501
|
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 2013; 14:38-48. [PMID: 23258295 PMCID: PMC4416212 DOI: 10.1038/nrm3495] [Citation(s) in RCA: 407] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The heart hypertrophies in response to developmental signals as well as increased workload. Although adult-onset hypertrophy can ultimately lead to disease, cardiac hypertrophy is not necessarily maladaptive and can even be beneficial. Progress has been made in our understanding of the structural and molecular characteristics of physiological cardiac hypertrophy, as well as of the endocrine effectors and associated signalling pathways that regulate it. Physiological hypertrophy is initiated by finite signals, which include growth hormones (such as thyroid hormone, insulin, insulin-like growth factor 1 and vascular endothelial growth factor) and mechanical forces that converge on a limited number of intracellular signalling pathways (such as PI3K, AKT, AMP-activated protein kinase and mTOR) to affect gene transcription, protein translation and metabolism. Harnessing adaptive signalling mediators to reinvigorate the diseased heart could have important medical ramifications.
Collapse
Affiliation(s)
- Marjorie Maillet
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
502
|
O'Carroll D, Schaefer A. General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology 2013; 38:39-54. [PMID: 22669168 PMCID: PMC3521995 DOI: 10.1038/npp.2012.87] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/02/2012] [Accepted: 05/02/2012] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that mediate posttranscriptional gene suppression in a sequence-specific manner. The ability of a single miRNA species to target multiple messenger RNAs (mRNAs) makes miRNAs exceptionally important regulators of various cellular functions. The regulatory capacity of miRNAs is increased further by the miRNA ability to suppress gene expression using multiple mechanisms that range from translational inhibition to mRNA degradation. The high miRNA diversity multiplied by the large number of individual miRNA targets generates a vast regulatory RNA network than enables flexible control of mRNA expression. The gene-regulatory capacity and diversity of miRNAs is particularly valuable in the brain, where functional specialization of neurons and persistent flow of information requires constant neuronal adaptation to environmental cues. In this review we will summarize the current knowledge about miRNA biogenesis and miRNA expression regulation with a focus on the role of miRNAs in the mammalian nervous system.
Collapse
Affiliation(s)
- Dónal O'Carroll
- European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo Scalo, Italy
| | - Anne Schaefer
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
503
|
Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol 2013; 14:38-48. [PMID: 23258295 PMCID: PMC4416212 DOI: 10.1038/nrm3495, 10.1038/nrn3406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The heart hypertrophies in response to developmental signals as well as increased workload. Although adult-onset hypertrophy can ultimately lead to disease, cardiac hypertrophy is not necessarily maladaptive and can even be beneficial. Progress has been made in our understanding of the structural and molecular characteristics of physiological cardiac hypertrophy, as well as of the endocrine effectors and associated signalling pathways that regulate it. Physiological hypertrophy is initiated by finite signals, which include growth hormones (such as thyroid hormone, insulin, insulin-like growth factor 1 and vascular endothelial growth factor) and mechanical forces that converge on a limited number of intracellular signalling pathways (such as PI3K, AKT, AMP-activated protein kinase and mTOR) to affect gene transcription, protein translation and metabolism. Harnessing adaptive signalling mediators to reinvigorate the diseased heart could have important medical ramifications.
Collapse
Affiliation(s)
- Marjorie Maillet
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
504
|
Danielson LS, Park DS, Rotllan N, Chamorro-Jorganes A, Guijarro MV, Fernandez-Hernando C, Fishman GI, Phoon CKL, Hernando E. Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. FASEB J 2012; 27:1460-7. [PMID: 23271053 DOI: 10.1096/fj.12-221994] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
MicroRNA cluster miR-17-92 has been implicated in cardiovascular development and function, yet its precise mechanisms of action in these contexts are uncertain. This study aimed to investigate the role of miR-17-92 in morphogenesis and function of cardiac and smooth muscle tissues. To do so, a mouse model of conditional overexpression of miR-17-92 in cardiac and smooth muscle tissues was generated. Extensive cardiac functional studies identified a dose-dependent induction of dilated, hypertrophic cardiomyopathy, and arrhythmia inducibility in transgenic animals, which correlated with premature mortality (98.3 ± 42.5 d, P<0.0001). Expression analyses revealed the abundance of Pten transcript, a known miR-17-92 target, to be inversely correlated with miR-17-92 expression levels and heart size. In addition, we demonstrated through 3'-UTR luciferase assays and expression analyses that Connexin43 (Cx43) is a novel direct target of miR-19a/b and its expression is suppressed in transgenic hearts. Taken together, these data demonstrate that dysregulated expression of miR-17-92 during cardiovascular morphogenesis results in a lethal cardiomyopathy, possibly in part through direct repression of Pten and Cx43. This study highlights the importance of miR-17-92 in both normal and pathological functions of the heart, and provides a model that may serve as a useful platform to test novel antiarrhythmic therapeutics.
Collapse
Affiliation(s)
- Laura S Danielson
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
505
|
Oliveira-Carvalho V, da Silva MMF, Guimarães GV, Bacal F, Bocchi EA. MicroRNAs: new players in heart failure. Mol Biol Rep 2012; 40:2663-70. [PMID: 23242657 DOI: 10.1007/s11033-012-2352-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/09/2012] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are a class of non-coding small RNAs representing one of the most exciting areas of modern medical science. miRNAs modulate a large and complex regulatory network of gene expression of the majority of the protein-coding genes. Currently, evidences suggest that miRNAs play a crucial role in the pathogenesis of heart failure. Some miRNAs as miR-1, miR-133 and miR-208a are highly expressed in the heart and strongly associated with the development of cardiac hypertrophy. Recent data indicate that these miRNAs as well as miR-206 change their expression quickly in response to physical activity. The differential regulation of miRNAs in response to exercise suggests a potential value of circulating miRNAs (c-miRNAs) as biomarkers of physiological mediators of the cardiovascular adaptation induced by exercise. Likewise, serum levels of c-miRNAs such as miR-423-5p have been evaluated as potential biomarkers in the diagnosis and prognosis of heart failure. On the other hand, the manipulation of miRNAs levels using techniques such as 'miR mimics' and 'antagomiRs' is becoming evident the enormous potential of miRNAs as promising therapeutic strategies in heart failure.
Collapse
Affiliation(s)
- Vagner Oliveira-Carvalho
- Laboratório de Insuficiência Cardíaca e Transplante, Instituto do Coração, Hospital das Clínicas da Faculdade de Medicina da USP (InCor HC-FMUSP), São Paulo, 05403-900, Brazil.
| | | | | | | | | |
Collapse
|
506
|
Monaghan M, Greiser U, Wall JG, O’Brien T, Pandit A. Interference: an alteRNAtive therapy following acute myocardial infarction. Trends Pharmacol Sci 2012; 33:635-45. [DOI: 10.1016/j.tips.2012.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
|
507
|
Differential expression profile of MicroRNAs during differentiation of cardiomyocytes exposed to polychlorinated biphenyls. Int J Mol Sci 2012; 13:15955-66. [PMID: 23443104 PMCID: PMC3546672 DOI: 10.3390/ijms131215955] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 11/09/2012] [Accepted: 11/20/2012] [Indexed: 12/16/2022] Open
Abstract
Exposure to persistent environmental pollutants, such as polychlorinated biphenyls (PCBs), is a risk factor for the development of congenital heart defects. MicroRNAs (miRNAs) have been shown to be involved in cardiac development. The objective of this study was to investigate changes in miRNA expression profiles during the differentiation of cardiomyocytes exposed to PCBs. For that purpose, PCBs (Aroclor 1254) at a concentration of 2.5 μmol/L were added on day 0 of differentiation of P19 mouse embryonal carcinoma cells into cardiac myocytes. The relative expression of miRNA genes was determined by miRNA microarray and real-time reverse transcriptase polymerase chain reaction (real-time RT-PCR) analyses. The microarray results revealed that 45 miRNAs, of which 14 were upregulated and 31 were downregulated, were differentially expressed in P19 cells treated with PCBs compared with control cells. The miRNA expression data was validated with real-time RT-PCR. The expression of certain potential target genes (Wnt1) was found to be reduced in P19 cells treated with PCBs, whereas the expression of other potential predicted target genes (GSK3β) was increased. Our results demonstrate a critical role of miRNAs in mediating the effect of PCBs during the differentiation of P19 cells into cardiac myocytes.
Collapse
|
508
|
Osei-Amo S, Hussain M, O’Neill SL, Asgari S. Wolbachia-induced aae-miR-12 miRNA negatively regulates the expression of MCT1 and MCM6 genes in Wolbachia-infected mosquito cell line. PLoS One 2012; 7:e50049. [PMID: 23166816 PMCID: PMC3500346 DOI: 10.1371/journal.pone.0050049] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
Background Best recognized for its role in manipulating host reproduction, the parasitic gram-negative Wolbachia pipientis is known to colonize a wide range of invertebrates. The endosymbiotic bacterium has recently been shown to cause a life-shortening effect as well as inhibiting replication of arboviruses in Aades aegypti; although the molecular mechanisms behind these effects are largely unknown. MicroRNAs (miRNAs) have been determined to have a wide range of roles in regulating gene expression in eukaryotes. A recent study showed that several A. aegypti mosquito miRNAs are differentially expressed when infected with Wolbachia. Methodology/Principal Findings Based on the prior knowledge that one of these miRNAs, aae-miR-12, is differentially expressed in mosquitoes infected with Wolbachia, we aimed to determine any significance of this mediation. We also set out to characterize the target genes of this miRNA in the A. aegpyti genome. Bioinformatic approaches predicted a list of potential target genes and subsequent functional analyses confirmed that two of these, DNA replication licensing (MCM6) and monocarboxylate transporter (MCT1), are under the regulative control of aae-miR-12. We also demonstrated that aae-miR-12 is critical in the persistence of Wolbachia in the host cell. Conclusions/Significance Our study has identified two target genes of aae-miR-12, a differentially expressed mosquito miRNA in Wolbachia-infected cells, and determined that the miRNA affects Wolbachia density in the host cells.
Collapse
Affiliation(s)
- Solomon Osei-Amo
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mazhar Hussain
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Scott L. O’Neill
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
509
|
Stempor PA, Cauchi M, Wilson P. MMpred: functional miRNA--mRNA interaction analyses by miRNA expression prediction. BMC Genomics 2012; 13:620. [PMID: 23151045 PMCID: PMC3562514 DOI: 10.1186/1471-2164-13-620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 10/02/2012] [Indexed: 11/18/2022] Open
Abstract
Background MicroRNA (miRNA) directed gene repression is an important mechanism of posttranscriptional regulation. Comprehensive analyses of how microRNA influence biological processes requires paired miRNA-mRNA expression datasets. However, a review of both GEO and ArrayExpress repositories revealed few such datasets, which was in stark contrast to the large number of messenger RNA (mRNA) only datasets. It is of interest that numerous primary miRNAs (precursors of microRNA) are known to be co-expressed with coding genes (host genes). Results We developed a miRNA-mRNA interaction analyses pipeline. The proposed solution is based on two miRNA expression prediction methods – a scaling function and a linear model. Additionally, miRNA-mRNA anti-correlation analyses are used to determine the most probable miRNA gene targets (i.e. the differentially expressed genes under the influence of up- or down-regulated microRNA). Both the consistency and accuracy of the prediction method is ensured by the application of stringent statistical methods. Finally, the predicted targets are subjected to functional enrichment analyses including GO, KEGG and DO, to better understand the predicted interactions. Conclusions The MMpred pipeline requires only mRNA expression data as input and is independent of third party miRNA target prediction methods. The method passed extensive numerical validation based on the binding energy between the mature miRNA and 3’ UTR region of the target gene. We report that MMpred is capable of generating results similar to that obtained using paired datasets. For the reported test cases we generated consistent output and predicted biological relationships that will help formulate further testable hypotheses.
Collapse
|
510
|
Abstract
In 1993, lin-4 was discovered as a critical modulator of temporal development in Caenorhabditis elegans and, most notably, as the first in the class of small, single-stranded noncoding RNAs now defined as microRNAs (miRNAs). Another eight years elapsed before miRNA expression was detected in mammalian cells. Since then, explosive advancements in the field of miRNA biology have elucidated the basic mechanism of miRNA biogenesis, regulation, and gene-regulatory function. The discovery of this new class of small RNAs has augmented the complexity of gene-regulatory programs as well as the understanding of developmental and pathological processes in the cardiovascular system. Indeed, the contributions of miRNAs in cardiovascular development and function have been widely explored, revealing the extensive role of these small regulatory RNAs in cardiovascular physiology.
Collapse
Affiliation(s)
- Akiko Hata
- Cardiovascular Research Institute, University of California, San Francisco, California 94158, USA.
| |
Collapse
|
511
|
Oliveira-Carvalho V, Carvalho VO, Bocchi EA. The emerging role of miR-208a in the heart. DNA Cell Biol 2012; 32:8-12. [PMID: 23121236 DOI: 10.1089/dna.2012.1787] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of regulatory small RNAs that have fundamentally transformed our understanding of how gene networks are regulated representing one of the most exciting areas of the modern cardiology research. Among all known miRNAs, miR-208a is one of the most important heart-enriched miRNA playing a crucial role in the heart health and disease. miR-208a is a member of a miRNA family that also included miR-208b and is encoded by an intronic region of the Myh6 gene. Within the heart, miR-208a and miR-208b are involved in the regulation of the myosin heavy chain isoformswitch during development and in pathophysiological conditions. miR-208a is sufficient to induce arrhythmias, cardiac remodeling, and to regulate the expression of hypertrophy pathway components and the cardiac conduction system. Recently, the identification of miR-208a in the bloodstream has led to a great clinical interest to use this molecule as a potential noninvasive biomarker of myocardial injuries.
Collapse
Affiliation(s)
- Vagner Oliveira-Carvalho
- Laboratório de Insuficiência Cardíaca e Transplante do Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, Brasil.
| | | | | |
Collapse
|
512
|
Abstract
Even in the new millennium, arterial hypertension remains a serious condition, with considerable morbidity and mortality worldwide. Crucial in managing the disease is not only lowering arterial blood pressure but also preventing or treating the typical end-organ damage caused by long-lasting and inadequately treated hypertension. In the past decade, it has been shown that microRNAs (miRs) are involved in several hypertension-related pathologies, such as cardiac hypertrophy and fibrosis, hypertensive heart failure, renal fibrosis, kidney failure, and, to a lesser extent, eye disease and hemorrhagic stroke. Whereas others extensively reviewed the role of miRs in atherosclerosis and vascular disease, this review focuses on their role in target organ damage during arterial hypertension. We emphasize the involvement of miRs in pathological end-organ remodeling processes and try to demonstrate some common miR signatures in distinct end organs. Hence, we aimed to provide proof of arterial hypertension being a systemic disease, similar to diabetes mellitus or metabolic syndrome. Furthermore, miRs that act on one particular process in different end organs are interesting therapeutic targets. Some future perspectives in miR research are highlighted with respect to novel therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Ward A. Heggermont
- From the Center for Molecular and Vascular Research, University of Leuven, Leuven, Belgium (W.A.H.); Cardiovascular Research Institute, University of Maastricht, Maastricht, the Netherlands (S.H.)
| | - Stephane Heymans
- From the Center for Molecular and Vascular Research, University of Leuven, Leuven, Belgium (W.A.H.); Cardiovascular Research Institute, University of Maastricht, Maastricht, the Netherlands (S.H.)
| |
Collapse
|
513
|
Fan H, Zhang R, Tesfaye D, Tholen E, Looft C, Hölker M, Schellander K, Cinar MU. Sulforaphane causes a major epigenetic repression of myostatin in porcine satellite cells. Epigenetics 2012; 7:1379-90. [PMID: 23092945 DOI: 10.4161/epi.22609] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Satellite cells function as skeletal muscle stem cells to support postnatal muscle growth and regeneration following injury or disease. There is great promise for the improvement of muscle performance in livestock and for the therapy of muscle pathologies in humans by the targeting of myostatin (MSTN) in this cell population. Human diet contains many histone deacetylase (HDAC) inhibitors, such as the bioactive component sulforaphane (SFN), whose epigenetic effects on MSTN gene in satellite cells are unknown. Therefore, we aimed to investigate the epigenetic influences of SFN on the MSTN gene in satellite cells. The present work provides the first evidence, which is distinct from the effects of trichostatin A (TSA), that SFN supplementation in vitro not only acts as a HDAC inhibitor but also as a DNA methyltransferase (DNMT) inhibitor in porcine satellite cells. Compared with TSA and 5-aza-2'-deoxycytidine (5-aza-dC), SFN treatment significantly represses MSTN expression, accompanied by strongly attenuated expression of negative feedback inhibitors of the MSTN signaling pathway. miRNAs targeting MSTN are not implicated in posttranscriptional regulation of MSTN. Nevertheless, a weakly enriched myoblast determination (MyoD) protein associated with diminished histone acetylation in the MyoD binding site located in the MSTN promoter region may contribute to the transcriptional repression of MSTN by SFN. These findings reveal a new mode of epigenetic repression of MSTN by the bioactive compound SFN. This novel pharmacological, biological activity of SFN in satellite cells may thus allow for the development of novel approaches to weaken the MSTN signaling pathway, both for therapies of human skeletal muscle disorders and for livestock production improvement.
Collapse
Affiliation(s)
- Huitao Fan
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
514
|
Li C, Pei F, Zhu X, Duan DD, Zeng C. Circulating microRNAs as novel and sensitive biomarkers of acute myocardial Infarction. Clin Biochem 2012; 45:727-32. [PMID: 22713968 DOI: 10.1016/j.clinbiochem.2012.04.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 04/01/2012] [Accepted: 04/09/2012] [Indexed: 12/12/2022]
Abstract
Coronary artery disease and acute myocardial infarction (AMI) are the leading causes of death for both men and women. Serum cardiac-specific troponin level is now used for the "early" diagnosis of AMI. However, due to the "delayed" release of troponin, an earlier, more sensitive and specific biomarker is urgently demanded to further reduce AMI mortality. Recent studies have found that circulating microRNAs (miRNAs) are closely linked to myocardial injury. Due to the cell-specific physiological functions and the stability of miRNAs in plasma, serum, and urine, they are emerging as sensitive biomarkers of AMI. This review summarizes the latest insights into the identification and potential application of plasma and serum miRNAs as novel biomarkers for diagnosis and prognosis of AMI.
Collapse
Affiliation(s)
- Chuanwei Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China
| | | | | | | | | |
Collapse
|
515
|
MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 2012; 11:860-72. [PMID: 23080337 DOI: 10.1038/nrd3864] [Citation(s) in RCA: 501] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, prominent roles for microRNAs (miRNAs) have been uncovered in several cardiovascular disorders. The ability to therapeutically manipulate miRNA expression and function through systemic or local delivery of miRNA inhibitors, referred to as antimiRs, has triggered enthusiasm for miRNAs as novel therapeutic targets. Here, we focus on the pharmacokinetic and pharmacodynamic properties of current antimiR designs and their relevance to cardiovascular indications, and evaluate the opportunities and obstacles associated with this new therapeutic modality.
Collapse
|
516
|
Role of microRNAs in cardiac remodelling: new insights and future perspectives. Int J Cardiol 2012; 167:1651-9. [PMID: 23063140 DOI: 10.1016/j.ijcard.2012.09.120] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 09/20/2012] [Accepted: 09/22/2012] [Indexed: 01/08/2023]
Abstract
Cardiac remodelling is a key process in the progression of cardiovascular disease, implemented in myocardial infarction, valvular heart disease, myocarditis, dilated cardiomyopathy, atrial fibrillation and heart failure. Fibroblasts, extracellular matrix proteins, coronary vasculature, cardiac myocytes and ionic channels are all involved in this remodelling process. MicroRNAs (miRNAs) represent a sizable sub-group of small non-coding RNAs, which degrade or inhibit the translation of their target mRNAs, thus regulating gene expression and play an important role in a wide range of biologic processes. Recent studies have reported that miRNAs are aberrantly expressed in the cardiovascular system under some pathological conditions. Indeed, in vitro and in vivo models have revealed that miRNAs are essential for cardiac development and remodelling. Clinically, there is increasing evidence of the potential diagnostic role of miRNAs as potential diagnostic biomarkers and they may represent a novel therapeutic target in several cardiovascular disorders. This paper provides an overview of the impact of several miRNAs in electrical and structural remodelling of the cardiac tissue, and the diagnostic and therapeutic potential of miRNA in cardiovascular disease.
Collapse
|
517
|
Wang C, Wang S, Zhao P, Wang X, Wang J, Wang Y, Song L, Zou Y, Hui R. MiR-221 promotes cardiac hypertrophy in vitro through the modulation of p27 expression. J Cell Biochem 2012; 113:2040-6. [PMID: 22275134 DOI: 10.1002/jcb.24075] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiac hypertrophy has been known as an independent predictor for cardiovascular morbidity and mortality. Molecular mechanisms underlying the development of heart failure remain elusive. Recently, microRNAs (miRs) have been established as important regulators in cardiac hypertrophy. Here, we reported miR-221 was up-regulated in both transverse aortic constricted mice and patients with hypertrophic cardiomyopathy (HCM). Forced expression of miR-221 by transfection of miR-221 mimics increased myocyte cell size and induced the re-expression of fetal genes, which were inhibited by the knockdown of endogenous miR-221 in cardiomyocytes. The TargetScan algorithm-based prediction identified that p27, a cardiac hypertrophic suppressor, is the putative target of miR-221, which was confirmed by luciferase assay and Western blotting. In conclusion, our results demonstrated that miR-221 regulated cardiomyocyte hypertrophy probably through down-regulation of p27, suggesting that miR-221 may be a new intervention target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Changxin Wang
- Sino-German Laboratory for Molecular Medicine, State Key Laboratory of Translational Cardiovascular Medicine, Fuwai Hospital & Cardiovascular Institute, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
518
|
Heavy and light roles: myosin in the morphogenesis of the heart. Cell Mol Life Sci 2012; 70:1221-39. [PMID: 22955375 PMCID: PMC3602621 DOI: 10.1007/s00018-012-1131-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 01/10/2023]
Abstract
Myosin is an essential component of cardiac muscle, from the onset of cardiogenesis through to the adult heart. Although traditionally known for its role in energy transduction and force development, recent studies suggest that both myosin heavy-chain and myosin light-chain proteins are required for a correctly formed heart. Myosins are structural proteins that are not only expressed from early stages of heart development, but when mutated in humans they may give rise to congenital heart defects. This review will discuss the roles of myosin, specifically with regards to the developing heart. The expression of each myosin protein will be described, and the effects that altering expression has on the heart in embryogenesis in different animal models will be discussed. The human molecular genetics of the myosins will also be reviewed.
Collapse
|
519
|
Shyu KG, Wang BW, Wu GJ, Lin CM, Chang H. Mechanical stretch via transforming growth factor-β1 activates microRNA208a to regulate endoglin expression in cultured rat cardiac myoblasts. Eur J Heart Fail 2012; 15:36-45. [PMID: 22941949 DOI: 10.1093/eurjhf/hfs143] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AIMS MicroRNAs (miRNAs) play a role in cardiac remodelling. MiR208a is essential for the expression of the genes involved in cardiac hypertrophy and fibrosis. The mechanism of regulation of miR208a involved in cardiac hypertrophy by mechanical stress is still unclear. We sought to investigate the mechanism of regulation of miR208a and the target gene of miR208a in cardiac cells by mechanical stretch. METHODS AND RESULTS Rat H9c2 cells (cardiac myoblasts) grown on a flexible membrane base were stretched via vacuum to 20% of maximum elongation at 60 cycles/min. Mechanical stretch significantly enhanced miR208a expression after 4 h of stretch. Exogenous addition of transforming growth factor-β1 (TGF-β1) increased miR208a expression, and pre-treatment with TGF-β1 antibody attenuated the miR208a expression induced by stretch. Mechanical stretch significantly increased endoglin and collagen I expression for 6-24 h. Exogenous addition of TGF-β1 and overexpression of miR208a up-regulated endoglin and collagen I expression, while antagomir208a and Smad3/4 inhibitor attenuated endoglin and collagen I expression induced by stretch. Mechanical stretch and TGF-β1 increased Smad3/4-DNA binding activity and miR208a promoter activity, and TGF-β1 antibody and Smad3/4 inhibitor decreased the Smad3/4-DNA binding activity and miR208a promoter activity induced by stretch. CONCLUSION Cyclic mechanical stretch enhances miR208a expression in cultured rat cardiac myoblasts. The stretch-induced miR208a is mediated by TGF-β1. Mir208a activates endoglin expression and may result in cardiac fibrosis.
Collapse
Affiliation(s)
- Kou-Gi Shyu
- Division of Cardiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
520
|
Wang J, Yang X. The function of miRNA in cardiac hypertrophy. Cell Mol Life Sci 2012; 69:3561-70. [PMID: 22926414 PMCID: PMC3474911 DOI: 10.1007/s00018-012-1126-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 12/22/2022]
Abstract
Cardiac hypertrophy is an adaptive enlargement of the myocardium in response to altered stress or injury. The cellular responses of cardiomyocytes and non-cardiomyocytes to various signaling pathways should be tightly and delicately regulated to maintain cardiac homeostasis and prevent pathological cardiac hypertrophy. MicroRNAs (miRNAs) are endogenous, single-stranded, short non-coding RNAs that act as regulators of gene expression by promoting the degradation or inhibiting the translation of target mRNAs. Recent studies have revealed expression signatures of miRNAs associated with pathological cardiac hypertrophy and heart failure in humans and mouse models of heart diseases. Increasing evidence indicates that dysregulation of specific miRNAs could alter the cellular responses of cardiomyocytes and non-cardiomyocytes to specific signaling upon the pathological hemodynamic overload, leading to cardiac hypertrophy and heart failure. This review summarizes the cell-autonomous functions of cardiomyocyte miRNAs regulated by different pathways and the roles of non-cardiomyocyte miRNAs in cardiac hypertrophy. The therapeutic effects of a number of miRNAs in heart diseases are also discussed.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, 20 Dongdajie, 100071 Beijing, China
| | | |
Collapse
|
521
|
Abstract
PURPOSE OF REVIEW We will review the role of microRNAs (miRNAs), small noncoding RNAs with regulatory function, in myocardial infarction (MI). Specifically, we will examine the effect of MI on miRNAs' expression in the heart, the effect of MI on circulating miRNAs, which miRNAs' overexpression or downmodulation appears to have a therapeutic role in MI and which cardiac miRNAs are modulated by drugs/experimental molecules/cell transplantation strategies which have an established or potential therapeutic role in MI. RECENT FINDINGS A rapidly increasing number of studies are showing that cardiac and circulating miRNAs are markedly altered in MI. These novel findings shed new light on the mechanisms that lead to MI complications, post-MI ventricular remodeling and cardiac repair. Further, recent studies show that circulating miRNAs may represent novel and sensitive biomarkers of MI and, possibly, also an intercellular signaling mechanism. Overexpression and downregulation of specific miRNAs are being evaluated as a novel approach to the treatment of MI. Finally, it appears that some established and potential MI therapies (approved drugs/experimental molecules/cell therapy interventions) may act, at least in part, via modulation of specific miRNAs. SUMMARY Although miRNAs' role in MI is still largely uncharacterized, recent studies suggest that miRNAs may represent novel therapeutic targets and MI biomarkers.
Collapse
|
522
|
Cheng Y, Wang X, Yang J, Duan X, Yao Y, Shi X, Chen Z, Fan Z, Liu X, Qin S, Tang X, Zhang C. A translational study of urine miRNAs in acute myocardial infarction. J Mol Cell Cardiol 2012; 53:668-76. [PMID: 22921780 DOI: 10.1016/j.yjmcc.2012.08.010] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/19/2012] [Accepted: 08/08/2012] [Indexed: 01/01/2023]
Abstract
The currently used biomarkers for acute myocardial infarction (AMI) are blood creatinine phosphokinase-muscle band (CPK-MB), troponin-T (TnT), and troponin I (TnI). However, no good biomarkers are identified in urine after AMI, because these blood protein biomarkers are difficult to be filtered into urine. In this study, the role of urine microRNAs in the diagnosis of AMI and the mechanism involved were determined. We found that urine miR-1 was quickly increased in rats after AMI with peak at 24h after AMI, in which an over 50-fold increase was demonstrated. At 7 days after AMI, the urine miR-1 level was returned to the basal level. No miR-208 was found in normal urine. In urine from rats with AMI, miR-208 was easily detected. To determine the mechanism involved, we determined the levels of heart-released miR-1 in the liver, spleen and kidney after AMI in rats and found that the kidney was an important metabolic organ. To determine the renal elimination of blood miRNAs, we isolated serum exosomes from rats after AMI and injected these exosomes into the circulating blood of normal rats. We found that the urine miR-1 was significantly increased in exosome-injected animals. Moreover, PKH67-labeled exosomes injected into circulating blood could enter into the kidney tissues and cells, as well as urine. Furthermore, the levels of urine miR-1 were significantly increased in patients with AMI. The results suggest that urine miRNAs such as miR-1 could be novel urine biomarkers for AMI.
Collapse
Affiliation(s)
- Yunhui Cheng
- Rush University Cardiovascular Research Center and Department of Pharmacology, Rush Medical College, Rush University, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
523
|
Riley G, Syeda F, Kirchhof P, Fabritz L. An introduction to murine models of atrial fibrillation. Front Physiol 2012; 3:296. [PMID: 22934047 PMCID: PMC3429067 DOI: 10.3389/fphys.2012.00296] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 07/08/2012] [Indexed: 01/28/2023] Open
Abstract
Understanding the mechanism of re-entrant arrhythmias in the past 30 years has allowed the development of almost curative therapies for many rhythm disturbances. The complex, polymorphic arrhythmias of atrial fibrillation (AF) and sudden death are, unfortunately, not yet well understood, and hence still in need of adequate therapy. AF contributes markedly to morbidity and mortality in aging Western populations. In the past decade, many genetically altered murine models have been described and characterized. Here, we review genetically altered murine models of AF; powerful tools that will enable a better understanding of the mechanisms of AF and the assessment of novel therapeutic interventions.
Collapse
Affiliation(s)
- Genna Riley
- Centre for Cardiovascular Sciences, School of Clinical and Experimental Medicine, University of Birmingham Birmingham, UK
| | | | | | | |
Collapse
|
524
|
Chen YF, Pottala JV, Weltman NY, Ge X, Savinova OV, Gerdes AM. Regulation of gene expression with thyroid hormone in rats with myocardial infarction. PLoS One 2012; 7:e40161. [PMID: 22870193 PMCID: PMC3411604 DOI: 10.1371/journal.pone.0040161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/01/2012] [Indexed: 11/19/2022] Open
Abstract
Introduction The expression of hundreds of genes is altered in response to left ventricular (LV) remodeling following large transmural myocardial infarction (MI). Thyroid hormone (TH) improves LV remodeling and cardiac performance after MI. However, the molecular basis is unknown. Methods MI was produced by ligation of the left anterior descending coronary artery in female SD rats. Rats were divided into the following groups: (1) Sham MI, (2) MI, and (3) MI+T4 treatment (T4 pellet 3.3 mg, 60 days release, implanted subcutaneously immediately following MI). Four weeks after surgery, total RNA was isolated from LV non-infarcted areas for microarray analysis using the Illumina RatRef-12 Expression BeadChip Platform. Results Signals were detected in 13,188 genes (out of 22,523), of which the expression of 154 genes were decreased and the expression of 200 genes were increased in MI rats compared with Sham MI rats (false discovery rate (FDR) <0.05). Compared to MI rats, T4 treatment decreased expression of 27 genes and increased expression of 28 genes. In particular, 6 genes down-regulated by MI and 12 genes up-regulated by MI were reversed by T4. Most of the 55 genes altered by T4 treatment are in the category of molecular function under binding (24) and biological processes which includes immune system process (9), multi-organism process (5) and biological regulation (19) nonexclusively. Conclusions These results suggest that altered expression of genes for molecular function and biological process may be involved in the beneficial effects of thyroid hormone treatment following MI in rats.
Collapse
Affiliation(s)
- Yue-Feng Chen
- Department of Biomedical Sciences, New York College of Osteopathic Medicine of New York Institute of Technology, Old Westbury, New York, United States of America.
| | | | | | | | | | | |
Collapse
|
525
|
Posttranscriptional regulation of connexin-43 expression. Arch Biochem Biophys 2012; 524:23-9. [DOI: 10.1016/j.abb.2012.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/10/2012] [Accepted: 03/12/2012] [Indexed: 12/26/2022]
|
526
|
Vacchi-Suzzi C, Bauer Y, Berridge BR, Bongiovanni S, Gerrish K, Hamadeh HK, Letzkus M, Lyon J, Moggs J, Paules RS, Pognan F, Staedtler F, Vidgeon-Hart MP, Grenet O, Couttet P. Perturbation of microRNAs in rat heart during chronic doxorubicin treatment. PLoS One 2012; 7:e40395. [PMID: 22859947 PMCID: PMC3409211 DOI: 10.1371/journal.pone.0040395] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/06/2012] [Indexed: 11/19/2022] Open
Abstract
Anti-cancer therapy based on anthracyclines (DNA intercalating Topoisomerase II inhibitors) is limited by adverse effects of these compounds on the cardiovascular system, ultimately causing heart failure. Despite extensive investigations into the effects of doxorubicin on the cardiovascular system, the molecular mechanisms of toxicity remain largely unknown. MicroRNAs are endogenously transcribed non-coding 22 nucleotide long RNAs that regulate gene expression by decreasing mRNA stability and translation and play key roles in cardiac physiology and pathologies. Increasing doses of doxorubicin, but not etoposide (a Topoisomerase II inhibitor devoid of cardiovascular toxicity), specifically induced the up-regulation of miR-208b, miR-216b, miR-215, miR-34c and miR-367 in rat hearts. Furthermore, the lowest dosing regime (1 mg/kg/week for 2 weeks) led to a detectable increase of miR-216b in the absence of histopathological findings or alteration of classical cardiac stress biomarkers. In silico microRNA target predictions suggested that a number of doxorubicin-responsive microRNAs may regulate mRNAs involved in cardiac tissue remodeling. In particular miR-34c was able to mediate the DOX-induced changes of Sipa1 mRNA (a mitogen-induced Rap/Ran GTPase activating protein) at the post-transcriptional level and in a seed sequence dependent manner. Our results show that integrated heart tissue microRNA and mRNA profiling can provide valuable early genomic biomarkers of drug-induced cardiac injury as well as novel mechanistic insight into the underlying molecular pathways.
Collapse
Affiliation(s)
- Caterina Vacchi-Suzzi
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Yasmina Bauer
- Translational Science Biology, Actelion Pharmaceuticals Ltd, Allschwil, Switzerland
| | - Brian R. Berridge
- Safety Assessment, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Sandrine Bongiovanni
- Biomarker Development, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Kevin Gerrish
- National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Hisham K. Hamadeh
- Comparative Biology and Safety Sciences, Amgen Inc., Thousand Oaks, California, United States of America
| | - Martin Letzkus
- Biomarker Development, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Jonathan Lyon
- Investigative Preclinical Toxicology, GlaxoSmithKline, Ware, United Kingdom
| | - Jonathan Moggs
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Richard S. Paules
- National Institute of Environmental Health Science, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - François Pognan
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Frank Staedtler
- Biomarker Development, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | | | - Olivier Grenet
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Philippe Couttet
- Discovery and Investigative Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| |
Collapse
|
527
|
Abstract
The cardiac conduction system is a specialized tract of myocardial cells responsible for maintaining normal cardiac rhythm. Given its critical role in coordinating cardiac performance, a detailed analysis of the molecular mechanisms underlying conduction system formation should inform our understanding of arrhythmia pathophysiology and affect the development of novel therapeutic strategies. Historically, the ability to distinguish cells of the conduction system from neighboring working myocytes presented a major technical challenge for performing comprehensive mechanistic studies. Early lineage tracing experiments suggested that conduction cells derive from cardiomyocyte precursors, and these claims have been substantiated by using more contemporary approaches. However, regional specialization of conduction cells adds an additional layer of complexity to this system, and it appears that different components of the conduction system utilize unique modes of developmental formation. The identification of numerous transcription factors and their downstream target genes involved in regional differentiation of the conduction system has provided insight into how lineage commitment is achieved. Furthermore, by adopting cutting-edge genetic techniques in combination with sophisticated phenotyping capabilities, investigators have made substantial progress in delineating the regulatory networks that orchestrate conduction system formation and their role in cardiac rhythm and physiology. This review describes the connectivity of these gene regulatory networks in cardiac conduction system development and discusses how they provide a foundation for understanding normal and pathological human cardiac rhythms.
Collapse
Affiliation(s)
- Nikhil V Munshi
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
| |
Collapse
|
528
|
Li J, Umar S, Amjedi M, Iorga A, Sharma S, Nadadur RD, Regitz-Zagrosek V, Eghbali M. New frontiers in heart hypertrophy during pregnancy. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2012; 2:192-207. [PMID: 22937489 PMCID: PMC3427979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/12/2012] [Indexed: 06/01/2023]
Abstract
During Pregnancy, heart develops physiological left ventricular hypertrophy as a result of the natural volume overload. Previously we have characterized the molecular and functional signature of heart hypertrophy during pregnancy. Cardiac hypertrophy during pregnancy is a complex process that involves many changes including in the signalling pathways, composition of extracellular matrix as well as the levels of sex hormones. This review summarises the recent advances and the new frontiers in the context of heart hypertrophy during pregnancy. In particular we focus on structural and extracellular matrix remodelling as well as signalling pathways in pregnancy-induced physiological heart hypertrophy. Emerging evidence shows that various microRNAs modulate key components of hypertrophy, therefore the role of microRNAs in the regulation of gene expression in pregnancy induced hypertrophy is also discussed. We also review the role of ubiquitin proteasome system, the major machinery for the degradation of damaged and misfolded proteins, in heart hypertrophy. The role of sex hormones in particular estrogen in cardiac remodeling during pregnancy is also discussed. We also review pregnancy-induced cardiovascular complications such as peripartum cardiomyopathy and pre-eclampsia and how the knowledge from the animal studies may help us to develop new therapeutic strategies for better treatment of cardiovascular diseases during pregnancy. Special emphasis has to be given to the guidelines on disease management in pregnancy.
Collapse
Affiliation(s)
- Jingyuan Li
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Soban Umar
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Marjan Amjedi
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Andrea Iorga
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Salil Sharma
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Rangarajan D Nadadur
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charite University HospitalBerlin, Germany
| | - Mansoureh Eghbali
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| |
Collapse
|
529
|
Micro-RNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS One 2012; 7:e41574. [PMID: 22844503 PMCID: PMC3402395 DOI: 10.1371/journal.pone.0041574] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/27/2012] [Indexed: 02/07/2023] Open
Abstract
Background Recently, MicroRNAs (miR) and AMP-kinase (AMPK) have emerged as prominent players in the development of cardiac hypertrophy and heart failure. We hypothesized that components of the adenosine monophosphate-activated kinase (AMPK) pathway are targeted by miRs and alter AMPK signaling during pathological cardiac stress. Methodology/Principal Findings Using a mouse model of hypertrophic cardiomyopathy (HCM), we demonstrated early elevation of miR-195 and miR-451 in HCM hearts, which targets MO25, a central component of the MO25/STRAD/LKB1 complex that acts as an upstream kinase for AMPK. We show functional targeting of MO25 by miR-195 and -451. Further in vitro interrogation of MO25 as a functional target validated this hypothesis where over-expression of miR-195 in C2C12 cells knocked down MO25 expression levels and downstream AMPK signaling (phosphorylation of Acetyl CoA carboxylase [ACC] and AMPK activity assay), similar to MO25 knockdown in C2C12 cells by siRNA. Parallel changes were measured in 60 day R403Q HCM male hearts that were rescued by short-term administration of AICAR, an AMPK agonist. Conclusions/Significance Elevated miR-195 targets the LKB1/AMPK signaling axis in HCM progression and implicates a functional role in HCM disease progression. MiR-195 may serve as potential therapeutics or therapeutic targets for heart disease.
Collapse
|
530
|
Grueter CE, van Rooij E, Johnson BA, DeLeon SM, Sutherland LB, Qi X, Gautron L, Elmquist JK, Bassel-Duby R, Olson EN. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell 2012; 149:671-83. [PMID: 22541436 DOI: 10.1016/j.cell.2012.03.029] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/06/2012] [Accepted: 03/19/2012] [Indexed: 12/31/2022]
Abstract
Obesity, type 2 diabetes, and heart failure are associated with aberrant cardiac metabolism. We show that the heart regulates systemic energy homeostasis via MED13, a subunit of the Mediator complex, which controls transcription by thyroid hormone and other nuclear hormone receptors. MED13, in turn, is negatively regulated by a heart-specific microRNA, miR-208a. Cardiac-specific overexpression of MED13 or pharmacologic inhibition of miR-208a in mice confers resistance to high-fat diet-induced obesity and improves systemic insulin sensitivity and glucose tolerance. Conversely, genetic deletion of MED13 specifically in cardiomyocytes enhances obesity in response to high-fat diet and exacerbates metabolic syndrome. The metabolic actions of MED13 result from increased energy expenditure and regulation of numerous genes involved in energy balance in the heart. These findings reveal a role of the heart in systemic metabolic control and point to MED13 and miR-208a as potential therapeutic targets for metabolic disorders.
Collapse
Affiliation(s)
- Chad E Grueter
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
531
|
Hua Y, Zhang Y, Ren J. IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction: role of microRNA-1 and microRNA-133a. J Cell Mol Med 2012; 16:83-95. [PMID: 21418519 PMCID: PMC3823095 DOI: 10.1111/j.1582-4934.2011.01307.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study was designed to examine the impact of insulin-like growth factor-1 (IGF-1) deficiency on abdominal aortic constriction (AAC)-induced cardiac geometric and functional changes with a focus on microRNA-1, 133a and 208, which are specially expressed in hearts and govern cardiac hypertrophy and stress-dependent cardiac growth. Liver-specific IGF-1-deficient (LID) and C57/BL6 mice were subject to AAC. Echocardiographic and cardiomyocyte function were assessed 4 wks later. Haematoxylin and eosin staining was used to monitor myocardial morphology. Western blot and real-time PCR were used to detect protein and miR expression, respectively. Neonatal rat cardiomyocytes (NRCMs) were transfected with miRs prior to IGF-1 exposure to initiate cell proliferation. Immunohistochemistry and [3H] Leucine incorporation were used to detect cell surface area and protein abundance. C57 mice subject to AAC displayed increased ventricular wall thickness, decreased left ventricular end diastolic and end systolic dimensions and elevated cardiomyocyte shortening capacity, all of which were attenuated in LID mice. In addition, IGF-1 deficiency mitigated AAC-induced increase in atrial natriuretic factor, GATA binding protein 4, glucose transporter 4 (GLUT4) and Akt phosphorylation. In contrast, neither AAC treatment nor IGF-1 deficiency affected glycogen synthase kinase 3b, mammalian target of rapamycin, the Glut-4 translocation mediator Akt substrate of 160 kD (AS160) and protein phosphatase. Levels of miR-1 and -133a (but not miR-208) were significantly attenuated by AAC in C57 but not LID mice. Transfection of miR-1 and -133a obliterated IGF-1-induced hypertrophic responses in NRCMs. Our data suggest that IGF-1 deficiency retards AAC-induced cardiac hypertrophic and contractile changes via alleviating down-regulation of miR-1 and miR-133a in response to left ventricular pressure overload.
Collapse
Affiliation(s)
- Yinan Hua
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | | | | |
Collapse
|
532
|
Huang Z, Chen X, Yu B, He J, Chen D. MicroRNA-27a promotes myoblast proliferation by targeting myostatin. Biochem Biophys Res Commun 2012; 423:265-9. [PMID: 22640741 DOI: 10.1016/j.bbrc.2012.05.106] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Accepted: 05/18/2012] [Indexed: 11/25/2022]
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs that play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. However, the role of miRNAs in myoblast proliferation remains poorly understood. Here we found that the expression of miR-27a was increased during proliferation of C2C12 myoblasts. Moreover, overexpression of miR-27a in C2C12 cells promoted myoblast proliferation by reducing the expression of myostatin, a critical inhibitor of skeletal myogenesis. In addition, the miR-27a was confirmed to target myostatin 3'UTR by a luciferase reporter analysis. Together, these results suggest that miR-27a promotes myoblast proliferation through targeting myostatin.
Collapse
Affiliation(s)
- Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Yaan, Sichuan 625014, PR China
| | | | | | | | | |
Collapse
|
533
|
Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circ Res 2012; 110:1465-73. [PMID: 22539765 PMCID: PMC3380624 DOI: 10.1161/circresaha.112.269035] [Citation(s) in RCA: 586] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 12/20/2022]
Abstract
RATIONALE Repopulation of the injured heart with new, functional cardiomyocytes remains a daunting challenge for cardiac regenerative medicine. An ideal therapeutic approach would involve an effective method at achieving direct conversion of injured areas to functional tissue in situ. OBJECTIVE The aim of this study was to develop a strategy that identified and evaluated the potential of specific micro (mi)RNAs capable of inducing reprogramming of cardiac fibroblasts directly to cardiomyocytes in vitro and in vivo. METHODS AND RESULTS Using a combinatorial strategy, we identified a combination of miRNAs 1, 133, 208, and 499 capable of inducing direct cellular reprogramming of fibroblasts to cardiomyocyte-like cells in vitro. Detailed studies of the reprogrammed cells demonstrated that a single transient transfection of the miRNAs can direct a switch in cell fate as documented by expression of mature cardiomyocyte markers, sarcomeric organization, and exhibition of spontaneous calcium flux characteristic of a cardiomyocyte-like phenotype. Interestingly, we also found that miRNA-mediated reprogramming was enhanced 10-fold on JAK inhibitor I treatment. Importantly, administration of miRNAs into ischemic mouse myocardium resulted in evidence of direct conversion of cardiac fibroblasts to cardiomyocytes in situ. Genetic tracing analysis using Fsp1Cre-traced fibroblasts from both cardiac and noncardiac cell sources strongly suggests that induced cells are most likely of fibroblastic origin. CONCLUSIONS The findings from this study provide proof-of-concept that miRNAs have the capability of directly converting fibroblasts to a cardiomyocyte-like phenotype in vitro. Also of significance is that this is the first report of direct cardiac reprogramming in vivo. Our approach may have broad and important implications for therapeutic tissue regeneration in general.
Collapse
Affiliation(s)
- Tilanthi M. Jayawardena
- Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center Durham, NC
| | - Bakytbek Egemnazarov
- Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center Durham, NC
| | - Elizabeth A. Finch
- Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
- Ion Channel Research Group, Duke University Medical Center, Durham, NC
| | - Lunan Zhang
- Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center Durham, NC
| | - J. Alan Payne
- Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center Durham, NC
| | - Kumar Pandya
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Zhiping Zhang
- Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center Durham, NC
| | - Paul Rosenberg
- Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
- Ion Channel Research Group, Duke University Medical Center, Durham, NC
- Sarah Steadman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC
| | - Maria Mirotsou
- Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center Durham, NC
| | - Victor J. Dzau
- Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
- Mandel Center for Hypertension and Atherosclerosis Research, Duke University Medical Center Durham, NC
| |
Collapse
|
534
|
[Cardiomycyte overexpression of miR-27b resulted in cardiac fibrosis and mitochondria injury in mice]. YI CHUAN = HEREDITAS 2012; 34:326-34. [PMID: 22425951 DOI: 10.3724/sp.j.1005.2012.00326] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous microRNA (miRNA) array results have shown that the expression of miR-27b is upregulated in heart tissues from human cardiomyopathy and pressure-overloaded hypertrophic mouse model, implying that miR-27b might play an important role in heart diseases. To study the in vivo function of miR-27b, we generated a transgenic mouse line overexpressing miR-27b under the control of the 5.5 kb promoter of a-myosin heavy chain (a-MHC). Real-time PCR results demonstrated that miR-27b precursor and mature miR-27b were significantly increased in the heart tissues of miR-27b transgenic mice. miR-27b transgenic mice not only displayed cardiac hypertrophy, but also exhibited significant cardiac fibrosis. Further study showed that matrix metalloproteinase 13 (MMP13), a key regulator involved in cardiac fibrosis, was the target of miR-27b. The expression of MMP13 was decreased and the expression of Col I and III was increased in miR-27b transgenic mice.. In addition, defects in ultrastructral architecture were also found in miR-27b trans-genic mice. The above results demonstrated that miR-27b might promote cardiac fibrosis through inhibiting MMP13.
Collapse
|
535
|
Abstract
Disease is often the result of an aberrant or inadequate response to physiologic and pathophysiologic stress. Studies over the last 10 years have uncovered a recurring paradigm in which microRNAs (miRNAs) regulate cellular behavior under these conditions, suggesting an especially significant role for these small RNAs in pathologic settings. Here, we review emerging principles of miRNA regulation of stress signaling pathways and apply these concepts to our understanding of the roles of miRNAs in disease. These discussions further highlight the unique challenges and opportunities associated with the mechanistic dissection of miRNA functions and the development of miRNA-based therapeutics.
Collapse
Affiliation(s)
- Joshua T Mendell
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| | | |
Collapse
|
536
|
Sharma S, Liu J, Wei J, Yuan H, Zhang T, Bishopric NH. Repression of miR-142 by p300 and MAPK is required for survival signalling via gp130 during adaptive hypertrophy. EMBO Mol Med 2012; 4:617-32. [PMID: 22367739 PMCID: PMC3407949 DOI: 10.1002/emmm.201200234] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 11/22/2022] Open
Abstract
An increase in cardiac workload, ultimately resulting in hypertrophy, generates oxidative stress and therefore requires the activation of both survival and growth signal pathways. Here, we wanted to characterize the regulators, targets and mechanistic roles of miR-142, a microRNA (miRNA) negatively regulated during hypertrophy. We show that both miRNA-142-3p and -5p are repressed by serum-derived growth factors in cultured cardiac myocytes, in models of cardiac hypertrophy in vivo and in human cardiomyopathic hearts. Levels of miR-142 are inversely related to levels of acetyltransferase p300 and MAPK activity. When present, miR-142 inhibits both survival and growth pathways by directly targeting nodal regulators p300 and gp130. MiR-142 also potently represses multiple components of the NF-κB pathway, preventing cytokine-mediated NO production and blocks translation of α-actinin. Forced expression of miR-142 during hypertrophic growth induced extensive apoptosis and cardiac dysfunction; conversely, loss of miR-142 fully rescued cardiac function in a murine heart failure model. Downregulation of miR-142 is required to enable cytokine-mediated survival signalling during cardiac growth in response to haemodynamic stress and is a critical element of adaptive hypertrophy.
Collapse
Affiliation(s)
- Salil Sharma
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | |
Collapse
|
537
|
Rainer PP, Doleschal B, Kirk JA, Sivakumaran V, Saad Z, Groschner K, Maechler H, Hoefler G, Bauernhofer T, Samonigg H, Hutterer G, Kass DA, Pieske B, von Lewinski D, Pichler M. Sunitinib causes dose-dependent negative functional effects on myocardium and cardiomyocytes. BJU Int 2012; 110:1455-62. [PMID: 22508007 DOI: 10.1111/j.1464-410x.2012.11134.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES To examine the acute effects of sunitinib on inotropic function, intracellular Ca(2+) transients, myofilament Ca(2+) sensitivity and generation of reactive oxygen species (ROS) in human multicellular myocardium and isolated mouse cardiomyocytes. To search for microRNAs as suitable biomarkers for indicating toxic cardiac effects. PATIENTS AND METHODS After exposure to sunitinib (0.1-10 µg/mL) developed force, diastolic tension and kinetic variables were assessed in isolated human myocardium. Changes in myocyte sarcomere length, whole-cell calcium transients, myofilament force-Ca(2+) relationship, and ROS generation were examined in isolated ventricular mouse cardiomyocytes. Microarray and realtime-PCR were used to screen for differentially expressed microRNAs in cultured cardiomyocytes that were exposed for 24 h to sunitinib. RESULTS We found that higher concentrations of sunitinib (1 and 10 µg/mL) decreased developed force at 30 minutes 76.9 + 2.8 and 54.5 + 6.3%, compared to 96.1 + 2.6% in controls (P < 0.01). Sunitinib exposure significantly decreased sarcomere shortening and Ca2+ transients. Myofilament Ca(2+) sensitivity was not altered, while ROS levels were significantly increased after exposure to the drug. MicroRNA expression patterns were not altered by sunitinib. CONCLUSIONS Sunitinib elicits a dose-dependent negative inotropic effect in myocardium, accompanied by a decline in intracellular Ca(2+) and increased ROS generation. In clinical practice, these cardiotoxic effects should be considered in cases where cardiac concentrations of sunitinib could be increased.
Collapse
Affiliation(s)
- Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
538
|
Abstract
Disturbances in gene expression as a result of perturbed transcription or posttranscriptional regulation is one of the main causes of cellular dysfunction that underlies different disease states. Approximately a decade ago, the discovery of microRNAs in mammalian cells has renewed our focus on posttranscriptional regulatory mechanisms during pathogenesis. These tiny posttranscriptional regulators are differentially expressed in almost every disease that has been studied to date and can modulate expression of a gene via specifically binding to its messenger RNA. Because of their capacity to simultaneously target multiple functionally related, genes, they are proving to be potentially powerful therapeutic agents/targets. In this review, we focus on the microRNAs that are differentially regulated in the more common cardiovascular pathologies, their targets, and potential function.
Collapse
Affiliation(s)
- Maha Abdellatif
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
539
|
Aurora AB, Mahmoud AI, Luo X, Johnson BA, van Rooij E, Matsuzaki S, Humphries KM, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca²⁺ overload and cell death. J Clin Invest 2012; 122:1222-32. [PMID: 22426211 PMCID: PMC3314458 DOI: 10.1172/jci59327] [Citation(s) in RCA: 316] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 02/01/2012] [Indexed: 12/17/2022] Open
Abstract
Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca²⁺ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca²⁺ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca²⁺ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca²⁺ influx; and to repression of several downstream effectors of Ca²⁺ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca²⁺ homeostasis and survival during cardiac injury.
Collapse
Affiliation(s)
- Arin B. Aurora
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Ahmed I. Mahmoud
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Xiang Luo
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Brett A. Johnson
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Eva van Rooij
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Satoshi Matsuzaki
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kenneth M. Humphries
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Joseph A. Hill
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Hesham A. Sadek
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Eric N. Olson
- Department of Molecular Biology and
Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
miRagen Therapeutics, Boulder, Colorado, USA.
Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| |
Collapse
|
540
|
Abstract
The discovery of the regulatory role of noncoding RNAs, and micro (mi)RNAs in particular, has added a new layer of complexity to our understanding of cardiovascular development. miRNAs regulate and modulate various steps of cardiovascular morphogenesis, cell proliferation, differentiation, and phenotype modulation. miRNAs simultaneously regulate multiple targets, and many miRNAs can bind to the same target, allowing for a complex pattern of regulation of gene expression. miRNA families are continuously added during evolution paralleling the increased complexity of the cardiovascular system in vertebrates compared with invertebrates. Several lines of evidence suggest that the appearance of miRNAs is at least in part responsible for the formation of complex organ systems and stable regulatory mechanisms in vertebrates. We review the current understanding of miRNAs during cardiovascular development. Further progress in this area will help to decipher quantitative changes in gene expression that provide robustness to cellular phenotypes and regulatory options to diseases processes. miRNAs might also provide clues to better understand congenital heart defects, which are the most common birth defects in human newborns.
Collapse
Affiliation(s)
- Thomas Boettger
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Thomas Braun
- From the Max-Planck-Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| |
Collapse
|
541
|
Reddy S, Zhao M, Hu DQ, Fajardo G, Hu S, Ghosh Z, Rajagopalan V, Wu JC, Bernstein D. Dynamic microRNA expression during the transition from right ventricular hypertrophy to failure. Physiol Genomics 2012; 44:562-75. [PMID: 22454450 DOI: 10.1152/physiolgenomics.00163.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRs) are small, noncoding RNAs that are emerging as crucial regulators of cardiac remodeling in left ventricular hypertrophy (LVH) and failure (LVF). However, there are no data on their role in right ventricular hypertrophy (RVH) and failure (RVF). This is a critical question given that the RV is uniquely at risk in patients with congenital right-sided obstructive lesions and in those with systemic RVs. We have developed a murine model of RVH and RVF using pulmonary artery constriction (PAC). miR microarray analysis of RV from PAC vs. control demonstrates altered miR expression with gene targets associated with cardiomyocyte survival and growth during hypertrophy (miR 199a-3p) and reactivation of the fetal gene program during heart failure (miR-208b). The transition from hypertrophy to heart failure is characterized by apoptosis and fibrosis (miRs-34, 21, 1). Most are similar to LVH/LVF. However, there are several key differences between RV and LV: four miRs (34a, 28, 148a, and 93) were upregulated in RVH/RVF that are downregulated or unchanged in LVH/LVF. Furthermore, there is a corresponding downregulation of their putative target genes involving cell survival, proliferation, metabolism, extracellular matrix turnover, and impaired proteosomal function. The current study demonstrates, for the first time, alterations in miRs during the process of RV remodeling and the gene regulatory pathways leading to RVH and RVF. Many of these alterations are similar to those in the afterload-stressed LV. miRs differentially regulated between the RV and LV may contribute to the RVs increased susceptibility to heart failure.
Collapse
Affiliation(s)
- Sushma Reddy
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
542
|
Xu XD, Song XW, Li Q, Wang GK, Jing Q, Qin YW. Attenuation of microRNA-22 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. J Cell Physiol 2012; 227:1391-8. [PMID: 21618527 DOI: 10.1002/jcp.22852] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiac hypertrophy, which is characterized by the enlargement of cell size, reactivation of fetal genes, remains one of the most important triggers to heart failure. Increasing evidence shows that microRNA (miRNA) is extensively involved in the pathogenesis of cardiac hypertrophy. But the effects of miRNAs on cardiomyocyte hypertrophy have not been completely solved yet. Here, we showed that a collection of miRNAs was aberrantly expressed in hypertrophic cardiomyocytes induced by phenylephrine (PE) or angiotensin II (Ang II). Among them, miR-22 was the most strikingly up-regulated miRNA. To investigate the role of miR-22 in hypertrophy, both over-expression and knock-down assays were performed on cardiomyocytes. The results showed that up-regulation of miR-22 significantly increased the cell size and markedly influenced the expression of hypertrophic markers, including induction of nppa and reduction of myh6. In contrast, reduction of miR-22 level attenuated either PE- or Ang II-induced hypertrophic reaction. Furthermore, several genes, including PTEN, were identified as potential targets of miR-22 by bioinformatic algorithms. Using luciferase analysis, miR-22 could significantly suppress the luciferase activity of reporter fused with 3' untranslated region of PTEN mRNA. Furthermore, up-regulation of miR-22 could suppress the protein level of PTEN and reduction of miR-22 level markedly increased the protein level of PTEN in cardiomyocytes by Western blot analysis, suggesting that the contribution of miR-22 to cardiomyocyte hypertrophy may be partially through targeting PTEN. Taken together, miRNAs were dynamically regulated in cardiomyocyte hypertrophy and attenuation of miR-22 in rat cardiomyocytes efficiently protected from hypertrophic effects through derepressing PTEN.
Collapse
Affiliation(s)
- Xu-Dong Xu
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
543
|
Dorn GW, Matkovich SJ, Eschenbacher WH, Zhang Y. A human 3' miR-499 mutation alters cardiac mRNA targeting and function. Circ Res 2012; 110:958-67. [PMID: 22374132 DOI: 10.1161/circresaha.111.260752] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE MyomiRs miR-499, miR-208a and miR-208b direct cardiac myosin gene expression. Sequence complementarity between miRs and their mRNA targets determines miR effects, but the functional consequences of human myomiR sequence variants are unknown. OBJECTIVE To identify and investigate mutations in human myomiRs in order to better understand how and to what extent naturally-occurring sequence variation can impact miR-mRNA targeting and end-organ function. METHODS AND RESULTS Screening of ≈2,600 individual DNAs for myomiR sequence variants identified a rare mutation of miR-499, u17c in the 3' end, well outside the seed region thought to determine target recognition. In vitro luciferase reporter analysis showed that the 3' miR-499 mutation altered suppression of a subset of artificial and natural mRNA targets. Cardiac-specific transgenic expression was used to compare consequences of wild-type and mutant miR-499. Both wild-type and mutant miR-499 induced heart failure in mice, but miR-499 c17 misdirected recruitment of a subset of miR-499 target mRNAs to cardiomyocyte RNA-induced silencing complexes, altering steady-state cardiac mRNA and protein make-up and favorably impacting cardiac function. In vitro analysis of miR-499 target site mutations and modeling of binding energies revealed abnormal miR-mRNA duplex configurations induced by the c17 mutation. CONCLUSIONS A naturally occurring miR-499 mutation outside the critical seed sequence modifies mRNA targeting and end-organ function. This first description of in vivo effects from a natural human miR mutation outside the seed sequence supports comprehensive studies of individual phenotypes or disease-modification conferred by miR mutations.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine and Center for Pharmacogenomics, 660 S. Euclid Ave., Campus Box 8220, St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
544
|
Kriegel AJ, Liu Y, Cohen B, Usa K, Liu Y, Liang M. MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiol Genomics 2012; 44:259-267. [PMID: 22202692 PMCID: PMC3289118 DOI: 10.1152/physiolgenomics.00173.2011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 12/21/2011] [Indexed: 11/22/2022] Open
Abstract
Previously we have shown that microRNA miR-382 can facilitate loss of renal epithelial characteristics in cultured cells. This study examined the in vivo role of miR-382 in the development of renal interstitial fibrosis in a mouse model. Unilateral ureteral obstruction was used to induce renal interstitial fibrosis in mice. With 3 days of unilateral ureteral obstruction, expression of miR-382 in the obstructed kidney was increased severalfold compared with sham-operated controls. Intravenous delivery of locked nucleic acid-modified anti-miR-382 blocked the increase in miR-382 expression and significantly reduced inner medullary fibrosis. Expression of predicted miR-382 target kallikrein 5, a proteolytic enzyme capable of degrading several extracellular matrix proteins, was reduced with unilateral ureteral obstruction. Anti-miR-382 treatment prevented the reduction of kallikrein 5 in the inner medulla. Furthermore, the protective effect of the anti-miR-382 treatment against fibrosis was abolished by renal knockdown of kallikrein 5. Targeting of kallikrein 5 by miR-382 was confirmed by 3'-untranslated region luciferase assay. These data support a completely novel mechanism in which miR-382 targets kallikrein 5 and contributes to the development of renal inner medullary interstitial fibrosis. The study provided the first demonstration of an in vivo functional role of miR-382 in any species and any organ system.
Collapse
Affiliation(s)
- Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
545
|
A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. PLoS One 2012; 7:e31022. [PMID: 22363537 PMCID: PMC3281898 DOI: 10.1371/journal.pone.0031022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/31/2011] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are important gene regulators that are abundantly expressed in both the developing and adult mammalian brain. These non-coding gene transcripts are involved in post-transcriptional regulatory processes by binding to specific target mRNAs. Approximately one third of known miRNA genes are located within intronic regions of protein coding and non-coding regions, and previous studies have suggested a role for intronic miRNAs as negative feedback regulators of their host genes. In the present study, we monitored the dynamic gene expression changes of the intronic miR-338-3p and miR-338-5p and their host gene Apoptosis-associated Tyrosine Kinase (AATK) during the maturation of rat hippocampal neurons. This revealed an uncorrelated expression pattern of mature miR-338 strands with their host gene. Sequence analysis of the 3′ untranslated region (UTR) of rat AATK mRNA revealed the presence of two putative binding sites for miR-338-3p. Thus, miR-338-3p may have the capacity to modulate AATK mRNA levels in neurons. Transfection of miR-338-3p mimics into rat B35 neuroblastoma cells resulted in a significant decrease of AATK mRNA levels, while the transfection of synthetic miR-338-5p mimics did not alter AATK levels. Our results point to a possible molecular mechanism by which miR-338-3p participates in the regulation of its host gene by modulating the levels of AATK mRNA, a kinase which plays a role during differentiation, apoptosis and possibly in neuronal degeneration.
Collapse
|
546
|
microRNAs in cardiovascular development. J Mol Cell Cardiol 2012; 52:949-57. [PMID: 22300733 DOI: 10.1016/j.yjmcc.2012.01.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 12/18/2022]
Abstract
Heart development requires precise temporal-spatial regulation of gene expression, in which the highly conserved modulation networks of transcription factors accurately control the signaling pathways required for normal cardiovascular development. Even slight perturbation of such programming during cardiogenesis can cause congenital heart defects and late neonatal or adult heart disease. microRNAs (miRNAs), a class of "small" non-coding RNAs, have recently drawn a lot of attention for their "big" impact on cardiovascular development and diseases. miRNAs negatively regulate the expression of their target genes in most biological organisms through post-transcriptional processes. Here, we review the roles of miRNAs in cardiovascular development and function, looking inside the molecular mechanisms by which miRNAs act as "fine tuners" and/or "safeguards" to maintain the homeostasis of cardiovascular system. We also propose new directions for therapeutic potential of these tiny molecules.
Collapse
|
547
|
Abstract
MicroRNAs refer to a subfamily of small non-coding RNA species that are designed to influence gene expression in nearly all cell types studied to date. Studies from the past decade have demonstrated that microRNAs are atypically expressed in the cardiovascular system under specific pathological conditions. Gain- and loss-of-function studies using in vitro and in vivo models have revealed distinct roles for specific microRNAs in cardiovascular development, physiological functions, and cardiac pathological conditions. In this review, the current relevant findings on the role of microRNAs in cardiac hypertrophic growth are updated, the target genes of these microRNAs are summarized, and the future of microRNAs as potential therapeutic targets is discussed.
Collapse
Affiliation(s)
- Paula A Da Costa Martins
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
548
|
Abstract
MicroRNAs (miRNAs) are endogenous, short (~22 nucleotide), evolutionarily conserved, non-coding RNAs that regulate gene expression at the post-transcriptional level. Recent evidence suggests that miRNAs are differentially expressed in the failing myocardium and play an important role in progression of heart failure by targeting genes that govern diverse functions in cardiac remodeling process including myocyte hypertrophy, excitation-contraction coupling, increased myocyte loss, and myocardial fibrosis. In addition to their role in adverse cardiac remodeling, miRNAs hold promise as biomarkers of disease progression in heart failure given their presence in circulation and enhanced stability. Further development of miR-based therapeutics may allow for modulation of cardiac and/or systemic levels of specific miRNAs in patients with heart failure . Here, we summarize current knowledge of miRNAs in relation to their role in regulating various aspects of the cardiac remodeling process and discuss their potential use as biomarkers and/or therapeutic targets in heart failure.
Collapse
Affiliation(s)
- Veli K Topkara
- Center for Cardiovascular Research, Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Ave. Campus, PO Box 8066, St Louis, MO 63110-1093, USA
| | | |
Collapse
|
549
|
Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S. Inhibition of microRNA function by antimiR oligonucleotides. SILENCE 2012; 3:1. [PMID: 22230293 PMCID: PMC3306207 DOI: 10.1186/1758-907x-3-1] [Citation(s) in RCA: 418] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/09/2012] [Indexed: 02/08/2023]
Abstract
MicroRNAs (miRNAs) have emerged as important post-transcriptional regulators of gene expression in many developmental and cellular processes. Moreover, there is now ample evidence that perturbations in the levels of individual or entire families of miRNAs are strongly associated with the pathogenesis of a wide range of human diseases. Indeed, disease-associated miRNAs represent a new class of targets for the development of miRNA-based therapeutic modalities, which may yield patient benefits unobtainable by other therapeutic approaches. The recent explosion in miRNA research has accelerated the development of several computational and experimental approaches for probing miRNA functions in cell culture and in vivo. In this review, we focus on the use of antisense oligonucleotides (antimiRs) in miRNA inhibition for loss-of-function studies. We provide an overview of the currently employed antisense chemistries and their utility in designing antimiR oligonucleotides. Furthermore, we describe the most commonly used in vivo delivery strategies and discuss different approaches for assessment of miRNA inhibition and potential off-target effects. Finally, we summarize recent progress in antimiR mediated pharmacological inhibition of disease-associated miRNAs, which shows great promise in the development of novel miRNA-based therapeutics.
Collapse
Affiliation(s)
- Jan Stenvang
- Santaris Pharma, Kogle Allé 6, DK-2970 Hørsholm, Denmark.
| | | | | | | | | |
Collapse
|
550
|
Kolder ICRM, Tanck MWT, Bezzina CR. Common genetic variation modulating cardiac ECG parameters and susceptibility to sudden cardiac death. J Mol Cell Cardiol 2012; 52:620-9. [PMID: 22248531 DOI: 10.1016/j.yjmcc.2011.12.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/23/2011] [Accepted: 12/31/2011] [Indexed: 01/19/2023]
Abstract
Sudden cardiac death (SCD) is a prevalent cause of death in Western societies. Genome-wide association studies (GWAS) conducted over the last few years have uncovered common genetic variants modulating risk of SCD. Furthermore, GWAS studies uncovered several loci impacting on heart rate and ECG indices of conduction and repolarization, as measures of cardiac electrophysiological function and likely intermediate phenotypes of SCD risk. We here review these recent developments and their implications for the identification of novel molecular pathways underlying normal electrophysiological function and susceptibility to SCD.
Collapse
Affiliation(s)
- Iris C R M Kolder
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | | | | |
Collapse
|