tools and consequently presents possible avenues for future research. Failure to address these issues will negatively impact on the adoption rate of the self-management tools and applications.
Collapse
Affiliation(s)
- Oveeyen Moonian
- Department of Digital Technologies, FoICDT, University of Mauritius
| | | | - Kavi Kumar Khedo
- Department of Digital Technologies, FoICDT, University of Mauritius
| | | | | | - Leckraj Nagowah
- Department of Software and Information Systems, FoICDT, University of Mauritius
| | | | - Sudha Cheerkoot-Jalim
- Department of Information and Communication Technologies, FoICDT, University of Mauritius
| |
Collapse
|
503
|
Choi C, Lee Y, Cho KW, Koo JH, Kim DH. Wearable and Implantable Soft Bioelectronics Using Two-Dimensional Materials. Acc Chem Res 2019; 52:73-81. [PMID: 30586292 DOI: 10.1021/acs.accounts.8b00491] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Soft bioelectronics intended for application to wearable and implantable biomedical devices have attracted great attention from material scientists, device engineers, and clinicians because of their extremely soft mechanical properties that match with a variety of human organs and tissues, including the brain, heart, skin, eye, muscles, and neurons, as well as their wide diversity in device designs and biomedical functions that can be finely tuned for each specific case of applications. These unique features of the soft bioelectronics have allowed minimal mechanical and biological damage to organs and tissues integrated with bioelectronic devices and reduced side effects including inflammation, skin irritation, and immune responses even after long-term biointegration. These favorable properties for biointegration have enabled long-term monitoring of key biomedical indicators with high signal-to-noise ratio, reliable diagnosis of the patient's health status, and in situ feedback therapy with high treatment efficacy optimized for the requirements of each specific disease model. These advantageous device functions and performances could be maximized by adopting novel high-quality soft nanomaterials, particularly ultrathin two-dimensional (2D) materials, for soft bioelectronics. Two-dimensional materials are emerging material candidates for the channels and electrodes in electronic devices (semiconductors and conductors, respectively). They can also be applied to various biosensors and therapeutic actuators in soft bioelectronics. The ultrathin vertically layered nanostructure, whose layer number can be controlled in the synthesis step, and the horizontally continuous planar molecular structure, which can be found over a large area, have conferred unique mechanical, electrical, and optical properties upon the 2D materials. The atomically thin nanostructure allows mechanical softness and flexibility and high optical transparency of the device, while the large-area continuous thin film structure allows efficient carrier transport within the 2D plane. In addition, the quantum confinement effect in the atomically thin 2D layers introduces interesting optoelectronic properties and superb photodetecting capabilities. When fabricated as soft bioelectronic devices, these interesting and useful material features of the 2D materials enable unconventional device functions in biological and optical sensing, as well as superb performance in electrical and biochemical therapeutic actuations. In this Account, we first summarize the distinctive characteristics of the 2D materials in terms of the mechanical, optical, chemical, electrical, and biomedical aspects and then present application examples of the 2D materials to soft bioelectronic devices based on each aforementioned unique material properties. Among various kinds of 2D materials, we particularly focus on graphene and MoS2. The advantageous material features of graphene and MoS2 include ultrathin thickness, facile functionalization, large surface-to-volume ratio, biocompatibility, superior photoabsorption, and high transparency, which allow the development of high-performance multifunctional soft bioelectronics, such as a wearable glucose patch, a highly sensitive humidity sensor, an ultrathin tactile sensor, a soft neural probe, a soft retinal prosthesis, a smart endoscope, and a cell culture platform. A brief comparison of their characteristics and performances is also provided. Finally, this Account concludes with a future outlook on next-generation soft bioelectronics based on 2D materials.
Collapse
Affiliation(s)
- Changsoon Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngsik Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
504
|
Promphet N, Rattanawaleedirojn P, Siralertmukul K, Soatthiyanon N, Potiyaraj P, Thanawattano C, Hinestroza JP, Rodthongkum N. Non-invasive textile based colorimetric sensor for the simultaneous detection of sweat pH and lactate. Talanta 2019; 192:424-430. [PMID: 30348413 DOI: 10.1016/j.snb.2020.128549] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/21/2018] [Accepted: 09/23/2018] [Indexed: 05/18/2023]
Abstract
A non-invasive textile-based colorimetric sensor for the simultaneous detection of sweat pH and lactate was created by depositing of three different layers onto a cotton fabric: 1.) chitosan, 2.) sodium carboxymethyl cellulose, and 3.) indicator dye or lactate assay. This sensor was characterized using field emission scanning electron microscopy and fourier transform infrared spectroscopy. Then, this sensor was used to measure pH and lactate concentration using the same sweat sample. The sensing element for sweat pH was composed of a mixture of methyl orange and bromocresol green while a lactate enzymatic assay was chosen for the lactate sensor. The pH indicator gradually shifted from red to blue as the pH increased, whereas the purple color intensity increased with the concentration of lactate in the sweat. By comparing these colors with a standard calibration, this platform can be used to estimate the sweat pH (1-14) and the lactate level (0-25 mM). Fading of the colors of this sensor was prevented by using cetyltrimethylammonium bromide (CTAB). The flexibility of this textile based sensor allows it to be incorporated into sport apparels and accessories hence potentially enabling real-time and continuous monitoring of sweat pH and lactate. This non-invasive sensing platform might open a new avenue for personal health monitoring and medical diagnosis as well as for determining of the physiological conditions of endurance athletes.
Collapse
Affiliation(s)
- Nadtinan Promphet
- Nanoscience and Technology Interdisciplinary Program, Graduate School, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Pranee Rattanawaleedirojn
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Krisana Siralertmukul
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Niphaphun Soatthiyanon
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Pranut Potiyaraj
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Chusak Thanawattano
- National Electronics and Computer Technology Center (NECTEC), Pathumthani 12120, Thailand
| | - Juan P Hinestroza
- Department of Fiber Science, College of Human Ecology, Cornell University, Ithaca, NY 14850, United States
| | - Nadnudda Rodthongkum
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
505
|
Li G, Mo X, Law WC, Chan KC. Wearable Fluid Capture Devices for Electrochemical Sensing of Sweat. ACS APPLIED MATERIALS & INTERFACES 2019; 11:238-243. [PMID: 30516364 DOI: 10.1021/acsami.8b17419] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wearable sensing technologies are vital for realizing personalized health monitoring. Noninvasive human sweat sampling is essential for monitoring an individual's physical state using rich physiological data. However, existing wearable sensing technologies lack the controlled capture of body sweat and in performing on-device measurement without inflammatory contact. Herein, we report the development of a wearable sweat-capture device using patterned graphene arrays with controlled superwettability and electrical conductivity for simultaneously capturing and electrochemically measuring sweat droplets. The sweat droplets exhibited strong attachment on the superhydrophilic graphene patterns, even during moderate exercising. The captured sweat droplets present strong electrochemical signals using graphene films as the working electrode and metal pins as the counter electrode arrays assembled on 3D printed holders, at the detection limit of 6 μM for H2O2 sensing. This research enables full-body spatiotemporal mapping of sweat, which is beneficial for a broad range of personalized monitoring applications, such as drug abuse detection, athletics performance optimization, and physiological wellness tracking.
Collapse
Affiliation(s)
- Guijun Li
- Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Xiaoyong Mo
- Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Wing-Cheung Law
- Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Kang Cheung Chan
- Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| |
Collapse
|
506
|
Abstract
Barcoded bioassays are ready to promote bioanalysis and biomedicine toward the point of care.
Collapse
Affiliation(s)
- Mingzhu Yang
- Beijing Engineering Research Center for BioNanotechnology
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for NanoScience and Technology
- Beijing
| | - Yong Liu
- Beijing Engineering Research Center for BioNanotechnology
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for NanoScience and Technology
- Beijing
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for NanoScience and Technology
- Beijing
| |
Collapse
|
507
|
Reeder JT, Choi J, Xue Y, Gutruf P, Hanson J, Liu M, Ray T, Bandodkar AJ, Avila R, Xia W, Krishnan S, Xu S, Barnes K, Pahnke M, Ghaffari R, Huang Y, Rogers JA. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. SCIENCE ADVANCES 2019; 5:eaau6356. [PMID: 30746456 PMCID: PMC6357724 DOI: 10.1126/sciadv.aau6356] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/10/2018] [Indexed: 05/18/2023]
Abstract
Noninvasive, in situ biochemical monitoring of physiological status, via the use of sweat, could enable new forms of health care diagnostics and personalized hydration strategies. Recent advances in sweat collection and sensing technologies offer powerful capabilities, but they are not effective for use in extreme situations such as aquatic or arid environments, because of unique challenges in eliminating interference/contamination from surrounding water, maintaining robust adhesion in the presence of viscous drag forces and/or vigorous motion, and preventing evaporation of collected sweat. This paper introduces materials and designs for waterproof, epidermal, microfluidic and electronic systems that adhere to the skin to enable capture, storage, and analysis of sweat, even while fully underwater. Field trials demonstrate the ability of these devices to collect quantitative in situ measurements of local sweat chloride concentration, local sweat loss (and sweat rate), and skin temperature during vigorous physical activity in controlled, indoor conditions and in open-ocean swimming.
Collapse
Affiliation(s)
- Jonathan T. Reeder
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Jungil Choi
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Yeguang Xue
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Philipp Gutruf
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Justin Hanson
- Department of Biological Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Mark Liu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Tyler Ray
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Amay J. Bandodkar
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Raudel Avila
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wei Xia
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Siddharth Krishnan
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuai Xu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Kelly Barnes
- Gatorade Sports Science Institute, 617 W. Main St., Barrington, IL 60010, USA
| | - Matthew Pahnke
- Gatorade Sports Science Institute, 617 W. Main St., Barrington, IL 60010, USA
| | - Roozbeh Ghaffari
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems Inc., Cambridge, MA 02139, USA
| | - Yonggang Huang
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Departments of Chemistry, and Electrical Engineering and Computer Science, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Departments of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
508
|
He J, Xiao G, Chen X, Qiao Y, Xu D, Lu Z. A thermoresponsive microfluidic system integrating a shape memory polymer-modified textile and a paper-based colorimetric sensor for the detection of glucose in human sweat. RSC Adv 2019; 9:23957-23963. [PMID: 35530637 PMCID: PMC9069540 DOI: 10.1039/c9ra02831e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022] Open
Abstract
Textile-based microfluidic analytical devices have demonstrated significant potentials in biomolecular detection; however, to date, they have not been integrated with a shape memory polymer to prepare a thermoresponsive device for human sweat analysis. Herein, a thermoresponsive textile/paper-based microfluidic analysis system was constructed by combining biocompatible polyurethane (PU), cotton fabric and a paper-based colorimetric sensor. The coating of PU endowed the textile with temperature-dependent shape memory capability and patterned the channels to guide the liquid transport. A paper-based colorimetric sensor was prepared via a layer-by-layer deposition method and coupled with a smartphone for the quantitative analysis of glucose concentration. The as-prepared thermoresponsive textile/paper-based microfluidic analysis system had the dynamic range of 50–600 μM and the detection limit of 13.49 μM. After being fixed in the inner collar of a shirt, the system demonstrated great capabilities for the thermal-triggered sweat transport and in situ detection of glucose in human sweat under a high-temperature condition (59 °C). This study not only provides a low-cost and easy-to-wear sweat analysis tool for the health monitoring of people working at high temperatures, but also expands the applications of shape memory polymers and textile-based microfluidic devices in point-of-care testing. A thermoresponsive textile/paper-based microfluidic system was fabricated by integrating a shape memory polymer, fabric and a paper-based sensor for human sweat glucose analysis.![]()
Collapse
Affiliation(s)
- Jing He
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials & Energy
- Southwest University
- Chongqing 400715
| | - Gang Xiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials & Energy
- Southwest University
- Chongqing 400715
| | - Xiaodie Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials & Energy
- Southwest University
- Chongqing 400715
| | - Yan Qiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials & Energy
- Southwest University
- Chongqing 400715
| | - Dan Xu
- Department of Gastroenterology
- The Central Hospital of Wuhan
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan 430014
| | - Zhisong Lu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- School of Materials & Energy
- Southwest University
- Chongqing 400715
| |
Collapse
|
509
|
Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A. Minimally Invasive and Regenerative Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1804041. [PMID: 30565732 PMCID: PMC6709364 DOI: 10.1002/adma.201804041] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/20/2018] [Indexed: 05/03/2023]
Abstract
Advances in biomaterial synthesis and fabrication, stem cell biology, bioimaging, microsurgery procedures, and microscale technologies have made minimally invasive therapeutics a viable tool in regenerative medicine. Therapeutics, herein defined as cells, biomaterials, biomolecules, and their combinations, can be delivered in a minimally invasive way to regenerate different tissues in the body, such as bone, cartilage, pancreas, cardiac, skeletal muscle, liver, skin, and neural tissues. Sophisticated methods of tracking, sensing, and stimulation of therapeutics in vivo using nano-biomaterials and soft bioelectronic devices provide great opportunities to further develop minimally invasive and regenerative therapeutics (MIRET). In general, minimally invasive delivery methods offer high yield with low risk of complications and reduced costs compared to conventional delivery methods. Here, minimally invasive approaches for delivering regenerative therapeutics into the body are reviewed. The use of MIRET to treat different tissues and organs is described. Although some clinical trials have been performed using MIRET, it is hoped that such therapeutics find wider applications to treat patients. Finally, some future perspective and challenges for this emerging field are highlighted.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mario El Tahchi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- LBMI, Department of Physics, Lebanese University - Faculty of Sciences 2, PO Box 90656, Jdeidet, Lebanon
| | - Junmin Lee
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Kasinan Suthiwanich
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Amir Sheikhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Mehmet R. Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
| | - Rahmi Oklu
- Division of Interventional Radiology, Department of Radiology, Mayo Clinic, Scottsdale, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Radiological Sciences, University of California - Los Angeles, Los Angeles, California, USA
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, California, USA
- Center of Nanotechnology, Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
510
|
|
511
|
Ma Z, Li S, Wang H, Cheng W, Li Y, Pan L, Shi Y. Advanced electronic skin devices for healthcare applications. J Mater Chem B 2018; 7:173-197. [PMID: 32254546 DOI: 10.1039/c8tb02862a] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electronic skin, a kind of flexible electronic device and system inspired by human skin, has emerged as a promising candidate for wearable personal healthcare applications. Wearable electronic devices with skin-like properties will provide platforms for continuous and real-time monitoring of human physiological signals such as tissue pressure, body motion, temperature, metabolites, electrolyte balance, and disease-related biomarkers. Transdermal drug delivery devices can also be integrated into electronic skin to enhance its non-invasive, real-time dynamic therapy functions. This review summarizes the recent progress in electronic skin devices for applications in human health monitoring and therapy systems as well as several potential mass production technologies such as inkjet printing and 3D printing. The opportunities and challenges in broadening the applications of electronic skin devices in practical healthcare are also discussed.
Collapse
Affiliation(s)
- Zhong Ma
- Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, 210093 Nanjing, China.
| | | | | | | | | | | | | |
Collapse
|
512
|
Kaya T, Liu G, Ho J, Yelamarthi K, Miller K, Edwards J, Stannard A. Wearable Sweat Sensors: Background and Current Trends. ELECTROANAL 2018. [DOI: 10.1002/elan.201800677] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tolga Kaya
- School of Computer Science and Engineering; Sacred Heart University; Fairfield, CT 06825 USA
| | - Gengchen Liu
- Department of Electrical and Computer Engineering; University of California at Davis; Davis 95616 USA
| | - Jenny Ho
- Nexteer Automative Engineering; Saginaw, MI 48601 USA
| | - Kumar Yelamarthi
- School of Engineering and Technology; Central Michigan University; Mount Pleasant, MI 48859 USA
| | - Kevin Miller
- School of Health Sciences; Central Michigan University; Mount Pleasant 48859 USA
| | - Jeffrey Edwards
- School of Health Sciences; Central Michigan University; Mount Pleasant 48859 USA
| | - Alicja Stannard
- Exercise Science program; Sacred Heart University; Fairfield, CT 06825 USA
| |
Collapse
|
513
|
Hauke A, Simmers P, Ojha YR, Cameron BD, Ballweg R, Zhang T, Twine N, Brothers M, Gomez E, Heikenfeld J. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. LAB ON A CHIP 2018; 18:3750-3759. [PMID: 30443648 DOI: 10.1039/c8lc01082j] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A wearable sweat biosensing device is demonstrated that stimulates sweat and continuously measures sweat ethanol concentrations at 25 s intervals, which is then correlated with blood ethanol during a >3 hour testing phase. The testing involves a baseline condition (no ethanol) followed by a rapid blood and sweat rise of ethanol (oral bolus), and finally, the physiological response of the body as ethanol concentrations return to baseline (metabolized). Data sets include multiple in vivo validation trials and careful in vitro characterization of the electrochemical enzymatic ethanol sensor against likely interferents. Furthermore, the data is analyzed through known pharmacokinetic models with a strong linear Pearson correlation of 0.9474-0.9996. The continuous nature of the data also allows analysis of blood-to-sweat lag times that range between 2.3 to 11.41 min for ethanol signal onset and 19.32 to 34.44 min for the overall pharmacokinetic curve lag time. This work represents a significant advance that builds upon a continuum of previous work. However, unresolved questions include operation for 24 hours or greater and with analytes beyond those commonly explored for sweat (electrolytes and metabolites). Regardless, this work validates that sweat biosensing can provide continuous and blood-correlated data in an integrated wearable device.
Collapse
Affiliation(s)
- A Hauke
- Novel Devices Laboratory, College of Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
514
|
Yang C, Zhang H, Liu Y, Yu Z, Wei X, Hu Y. Kirigami-Inspired Deformable 3D Structures Conformable to Curved Biological Surface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1801070. [PMID: 30581706 PMCID: PMC6299731 DOI: 10.1002/advs.201801070] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/14/2018] [Indexed: 05/17/2023]
Abstract
By introducing stretchability and/or deformability to planar electronics, devices can conformably attach to 3D curved surfaces with minimal invasiveness, which is of great interest for next-generation wearables in clinical and biological applications. Here, a feasible route is demonstrated to generate deformable 3D structures as a robust platform to construct electronic systems by utilizing silver nanowires/parylene hybrid films in a way analogous to the art of kirigami. The hybrid films exhibit outstanding electrical conductivity along with decent optical transparency, flexibility, and long-term stability. These merits enable these films to work as electrodes for electrocardiogram recording with comparable accuracy to a commercial counterpart, and to fabricate a 7-GHz monopole antenna with good omni-directionality and a peak gain of 1.35 dBi. More importantly, a general scheme for constructing 3D deformable electronic systems is presented, including unique patterning procedures and rational cut designs inspired by kirigami. As an example, deformable transparent humidity sensors are fabricated to work on elbows and finger joints for sweating monitoring. The strategy demonstrated here for 3D deformable system construction is versatile and holds great promise for future advanced health monitoring at diverse and complex epidermal surfaces.
Collapse
Affiliation(s)
- Chao Yang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Heng Zhang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Youdi Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijing100871P. R. China
| | - Zhongliang Yu
- State Key Laboratory for Turbulence and Complex SystemDepartment of Mechanics and Engineering ScienceCollege of EngineeringPeking UniversityBeijing100871China
| | - Xiaoding Wei
- State Key Laboratory for Turbulence and Complex SystemDepartment of Mechanics and Engineering ScienceCollege of EngineeringPeking UniversityBeijing100871China
- Beijing Innovation Center for Engineering Science and Advanced TechnologyPeking UniversityBeijing100871China
| | - Youfan Hu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Department of ElectronicsPeking UniversityBeijing100871P. R. China
| |
Collapse
|
515
|
Transdermal sampling of vitamin D 3 and 25-hydroxyvitamin D 3. Bioanalysis 2018; 11:61-72. [PMID: 30475076 DOI: 10.4155/bio-2018-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Transdermal analysis is proposed for vitamin D3 and its hydroxylated metabolite to overcome problems associated with blood analysis. METHODS Vitamin D3 was extracted directly from skin with solid patches and liquid phases. Deuterium-labeled vitamin D3 was added to the extraction solutions to compensate for variability and accurately determine the rate of transdermal transfer. Of the different extraction solvents tested, 50:50 octanol:isopropanol showed the best results, with an accuracy of 115% and reproducibility better than 30%. CONCLUSION The research shows that transdermal route can be used for analysis of vitamin D3 in porcine skin. When microneedles are used, accurate measurements were obtained in 1 h. With intact skin, the highest accuracy was obtained when extraction was done for 2 h.
Collapse
|
516
|
Yang D, Afroosheh S, Lee JO, Cho H, Kumar S, Siddique RH, Narasimhan V, Yoon YZ, Zayak AT, Choo H. Glucose Sensing Using Surface-Enhanced Raman-Mode Constraining. Anal Chem 2018; 90:14269-14278. [PMID: 30369240 DOI: 10.1021/acs.analchem.8b03420] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus is a chronic disease, and its management focuses on monitoring and lowering a patient's glucose level to prevent further complications. By tracking the glucose-induced shift in the surface-enhanced Raman-scattering (SERS) emission of mercaptophenylboronic acid (MPBA), we have demonstrated fast and continuous glucose sensing in the physiologically relevant range from 0.1 to 30 mM and verified the underlying mechanism using numerical simulations. Bonding of glucose to MPBA suppresses the "breathing" mode of MPBA at 1071 cm-1 and energizes the constrained-bending mode at 1084 cm-1, causing the dominant peak to shift from 1071 to 1084 cm-1. MPBA-glucose bonding is also reversible, allowing continuous tracking of ambient glucose concentrations, and the MPBA-coated substrates showed very stable performance over a 30 day period, making the approach promising for long-term continuous glucose monitoring. Using Raman-mode-constrained, miniaturized SERS implants, we also successfully demonstrated intraocular glucose measurements in six ex vivo rabbit eyes within ±0.5 mM of readings obtained using a commercial glucose sensor.
Collapse
Affiliation(s)
- Daejong Yang
- Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.,Department of Mechanical & Automotive Engineering , Kongju National University , Cheonan 31080 , Republic of Korea
| | - Sajjad Afroosheh
- Department of Physics & Astronomy, Center for Photochemical Sciences , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Jeong Oen Lee
- Department of Electrical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Hyunjun Cho
- Department of Electrical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Shailabh Kumar
- Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Radwanul H Siddique
- Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Vinayak Narasimhan
- Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States
| | - Young-Zoon Yoon
- Device Lab, Device & System Research Center , Samsung Advanced Institute of Technology (SAIT) , Suwon 16678 , Republic of Korea
| | - Alexey T Zayak
- Department of Physics & Astronomy, Center for Photochemical Sciences , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Hyuck Choo
- Department of Medical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.,Department of Electrical Engineering , California Institute of Technology , Pasadena , California 91125 , United States.,Device Lab, Device & System Research Center , Samsung Advanced Institute of Technology (SAIT) , Suwon 16678 , Republic of Korea
| |
Collapse
|
517
|
Kim HW, Kim TY, Park HK, You I, Kwak J, Kim JC, Hwang H, Kim HS, Jeong U. Hygroscopic Auxetic On-Skin Sensors for Easy-to-Handle Repeated Daily Use. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40141-40148. [PMID: 30360058 DOI: 10.1021/acsami.8b13857] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the advance of on-skin sensors over the last decade, a sensor that solves simultaneously the critical issues for using in everyday life, such as stable performance in various environments, use over a long period of time, and repeated use by easy handling, has not yet been achieved. Here, we introduce an auxetic hygroscopic sensor that simultaneously meets all of the conditions. The auxetic structure with a negative Poisson's ratio matches with deformation of the skin in ankles; hence, a conformal contact between the sensor and the skin could be maintained during repeated movements. Sweat was absorbed in the auxetic electrode made of a hydrogel pattern coated with Ag nanowires and evaporated quickly; such hygroscopic characteristic led to excellent breathability. An electrocardiogram sensor and a haptic device were fabricated according to the proposed design for a sensor electrode. The sensors provide stable detecting performance in various environments, such as exercising, submersion in water, exposure to concentrated salt water, and continuous wearing for long time (7 days). Also, the sensors could be manually attached repeatedly without degrading the performance. This study provides new structural insights for on-skin sensors and presents future research directions.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang-si , Gyeongsangbuk-do 37673 , Republic of Korea
| | - Tae Yeong Kim
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang-si , Gyeongsangbuk-do 37673 , Republic of Korea
| | - Hyung Keun Park
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang-si , Gyeongsangbuk-do 37673 , Republic of Korea
| | - Insang You
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang-si , Gyeongsangbuk-do 37673 , Republic of Korea
| | - Junghyeok Kwak
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang-si , Gyeongsangbuk-do 37673 , Republic of Korea
| | - Jong Chan Kim
- Marine Robotics R&D Division , Korea Institute of Robot and Convergence (KIRO) , 39 Jigok-ro , Nam-gu, Pohang-si , Gyeongsangbuk-do 37666 , Republic of Korea
| | - Heeseon Hwang
- Marine Robotics R&D Division , Korea Institute of Robot and Convergence (KIRO) , 39 Jigok-ro , Nam-gu, Pohang-si , Gyeongsangbuk-do 37666 , Republic of Korea
| | - Hyoung Seop Kim
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang-si , Gyeongsangbuk-do 37673 , Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang-si , Gyeongsangbuk-do 37673 , Republic of Korea
| |
Collapse
|
518
|
Xuan X, Kim JY, Hui X, Das PS, Yoon HS, Park JY. A highly stretchable and conductive 3D porous graphene metal nanocomposite based electrochemical-physiological hybrid biosensor. Biosens Bioelectron 2018; 120:160-167. [DOI: 10.1016/j.bios.2018.07.071] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
|
519
|
Liu YL, Liu R, Qin Y, Qiu QF, Chen Z, Cheng SB, Huang WH. Flexible Electrochemical Urea Sensor Based on Surface Molecularly Imprinted Nanotubes for Detection of Human Sweat. Anal Chem 2018; 90:13081-13087. [DOI: 10.1021/acs.analchem.8b04223] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yan-Ling Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Rong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Qin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Quan-Fa Qiu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhen Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shi-Bo Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
520
|
Sadri B, Goswami D, Sala de Medeiros M, Pal A, Castro B, Kuang S, Martinez RV. Wearable and Implantable Epidermal Paper-Based Electronics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31061-31068. [PMID: 30141320 DOI: 10.1021/acsami.8b11020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Traditional manufacturing methods and materials used to fabricate epidermal electronics for physiological monitoring, transdermal stimulation, and therapeutics are complex and expensive, preventing their adoption as single-use medical devices. This work describes the fabrication of epidermal, paper-based electronic devices (EPEDs) for wearable and implantable applications by combining the spray-based deposition of silanizing agents, highly conductive nanoparticles, and encapsulating polymers with laser micromachining. EPEDs are inexpensive, stretchable, easy to apply, and disposable by burning. The omniphobic character and fibrous structure of EPEDs make them breathable, mechanically stable upon stretching, and facilitate their use as electrophysiological sensors to record electrocardiograms, electromyograms, and electrooculograms, even under water. EPEDs can also be used to provide thermotherapeutic treatments to joints, map temperature spatially, and as wirelessly powered implantable devices for stimulation and therapeutics. This work makes epidermal electronic devices accessible to high-throughput manufacturing technologies and will enable the fabrication of a variety of wearable medical devices at a low cost.
Collapse
Affiliation(s)
- Behnam Sadri
- School of Industrial Engineering , Purdue University , 315 N. Grant Street , West Lafayette , Indiana 47907 , United States
| | - Debkalpa Goswami
- School of Industrial Engineering , Purdue University , 315 N. Grant Street , West Lafayette , Indiana 47907 , United States
| | - Marina Sala de Medeiros
- School of Industrial Engineering , Purdue University , 315 N. Grant Street , West Lafayette , Indiana 47907 , United States
| | - Aniket Pal
- School of Industrial Engineering , Purdue University , 315 N. Grant Street , West Lafayette , Indiana 47907 , United States
| | - Beatriz Castro
- Department of Animal Sciences , Purdue University , 270 S. Russell Street , West Lafayette , Indiana 47907 , United States
| | - Shihuan Kuang
- Department of Animal Sciences , Purdue University , 270 S. Russell Street , West Lafayette , Indiana 47907 , United States
| | - Ramses V Martinez
- School of Industrial Engineering , Purdue University , 315 N. Grant Street , West Lafayette , Indiana 47907 , United States
- Weldon School of Biomedical Engineering , 206 S. Martin Jischke Drive , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
521
|
Liu H, Li M, Ouyang C, Lu TJ, Li F, Xu F. Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801711. [PMID: 30062710 DOI: 10.1002/smll.201801711] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/12/2018] [Indexed: 06/08/2023]
Abstract
The ever-growing overlap between stretchable electronic devices and wearable healthcare applications is igniting the discovery of novel biocompatible and skin-like materials for human-friendly stretchable electronics fabrication. Amongst all potential candidates, hydrogels with excellent biocompatibility and mechanical features close to human tissues are constituting a promising troop for realizing healthcare-oriented electronic functionalities. In this work, based on biocompatible and stretchable hydrogels, a simple paradigm to prototype stretchable electronics with an embedded three-dimensional (3D) helical conductive layout is proposed. Thanks to the 3D helical structure, the hydrogel electronics present satisfactory mechanical and electrical robustness under stretch. In addition, reusability of stretchable electronics is realized with the proposed scenario benefiting from the swelling property of hydrogel. Although losing water would induce structure shrinkage of the hydrogel network and further undermine the function of hydrogel in various applications, the worn-out hydrogel electronics can be reused by simply casting it in water. Through such a rehydration procedure, the dehydrated hydrogel can absorb water from the surrounding and then the hydrogel electronics can achieve resilience in mechanical stretchability and electronic functionality. Also, the ability to reflect pressure and strain changes has revealed the hydrogel electronics to be promising for advanced wearable sensing applications.
Collapse
Affiliation(s)
- Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Moxiao Li
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Aerospace School, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Cheng Ouyang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- MOE Key Laboratory for Multifunctional Materials and Structures, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
522
|
Rapid Fabrication of Epidermal Paper-Based Electronic Devices Using Razor Printing. MICROMACHINES 2018; 9:mi9090420. [PMID: 30424353 PMCID: PMC6187327 DOI: 10.3390/mi9090420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
This work describes the use of a benchtop razor printer to fabricate epidermal paper-based electronic devices (EPEDs). This fabrication technique is simple, low-cost, and compatible with scalable manufacturing processes. EPEDs are fabricated using paper substrates rendered omniphobic by their cost-effective silanization with fluoroalkyl trichlorosilanes, making them inexpensive, water-resistant, and mechanically compliant with human skin. The highly conductive inks or thin films attached to one of the sides of the omniphobic paper makes EPEDs compatible with wearable applications involving wireless power transfer. The omniphobic cellulose fibers of the EPED provide a moisture-independent mechanical reinforcement to the conductive layer. EPEDs accurately monitor physiological signals such as ECG (electrocardiogram), EMG (electromyogram), and EOG (electro-oculogram) even in high moisture environments. Additionally, EPEDs can be used for the fast mapping of temperature over the skin and to apply localized thermotherapy. Our results demonstrate the merits of EPEDs as a low-cost platform for personalized medicine applications.
Collapse
|
523
|
Hwang I, Kim HN, Seong M, Lee SH, Kang M, Yi H, Bae WG, Kwak MK, Jeong HE. Multifunctional Smart Skin Adhesive Patches for Advanced Health Care. Adv Healthc Mater 2018; 7:e1800275. [PMID: 29757494 DOI: 10.1002/adhm.201800275] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Indexed: 12/21/2022]
Abstract
A skin adhesive patch is the most fundamental and widely used medical device for diverse health-care purposes. Conventional skin adhesive patches have been mainly utilized for routine medical purposes such as wound management, fixation of medical devices, and simple drug release. In contrast to traditional skin adhesive patches, recently developed patches incorporate multiple key functions of bulky medical devices into a thin, flexible patch based on emerging nanomaterials and flexible electronic technologies. Consequently, the meaning of the term "skin adhesive patch" becomes broader and smarter compared to the traditional term. This review summarizes recent efforts undertaken in the development of multifunctional advanced skin adhesive patches, and briefly describes future directions and challenges toward the next generation of smart skin adhesive patches for ubiquitous personalized health care.
Collapse
Affiliation(s)
- Insol Hwang
- Department of Mechanical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Hong Nam Kim
- Center for BioMicrosystems; Brain Science Institute; Korea Institute of Science and Technology (KIST); Seoul 136-791 Republic of Korea
| | - Minho Seong
- Department of Mechanical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Sang-Hyeon Lee
- Department of Mechanical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Minsu Kang
- Department of Mechanical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Hoon Yi
- Department of Mechanical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| | - Won Gyu Bae
- School of Electrical Engineering; Soongsil University (SSU); Seoul 06978 Republic of Korea
| | - Moon Kyu Kwak
- Department of Mechanical Engineering; Kyungpook National University; Daegu 41566 Republic of Korea
| | - Hoon Eui Jeong
- Department of Mechanical Engineering; Ulsan National Institute of Science and Technology (UNIST); Ulsan 44919 Republic of Korea
| |
Collapse
|
524
|
Sekine Y, Kim SB, Zhang Y, Bandodkar AJ, Xu S, Choi J, Irie M, Ray TR, Kohli P, Kozai N, Sugita T, Wu Y, Lee K, Lee KT, Ghaffari R, Rogers JA. A fluorometric skin-interfaced microfluidic device and smartphone imaging module for in situ quantitative analysis of sweat chemistry. LAB ON A CHIP 2018; 18:2178-2186. [PMID: 29955754 DOI: 10.1039/c8lc00530c] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rich composition of solutes and metabolites in sweat and its relative ease of collection upon excretion from skin pores make this class of biofluid an attractive candidate for point of care analysis. Wearable technologies that combine electrochemical sensors with conventional or emerging semiconductor device technologies offer valuable capabilities in sweat sensing, but they are limited to assays that support amperometric, potentiometric, and colorimetric analyses. Here, we present a complementary approach that exploits fluorometric sensing modalities integrated into a soft, skin-interfaced microfluidic system which, when paired with a simple smartphone-based imaging module, allows for in situ measurement of important biomarkers in sweat. A network array of microchannels and a collection of microreservoirs pre-filled with fluorescent probes that selectively react with target analytes in sweat (e.g. probes), enable quantitative, rapid analysis. Field studies on human subjects demonstrate the ability to measure the concentrations of chloride, sodium and zinc in sweat, with accuracy that matches that of conventional laboratory techniques. The results highlight the versatility of advanced fluorescent-based imaging modalities in body-worn sweat microfluidics platforms, and they suggest some practical potential for these ideas.
Collapse
Affiliation(s)
- Yurina Sekine
- Materials Sciences Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
525
|
Xu XY, Yan B, Lian X. Wearable glove sensor for non-invasive organophosphorus pesticide detection based on a double-signal fluorescence strategy. NANOSCALE 2018; 10:13722-13729. [PMID: 29989624 DOI: 10.1039/c8nr03352h] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A wearable glove-based sensor has been developed for non-invasive organophosphorus pesticide (OP) monitoring via the fluorescent detection technology. The new "lab-on-a-glove" device integrates a flexible host material (CMC aerogel) and two fluorescent centers (EuMOFs for red and nanosized CDs for blue emissons). After characterizing the performance and stability of the sensor, qualitative and quantitative OP detections are successfully conducted on the surfaces of different agricultural products using swipe collection. The real-time detection system offers considerable advantages such as rapid response (30 s) due to the porous structures of CMC aerogel and MOFs, detection with the naked eye (the red to blue emission transition corresponds to an increase in the OP concentration) and high sensitivity (R2 = 0.99529, LOD = 89 nM) owing to the double-signal sensing strategy in which EuMOFs are the working fluorescence center and CDs are the reference fluorescence center. Compared with other OP detection methods, our strategy of using wearable device with the ratiometric fluorescence method leads to a convenient and reliable detection process for OP analysis. Also, considering its cost advantage, the glove-based sensor holds promise for practical applications in food safety and security.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China.
| | | | | |
Collapse
|
526
|
Parlak O, Keene ST, Marais A, Curto VF, Salleo A. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. SCIENCE ADVANCES 2018; 4:eaar2904. [PMID: 30035216 PMCID: PMC6054510 DOI: 10.1126/sciadv.aar2904] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 06/04/2018] [Indexed: 05/18/2023]
Abstract
Wearable biosensors have emerged as an alternative evolutionary development in the field of healthcare technology due to their potential to change conventional medical diagnostics and health monitoring. However, a number of critical technological challenges including selectivity, stability of (bio)recognition, efficient sample handling, invasiveness, and mechanical compliance to increase user comfort must still be overcome to successfully bring devices closer to commercial applications. We introduce the integration of an electrochemical transistor and a tailor-made synthetic and biomimetic polymeric membrane, which acts as a molecular memory layer facilitating the stable and selective molecular recognition of the human stress hormone cortisol. The sensor and a laser-patterned microcapillary channel array are integrated in a wearable sweat diagnostics platform, providing accurate sweat acquisition and precise sample delivery to the sensor interface. The integrated devices were successfully used with both ex situ methods using skin-like microfluidics and on human subjects with on-body real-sample analysis using a wearable sensor assembly.
Collapse
Affiliation(s)
- Onur Parlak
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Scott Tom Keene
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Andrew Marais
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| | - Vincenzo F. Curto
- Department of Bioelectronics, Ecole Nationale Supérieure des Mines, Centre Microélectronique de Provence–École nationale supérieure des mines de Saint-Étienne, Center Microelectronics De Provence Georges Charpak, 880 Avenue de Mimet, Gardanne 13541, France
| | - Alberto Salleo
- Department of Materials Science and Engineering, Stanford University, 450 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
527
|
Visser EWA, Yan J, van IJzendoorn LJ, Prins MWJ. Continuous biomarker monitoring by particle mobility sensing with single molecule resolution. Nat Commun 2018; 9:2541. [PMID: 29959314 PMCID: PMC6026194 DOI: 10.1038/s41467-018-04802-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
Healthcare is in demand of technologies for real-time sensing in order to continuously guard the state of patients. Here we present biomarker-monitoring based on the sensing of particle mobility, a concept wherein particles are coupled to a substrate via a flexible molecular tether, with both the particles and substrate provided with affinity molecules for effectuating specific and reversible interactions. Single-molecular binding and unbinding events modulate the Brownian particle motion and the state changes are recorded using optical scattering microscopy. The technology is demonstrated with DNA and protein as model biomarkers, in buffer and in blood plasma, showing sensitivity to picomolar and nanomolar concentrations. The sensing principle is direct and self-contained, without consuming or producing any reactants. With its basis in reversible interactions and single-molecule resolution, we envisage that the presented technology will enable biosensors for continuous biomarker monitoring with high sensitivity, specificity, and accuracy.
Collapse
Affiliation(s)
- Emiel W A Visser
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
| | - Junhong Yan
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
| | - Leo J van IJzendoorn
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands
| | - Menno W J Prins
- Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands.
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, Netherlands.
| |
Collapse
|
528
|
Economou A, Kokkinos C, Prodromidis M. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing. LAB ON A CHIP 2018; 18:1812-1830. [PMID: 29855637 DOI: 10.1039/c8lc00025e] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Flexible biosensors represent an increasingly important and rapidly developing field of research. Flexible materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. On the other hand, electrochemical detection is perfectly suited to flexible biosensing devices. The present paper reviews the field of integrated electrochemical bionsensors fabricated on flexible materials (plastic, paper and textiles) which are used as functional base substrates. The vast majority of electrochemical flexible lab-on-a-chip (LOC) biosensing devices are based on plastic supports in a single or layered configuration. Among these, wearable devices are perhaps the ones that most vividly demonstrate the utility of the concept of flexible biosensors while diagnostic cards represent the state-of-the art in terms of integration and functionality. Another important type of flexible biosensors utilize paper as a functional support material enabling the fabrication of low-cost and disposable paper-based devices operating on the lateral flow, drop-casting or folding (origami) principles. Finally, textile-based biosensors are beginning to emerge enabling real-time measurements in the working environment or in wound care applications. This review is timely due to the significant advances that have taken place over the last few years in the area of LOC biosensors and aims to direct the readers to emerging trends in this field.
Collapse
|
529
|
Sun J, Pu X, Liu M, Yu A, Du C, Zhai J, Hu W, Wang ZL. Self-Healable, Stretchable, Transparent Triboelectric Nanogenerators as Soft Power Sources. ACS NANO 2018; 12:6147-6155. [PMID: 29851468 DOI: 10.1021/acsnano.8b02479] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite the rapid advancements of soft electronics, developing compatible energy devices will be the next challenge for their viable applications. Here, we report an energy-harnessing triboelectric nanogenerator (TENG) as a soft electrical power source, which is simultaneously self-healable, stretchable, and transparent. The nanogenerator features a thin-film configuration with buckled Ag nanowires/poly(3,4-ethylenedioxythiophene) composite electrode sandwiched in room-temperature self-healable poly(dimethylsiloxane) (PDMS) elastomers. Dynamic imine bonds are introduced in PDMS networks for repairing mechanical damages (94% efficiency), while the mechanical recovery of the elastomer is imparted to the buckled electrode for electrical healing. By adjusting the buckling wavelength of the electrode, the stretchability and transparency of the soft TENG can be tuned. A TENG (∼50% stretchabitliy, ∼73% transmittance) can recover the electricity genearation (100% healing efficiency) even after accidental cutting. Finally, the conversion of biomechanical energies into electricity (∼100 V, 327 mW/m2) is demonstrated by a skin-like soft TENG. Considering all these merits, this work suggests a potentially promising approach for next-generation soft power sources.
Collapse
Affiliation(s)
- Jiangman Sun
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiong Pu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- Center on Nanoenergy Research, School of Physical Science and Technology , Guangxi University , Nanning 530004 , China
| | - Mengmeng Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Aifang Yu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- Center on Nanoenergy Research, School of Physical Science and Technology , Guangxi University , Nanning 530004 , China
| | - Chunhua Du
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Junyi Zhai
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- Center on Nanoenergy Research, School of Physical Science and Technology , Guangxi University , Nanning 530004 , China
| | - Weiguo Hu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- Center on Nanoenergy Research, School of Physical Science and Technology , Guangxi University , Nanning 530004 , China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems , Chinese Academy of Sciences , Beijing 100083 , China
- School of Nanoscience and Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
- Center on Nanoenergy Research, School of Physical Science and Technology , Guangxi University , Nanning 530004 , China
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332-0245 , United States
| |
Collapse
|
530
|
Li L, Pan L, Ma Z, Yan K, Cheng W, Shi Y, Yu G. All Inkjet-Printed Amperometric Multiplexed Biosensors Based on Nanostructured Conductive Hydrogel Electrodes. NANO LETTERS 2018; 18:3322-3327. [PMID: 29419302 DOI: 10.1021/acs.nanolett.8b00003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Multiplexing, one of the main trends in biosensors, aims to detect several analytes simultaneously by integrating miniature sensors on a chip. However, precisely depositing electrode materials and selective enzymes on distinct microelectrode arrays remains an obstacle to massively produced multiplexed sensors. Here, we report on a "drop-on-demand" inkjet printing process to fabricate multiplexed biosensors based on nanostructured conductive hydrogels in which the electrode material and several kinds of enzymes were printed on the electrode arrays one by one by employing a multinozzle inkjet system. The whole inkjet printing process can be finished within three rounds of printing and only one round of alignment. For a page of sensor arrays containing 96 working electrodes, the printing process took merely ∼5 min. The multiplexed assays can detect glucose, lactate, and triglycerides in real time with good selectivity and high sensitivity, and the results in phosphate buffer solutions and calibration serum samples are comparable. The inkjet printing process exhibited advantages of high efficiency and accuracy, which opens substantial possibilities for massive fabrication of integrated multiplexed biosensors for human health monitoring.
Collapse
Affiliation(s)
- Lanlan Li
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Lijia Pan
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Zhong Ma
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Ke Yan
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Wen Cheng
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Yi Shi
- School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
531
|
Kaur J, Jiang C, Liu G. Different strategies for detection of HbA1c emphasizing on biosensors and point-of-care analyzers. Biosens Bioelectron 2018; 123:85-100. [PMID: 29903690 DOI: 10.1016/j.bios.2018.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/23/2018] [Accepted: 06/06/2018] [Indexed: 12/21/2022]
Abstract
Measurement of glycosylated hemoglobin (HbA1c) is a gold standard procedure for assessing long term glycemic control in individuals with diabetes mellitus as it gives the stable and reliable value of blood glucose levels for a period of 90-120 days. HbA1c is formed by the non-enzymatic glycation of terminal valine of hemoglobin. The analysis of HbA1c tends to be complicated because there are more than 300 different assay methods for measuring HbA1c which leads to variations in reported values from same samples. Therefore, standardization of detection methods is recommended. The review outlines the current research activities on developing assays including biosensors for the detection of HbA1c. The pros and cons of different techniques for measuring HbA1c are outlined. The performance of current point-of-care HbA1c analyzers available on the market are also compared and discussed. The future perspectives for HbA1c detection and diabetes management are proposed.
Collapse
Affiliation(s)
- Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, Australia
| | - Cheng Jiang
- Nuffield Department of Clinical Neurosciences, Department of Chemistry, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia; Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052, Australia; International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
532
|
van Enter BJ, von Hauff E. Challenges and perspectives in continuous glucose monitoring. Chem Commun (Camb) 2018; 54:5032-5045. [PMID: 29687110 DOI: 10.1039/c8cc01678j] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetes is a global epidemic that threatens the health and well-being of hundreds of millions of people. The first step in patient treatment is to monitor glucose levels. Currently this is most commonly done using enzymatic strips. This approach suffers from several limitations, namely it requires a blood sample and is therefore invasive, the quality and the stability of the enzymatic strips vary widely, and the patient is burdened by performing the measurement themselves. This results in dangerous fluctuations in glucose levels often going undetected. There is currently intense research towards new approaches in glucose detection that would enable non-invasive continuous glucose monitoring (CGM). In this review, we explore the state-of-the-art in glucose detection technologies. In particular, we focus on the physical mechanisms behind different approaches, and how these influence and determine the accuracy and reliability of glucose detection. We begin by reviewing the basic physical and chemical properties of the glucose molecule. Although these play a central role in detection, especially the anomeric ratio, they are surprisingly often overlooked in the literature. We then review state-of-the art and emerging detection methods. Finally, we survey the current market for glucometers. Recent results show that past challenges in glucose detection are now being overcome, thereby enabling the development of smart wearable devices for non-invasive continuous glucose monitoring. These new directions in glucose detection have enormous potential to improve the quality of life of millions of diabetics, as well as offer insight into the development, treatment and even prevention of the disease.
Collapse
Affiliation(s)
- Benjamin Jasha van Enter
- Physics of Energy Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
533
|
Zhu Z, Guo SZ, Hirdler T, Eide C, Fan X, Tolar J, McAlpine MC. 3D Printed Functional and Biological Materials on Moving Freeform Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707495. [PMID: 29691902 PMCID: PMC6310159 DOI: 10.1002/adma.201707495] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Indexed: 05/23/2023]
Abstract
Conventional 3D printing technologies typically rely on open-loop, calibrate-then-print operation procedures. An alternative approach is adaptive 3D printing, which is a closed-loop method that combines real-time feedback control and direct ink writing of functional materials in order to fabricate devices on moving freeform surfaces. Here, it is demonstrated that the changes of states in the 3D printing workspace in terms of the geometries and motions of target surfaces can be perceived by an integrated robotic system aided by computer vision. A hybrid fabrication procedure combining 3D printing of electrical connects with automatic pick-and-placing of surface-mounted electronic components yields functional electronic devices on a free-moving human hand. Using this same approach, cell-laden hydrogels are also printed on live mice, creating a model for future studies of wound-healing diseases. This adaptive 3D printing method may lead to new forms of smart manufacturing technologies for directly printed wearable devices on the body and for advanced medical treatments.
Collapse
Affiliation(s)
- Zhijie Zhu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Shuang-Zhuang Guo
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tessa Hirdler
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cindy Eide
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xiaoxiao Fan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jakub Tolar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael C McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
534
|
Stretchable wireless system for sweat pH monitoring. Biosens Bioelectron 2018; 107:192-202. [DOI: 10.1016/j.bios.2018.02.025] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/26/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
|
535
|
Hoekstra R, Blondeau P, Andrade FJ. Distributed electrochemical sensors: recent advances and barriers to market adoption. Anal Bioanal Chem 2018; 410:4077-4089. [PMID: 29806065 DOI: 10.1007/s00216-018-1104-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023]
Abstract
Despite predictions of their widespread application in healthcare and environmental monitoring, electrochemical sensors are yet to be distributed at scale, instead remaining largely confined to R&D labs. This contrasts sharply with the situation for physical sensors, which are now ubiquitous and seamlessly embedded in the mature ecosystem provided by electronics and connectivity protocols. Although chemical sensors could be integrated into the same ecosystem, there are fundamental issues with these sensors in the three key areas of analytical performance, usability, and affordability. Nevertheless, advances are being made in each of these fields, leading to hope that the deployment of automated and user-friendly low-cost electrochemical sensors is on the horizon. Here, we present a brief survey of key challenges and advances in the development of distributed electrochemical sensors for liquid samples, geared towards applications in healthcare and wellbeing, environmental monitoring, and homeland security. As will be seen, in many cases the analytical performance of the sensor is acceptable; it is usability that is the major barrier to commercial viability at this moment. Were this to be overcome, the issue of affordability could be addressed. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Rafael Hoekstra
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, c/. Marcel·lí Domingo, 1, 43007, Tarragona, Spain
| | - Pascal Blondeau
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, c/. Marcel·lí Domingo, 1, 43007, Tarragona, Spain
| | - Francisco J Andrade
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Campus Sescelades, c/. Marcel·lí Domingo, 1, 43007, Tarragona, Spain.
| |
Collapse
|
536
|
Lee Y, Howe C, Mishra S, Lee DS, Mahmood M, Piper M, Kim Y, Tieu K, Byun HS, Coffey JP, Shayan M, Chun Y, Costanzo RM, Yeo WH. Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management. Proc Natl Acad Sci U S A 2018; 115:5377-5382. [PMID: 29735689 PMCID: PMC6003521 DOI: 10.1073/pnas.1719573115] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent wearable devices offer portable monitoring of biopotentials, heart rate, or physical activity, allowing for active management of human health and wellness. Such systems can be inserted in the oral cavity for measuring food intake in regard to controlling eating behavior, directly related to diseases such as hypertension, diabetes, and obesity. However, existing devices using plastic circuit boards and rigid sensors are not ideal for oral insertion. A user-comfortable system for the oral cavity requires an ultrathin, low-profile, and soft electronic platform along with miniaturized sensors. Here, we introduce a stretchable hybrid electronic system that has an exceptionally small form factor, enabling a long-range wireless monitoring of sodium intake. Computational study of flexible mechanics and soft materials provides fundamental aspects of key design factors for a tissue-friendly configuration, incorporating a stretchable circuit and sensor. Analytical calculation and experimental study enables reliable wireless circuitry that accommodates dynamic mechanical stress. Systematic in vitro modeling characterizes the functionality of a sodium sensor in the electronics. In vivo demonstration with human subjects captures the device feasibility for real-time quantification of sodium intake, which can be used to manage hypertension.
Collapse
Affiliation(s)
- Yongkuk Lee
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Connor Howe
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Saswat Mishra
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Dong Sup Lee
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Musa Mahmood
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Matthew Piper
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Youngbin Kim
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Katie Tieu
- Department of Mechanical and Nuclear Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Hun-Soo Byun
- Department of Chemical and Biomolecular Engineering, Chonnam National University, 59626 Jeonnam, South Korea
| | - James P Coffey
- Department of Prosthodontics, School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298
| | - Mahdis Shayan
- Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261
| | - Youngjae Chun
- Department of Industrial Engineering, University of Pittsburgh, Pittsburgh, PA 15261
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261
| | - Richard M Costanzo
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, College of Engineering, Georgia Institute of Technology, Atlanta, GA 30332;
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332
- Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
- Center for Flexible Electronics, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
537
|
Brown MS, Ashley B, Koh A. Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancements, and Future Prospects. Front Bioeng Biotechnol 2018; 6:47. [PMID: 29755977 PMCID: PMC5932176 DOI: 10.3389/fbioe.2018.00047] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic non-healing wounds challenge tissue regeneration and impair infection regulation for patients afflicted with this condition. Next generation wound care technology capable of in situ physiological surveillance which can diagnose wound parameters, treat various chronic wound symptoms, and reduce infection at the wound noninvasively with the use of a closed loop therapeutic system would provide patients with an improved standard of care and an accelerated wound repair mechanism. The indicating biomarkers specific to chronic wounds include blood pressure, temperature, oxygen, pH, lactate, glucose, interleukin-6 (IL-6), and infection status. A wound monitoring device would help decrease prolonged hospitalization, multiple doctors' visits, and the expensive lab testing associated with the diagnosis and treatment of chronic wounds. A device capable of monitoring the wound status and stimulating the healing process is highly desirable. In this review, we discuss the impaired physiological states of chronic wounds and explain the current treatment methods. Specifically, we focus on improvements in materials, platforms, fabrication methods for wearable devices, and quantitative analysis of various biomarkers vital to wound healing progress.
Collapse
Affiliation(s)
- Matthew S Brown
- Department of Biomedical Engineering, State University of New York at Binghamton University, Binghamton, NY, United States
| | - Brandon Ashley
- Department of Biomedical Engineering, State University of New York at Binghamton University, Binghamton, NY, United States
| | - Ahyeon Koh
- Department of Biomedical Engineering, State University of New York at Binghamton University, Binghamton, NY, United States
| |
Collapse
|
538
|
Tan EKW, Rughoobur G, Rubio-Lara J, Tiwale N, Xiao Z, Davidson CAB, Lowe CR, Occhipinti LG. Nanofabrication of Conductive Metallic Structures on Elastomeric Materials. Sci Rep 2018; 8:6607. [PMID: 29700337 PMCID: PMC5920093 DOI: 10.1038/s41598-018-24901-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/09/2018] [Indexed: 11/09/2022] Open
Abstract
Existing techniques for patterning metallic structures on elastomers are limited in terms of resolution, yield and scalability. The primary constraint is the incompatibility of their physical properties with conventional cleanroom techniques. We demonstrate a reliable fabrication strategy to transfer high resolution metallic structures of <500 nm in dimension on elastomers. The proposed method consists of producing a metallic pattern using conventional lithographic techniques on silicon coated with a thin sacrificial aluminium layer. Subsequent wet etching of the sacrificial layer releases the elastomer with the embedded metallic pattern. Using this method, a nano-resistor with minimum feature size of 400 nm is fabricated on polydimethylsiloxane (PDMS) and applied in gas sensing. Adsorption of solvents in the PDMS causes swelling and increases the device resistance, which therefore enables the detection of volatile organic compounds (VOCs). Sensitivity to chloroform and toluene vapor with a rapid response (~30 s) and recovery (~200 s) is demonstrated using this PDMS nano-resistor at room temperature.
Collapse
Affiliation(s)
- Edward K W Tan
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| | - Girish Rughoobur
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.,Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Juan Rubio-Lara
- Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Nikhil Tiwale
- Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Zhuocong Xiao
- Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Colin A B Davidson
- Institute of Biotechnology, University of Cambridge, Cambridge, CB2 1QT, UK
| | - Christopher R Lowe
- Institute of Biotechnology, University of Cambridge, Cambridge, CB2 1QT, UK
| | - Luigi G Occhipinti
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK.
| |
Collapse
|
539
|
Cao Z, Wang R, He T, Xu F, Sun J. Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14087-14096. [PMID: 29613767 DOI: 10.1021/acsami.7b19699] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As an important subfield of flexible electronics, conductive fibers have been an active area of research. The interfacial interaction between nanostructured conductive materials with elastic substrates plays a vital role in the electromechanical performance of conductive fibers. However, the underlying mechanism has seldom been investigated. Here, we propose a fabricating strategy for a silver nanowire (Ag NW)/polyurethane composite fiber with a sheath-core architecture. The interfacial bonding layer is regulated, and its influence on the performance of conductive fibers is investigated, based on which an interfacial interaction model is proposed. The model underlines the significance of the embedding depth of the Ag NW network. Both supersensitive (gauge factor up to 9557) and ultrastable (negligible conductance degradation below the strain of 150%) conductive fibers are obtained via interface regulating, exhibiting great potential in the applications of wearable sensors and stretchable conducting connections.
Collapse
Affiliation(s)
- Zherui Cao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , 1295 Ding Xi Road , Shanghai 200050 , P. R. China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , P. R. China
| | - Ranran Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , 1295 Ding Xi Road , Shanghai 200050 , P. R. China
| | - Tengyu He
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , 1295 Ding Xi Road , Shanghai 200050 , P. R. China
- University of Chinese Academy of Sciences , 19 Yuquan Road , Beijing 100049 , P. R. China
| | - Fangfang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , 1295 Ding Xi Road , Shanghai 200050 , P. R. China
| | - Jing Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , 1295 Ding Xi Road , Shanghai 200050 , P. R. China
| |
Collapse
|
540
|
A Printed Organic Circuit System for Wearable Amperometric Electrochemical Sensors. Sci Rep 2018; 8:6368. [PMID: 29686355 PMCID: PMC5913266 DOI: 10.1038/s41598-018-24744-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/04/2018] [Indexed: 11/08/2022] Open
Abstract
Wearable sensor device technologies, which enable continuous monitoring of biological information from the human body, are promising in the fields of sports, healthcare, and medical applications. Further thinness, light weight, flexibility and low-cost are significant requirements for making the devices attachable onto human tissues or clothes like a patch. Here we demonstrate a flexible and printed circuit system consisting of an enzyme-based amperometric sensor, feedback control and amplification circuits based on organic thin-film transistors. The feedback control and amplification circuits based on pseudo-CMOS inverters were successfuly integrated by printing methods on a plastic film. This simple system worked very well like a potentiostat for electrochemical measurements, and enabled the quantitative and real-time measurement of lactate concentration with high sensitivity of 1 V/mM and a short response time of a hundred seconds.
Collapse
|
541
|
Lee H, Hong YJ, Baik S, Hyeon T, Kim D. Enzyme-Based Glucose Sensor: From Invasive to Wearable Device. Adv Healthc Mater 2018; 7:e1701150. [PMID: 29334198 DOI: 10.1002/adhm.201701150] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/28/2017] [Indexed: 02/07/2023]
Abstract
Blood glucose concentration is a key indicator of patients' health, particularly for symptoms associated with diabetes mellitus. Because of the large number of diabetic patients, many approaches for glucose measurement have been studied to enable continuous and accurate glucose level monitoring. Among them, electrochemical analysis is prominent because it is simple and quantitative. This technology has been incorporated into commercialized and research-level devices from simple test strips to wearable devices and implantable systems. Although directly monitoring blood glucose assures accurate information, the invasive needle-pinching step to collect blood often results in patients (particularly young patients) being reluctant to adopt the process. An implantable glucose sensor may avoid the burden of repeated blood collections, but it is quite invasive and requires periodic replacement of the sensor owing to biofouling and its short lifetime. Therefore, noninvasive methods to estimate blood glucose levels from tears, saliva, interstitial fluid (ISF), and sweat are currently being studied. This review discusses the evolution of enzyme-based electrochemical glucose sensors, including materials, device structures, fabrication processes, and system engineering. Furthermore, invasive and noninvasive blood glucose monitoring methods using various biofluids or blood are described, highlighting the recent progress in the development of enzyme-based glucose sensors and their integrated systems.
Collapse
Affiliation(s)
- Hyunjae Lee
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| |
Collapse
|
542
|
Rawson TM, O’Hare D, Herrero P, Sharma S, Moore LSP, de Barra E, Roberts JA, Gordon AC, Hope W, Georgiou P, Cass AEG, Holmes AH. Delivering precision antimicrobial therapy through closed-loop control systems. J Antimicrob Chemother 2018; 73:835-843. [PMID: 29211877 PMCID: PMC5890674 DOI: 10.1093/jac/dkx458] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sub-optimal exposure to antimicrobial therapy is associated with poor patient outcomes and the development of antimicrobial resistance. Mechanisms for optimizing the concentration of a drug within the individual patient are under development. However, several barriers remain in realizing true individualization of therapy. These include problems with plasma drug sampling, availability of appropriate assays, and current mechanisms for dose adjustment. Biosensor technology offers a means of providing real-time monitoring of antimicrobials in a minimally invasive fashion. We report the potential for using microneedle biosensor technology as part of closed-loop control systems for the optimization of antimicrobial therapy in individual patients.
Collapse
Affiliation(s)
- T M Rawson
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - D O’Hare
- Department of Bioengineering, Imperial College London, London, UK
| | - P Herrero
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - S Sharma
- College of Engineering, Swansea University, Swansea, UK
| | - L S P Moore
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| | - E de Barra
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| | - J A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine and Centre for Translational Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia
- Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - A C Gordon
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London, UK
| | - W Hope
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - P Georgiou
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - A E G Cass
- Department of Chemistry & Institute of Biomedical Engineering, Imperial College London, Kensington Campus, London, UK
| | - A H Holmes
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| |
Collapse
|
543
|
Jiang D, Liu Z, Wu K, Mou L, Ovalle-Robles R, Inoue K, Zhang Y, Yuan N, Ding J, Qiu J, Huang Y, Liu Z. Fabrication of Stretchable Copper Coated Carbon Nanotube Conductor for Non-Enzymatic Glucose Detection Electrode with Low Detection Limit and Selectivity. Polymers (Basel) 2018; 10:E375. [PMID: 30966410 PMCID: PMC6415456 DOI: 10.3390/polym10040375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 11/17/2022] Open
Abstract
The increasing demand for wearable glucose sensing has stimulated growing interest in stretchable electrodes. The development of the electrode materials having large stretchability, low detection limit, and good selectivity is the key component for constructing high performance wearable glucose sensors. In this work, we presented fabrication of stretchable conductor based on the copper coated carbon nanotube sheath-core fiber, and its application as non-enzymatic electrode for glucose detection with high stretchability, low detection limit, and selectivity. The sheath-core fiber was fabricated by coating copper coated carbon nanotube on a pre-stretched rubber fiber core followed by release of pre-stretch, which had a hierarchically buckled structure. It showed a small resistance change as low as 27% as strain increasing from 0% to 500% strain, and a low resistance of 0.4 Ω·cm-1 at strain of 500%. This electrode showed linear glucose concentration detection in the range between 0.05 mM and 5 mM and good selectivity against sucrose, lactic acid, uric acid, acrylic acid in phosphate buffer saline solution, and showed stable signal in high salt concentration. The limit of detection (LOD) was 0.05 mM, for the range of 0.05⁻5 mM, the sensitivity is 46 mA·M-1. This electrode can withstand large strain of up to 60% with negligible influence on its performance.
Collapse
Affiliation(s)
- Dawei Jiang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Zhongsheng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Kunkun Wu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Linlin Mou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Raquel Ovalle-Robles
- Lintec of America, Nano-Science and Technology Center Richardson, Dallas, TX 75081, USA.
| | - Kanzan Inoue
- Lintec of America, Nano-Science and Technology Center Richardson, Dallas, TX 75081, USA.
| | - Yu Zhang
- Department of Building Engineering, Logistics University of PAPF, Tianjin 300309, China.
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Ningyi Yuan
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianning Ding
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianhua Qiu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Yi Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Zunfeng Liu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin 300071, China.
| |
Collapse
|
544
|
In-vitro model for assessing glucose diffusion through skin. Biosens Bioelectron 2018; 110:175-179. [PMID: 29609166 DOI: 10.1016/j.bios.2018.03.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/24/2018] [Accepted: 03/17/2018] [Indexed: 12/21/2022]
Abstract
Pig ear skin membrane-covered glucose biosensor based on oxygen electrode has been assessed as a tool to evaluate glucose penetration through skin in-vitro. For this, glucose oxidase (GOx) was immobilised on oxygen electrode and covered with the skin membrane. Exposing this electrode to the solution of glucose resulted in glucose penetration though skin membrane, its oxidation catalysed by GOx, consumption of O2 and decrease of the current of the oxygen electrode. By processing the biosensor responses to glucose, we found that glucose penetration through 250 µm thick skin membrane is slow; 90% of steady-state current response was reached in 32( ± 22) min. Apparent diffusion coefficient for glucose in skin was found to be equal to 0.15( ± 0.07)* 10-6 cm2 s-1. This value is 45 times lower than glucose diffusion coefficient in water. Tape-stripping of stratum corneum (SC) allows considerably faster glucose penetration. The electrodes covered with tape-stripped skin reached 90% of steady-state current response in 5.0(± 2.7) min. The theoretical estimate of glucose flux through SC was considered exploiting four-pathway theory of transdermal penetration. Theoretical flux values were more that three orders lower than measured experimentally. This high discrepancy might indicate that glucose penetration through healthy human skin could be even slower, allowing much lower flux, than it was found in our study for skin membranes from pig ears.
Collapse
|
545
|
Padmanathan N, Shao H, Razeeb KM. Multifunctional Nickel Phosphate Nano/Microflakes 3D Electrode for Electrochemical Energy Storage, Nonenzymatic Glucose, and Sweat pH Sensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8599-8610. [PMID: 29460624 DOI: 10.1021/acsami.7b17187] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multifunctional, low-cost electrodes and catalysts are desirable for next-generation electrochemical energy-storage and sensor applications. In this study, we demonstrate the fabrication of Ni3(PO4)2·8H2O nano/microflakes layer on nickel foam (NF) by a facile one-pot hydrothermal approach and investigate this electrode for multiple applications, including sweat-based glucose and pH sensor as well as hybrid energy-storage device, e.g., supercapattery. The electrode displays a specific capacity of 301.8 mAh g-1 (1552 F g-1) at an applied current of 5 mA cm-2 and can retain 84% of its initial capacity after 10 000 cycles. Furthermore, the supercapattery composed of Ni3(PO4)2·8H2O/NF as positive electrode and activated carbon as negative electrode can offer a high specific energy of 33.4 Wh kg-1 with the power of 165.5 W kg-1. As an electrocatalyst for nonenzymatic glucose sensor, Ni3(PO4)2·8H2O/NF shows an exceptional sensitivity (24.39 mA mM-1cm-2) with a low detection limit of 97 nM (S/N = 3). Moreover, as a sweat-based pH sensor, the electrode is capable of detecting human sweat pH values ranging from 4 to 7. Therefore, this three-dimensional nanoporous Ni3(PO4)2·8H2O/NF electrode, due to its excellent electrochemical performance, can be successfully applied in electrochemical energy-storage and biosensor applications.
Collapse
Affiliation(s)
- N Padmanathan
- Micro-Nano Systems Centre, Tyndall National Institute , University College Cork , Dyke Parade, Lee Maltings, Cork T12 R5CP , Ireland
| | - Han Shao
- Micro-Nano Systems Centre, Tyndall National Institute , University College Cork , Dyke Parade, Lee Maltings, Cork T12 R5CP , Ireland
- Department of Chemistry , University College Cork , Cork T12 YN60 , Ireland
| | - Kafil M Razeeb
- Micro-Nano Systems Centre, Tyndall National Institute , University College Cork , Dyke Parade, Lee Maltings, Cork T12 R5CP , Ireland
| |
Collapse
|
546
|
Shiwaku R, Matsui H, Nagamine K, Uematsu M, Mano T, Maruyama Y, Nomura A, Tsuchiya K, Hayasaka K, Takeda Y, Fukuda T, Kumaki D, Tokito S. A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors. Sci Rep 2018; 8:3922. [PMID: 29500398 PMCID: PMC5834464 DOI: 10.1038/s41598-018-22265-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/20/2018] [Indexed: 11/23/2022] Open
Abstract
Electrochemical sensor systems with integrated amplifier circuits play an important role in measuring physiological signals via in situ human perspiration analysis. Signal processing circuitry based on organic thin-film transistors (OTFTs) have significant potential in realizing wearable sensor devices due to their superior mechanical flexibility and biocompatibility. Here, we demonstrate a novel potentiometric electrochemical sensing system comprised of a potassium ion (K+) sensor and amplifier circuits employing OTFT-based pseudo-CMOS inverters, which have a highly controllable switching voltage and closed-loop gain. The ion concentration sensitivity of the fabricated K+ sensor was 34 mV/dec, which was amplified to 160 mV/dec (by a factor of 4.6) with high linearity. The developed system is expected to help further the realization of ultra-thin and flexible wearable sensor devices for healthcare applications.
Collapse
Affiliation(s)
- Rei Shiwaku
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Matsui
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Kuniaki Nagamine
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Mayu Uematsu
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Taisei Mano
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yuki Maruyama
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Ayako Nomura
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Kazuhiko Tsuchiya
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Kazuma Hayasaka
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yasunori Takeda
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Takashi Fukuda
- Functional Polymers Research Laboratory, Tosoh Corporation, 1-8 Kasumi, Yokkaichi, Mie, 510-8540, Japan
| | - Daisuke Kumaki
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
547
|
Zhong R, Tang Q, Wang S, Zhang H, Zhang F, Xiao M, Man T, Qu X, Li L, Zhang W, Pei H. Self-Assembly of Enzyme-Like Nanofibrous G-Molecular Hydrogel for Printed Flexible Electrochemical Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706887. [PMID: 29388269 DOI: 10.1002/adma.201706887] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Conducting hydrogels provide great potential for creating designer shape-morphing architectures for biomedical applications owing to their unique solid-liquid interface and ease of processability. Here, a novel nanofibrous hydrogel with significant enzyme-like activity that can be used as "ink" to print flexible electrochemical devices is developed. The nanofibrous hydrogel is self-assembled from guanosine (G) and KB(OH)4 with simultaneous incorporation of hemin into the G-quartet scaffold, giving rise to significant enzyme-like activity. The rapid switching between the sol and gel states responsive to shear stress enables free-form fabrication of different patterns. Furthermore, the replication of the G-quartet wires into a conductive matrix by in situ catalytic deposition of polyaniline on nanofibers is demonstrated, which can be directly printed into a flexible electrochemical electrode. By loading glucose oxidase into this novel hydrogel, a flexible glucose biosensor is developed. This study sheds new light on developing artificial enzymes with new functionalities and on fabrication of flexible bioelectronics.
Collapse
Affiliation(s)
- Ruibo Zhong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Qian Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Shaopeng Wang
- Division of Physical Biology and Bioimaging Center College of Life Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Science, Åbo Akademic University, FI-20520, Turku, Finland
| | - Feng Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Weijia Zhang
- Institutes of Biomedical Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| |
Collapse
|
548
|
Lee H, Song C, Baik S, Kim D, Hyeon T, Kim DH. Device-assisted transdermal drug delivery. Adv Drug Deliv Rev 2018; 127:35-45. [PMID: 28867296 DOI: 10.1016/j.addr.2017.08.009] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/19/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022]
Abstract
Transdermal drug delivery is a prospective drug delivery strategy to complement the limitations of conventional drug delivery systems including oral and injectable methods. This delivery route allows both convenient and painless drug delivery and a sustained release profile with reduced side effects. However, physiological barriers in the skin undermine the delivery efficiency of conventional patches, limiting drug candidates to small-molecules and lipophilic drugs. Recently, transdermal drug delivery technology has advanced from unsophisticated methods simply relying on natural diffusion to drug releasing systems that dynamically respond to external stimuli. Furthermore, physical barriers in the skin have been overcome using microneedles, and controlled delivery by wearable biosensors has been enabled ultimately. In this review, we classify the evolution of advanced drug delivery strategies based on generations and provide a comprehensive overview. Finally, the recent progress in advanced diagnosis and therapy through customized drug delivery systems based on real-time analysis of physiological cues is highlighted.
Collapse
Affiliation(s)
- Hyunjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Changyeong Song
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
549
|
Oh JH, Hong SY, Park H, Jin SW, Jeong YR, Oh SY, Yun J, Lee H, Kim JW, Ha JS. Fabrication of High-Sensitivity Skin-Attachable Temperature Sensors with Bioinspired Microstructured Adhesive. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7263-7270. [PMID: 29400434 DOI: 10.1021/acsami.7b17727] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, we demonstrate the fabrication of a highly sensitive flexible temperature sensor with a bioinspired octopus-mimicking adhesive. A resistor-type temperature sensor consisting of a composite of poly(N-isopropylacrylamide) (pNIPAM)-temperature sensitive hydrogel, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, and carbon nanotubes exhibits a very high thermal sensitivity of 2.6%·°C-1 between 25 and 40 °C so that the change in skin temperature of 0.5 °C can be accurately detected. At the same time, the polydimethylsiloxane adhesive layer of octopus-mimicking rim structure coated with pNIPAM is fabricated through the formation of a single mold by utilizing undercut phenomenon in photolithography. The fabricated sensor shows stable and reproducible detection of skin temperature under repeated attachment/detachment cycles onto skin without any skin irritation for a long time. This work suggests a high potential application of our skin-attachable temperature sensor to wearable devices for medical and health-care monitoring.
Collapse
Affiliation(s)
- Ju Hyun Oh
- Department of Chemical and Biological Engineering, Korea University , 5-1 Anam-dong, Seoul 13l-701, Korea
| | - Soo Yeong Hong
- Department of Chemical and Biological Engineering, Korea University , 5-1 Anam-dong, Seoul 13l-701, Korea
| | - Heun Park
- Department of Chemical and Biological Engineering, Korea University , 5-1 Anam-dong, Seoul 13l-701, Korea
| | - Sang Woo Jin
- KU-KIST Graduate School of Converging Science and Technology , 5-1 Anam-dong, Seoul 13l-701, Korea
| | - Yu Ra Jeong
- Department of Chemical and Biological Engineering, Korea University , 5-1 Anam-dong, Seoul 13l-701, Korea
| | - Seung Yun Oh
- KU-KIST Graduate School of Converging Science and Technology , 5-1 Anam-dong, Seoul 13l-701, Korea
| | - Junyeong Yun
- Department of Chemical and Biological Engineering, Korea University , 5-1 Anam-dong, Seoul 13l-701, Korea
| | - Hanchan Lee
- Department of Chemical and Biological Engineering, Korea University , 5-1 Anam-dong, Seoul 13l-701, Korea
| | - Jung Wook Kim
- Department of Chemical and Biological Engineering, Korea University , 5-1 Anam-dong, Seoul 13l-701, Korea
| | - Jeong Sook Ha
- Department of Chemical and Biological Engineering, Korea University , 5-1 Anam-dong, Seoul 13l-701, Korea
- KU-KIST Graduate School of Converging Science and Technology , 5-1 Anam-dong, Seoul 13l-701, Korea
| |
Collapse
|
550
|
Xuan X, Yoon HS, Park JY. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens Bioelectron 2018. [PMID: 29529511 DOI: 10.1016/j.bios.2018.02.054] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this study, a reduced graphene oxide (rGO)-based nanostructured composite working electrode of high quality was successfully microfabricated and micro-patterned on a flexible polyimide substrate using simple low-cost fabrication processes. Gold and platinum alloy nanoparticles were electrochemically deposited onto the microfabricated rGO surface and chitosan-glucose oxidase composites were integrated onto the modified surface of the working electrode to develop a human sweat-based wearable glucose sensor application. The fabricated biosensor exhibited excellent amperometric response to glucose at a detection range of 0-2.4 mM (covers the glucose range in sweat), with a sensitivity of 48 μA/mMcm2, a short response time (20 s), and high linearity (0.99). The detection limit for glucose was calculated as 5 µm. The human sweat/mixing glucose samples initially used for testing indicated acceptable detection performance and stability for low glucose concentrations. These results confirm that the proposed nanostructured composite flexible working electrode and fabrication process are highly promising for application as human sweat-based electrochemical glucose sensors.
Collapse
Affiliation(s)
- Xing Xuan
- Department of Electronic Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701, Republic of Korea
| | - Hyo S Yoon
- Department of Electronic Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701, Republic of Korea
| | - Jae Y Park
- Department of Electronic Engineering, Kwangwoon University, 447-1, Wolgye-dong, Nowon-gu, Seoul 139-701, Republic of Korea.
| |
Collapse
|