5551
|
Ayala-Aguilera CC, Valero T, Lorente-Macías Á, Baillache DJ, Croke S, Unciti-Broceta A. Small Molecule Kinase Inhibitor Drugs (1995-2021): Medical Indication, Pharmacology, and Synthesis. J Med Chem 2021; 65:1047-1131. [PMID: 34624192 DOI: 10.1021/acs.jmedchem.1c00963] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The central role of dysregulated kinase activity in the etiology of progressive disorders, including cancer, has fostered incremental efforts on drug discovery programs over the past 40 years. As a result, kinase inhibitors are today one of the most important classes of drugs. The FDA approved 73 small molecule kinase inhibitor drugs until September 2021, and additional inhibitors were approved by other regulatory agencies during that time. To complement the published literature on clinical kinase inhibitors, we have prepared a review that recaps this large data set into an accessible format for the medicinal chemistry community. Along with the therapeutic and pharmacological properties of each kinase inhibitor approved across the world until 2020, we provide the synthesis routes originally used during the discovery phase, many of which were only available in patent applications. In the last section, we also provide an update on kinase inhibitor drugs approved in 2021.
Collapse
Affiliation(s)
- Cecilia C Ayala-Aguilera
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Teresa Valero
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Álvaro Lorente-Macías
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Daniel J Baillache
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Stephen Croke
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| |
Collapse
|
5552
|
Thakur K, Shlain MA, Marianski M, Braunschweig AB. Regiochemical Effects on the Carbohydrate Binding and Selectivity of Flexible Synthetic Carbohydrate Receptors with Indole and Quinoline Heterocyclic Groups. European J Org Chem 2021; 2021:5262-5274. [PMID: 35694139 PMCID: PMC9186342 DOI: 10.1002/ejoc.202100763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 08/07/2023]
Abstract
Synthetic carbohydrate receptors (SCRs) that bind cell-surface carbohydrates could be used for disease detection, drug-delivery, and therapeutics, or for the site-selective modification of complex carbohydrates but their potential has not been realized because of remaining challenges associated with binding affinity and substrate selectivity. We have reported recently a series of flexible SCRs based upon a biaryl core with four pendant heterocyclic groups that bind glycans selectively through noncovalent interactions. Here we continue to explore the role of heterocycles on substrate selectivity by expanding our library to include a series of indole and quinoline heterocycles that vary in their regiochemistry of attachment to the biaryl core. The binding of these SCRs to a series of biologically-relevant carbohydrates was studied by 1H NMR titrations in CD2Cl2 and density-functional theory calculations. We find SCR030, SCR034 and SCR037 are selective, SCR031, SCR032, and SCR039 are strong binders, and SCR033, SCR035, SCR036, and SCR038 are promiscuous and bind weakly. Computational analysis reveals the importance of C-H⋯π and H-bonding interactions in defining the binding properties of these new receptors. By combining these data with those obtained from our previous studies on this class of flexible SCRs, we develop a series of design rules that account for the binding of all SCRs of this class and anticipate the binding of future, not-yet imagined tetrapodal SCRs.
Collapse
Affiliation(s)
- Khushabu Thakur
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
| | - Milan A Shlain
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
| | - Mateusz Marianski
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
- The PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
- The PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
| | - Adam B Braunschweig
- Nanoscience Initiative, Advanced Science Research Center at The Graduate Center of the City University of New York 85 St Nicholas Terrace, New York, NY 10031 (USA)
- Department of Chemistry and Biochemistry, Hunter College 695 Park Ave, New York, NY 10065 (USA)
- The PhD Program in Chemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
- The PhD Program in Biochemistry, The Graduate Center of the City University of New York, 365 5 Ave, New York, NY 10016 (USA)
| |
Collapse
|
5553
|
Wearing ER, Blackmun DE, Becker MR, Schindler CS. 1- and 2-Azetines via Visible Light-Mediated [2 + 2]-Cycloadditions of Alkynes and Oximes. J Am Chem Soc 2021; 143:16235-16242. [PMID: 34570970 DOI: 10.1021/jacs.1c07523] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azetines, four-membered unsaturated nitrogen-containing heterocycles, hold great potential for drug design and development but remain underexplored due to challenges associated with their synthesis. We report an efficient, visible light-mediated approach toward 1- and 2-azetines relying on alkynes and the unique triplet state reactivity of oximes, specifically 2-isoxazolines. While 2-azetine products are accessible upon intermolecular [2 + 2]-cycloaddition via triplet energy transfer from a commercially available iridium photocatalyst, the selective formation of 1-azetines proceeds upon a second, consecutive, energy transfer process. Mechanistic studies are consistent with a stepwise reaction mechanism via N-O bond homolysis following the second energy transfer event to result in the formation of 1-azetine products. Characteristic for this method is its operational simplicity, mild conditions, and modular approach that allow for the synthesis of functionalized azetines and tetrahydrofurans (via in situ hydrolysis) from readily available precursors.
Collapse
Affiliation(s)
- Emily R Wearing
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, Michigan 48109, United States
| | - Dominique E Blackmun
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, Michigan 48109, United States
| | - Marc R Becker
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, Michigan 48109, United States
| | - Corinna S Schindler
- University of Michigan, Department of Chemistry, Willard Henry Dow Laboratory, 930 North University Ave., Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5554
|
Askey H, Grayson JD, Tibbetts JD, Turner-Dore JC, Holmes JM, Kociok-Kohn G, Wrigley GL, Cresswell AJ. Photocatalytic Hydroaminoalkylation of Styrenes with Unprotected Primary Alkylamines. J Am Chem Soc 2021; 143:15936-15945. [PMID: 34543004 PMCID: PMC8499025 DOI: 10.1021/jacs.1c07401] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 12/27/2022]
Abstract
Catalytic, intermolecular hydroaminoalkylation (HAA) of styrenes provides a powerful disconnection for pharmacologically relevant γ-arylamines, but current methods cannot utilize unprotected primary alkylamines as feedstocks. Metal-catalyzed HAA protocols are also highly sensitive to α-substitution on the amine partner, and no catalytic solutions exist for α-tertiary γ-arylamine synthesis via this approach. We report a solution to these problems using organophotoredox catalysis, enabling a direct, modular, and sustainable preparation of α-(di)substituted γ-arylamines, including challenging electron-neutral and moderately electron-rich aryl groups. A broad range of functionalities are tolerated, and the reactions can be run on multigram scale in continuous flow. The method is applied to a concise, protecting-group-free synthesis of the blockbuster drug Fingolimod, as well as a phosphonate mimic of its in vivo active form (by iterative α-C-H functionalization of ethanolamine). The reaction can also be sequenced with an intramolecular N-arylation to provide a general and modular access to valuable (spirocyclic) 1,2,3,4-tetrahydroquinolines and 1,2,3,4-tetrahydronaphthyridines. Mechanistic and kinetic studies support an irreversible hydrogen atom transfer activation of the alkylamine by the azidyl radical and some contribution from a radical chain. The reaction is photon-limited and exhibits a zero-order dependence on amine, azide, and photocatalyst, with a first-order dependence on styrene.
Collapse
Affiliation(s)
- Hannah
E. Askey
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - James D. Grayson
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Joshua D. Tibbetts
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | | | - Jake M. Holmes
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Gabriele Kociok-Kohn
- Materials
and Chemical Characterisation Facility (MC), University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Gail L. Wrigley
- Oncology
R&D, Research & Early Development, AstraZeneca, Darwin Building, 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K.
| | | |
Collapse
|
5555
|
Kannappan V, Ali M, Small B, Rajendran G, Elzhenni S, Taj H, Wang W, Dou QP. Recent Advances in Repurposing Disulfiram and Disulfiram Derivatives as Copper-Dependent Anticancer Agents. Front Mol Biosci 2021; 8:741316. [PMID: 34604310 PMCID: PMC8484884 DOI: 10.3389/fmolb.2021.741316] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Copper (Cu) plays a pivotal role in cancer progression by acting as a co-factor that regulates the activity of many enzymes and structural proteins in cancer cells. Therefore, Cu-based complexes have been investigated as novel anticancer metallodrugs and are considered as a complementary strategy for currently used platinum agents with undesirable general toxicity. Due to the high failure rate and increased cost of new drugs, there is a global drive towards the repositioning of known drugs for cancer treatment in recent years. Disulfiram (DSF) is a first-line antialcoholism drug used in clinics for more than 65 yr. In combination with Cu, it has shown great potential as an anticancer drug by targeting a wide range of cancers. The reaction between DSF and Cu ions forms a copper diethyldithiocarbamate complex (Cu(DDC)2 also known as CuET) which is the active, potent anticancer ingredient through inhibition of NF-κB and ubiquitin-proteasome system as well as alteration of the intracellular reactive oxygen species (ROS). Importantly, DSF/Cu inhibits several molecular targets related to drug resistance, stemness, angiogenesis and metastasis and is thus considered as a novel strategy for overcoming tumour recurrence and relapse in patients. Despite its excellent anticancer efficacy, DSF has proven unsuccessful in several cancer clinical trials. This is likely due to the poor stability, rapid metabolism and/or short plasma half-life of the currently used oral version of DSF and the inability to form Cu(DDC)2 at relevant concentrations in tumour tissues. Here, we summarize the scientific rationale, molecular targets, and mechanisms of action of DSF/Cu in cancer cells and the outcomes of oral DSF ± Cu in cancer clinical trials. We will focus on the novel insights on harnessing the immune system and hypoxic microenvironment using DSF/Cu complex and discuss the emerging delivery strategies that can overcome the shortcomings of DSF-based anticancer therapies and provide opportunities for translation of DSF/Cu or its Cu(DDC)2 complex into cancer therapeutics.
Collapse
Affiliation(s)
- Vinodh Kannappan
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom.,Disulfican Ltd, University of Wolverhampton Science Park, Wolverhampton, United Kingdom
| | - Misha Ali
- Departments of Oncology, Pharmacology and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Benjamin Small
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Gowtham Rajendran
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Salena Elzhenni
- Departments of Oncology, Pharmacology and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Hamza Taj
- Departments of Oncology, Pharmacology and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Weiguang Wang
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom.,Disulfican Ltd, University of Wolverhampton Science Park, Wolverhampton, United Kingdom
| | - Q Ping Dou
- Departments of Oncology, Pharmacology and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
5556
|
Wang J, Zhang H, Kaul A, Li K, Priyandoko D, Kaul SC, Wadhwa R. Effect of Ashwagandha Withanolides on Muscle Cell Differentiation. Biomolecules 2021; 11:biom11101454. [PMID: 34680087 PMCID: PMC8533065 DOI: 10.3390/biom11101454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Withania somnifera (Ashwagandha) is used in Indian traditional medicine, Ayurveda, and is believed to have a variety of health-promoting effects. The molecular mechanisms and pathways underlying these effects have not yet been sufficiently explored. In this study, we investigated the effect of Ashwagandha extracts and their major withanolides (withaferin A and withanone) on muscle cell differentiation using C2C12 myoblasts. We found that withaferin A and withanone and Ashwagandha extracts possessing different ratios of these active ingredients have different effects on the differentiation of C2C12. Withanone and withanone-rich extracts caused stronger differentiation of myoblasts to myotubes, deaggregation of heat- and metal-stress-induced aggregated proteins, and activation of hypoxia and autophagy pathways. Of note, the Parkinson’s disease model of Drosophila that possess a neuromuscular disorder showed improvement in their flight and climbing activity, suggesting the potential of Ashwagandha withanolides for the management of muscle repair and activity.
Collapse
Affiliation(s)
- Jia Wang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Huayue Zhang
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Ashish Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Kejuan Li
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- College of Life Science, Sichuan Normal University, Chengdu 610066, China
| | - Didik Priyandoko
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- Department of Biology, Universitas Pendidikan Indonesia, Bangdung 40154, Indonesia
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
| | - Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational & Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Tsukuba 3058565, Japan; (J.W.); (H.Z.); (A.K.); (K.L.); (D.P.); (S.C.K.)
- Correspondence:
| |
Collapse
|
5557
|
Precursors of Viral Proteases as Distinct Drug Targets. Viruses 2021; 13:v13101981. [PMID: 34696411 PMCID: PMC8537868 DOI: 10.3390/v13101981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
Collapse
|
5558
|
Recent developments in the synthesis of piperazines (microreview). Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5559
|
Yang Y, Tsien J, Hughes JME, Peters BK, Merchant RR, Qin T. An intramolecular coupling approach to alkyl bioisosteres for the synthesis of multisubstituted bicycloalkyl boronates. Nat Chem 2021; 13:950-955. [PMID: 34584254 PMCID: PMC8739920 DOI: 10.1038/s41557-021-00786-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Bicyclic hydrocarbons, and bicyclo[1.1.1]pentanes (BCPs) in particular, are playing an emerging role as saturated bioisosteres in pharmaceutical, agrochemical and materials chemistry. Taking advantage of strain-release strategies, prior synthetic studies have featured the synthesis of bridgehead-substituted (C1, C3) BCPs from [1.1.1]propellane. Here, we describe an approach to access multisubstituted BCPs via intramolecular cyclization. In addition to C1,C3-disubstituted BCPs, this method also enables the construction of underexplored multisubstituted (C1, C2 and C3) BCPs from readily accessible cyclobutanones. The broad generality of this method has also been examined through the synthesis of a variety of other caged bicyclic molecules, ranging from [2.1.1] to [3.2.1] scaffolds. The modularity afforded by the pendant bridgehead boron pinacol esters generated during the cyclization reaction has been demonstrated through several downstream functionalizations, highlighting the ability of this approach to enable the programmed and divergent synthesis of multisubstituted bicyclic hydrocarbons.
Collapse
Affiliation(s)
- Yangyang Yang
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States
| | - Jonathan M. E. Hughes
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Byron K. Peters
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rohan R. Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, United States.,Correspondence to:
| |
Collapse
|
5560
|
Syntheses and Structure-Activity Relationships of N-Phenethyl-Quinazolin-4-yl-Amines as Potent Inhibitors of Cytochrome bd Oxidase in Mycobacterium tuberculosis. APPLIED SCIENCES (BASEL, SWITZERLAND) 2021; 11:9092. [PMID: 36698770 PMCID: PMC9873234 DOI: 10.3390/app11199092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of cytochrome bd oxidase (cyt-bd) inhibitors are needed for comprehensive termination of energy production in Mycobacterium tuberculosis (Mtb) to treat tuberculosis infections. Herein, we report on the structure-activity-relationships (SAR) of 22 new N-phenethyl-quinazolin-4-yl-amines that target cyt-bd. Our focused set of compounds was synthesized and screened against three mycobacterial strains: Mycobacterium bovis BCG, Mycobacterium tuberculosis H37Rv and the clinical isolate Mycobacterium tuberculosis N0145 with and without the cytochrome bcc:aa 3 inhibitor Q203 in an ATP depletion assay. Two compounds, 12a and 19a, were more active against all three strains than the naturally derived cyt-bd inhibitor aurachin D.
Collapse
|
5561
|
Xiong W, Feng S, Wang H, Qing S, Yang Y, Zhao Y, Zeng Z, Gong J. Identification of candidate genes and pathways in limonin-mediated cardiac repair after myocardial infarction. Biomed Pharmacother 2021; 142:112088. [PMID: 34470729 DOI: 10.1016/j.biopha.2021.112088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/24/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Myocardial infarction (MI) resulting from acute coronary ischemia may cause significant morbidity and mortality, and microRNAs play a vital role in this pathophysiology. Limonin (LIM) is a natural medicine from citrus fruit that protects organs against ischemic diseases, but the candidate genes and pathways associated with cardioprotection are unknown. METHODS MI was induced by ligating the left anterior descending coronary in male Sprague-Dawley rats. LIM was orally administered for 7 days after the induction of MI. Subsequently, the hearts were collected to examine significant changes in microRNAs and mRNAs among the control (CON), MI, and LIM + MI groups. Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks were used to identify the biological functions and signaling pathways of differentially expressed mRNAs. Candidate genes were validated by RT-qPCR. RESULTS Compared to the CON group, MI caused significant changes in the expression of 26 microRNAs and 1979 mRNAs. The bioinformatics analysis showed that inflammation, apoptosis, and oxidation were enriched in GO terms, while RAP1, PI3K/AKT, RAS, and cGMP-PKG were enriched in KEGG pathways. In addition, compared to the MI group, LIM induced significant changes in the expression of 4 microRNAs and 173 mRNAs. The differentially expressed mRNAs were related to collagen biosynthesis, the immune response, extrinsic apoptosis, and tight junctions. One microRNA (rno-miR-10a-5p) and 2 mRNAs (IGLON5 and LMX1A) were differentially expressed among the CON, MI, and LIM + MI groups. CONCLUSIONS Our results suggest that the rno-miR-10a-5p-IGLON5/LMX1A axis may be a candidate pathway and promising target through which LIM alleviates MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China
| | - Shiyan Feng
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China; Emergency Medical Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Hong Wang
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China; Department of Emergency Intensive Care Unit, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China
| | - Song Qing
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China
| | - Yong Yang
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China; Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, Sichuan, China
| | - Yanhua Zhao
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China
| | - Zhongbo Zeng
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China
| | - Jian Gong
- Department of Clinical Research, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China; Department of Emergency Intensive Care Unit, Ziyang People's Hospital, Ziyang Hospital of Sichuan Provincial People's Hospital, Ziyang, Sichuan, China.
| |
Collapse
|
5562
|
Gilbert A, Langowski P, Paquin JF. Synthesis of N-(2-SF5-ethyl)amines and impact of the SF5 substituent on their basicity and lipophilicity. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5563
|
Rosa FA, Mendes de Souza Melo S, Pianoski KE, Poletto J, dos Santos MG, Vieira da Silva MJ, Lazarin‐Bidóia D, Volpato H, Moura S, Nakamura CV. Synthesis and Antiprotozoal Profile of 3,4,5-Trisubstituted Isoxazoles. ChemistryOpen 2021; 10:931-938. [PMID: 34331350 PMCID: PMC8485799 DOI: 10.1002/open.202100141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
A series of 60 4-aminomethyl 5-aryl-3-substituted isoxazoles were synthesized by an efficient method and evaluated in vitro against Leishmania amazonensis and Trypanosoma cruzi, protozoa that cause the neglected tropical diseases leishmaniasis and Chagas disease, respectively. Thirteen compounds exhibited a selective index greater than 10. The series of 3-N-acylhydrazone isoxazole derivatives bearing the bithiophene core exhibited the best antiparasitic effects.
Collapse
Affiliation(s)
| | | | | | - Julia Poletto
- Departamento de QuímicaUniversidade Estadual de Maringá (UEM)MaringáBrazil
| | | | | | - Danielle Lazarin‐Bidóia
- Departamento de Ciências Básicas da SaúdeUniversidade Estadual de Maringá (UEM)MaringáBrazil
| | - Hélito Volpato
- Departamento de Ciências Básicas da SaúdeUniversidade Estadual de Maringá (UEM)MaringáBrazil
| | - Sidnei Moura
- Instituto de BiotecnologiaUniversidade de Caxias do Sul (UCS)Caxias do SulBrazil
| | - Celso Vataru Nakamura
- Departamento de Ciências Básicas da SaúdeUniversidade Estadual de Maringá (UEM)MaringáBrazil
| |
Collapse
|
5564
|
Ghosh P, Das S. The C-H functionalization of N-alkoxycarbamoyl indoles by transition metal catalysis. Org Biomol Chem 2021; 19:7949-7969. [PMID: 34490862 DOI: 10.1039/d1ob01121a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Indole and its congeners are ubiquitous nitrogen-containing organic scaffolds present in a plethora of natural products, marketed drugs, and other organic functional molecules. Recent years have witnessed tremendous advances in the diversification of this motif and its biological applications via transition-metal-catalyzed auxiliary assisted site-selective inert C-H functionalization. In this burgeoning field, N-methoxy/ethoxy/pivaloxy amide functionality has emerged as a most potent auxiliary/DG (directing group) for a wide range of C-C and C-heteroatom bond formations, providing a new advance for forging structurally fabricated polycyclic indole frameworks. This review aims to highlight evolved transformations, like arylation, alkylation, alkenylation, allylation, amidation, difluorovinylation, deuteration, hydroarylation, etc., and the applications of N-alkoxycarbamoyl indole derivatives made within the period of 2014-August 2021. Additionally, explicit mechanistic underpinnings have also been provided in the appropriate places.
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India.
| | - Sajal Das
- Department of Chemistry, University of North Bengal, Darjeeling - 734013, India.
| |
Collapse
|
5565
|
Gao M, Moumbock AFA, Qaseem A, Xu Q, Günther S. CovPDB: a high-resolution coverage of the covalent protein-ligand interactome. Nucleic Acids Res 2021; 50:D445-D450. [PMID: 34581813 PMCID: PMC8728183 DOI: 10.1093/nar/gkab868] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 01/14/2023] Open
Abstract
In recent years, the drug discovery paradigm has shifted toward compounds that covalently modify disease-associated target proteins, because they tend to possess high potency, selectivity, and duration of action. The rational design of novel targeted covalent inhibitors (TCIs) typically starts from resolved macromolecular structures of target proteins in their apo or holo forms. However, the existing TCI databases contain only a paucity of covalent protein–ligand (cP–L) complexes. Herein, we report CovPDB, the first database solely dedicated to high-resolution cocrystal structures of biologically relevant cP–L complexes, curated from the Protein Data Bank. For these curated complexes, the chemical structures and warheads of pre-reactive electrophilic ligands as well as the covalent bonding mechanisms to their target proteins were expertly manually annotated. Totally, CovPDB contains 733 proteins and 1,501 ligands, relating to 2,294 cP–L complexes, 93 reactive warheads, 14 targetable residues, and 21 covalent mechanisms. Users are provided with an intuitive and interactive web interface that allows multiple search and browsing options to explore the covalent interactome at a molecular level in order to develop novel TCIs. CovPDB is freely accessible at http://www.pharmbioinf.uni-freiburg.de/covpdb/ and its contents are available for download as flat files of various formats.
Collapse
Affiliation(s)
- Mingjie Gao
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Aurélien F A Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Ammar Qaseem
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Qianqing Xu
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, D-79104 Freiburg, Germany
| |
Collapse
|
5566
|
Wicks C, Hudlicky T, Rinner U. Morphine alkaloids: History, biology, and synthesis. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2021; 86:145-342. [PMID: 34565506 DOI: 10.1016/bs.alkal.2021.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This chapter provides a short overview of the history of morphine since it's isolation by Sertürner in 1805. The biosynthesis of the title alkaloid as well as all total and formal syntheses of morphine and codeine published after 1996 are discussed in detail. The last section of this chapter provides a detailed overview of medicinally relevant derivatives of the title alkaloid.
Collapse
Affiliation(s)
- Christopher Wicks
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Tomas Hudlicky
- Department of Chemistry and Centre for Biotechnology, Brock University, St. Catharines, ON, Canada
| | - Uwe Rinner
- IMC Fachhochschule Krems/IMC University of Applied Sciences Krems, Krems, Austria.
| |
Collapse
|
5567
|
Bonatto V, Shamim A, Rocho FDR, Leitão A, Luque FJ, Lameira J, Montanari CA. Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations. J Chem Inf Model 2021; 61:4733-4744. [PMID: 34460252 DOI: 10.1021/acs.jcim.1c00515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covalent inhibitors are assuming central importance in drug discovery projects, especially in this pandemic scenario. Many research groups have focused their attention on inhibiting viral proteases or human proteases such as cathepsin L (hCatL). The inhibition of these critical enzymes may impair viral replication. However, molecular modeling of covalent ligands is challenging since covalent and noncovalent ligand-bound states must be considered in the binding process. In this work, we evaluated the suitability of free energy perturbation (FEP) calculations as a tool for predicting the binding affinity of reversible covalent inhibitors of hCatL. Our strategy relies on the relative free energy calculated for both covalent and noncovalent complexes and the free energy changes have been compared with experimental data for eight nitrile-based inhibitors, including three new inhibitors of hCatL. Our results demonstrate that the covalent complex can be employed to properly rank the inhibitors. Nevertheless, a comparison of the free energy changes in both noncovalent and covalent states is valuable to interpret the effect triggered by the formation of the covalent bond on the interactions played by functional groups distant from the warhead. Overall, FEP can be employed as a powerful predictor tool in developing and understanding the activity of reversible covalent inhibitors.
Collapse
Affiliation(s)
- Vinícius Bonatto
- Medicinal & Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| | - Anwar Shamim
- Medicinal & Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| | - Fernanda Dos R Rocho
- Medicinal & Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| | - Andrei Leitão
- Medicinal & Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Science, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, Santa Coloma de Gramenet 08921, Spain
| | - Jerônimo Lameira
- Medicinal & Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil.,Institute of Biological Science, Federal University of Pará, Rua Augusto Correa S/N, 66075-110 Belém, Pará, Brazil
| | - Carlos A Montanari
- Medicinal & Biological Chemistry Group, Institute of Chemistry of São Carlos, University of São Paulo, Avenue Trabalhador Sancarlense, 400, 23566-590 São Carlos, SP, Brazil
| |
Collapse
|
5568
|
Nie X, Xu T, Hong Y, Zhang H, Mao C, Liao S. Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloro-Fluorosulfonylation of Alkynes. Angew Chem Int Ed Engl 2021; 60:22035-22042. [PMID: 34382306 DOI: 10.1002/anie.202109072] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Indexed: 12/11/2022]
Abstract
Sulfonyl fluorides have widespread applications in many important fields, including ligation chemistry, chemical biology, and drug discovery. Therefore, new methods to increase the synthetic efficiency and expand the available structures of sulfonyl fluorides are highly in demand. Here, we introduce a new and powerful class of sulfonyl fluoride hubs, β-chloro alkenylsulfonyl fluorides (BCASF), which can be constructed via radical chloro-fluorosulfonyl difunctionalization of alkynes under photoredox conditions. BCASF molecules exhibit versatile reactivities and well undergo a series of transformations at the chloride site while keeping the sulfonyl fluoride group intact, including reduction, Suzuki coupling, Sonogashira coupling, as well as nucleophilic substitution with various nitrogen, oxygen, and sulfur nucleophiles. By using BCASF as a synthetic hub, a wide range of sulfonyl fluorides becomes readily accessible, such as cis alkenylsulfonyl fluorides, dienylsulfonyl fluorides, and ynenylsulfonyl fluorides, which are challenging or even not possible to synthesize before with the known methods. Moreover, further application of BCASF to the late-stage modification of peptides and drugs is also demonstrated.
Collapse
Affiliation(s)
- Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuhao Hong
- Tan Kah Kee Innovation Laboratory (IKKEM) Center for Micro-nano Fabrication and Advanced Characterization, Xiamen University, Xiamen, 361102, China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Chenxi Mao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Beijing National Laboratory of Molecular Science (BNLMS), Beijing, 100190, China
| |
Collapse
|
5569
|
Sangouard G, Zorzi A, Wu Y, Ehret E, Schüttel M, Kale S, Díaz-Perlas C, Vesin J, Bortoli Chapalay J, Turcatti G, Heinis C. Picomole-Scale Synthesis and Screening of Macrocyclic Compound Libraries by Acoustic Liquid Transfer. Angew Chem Int Ed Engl 2021; 60:21702-21707. [PMID: 34268864 DOI: 10.1002/anie.202107815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/07/2022]
Abstract
Macrocyclic compounds are an attractive class of therapeutic ligands against challenging targets, such as protein-protein interactions. However, the development of macrocycles as drugs is hindered by the lack of large combinatorial macrocyclic libraries, which are cumbersome, expensive, and time consuming to make, screen, and deconvolute. Here, we established a strategy for synthesizing and screening combinatorial libraries on a picomolar scale by using acoustic droplet ejection to combine building blocks at nanoliter volumes, which reduced the reaction volumes, reagent consumption, and synthesis time. As a proof-of-concept, we assembled a 2700-member target-focused macrocyclic library that we could subsequently assay in the same microtiter synthesis plates, saving the need for additional transfers and deconvolution schemes. We screened the library against the MDM2-p53 protein-protein interaction and generated micromolar and sub-micromolar inhibitors. Our approach based on acoustic liquid transfer provides a general strategy for the development of macrocycle ligands.
Collapse
Affiliation(s)
- Gontran Sangouard
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Alessandro Zorzi
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Yuteng Wu
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Edouard Ehret
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Mischa Schüttel
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sangram Kale
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Cristina Díaz-Perlas
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Jonathan Vesin
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Julien Bortoli Chapalay
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
5570
|
Sangouard G, Zorzi A, Wu Y, Ehret E, Schüttel M, Kale S, Díaz‐Perlas C, Vesin J, Bortoli Chapalay J, Turcatti G, Heinis C. Picomole‐Scale Synthesis and Screening of Macrocyclic Compound Libraries by Acoustic Liquid Transfer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gontran Sangouard
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Alessandro Zorzi
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Yuteng Wu
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Edouard Ehret
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Mischa Schüttel
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Sangram Kale
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Cristina Díaz‐Perlas
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jonathan Vesin
- Biomolecular Screening Facility School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Julien Bortoli Chapalay
- Biomolecular Screening Facility School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility School of Life Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering School of Basic Sciences Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
5571
|
Hassan AR, Sanad IM, Allam AE, Abouelela ME, Sayed AM, Emam SS, El-Kousy SM, Shimizu K. Chemical constituents from Limonium tubiflorum and their in silico evaluation as potential antiviral agents against SARS-CoV-2. RSC Adv 2021; 11:32346-32357. [PMID: 35495487 PMCID: PMC9042241 DOI: 10.1039/d1ra05927k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/25/2021] [Indexed: 11/21/2022] Open
Abstract
Wild plants growing in the Egyptian deserts are facing abiotic stress, which can lead to interesting & safe natural products possessing potential chemical profiles. Consequently, our study was designed to assess the phytochemical composition of the aerial parts of Limonium tubiflorum (family Plumbaginaceae) growing wild in Egypt for the first time. In addition, in silico screening and molecular dynamic simulation of all isolated phytoconstituents were run against the main protease (Mpro) and spike glycoprotein SARS-CoV-2 targets which displayed a crucial role in the replication of this virus. Our findings showed that the phytochemical investigation of 70% ethanol extract of L. tubiflorum aerial parts afforded six known flavonoids; myricetin 3-O-(2''-galloyl)-β-d-galactopyranoside (1), myricetin 3-O-(2''-galloyl)-α-l-rhamnopyranoside (2), myricetin 3-O-(3''-galloyl)-α-l-rhamnopyranoside (3), myricetin 3-O-β-d-galactopyranoside (5), apigenin (6), myricetin (7), along with two known phenolic acid derivatives; gallic acid (4) and ethyl gallate (8). Docking studies revealed that compounds (1) & (2) were the most effective compounds with binding energies of -17.9664 & -18.6652 kcal mol-1 against main protease and -18.9244 & -18.9272 kcal mol-1 towards spike glycoprotein receptors, respectively. The molecular dynamics simulation experiment agreed with the docking study and reported stability of compounds (1) and (2) against the selected targets which was proved by low RMSD for the tested components. Moreover, the structure-activity relationship revealed that the presence of the galloyl moiety is necessary for enhancement of the activity. Overall, the galloyl substructure of myricetin 3-O-glycoside derivatives (1 and 2) isolated from L. tubiflorum may be a possible lead for developing COVID-19 drugs. Further, in vitro and in vivo assays are recommended to support our in silico studies.
Collapse
Affiliation(s)
- Ahmed R Hassan
- Medicinal and Aromatic Plants Department, Desert Research Center El-Matariya 11753 Cairo Egypt
| | - Ibrahim M Sanad
- Medicinal and Aromatic Plants Department, Desert Research Center El-Matariya 11753 Cairo Egypt
| | - Ahmed E Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Shalabia S Emam
- Medicinal and Aromatic Plants Department, Desert Research Center El-Matariya 11753 Cairo Egypt
| | - Salah M El-Kousy
- Chemistry Department, Menoufia University Shebin El-Kom 32861 El-Menoufia Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
5572
|
Nie X, Xu T, Hong Y, Zhang H, Mao C, Liao S. Introducing A New Class of Sulfonyl Fluoride Hubs via Radical Chloro‐Fluorosulfonylation of Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xingliang Nie
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuhao Hong
- Tan Kah Kee Innovation Laboratory (IKKEM) Center for Micro-nano Fabrication and Advanced Characterization Xiamen University Xiamen 361102 China
| | - Honghai Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Chenxi Mao
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery Fujian Province University) State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 China
- Beijing National Laboratory of Molecular Science (BNLMS) Beijing 100190 China
| |
Collapse
|
5573
|
Alam MM. 1,2,3-Triazole hybrids as anticancer agents: A review. Arch Pharm (Weinheim) 2021; 355:e2100158. [PMID: 34559414 DOI: 10.1002/ardp.202100158] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/03/2021] [Accepted: 09/04/2021] [Indexed: 12/25/2022]
Abstract
Despite the advancements in the development of anticancer agents, more effective and safer anticancer drugs still need to be developed as the current agents cause unwanted side effects and many patients have become drug resistant. 1,2,3-Triazoles, due to their remarkable biological potential, have received considerable attention in drug discovery for the development of anticancer agents. The present review article presents an overview of the recent advances in 1,2,3-triazole hybrids with anticancer potential over the last 2 years, their chemical structures, structure-activity relationships, and mechanisms of action, as well as insights into the docking studies.
Collapse
Affiliation(s)
- Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Kingdom of Saudi Arabia
| |
Collapse
|
5574
|
Cannon J, Tang S, Choi SK. Caged Oxime Reactivators Designed for the Light Control of Acetylcholinesterase Reactivation †. Photochem Photobiol 2021; 98:334-346. [PMID: 34558680 DOI: 10.1111/php.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023]
Abstract
Despite its promising role in the active control of biological functions by light, photocaging remains untested in acetylcholinesterase (AChE), a key enzyme in the cholinergic family. Here, we describe synthesis, photochemical properties and biochemical activities of two caged oxime compounds applied in the photocontrolled reactivation of the AChE inactivated by reactive organophosphate. Each of these consists of a photocleavable coumarin cage tethered to a known oxime reactivator for AChE that belongs in an either 2-(hydroxyimino)acetamide or pyridiniumaldoxime class. Of these, the first caged compound was able to successfully go through oxime uncaging upon irradiation at long-wavelength ultraviolet light (365 nm) or visible light (420 nm). It was further evaluated in AChE assays in vitro under variable light conditions to define its activity in the photocontrolled reactivation of paraoxon-inactivated AChE. This assay result showed its lack of activity in the dark but its induction of activity under light conditions only. In summary, this article reports a first class of light-activatable modulators for AChE and it offers assay methods and novel insights that help to achieve an effective design of caged compounds in the enzyme control.
Collapse
Affiliation(s)
- Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5575
|
Oliveira-Ribeiro C, Pimentel MIF, Oliveira LDFA, Vasconcellos ÉDCFE, Conceição-Silva F, Schubach ADO, Fagundes A, de Mello CX, Mouta-Confort E, Miranda LDFC, Valete-Rosalino CM, Martins ACDC, de Oliveira RDVC, Quintella LP, Lyra MR. An old drug and different ways to treat cutaneous leishmaniasis: Intralesional and intramuscular meglumine antimoniate in a reference center, Rio de Janeiro, Brazil. PLoS Negl Trop Dis 2021; 15:e0009734. [PMID: 34555016 PMCID: PMC8491910 DOI: 10.1371/journal.pntd.0009734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/05/2021] [Accepted: 08/16/2021] [Indexed: 01/25/2023] Open
Abstract
Background Treatment of cutaneous leishmaniasis (CL) remains challenging since the drugs currently used are quite toxic, thus contributing to lethality unrelated to the disease itself but to adverse events (AE). The main objective was to evaluate different treatment regimens with meglumine antimoniate (MA), in a reference center in Rio de Janeiro, Brazil. Methodology A historical cohort of 592 patients that underwent physical and laboratory examination were enrolled between 2000 and 2017. The outcome measures of effectiveness were epithelialization and complete healing of cutaneous lesions. AE were graded using a standardized scale. Three groups were evaluated: Standard regimen (SR): intramuscular (IM) MA 10–20 mg Sb5+/kg/day during 20 days (n = 46); Alternative regimen (AR): IM MA 5 mg Sb5+/kg/day during 30 days (n = 456); Intralesional route (IL): MA infiltration in the lesion(s) through subcutaneous injections (n = 90). Statistical analysis was performed through Fisher exact and Pearson Chi-square tests, Kruskal-Wallis, Kaplan-Meier and log-rank tests. Results SR, AR and IL showed efficacy of 95.3%, 84.3% and 75.9%, with abandonment rate of 6.5%, 2.4% and 3.4%, respectively. IL patients had more comorbidities (58.9%; p = 0.001), were mostly over 50 years of age (55.6%), and had an evolution time longer than 2 months (65.6%; p = 0.02). Time for epithelialization and complete healing were similar in IL and IM MA groups (p = 0.9 and p = 0.5; respectively). Total AE and moderate to severe AE that frequently led to treatment interruption were more common in SR group, while AR and IL showed less toxicity. Conclusions/Significance AR and IL showed less toxicity and may be good options especially in CL cases with comorbidities, although SR treatment was more effective. IL treatment was an effective and safe strategy, and it may be used as first therapy option as well as a rescue scheme in patients initially treated with other drugs. Treatment of cutaneous leishmaniasis remains a challenge since the drugs used are quite toxic. Currently, there is a global effort to reduce the morbidity associated with the treatment of this disease and life-threatening complications due to drugs or treatment approaches. Meglumine antimoniate (MA) in different regimens was evaluated in cutaneous leishmaniasis patients in the state of Rio de Janeiro, Brazil. Effectiveness and toxicity were compared among the groups: standard regimen (SR) [intramuscular (IM) MA in the dosage of 10 to 20 mg of pentavalent antimony (Sb5+)/kg/day]; alternative regimen (AR) [IM MA in the dosage of 5 mg Sb5+/kg/day]; and intralesional route (IL) [patients treated with MA through the infiltration of the lesion]. AR and IL regimens demonstrated good effectiveness, with reduced abandonment rate and toxicity. Total adverse events were higher in the SR group, which frequently led to treatment interruptions. AR and IL showed less toxicity especially in CL cases with comorbidities, although SR treatment was more effective than AR and IL regimens. IL was an effective and safe treatment and may be used as a first therapy option as well as a rescue scheme.
Collapse
Affiliation(s)
- Carla Oliveira-Ribeiro
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Centro de Transplante de Medula Óssea, Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, Brazil
- * E-mail:
| | - Maria Inês Fernandes Pimentel
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Liliane de Fátima Antonio Oliveira
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Fatima Conceição-Silva
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Armando de Oliveira Schubach
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Aline Fagundes
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Cintia Xavier de Mello
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Eliame Mouta-Confort
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana de Freitas Campos Miranda
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Claudia Maria Valete-Rosalino
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Departamento de Otorrinolaringologia e Oftalmologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Cristina da Costa Martins
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Leonardo Pereira Quintella
- Serviço de Anatomia Patológica, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcelo Rosandiski Lyra
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
5576
|
Cannon J, Tang S, Yang K, Harrison R, Choi SK. Dual acting oximes designed for therapeutic decontamination of reactive organophosphates via catalytic inactivation and acetylcholinesterase reactivation. RSC Med Chem 2021; 12:1592-1603. [PMID: 34671741 DOI: 10.1039/d1md00194a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 01/24/2023] Open
Abstract
A conventional approach in the therapeutic decontamination of reactive organophosphate (OP) relies on chemical OP degradation by oxime compounds. However, their efficacy is limited due to their lack of activity in the reactivation of acetylcholinesterase (AChE), the primary target of OP. Here, we describe a set of α-nucleophile oxime derivatives which are newly identified for such dual modes of action. Thus, we prepared a 9-member oxime library, each composed of an OP-reactive oxime core linked to an amine-terminated scaffold, which varied through an N-alkyl functionalization. This library was screened by enzyme assays performed with human and electric eel subtypes of OP-inactivated AChE, which led to identifying three oxime leads that displayed significant enhancements in reactivation activity comparable to 2-PAM. They were able to reactivate both enzymes inactivated by three OP types including paraoxon, chlorpyrifos and malaoxon, suggesting their broad spectrum of OP susceptibility. All compounds in the library were able to retain catalytic reactivity in paraoxon inactivation by rates increased up to 5 or 8-fold relative to diacetylmonoxime (DAM) under controlled conditions at pH (8.0, 10.5) and temperature (17, 37 °C). Finally, selected lead compounds displayed superb efficacy in paraoxon decontamination on porcine skin in vitro. In summary, we addressed an unmet need in therapeutic OP decontamination by designing and validating a series of congeneric oximes that display dual modes of action.
Collapse
Affiliation(s)
- Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA .,Department of Internal Medicine, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA .,Department of Internal Medicine, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Kelly Yang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Racquel Harrison
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School Ann Arbor Michigan 48109 USA .,Department of Internal Medicine, University of Michigan Medical School Ann Arbor Michigan 48109 USA
| |
Collapse
|
5577
|
Kumar V, Ramu R, Shirahatti PS, Kumari VBC, Sushma P, Mandal SP, Patil SM. α‐Glucosidase, α‐Amylase Inhibition, Kinetics and Docking Studies of Novel (2‐Chloro‐6‐(trifluoromethyl)benzyloxy)arylidene) Based Rhodanine and Rhodanine Acetic Acid Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202101954] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vasantha Kumar
- Department of Chemistry Sri Dharmasthala Manjunatheshwara College (Autonomous) Ujire 574240 India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics School of Life Sciences JSS Academy of Higher Education and Research Mysuru 570 015 India
| | | | - V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics School of Life Sciences JSS Academy of Higher Education and Research Mysuru 570 015 India
| | - P. Sushma
- Department of Biotechnology and Bioinformatics School of Life Sciences JSS Academy of Higher Education and Research Mysuru 570 015 India
| | - Subhankar P. Mandal
- Department of Pharmaceutical Chemistry JSS College of Pharmacy JSS Academy of Higher Education and Research Mysuru 570 015 India
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics School of Life Sciences JSS Academy of Higher Education and Research Mysuru 570 015 India
| |
Collapse
|
5578
|
King DR, Sedovy MW, Leng X, Xue J, Lamouille S, Koval M, Isakson BE, Johnstone SR. Mechanisms of Connexin Regulating Peptides. Int J Mol Sci 2021; 22:ijms221910186. [PMID: 34638526 PMCID: PMC8507914 DOI: 10.3390/ijms221910186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/22/2022] Open
Abstract
Gap junctions (GJ) and connexins play integral roles in cellular physiology and have been found to be involved in multiple pathophysiological states from cancer to cardiovascular disease. Studies over the last 60 years have demonstrated the utility of altering GJ signaling pathways in experimental models, which has led to them being attractive targets for therapeutic intervention. A number of different mechanisms have been proposed to regulate GJ signaling, including channel blocking, enhancing channel open state, and disrupting protein-protein interactions. The primary mechanism for this has been through the design of numerous peptides as therapeutics, that are either currently in early development or are in various stages of clinical trials. Despite over 25 years of research into connexin targeting peptides, the overall mechanisms of action are still poorly understood. In this overview, we discuss published connexin targeting peptides, their reported mechanisms of action, and the potential for these molecules in the treatment of disease.
Collapse
Affiliation(s)
- D. Ryan King
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
| | - Meghan W. Sedovy
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xinyan Leng
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
| | - Jianxiang Xue
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (J.X.); (B.E.I.)
| | - Samy Lamouille
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Center for Vascular and Heart Research, Virginia Tech, Roanoke, VA 24016, USA
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; (J.X.); (B.E.I.)
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Scott R. Johnstone
- Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA 24016, USA; (D.R.K.); (M.W.S.); (X.L.); (S.L.)
- Center for Vascular and Heart Research, Virginia Tech, Roanoke, VA 24016, USA
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24060, USA
- Correspondence:
| |
Collapse
|
5579
|
Lanquist AP, Gupta S, Al-Afyouni KF, Al-Afyouni M, Kodanko JJ, Turro C. Trifluoromethyl substitution enhances photoinduced activity against breast cancer cells but reduces ligand exchange in Ru(ii) complex. Chem Sci 2021; 12:12056-12067. [PMID: 34667571 PMCID: PMC8457392 DOI: 10.1039/d1sc03213e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
A series of five ruthenium complexes containing triphenyl phosphine groups known to enhance both cellular penetration and photoinduced ligand exchange, cis-[Ru(bpy)2(P(p-R-Ph)3)(CH3CN)]2+, where bpy = 2,2'-bipyridine and P(p-R-Ph)3 represent para-substituted triphenylphosphine ligands with R = -OCH3 (1), -CH3 (2) -H (3), -F (4), and -CF3 (5), were synthesized and characterized. The photolysis of 1-5 in water with visible light (λ irr ≥ 395 nm) results in the substitution of the coordinated acetonitrile with a solvent molecule, generating the corresponding aqua complex as the single photoproduct. A 3-fold variation in quantum yield was measured with 400 nm irradiation, Φ 400, where 1 is the most efficient with a Φ 400 = 0.076(2), and 5 the least photoactive complex, with Φ 400 = 0.026(2). This trend is unexpected based on the red-shifted metal-to-ligand charge transfer (MLCT) absorption of 1 as compared to that of 5, but can be correlated to the substituent Hammett para parameters and pK a values of the ancillary phosphine ligands. Complexes 1-5 are not toxic towards the triple negative breast cancer cell line MDA-MB-231 in the dark, but 3 and 5 are >4.2 and >19-fold more cytotoxic upon irradiation with blue light, respectively. A number of experiments point to apoptosis, and not to necrosis or necroptosis, as the mechanism of cell death by 5 upon irradiation. These findings provide a foundation for understanding the role of phosphine ligands on photoinduced ligand substitution and show the enhancement afforded by -CF3 groups on photochemotherapy, which will aid the future design of photocages for photochemotherapeutic drug delivery.
Collapse
Affiliation(s)
- Austin P Lanquist
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Sayak Gupta
- Department of Chemistry, Wayne State University Detroit MI 48208 USA
| | - Kathlyn F Al-Afyouni
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Malik Al-Afyouni
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University Detroit MI 48208 USA
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University Columbus OH 43210 USA
| |
Collapse
|
5580
|
Goh YQ, Cheam G, Wang Y. Understanding Choline Bioavailability and Utilization: First Step Toward Personalizing Choline Nutrition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10774-10789. [PMID: 34392687 DOI: 10.1021/acs.jafc.1c03077] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Choline is an essential macronutrient involved in neurotransmitter synthesis, cell-membrane signaling, lipid transport, and methyl-group metabolism. Nevertheless, the vast majority are not meeting the recommended intake requirement. Choline deficiency is linked to nonalcoholic fatty liver disease, skeletal muscle atrophy, and neurodegenerative diseases. The conversion of dietary choline to trimethylamine by gut microbiota is known for its association with atherosclerosis and may contribute to choline deficiency. Choline-utilizing bacteria constitutes less than 1% of the gut community and is modulated by lifestyle interventions such as dietary patterns, antibiotics, and probiotics. In addition, choline utilization is also affected by genetic factors, further complicating the impact of choline on health. This review overviews the complex interplay between dietary intakes of choline, gut microbiota and genetic factors, and the subsequent impact on health. Understanding of gut microbiota metabolism of choline substrates and interindividual variability is warranted in the development of personalized choline nutrition.
Collapse
Affiliation(s)
- Ying Qi Goh
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| | - Guoxiang Cheam
- School of Biological Sciences, Nanyang Technological University, Singapore 639798
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| |
Collapse
|
5581
|
Chessari G, Grainger R, Holvey RS, Ludlow RF, Mortenson PN, Rees DC. C-H functionalisation tolerant to polar groups could transform fragment-based drug discovery (FBDD). Chem Sci 2021; 12:11976-11985. [PMID: 34667563 PMCID: PMC8457390 DOI: 10.1039/d1sc03563k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/30/2021] [Indexed: 12/28/2022] Open
Abstract
We have analysed 131 fragment-to-lead (F2L) examples targeting a wide variety of protein families published by academic and industrial laboratories between 2015-2019. Our assessment of X-ray structural data identifies the most common polar functional groups involved in fragment-protein binding are: N-H (hydrogen bond donors on aromatic and aliphatic N-H, amides and anilines; totalling 35%), aromatic nitrogen atoms (hydrogen bond acceptors; totalling 23%), and carbonyl oxygen group atoms (hydrogen bond acceptors on amides, ureas and ketones; totalling 22%). Furthermore, the elaboration of each fragment into its corresponding lead is analysed to identify the nominal synthetic growth vectors. In ∼80% of cases, growth originates from an aromatic or aliphatic carbon on the fragment and more than 50% of the total bonds formed are carbon-carbon bonds. This analysis reveals that growth from carbocentric vectors is key and therefore robust C-H functionalisation methods that tolerate the innate polar functionality on fragments could transform fragment-based drug discovery (FBDD). As a further resource to the community, we have provided the full data of our analysis as well as an online overlay page of the X-ray structures of the fragment hit and leads: https://astx.com/interactive/F2L-2021/.
Collapse
Affiliation(s)
- Gianni Chessari
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Rachel Grainger
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - Rhian S Holvey
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | | | - Paul N Mortenson
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - David C Rees
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| |
Collapse
|
5582
|
Badir SO, Lipp A, Krumb M, Cabrera-Afonso MJ, Kammer LM, Wu VE, Huang M, Csakai A, Marcaurelle LA, Molander GA. Photoredox-mediated hydroalkylation and hydroarylation of functionalized olefins for DNA-encoded library synthesis. Chem Sci 2021; 12:12036-12045. [PMID: 34667569 PMCID: PMC8457374 DOI: 10.1039/d1sc03191k] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022] Open
Abstract
DNA-encoded library (DEL) technology features a time- and cost-effective interrogation format for the discovery of therapeutic candidates in the pharmaceutical industry. To develop DEL platforms, the implementation of water-compatible transformations that facilitate the incorporation of multifunctional building blocks (BBs) with high C(sp3) carbon counts is integral for success. In this report, a decarboxylative-based hydroalkylation of DNA-conjugated trifluoromethyl-substituted alkenes enabled by single-electron transfer (SET) and subsequent hydrogen atom termination through electron donor-acceptor (EDA) complex activation is detailed. In a further photoredox-catalyzed hydroarylation protocol, the coupling of functionalized, electronically unbiased olefins is achieved under air and within minutes of blue light irradiation through the intermediacy of reactive (hetero)aryl radical species with full retention of the DNA tag integrity. Notably, these processes operate under mild reaction conditions, furnishing complex structural scaffolds with a high density of pendant functional groups.
Collapse
Affiliation(s)
- Shorouk O Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Alexander Lipp
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Matthias Krumb
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - María Jesús Cabrera-Afonso
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Lisa Marie Kammer
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Victoria E Wu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Minxue Huang
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Adam Csakai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Lisa A Marcaurelle
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
5583
|
Olehnovics E, Yin J, Pérez A, De Fabritiis G, Bonomo RA, Bhowmik D, Haider S. The Role of Hydrophobic Nodes in the Dynamics of Class A β-Lactamases. Front Microbiol 2021; 12:720991. [PMID: 34621251 PMCID: PMC8490755 DOI: 10.3389/fmicb.2021.720991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Class A β-lactamases are known for being able to rapidly gain broad spectrum catalytic efficiency against most β-lactamase inhibitor combinations as a result of elusively minor point mutations. The evolution in class A β-lactamases occurs through optimisation of their dynamic phenotypes at different timescales. At long-timescales, certain conformations are more catalytically permissive than others while at the short timescales, fine-grained optimisation of free energy barriers can improve efficiency in ligand processing by the active site. Free energy barriers, which define all coordinated movements, depend on the flexibility of the secondary structural elements. The most highly conserved residues in class A β-lactamases are hydrophobic nodes that stabilize the core. To assess how the stable hydrophobic core is linked to the structural dynamics of the active site, we carried out adaptively sampled molecular dynamics (MD) simulations in four representative class A β-lactamases (KPC-2, SME-1, TEM-1, and SHV-1). Using Markov State Models (MSM) and unsupervised deep learning, we show that the dynamics of the hydrophobic nodes is used as a metastable relay of kinetic information within the core and is coupled with the catalytically permissive conformation of the active site environment. Our results collectively demonstrate that the class A enzymes described here, share several important dynamic similarities and the hydrophobic nodes comprise of an informative set of dynamic variables in representative class A β-lactamases.
Collapse
Affiliation(s)
- Edgar Olehnovics
- Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
| | - Junqi Yin
- Oak Ridge National Laboratory, National Center for Computational Sciences, Oak Ridge, TN, United States
| | - Adrià Pérez
- Computational Science Laboratory, Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gianni De Fabritiis
- Computational Science Laboratory, Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Department of Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, OH, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
- Veterans Affairs Northeast Ohio Healthcare System, Research Service, Cleveland, OH, United States
| | - Debsindhu Bhowmik
- Computer Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Shozeb Haider
- Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, United Kingdom
| |
Collapse
|
5584
|
Bidesi NSR, Vang Andersen I, Windhorst AD, Shalgunov V, Herth MM. The role of neuroimaging in Parkinson's disease. J Neurochem 2021; 159:660-689. [PMID: 34532856 PMCID: PMC9291628 DOI: 10.1111/jnc.15516] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects millions of people worldwide. Two hallmarks of PD are the accumulation of alpha-synuclein and the loss of dopaminergic neurons in the brain. There is no cure for PD, and all existing treatments focus on alleviating the symptoms. PD diagnosis is also based on the symptoms, such as abnormalities of movement, mood, and cognition observed in the patients. Molecular imaging methods such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET) can detect objective alterations in the neurochemical machinery of the brain and help diagnose and study neurodegenerative diseases. This review addresses the application of functional MRI, PET, and SPECT in PD patients. We provide an overview of the imaging targets, discuss the rationale behind target selection, the agents (tracers) with which the imaging can be performed, and the main findings regarding each target's state in PD. Molecular imaging has proven itself effective in supporting clinical diagnosis of PD and has helped reveal that PD is a heterogeneous disorder, which has important implications for the development of future therapies. However, the application of molecular imaging for early diagnosis of PD or for differentiation between PD and atypical parkinsonisms has remained challenging. The final section of the review is dedicated to new imaging targets with which one can detect the PD-related pathological changes upstream from dopaminergic degeneration. The foremost of those targets is alpha-synuclein. We discuss the progress of tracer development achieved so far and challenges on the path toward alpha-synuclein imaging in humans.
Collapse
Affiliation(s)
- Natasha S R Bidesi
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Vang Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Albert D Windhorst
- Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5585
|
Paving New Roads Towards Biodiversity-Based Drug Development in Brazil: Lessons from the Past and Future Perspectives. ACTA ACUST UNITED AC 2021; 31:505-518. [PMID: 34548709 PMCID: PMC8447804 DOI: 10.1007/s43450-021-00181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022]
Abstract
Although Brazil gathers two fundamental features to occupy a leading position on the development of biodiversity-based medicines, the largest flora on earth and a broad tradition on the use of medicinal plants, the number of products derived from the national genetic heritage is so far modest, either as single drugs or as herbal medicines. This article highlights some aspects that may have contributed to the low rates of success and proposes new insights for innovation. We initially approach the use of medicinal plants in Brazil, molded by its ethnic diversity, and the development of the local pharmaceutical industry. A discussion of some governmental initiatives to support plant-based drug development is then presented. Employing the economic concept of “middle-income trap,” we further propose that Brazil is stuck in a “middle-level science trap,” since the increase in the number of scientific publications that launched the country to an intermediate publishing position has not been translated into drug development. Two new approaches to escape from this trap are presented, which may result in innovative drug development. The first is based on the exploitation of the antifragility properties of herbal products aiming to investigate non-canonical pharmacodynamics mechanisms of action, aligned with the concepts of system biology. The second is the manufacture of herbal products based on the circular economy principles, including the use of byproducts for the development of new therapeutical agents. The adoption of these strategies may result in innovative phytomedicines, with global competitiveness.
Collapse
|
5586
|
Liu S, Brul S, Zaat SAJ. Isolation of Persister Cells of Bacillus subtilis and Determination of Their Susceptibility to Antimicrobial Peptides. Int J Mol Sci 2021; 22:10059. [PMID: 34576222 PMCID: PMC8470456 DOI: 10.3390/ijms221810059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022] Open
Abstract
Persister cells are growth-arrested subpopulations that can survive possible fatal environments and revert to wild types after stress removal. Clinically, persistent pathogens play a key role in antibiotic therapy failure, as well as chronic, recurrent, and antibiotic-resilient infections. In general, molecular and physiological research on persister cells formation and compounds against persister cells are much desired. In this study, we firstly demonstrated that the spore forming Gram-positive model organism Bacillus subtilis can be used to generate persister cells during exposure to antimicrobial compounds. Interestingly, instead of exhibiting a unified antibiotic tolerance profile, different number of persister cells and spores were quantified in various stress conditions. qPCR results also indicated that differential stress responses are related to persister formation in various environmental conditions. We propose, for the first time to the best of our knowledge, an effective method to isolate B. subtilis persister cells from a population using fluorescence-activated cell sorting (FACS), which makes analyzing persister populations feasible. Finally, we show that alpha-helical cationic antimicrobial peptides SAAP-148 and TC-19, derived from human cathelicidin LL-37 and human thrombocidin-1, respectively, have high efficiency against both B. subtilis vegetative cells and persisters, causing membrane permeability and fluidity alteration. In addition, we confirm that in contrast to persister cells, dormant B. subtilis spores are not susceptible to the antimicrobial peptides.
Collapse
Affiliation(s)
- Shiqi Liu
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Sebastian A. J. Zaat
- Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, Department of Medical Microbiology, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
5587
|
Joseph V, Levine M. Ronald C.D. Breslow (1931-2017): A career in review. Bioorg Chem 2021; 115:104868. [PMID: 34523507 DOI: 10.1016/j.bioorg.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
Reviewed herein are key research accomplishments of Professor Ronald Charles D. Breslow (1931-2017) throughout his more than 60 year research career. These accomplishments span a wide range of topics, most notably physical organic chemistry, medicinal chemistry, and bioorganic chemistry. These topics are reviewed, as are topics of molecular electronics and origin of chirality, which combine to make up the bulk of this review. Also reviewed briefly are Breslow's contributions to the broader chemistry profession, including his work for the American Chemical Society and his work promoting gender equity. Throughout the article, efforts are made to put Breslow's accomplishments in the context of other work being done at the time, as well as to include subsequent iterations and elaborations of the research.
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Chemical Sciences, Ariel University, Israel
| | - Mindy Levine
- Department of Chemical Sciences, Ariel University, Israel.
| |
Collapse
|
5588
|
Borsari C, De Pascale M, Wymann MP. Chemical and Structural Strategies to Selectively Target mTOR Kinase. ChemMedChem 2021; 16:2744-2759. [PMID: 34114360 PMCID: PMC8518124 DOI: 10.1002/cmdc.202100332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Indexed: 11/08/2022]
Abstract
Dysregulation of the mechanistic target of rapamycin (mTOR) pathway is implicated in cancer and neurological disorder, which identifies mTOR inhibition as promising strategy for the treatment of a variety of human disorders. First-generation mTOR inhibitors include rapamycin and its analogues (rapalogs) which act as allosteric inhibitors of TORC1. Structurally unrelated, ATP-competitive inhibitors that directly target the mTOR catalytic site inhibit both TORC1 and TORC2. Here, we review investigations of chemical scaffolds explored for the development of highly selective ATP-competitive mTOR kinase inhibitors (TORKi). Extensive medicinal chemistry campaigns allowed to overcome challenges related to structural similarity between mTOR and the phosphoinositide 3-kinase (PI3K) family. A broad region of chemical space is covered by TORKi. Here, the investigation of chemical substitutions and physicochemical properties has shed light on the compounds' ability to cross the blood brain barrier (BBB). This work provides insights supporting the optimization of TORKi for the treatment of cancer and central nervous system disorders.
Collapse
Affiliation(s)
- Chiara Borsari
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| | - Martina De Pascale
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| | - Matthias P. Wymann
- Department of BiomedicineUniversity of BaselMattenstrasse 284058BaselSwitzerland
| |
Collapse
|
5589
|
Kell DB. The Transporter-Mediated Cellular Uptake and Efflux of Pharmaceutical Drugs and Biotechnology Products: How and Why Phospholipid Bilayer Transport Is Negligible in Real Biomembranes. Molecules 2021; 26:5629. [PMID: 34577099 PMCID: PMC8470029 DOI: 10.3390/molecules26185629] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, my colleagues and I have come to realise that the likelihood of pharmaceutical drugs being able to diffuse through whatever unhindered phospholipid bilayer may exist in intact biological membranes in vivo is vanishingly low. This is because (i) most real biomembranes are mostly protein, not lipid, (ii) unlike purely lipid bilayers that can form transient aqueous channels, the high concentrations of proteins serve to stop such activity, (iii) natural evolution long ago selected against transport methods that just let any undesirable products enter a cell, (iv) transporters have now been identified for all kinds of molecules (even water) that were once thought not to require them, (v) many experiments show a massive variation in the uptake of drugs between different cells, tissues, and organisms, that cannot be explained if lipid bilayer transport is significant or if efflux were the only differentiator, and (vi) many experiments that manipulate the expression level of individual transporters as an independent variable demonstrate their role in drug and nutrient uptake (including in cytotoxicity or adverse drug reactions). This makes such transporters valuable both as a means of targeting drugs (not least anti-infectives) to selected cells or tissues and also as drug targets. The same considerations apply to the exploitation of substrate uptake and product efflux transporters in biotechnology. We are also beginning to recognise that transporters are more promiscuous, and antiporter activity is much more widespread, than had been realised, and that such processes are adaptive (i.e., were selected by natural evolution). The purpose of the present review is to summarise the above, and to rehearse and update readers on recent developments. These developments lead us to retain and indeed to strengthen our contention that for transmembrane pharmaceutical drug transport "phospholipid bilayer transport is negligible".
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, UK;
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
- Mellizyme Biotechnology Ltd., IC1, Liverpool Science Park, Mount Pleasant, Liverpool L3 5TF, UK
| |
Collapse
|
5590
|
García‐Marín J, Griera M, Alajarín R, Rodríguez‐Puyol M, Rodríguez‐Puyol D, Vaquero JJ. A Computer-Driven Scaffold-Hopping Approach Generating New PTP1B Inhibitors from the Pyrrolo[1,2-a]quinoxaline Core. ChemMedChem 2021; 16:2895-2906. [PMID: 34137509 PMCID: PMC8518816 DOI: 10.1002/cmdc.202100338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Indexed: 11/06/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a very promising target for the treatment of metabolic disorders such as type II diabetes mellitus. Although it was validated as a promising target for this disease more than 30 years ago, as yet there is no drug in advanced clinical trials, and its biochemical mechanism and functions are still being studied. In the present study, based on our experience generating PTP1B inhibitors, we have developed and implemented a scaffold-hopping approach to vary the pyrrole ring of the pyrrolo[1,2-a]quinoxaline core, supported by extensive computational techniques aimed to explain the molecular interaction with PTP1B. Using a combination of docking, molecular dynamics and end-point free-energy calculations, we have rationally designed a hypothesis for new PTP1B inhibitors, supporting their recognition mechanism at a molecular level. After the design phase, we were able to easily synthesize proposed candidates and their evaluation against PTP1B was found to be in good concordance with our predictions. Moreover, the best candidates exhibited glucose uptake increments in cellulo model, thus confirming their utility for PTP1B inhibition and validating this approach for inhibitors design and molecules thus obtained.
Collapse
Affiliation(s)
- Javier García‐Marín
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá28805Alcalá de HenaresSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR)Universidad de AlcaláAlcalá de HenaresSpain
- Departamento de Química Biológica y EstructuralCentro de Investigaciones Biológicas Margarita Salas (CIB-CSIC)Calle Ramiro de Maeztu 928040MadridSpain
| | - Mercedes Griera
- Graphenano Medical Care, S.L.C/Pablo Casals, no. 13YeclaMurciaSpain
- Departamento de Biología de SistemasUniversidad de Alcalá28805Alcalá de HenaresSpain
| | - Ramón Alajarín
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá28805Alcalá de HenaresSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR)Universidad de AlcaláAlcalá de HenaresSpain
| | - Manuel Rodríguez‐Puyol
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Departamento de Biología de SistemasUniversidad de Alcalá28805Alcalá de HenaresSpain
| | - Diego Rodríguez‐Puyol
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Fundación de Investigación BiomédicaUnidad de Nefrología del Hospital Príncipe de Asturias yDepartamento de Medicina y Especialidades MédicasUniversidad de Alcalá28805Alcalá de HenaresSpain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química InorgánicaUniversidad de Alcalá28805Alcalá de HenaresSpain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Ctra. Colmenar Viejo, km. 910028034MadridSpain
- Instituto de Investigación Química Andrés Manuel del Río (IQAR)Universidad de AlcaláAlcalá de HenaresSpain
| |
Collapse
|
5591
|
Kim J, Park S, Min D, Kim W. Comprehensive Survey of Recent Drug Discovery Using Deep Learning. Int J Mol Sci 2021; 22:9983. [PMID: 34576146 PMCID: PMC8470987 DOI: 10.3390/ijms22189983] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Drug discovery based on artificial intelligence has been in the spotlight recently as it significantly reduces the time and cost required for developing novel drugs. With the advancement of deep learning (DL) technology and the growth of drug-related data, numerous deep-learning-based methodologies are emerging at all steps of drug development processes. In particular, pharmaceutical chemists have faced significant issues with regard to selecting and designing potential drugs for a target of interest to enter preclinical testing. The two major challenges are prediction of interactions between drugs and druggable targets and generation of novel molecular structures suitable for a target of interest. Therefore, we reviewed recent deep-learning applications in drug-target interaction (DTI) prediction and de novo drug design. In addition, we introduce a comprehensive summary of a variety of drug and protein representations, DL models, and commonly used benchmark datasets or tools for model training and testing. Finally, we present the remaining challenges for the promising future of DL-based DTI prediction and de novo drug design.
Collapse
Affiliation(s)
- Jintae Kim
- KaiPharm Co., Ltd., Seoul 03759, Korea; (J.K.); (S.P.)
| | - Sera Park
- KaiPharm Co., Ltd., Seoul 03759, Korea; (J.K.); (S.P.)
| | - Dongbo Min
- Computer Vision Lab, Department of Computer Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Wankyu Kim
- KaiPharm Co., Ltd., Seoul 03759, Korea; (J.K.); (S.P.)
- System Pharmacology Lab, Department of Life Sciences, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
5592
|
Sudagidan M, Yildiz G, Onen S, Al R, Temiz ŞN, Yurt MNZ, Tasbasi BB, Acar EE, Coban A, Aydin A, Dursun AD, Ozalp VC. Targeted mesoporous silica nanoparticles for improved inhibition of disinfectant resistant Listeria monocytogenes and lower environmental pollution. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126364. [PMID: 34329020 DOI: 10.1016/j.jhazmat.2021.126364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Benzalkonium chloride (BAC) is a common ingredient of disinfectants used for industrial, medical, food safety and domestic applications. It is a common pollutant detected in surface and wastewaters to induce adverse effects on Human health as well as aquatic and terrestrial life forms. Since disinfectant use is essential in combatting against microorganisms, the best approach to reduce ecotoxicity level is to restrict BAC use. We report here that encapsulation of BAC in mesoporous silica nanoparticles can provide an efficient strategy for inhibition of microbial activity with lower than usual concentrations of disinfectants. As a proof-of-concept, Listeria monocytogenes was evaluated for minimum inhibitory concentration (MIC) of nanomaterial encapsulated BAC. Aptamer molecular gate structures provided a specific targeting of the disinfectant to Listeria cells, leading to high BAC concentrations around bacterial cells, but significantly reduced amounts in total. This strategy allowed to inhibition of BAC resistant Listeria strains with 8 times less the usual disinfectant dose. BAC encapsulated and aptamer functionalized silica nanoparticles (AptBACNP) effectively killed only target bacteria L. monocytogenes, but not the non-target cells, Staphylococcus aureus or Escherichia coli. AptBACNP was not cytotoxic to Human cells as determined by in vitro viability assays.
Collapse
Affiliation(s)
- Mert Sudagidan
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Konya 42080, Turkey.
| | - Gulsah Yildiz
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Konya 42080, Turkey.
| | - Selin Onen
- Department of Biology, Medical School, Atilim University, 06830 Ankara, Turkey; Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara 06100, Turkey.
| | - Rabia Al
- Department of Molecular Biology and Genetics, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey.
| | | | | | - Behiye Busra Tasbasi
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Konya 42080, Turkey.
| | - Elif Esma Acar
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Konya 42080, Turkey.
| | - Aysen Coban
- Department of Gastronomy and Culinary Arts, Istanbul Gedik University, Kartal, 34876 Istanbul, Turkey.
| | - Ali Aydin
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey.
| | - Ali D Dursun
- Department of Physiology, Medical School, Atilim University, 06830 Ankara, Turkey.
| | - Veli C Ozalp
- Department of Biology, Medical School, Atilim University, 06830 Ankara, Turkey.
| |
Collapse
|
5593
|
Takahashi JA, Barbosa BVR, Lima MTNS, Cardoso PG, Contigli C, Pimenta LPS. Antiviral fungal metabolites and some insights into their contribution to the current COVID-19 pandemic. Bioorg Med Chem 2021; 46:116366. [PMID: 34438338 PMCID: PMC8363177 DOI: 10.1016/j.bmc.2021.116366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, which started in late 2019, drove the scientific community to conduct innovative research to contain the spread of the pandemic and to care for those already affected. Since then, the search for new drugs that are effective against the virus has been strengthened. Featuring a relatively low cost of production under well-defined methods of cultivation, fungi have been providing a diversity of antiviral metabolites with unprecedented chemical structures. In this review, we present viral RNA infections highlighting SARS-CoV-2 morphogenesis and the infectious cycle, the targets of known antiviral drugs, and current developments in this area such as drug repurposing. We also explored the metabolic adaptability of fungi during fermentation to produce metabolites active against RNA viruses, along with their chemical structures, and mechanisms of action. Finally, the state of the art of research on SARS-CoV-2 inhibitors of fungal origin is reported, highlighting the metabolites selected by docking studies.
Collapse
Affiliation(s)
- Jacqueline Aparecida Takahashi
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Bianca Vianna Rodrigues Barbosa
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| | - Matheus Thomaz Nogueira Silva Lima
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.
| | - Patrícia Gomes Cardoso
- Department of Biology, Universidade Federal de Lavras, Av. Dr. Sylvio Menicucci, 1001, CEP 37200-900 Lavras, MG, Brazil.
| | - Christiane Contigli
- Cell Biology Service, Research and Development Department, Fundação Ezequiel Dias, R. Conde Pereira Carneiro, 80, CEP 30510-010 Belo Horizonte, MG, Brazil
| | - Lúcia Pinheiro Santos Pimenta
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
5594
|
Zhang Y, Chen H, Zou M, Oerlemans R, Shao C, Ren Y, Zhang R, Huang X, Li G, Cong Y. Hypericin Inhibit Alpha-Coronavirus Replication by Targeting 3CL Protease. Viruses 2021; 13:v13091825. [PMID: 34578406 PMCID: PMC8473218 DOI: 10.3390/v13091825] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
The porcine epidemic diarrhea virus (PEDV) is an Alphacoronavirus (α-CoV) that causes high mortality in infected piglets, resulting in serious economic losses in the farming industry. Hypericin is a dianthrone compound that has been shown as an antiviral activity on several viruses. Here, we first evaluated the antiviral effect of hypericin in PEDV and found the viral replication and egression were significantly reduced with hypericin post-treatment. As hypericin has been shown in SARS-CoV-2 that it is bound to viral 3CLpro, we thus established a molecular docking between hypericin and PEDV 3CLpro using different software and found hypericin bound to 3CLpro through two pockets. These binding pockets were further verified by another docking between hypericin and PEDV 3CLpro pocket mutants, and the fluorescence resonance energy transfer (FRET) assay confirmed that hypericin inhibits the PEDV 3CLpro activity. Moreover, the alignments of α-CoV 3CLpro sequences or crystal structure revealed that the pockets mediating hypericin and PEDV 3CLpro binding were highly conserved, especially in transmissible gastroenteritis virus (TGEV). We then validated the anti-TGEV effect of hypericin through viral replication and egression. Overall, our results push forward that hypericin was for the first time shown to have an inhibitory effect on PEDV and TGEV by targeting 3CLpro, and it deserves further attention as not only a pan-anti-α-CoV compound but potentially also as a compound of other coronaviral infections.
Collapse
Affiliation(s)
- Yue Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.C.); (M.Z.); (C.S.); (R.Z.); (X.H.)
| | - Huijie Chen
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.C.); (M.Z.); (C.S.); (R.Z.); (X.H.)
- College of Pharmaceutical Engineering, Jilin Agriculture Science and Technology University, Jilin 132101, China
| | - Mengmeng Zou
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.C.); (M.Z.); (C.S.); (R.Z.); (X.H.)
| | - Rick Oerlemans
- Department of Drug Design, University of Groningen, 9713 AV Groningen, The Netherlands;
| | - Changhao Shao
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.C.); (M.Z.); (C.S.); (R.Z.); (X.H.)
| | - Yudong Ren
- Department of Computer Science and Technology, College of Electrical and Information Technology, Northeast Agricultural University, Harbin 150030, China;
| | - Ruili Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.C.); (M.Z.); (C.S.); (R.Z.); (X.H.)
| | - Xiaodan Huang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.C.); (M.Z.); (C.S.); (R.Z.); (X.H.)
| | - Guangxing Li
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.C.); (M.Z.); (C.S.); (R.Z.); (X.H.)
- Correspondence: (G.L.); (Y.C.)
| | - Yingying Cong
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Heilongjiang Key Laboratory for Animal and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China; (Y.Z.); (H.C.); (M.Z.); (C.S.); (R.Z.); (X.H.)
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
- Correspondence: (G.L.); (Y.C.)
| |
Collapse
|
5595
|
Orabi MAA, Zidan SAH, Sakagami H, Murakami Y, Ali AA, Alyami HS, Alshabi AM, Matsunami K. Antileishmanial and lung adenocarcinoma cell toxicity of Withania somnifera (Linn.) dunal root and fruit extracts. Nat Prod Res 2021; 36:4231-4237. [PMID: 34520289 DOI: 10.1080/14786419.2021.1973462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study aims to evaluate the anti-Leishmania major and the lung adenocarcinoma (A549) cytotoxicity of Withania somnifera root and fruit. The total extracts were obtained by homogenisation in aqueous MeOH, and the sub-extracts [n-hexane, ethyl acetate (EtOAc), n-butanol (n-BuOH), and methanol (MeOH)] were obtained by flash chromatography. The activity evaluation showed that n-BuOH sub-extracts from root and fruit exhibited noticeable antileishmanial promastigote properties. The n-hexane and EtOAc sub-extracts from both organs, and the MeOH sub-extract from the fruit exerted mild to moderate effects on the promastigotes. In-vitro growth-inhibitory test results on axenic amastigote and cytotoxicity testing on macrophages (RAW264.7), the parasite-host at the amastigote stage, revealed that the activity was mainly concentrated in the root EtOAc and n-BuOH sub-extracts and to a lesser extent the fruit MeOH and EtOAc, and the root n-hexane sub-extracts. Only the roots' EtOAc and n-BuOH sub-extracts demonstrated low cytotoxicity on the A549 cell line.
Collapse
Affiliation(s)
- Mohamed A A Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-branch, Assiut, Egypt
| | - Sabry A H Zidan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-branch, Assiut, Egypt.,Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), Sakado, Saitama, Japan
| | - Yukio Murakami
- Division of Oral Diagnosis and General Dentistry, Department of Diagnostic and Therapeutic Sciences, Meikai University School of Dentistry, Sakado, Japan
| | - Ashraf A Ali
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hamad S Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
5596
|
Prasher P, Sharma M. Medicinal chemistry of pyrophosphate mimics: A mini review. Drug Dev Res 2021; 83:3-15. [PMID: 34506652 DOI: 10.1002/ddr.21877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022]
Abstract
The pyrophosphate mimicking groups offer rational modification of the pyrophosphate-bearing natural substrates of the overexpressed enzymes that cause the onset of disease progression. Mainly, the modified substrate interacts differently with the enzyme active site eventually causing its deactivation, or provides the therapeutically active products at the completion of the catalytic cycle that contribute toward the inhibition of the target enzyme. Many of the pyrophosphate mimic-containing molecules serve as competitive or allosteric inhibitors of the target enzyme to achieve the desirable properties for the mitigation of the target enzyme's pathophysiology. This review presents an epigrammatic overview of the pyrophosphate mimics in medicinal chemistry.
Collapse
Affiliation(s)
- Parteek Prasher
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| | - Mousmee Sharma
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India.,Department of Chemistry, Uttaranchal University, Dehradun, India
| |
Collapse
|
5597
|
Hinchliffe P, Moreno DM, Rossi MA, Mojica MF, Martinez V, Villamil V, Spellberg B, Drusano GL, Banchio C, Mahler G, Bonomo RA, Vila AJ, Spencer J. 2-Mercaptomethyl Thiazolidines (MMTZs) Inhibit All Metallo-β-Lactamase Classes by Maintaining a Conserved Binding Mode. ACS Infect Dis 2021; 7:2697-2706. [PMID: 34355567 DOI: 10.1021/acsinfecdis.1c00194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metallo-β-lactamase (MBL) production in Gram-negative bacteria is an important contributor to β-lactam antibiotic resistance. Combining β-lactams with β-lactamase inhibitors (BLIs) is a validated route to overcoming resistance, but MBL inhibitors are not available in the clinic. On the basis of zinc utilization and sequence, MBLs are divided into three subclasses, B1, B2, and B3, whose differing active-site architectures hinder development of BLIs capable of "cross-class" MBL inhibition. We previously described 2-mercaptomethyl thiazolidines (MMTZs) as B1 MBL inhibitors (e.g., NDM-1) and here show that inhibition extends to the clinically relevant B2 (Sfh-I) and B3 (L1) enzymes. MMTZs inhibit purified MBLs in vitro (e.g., Sfh-I, Ki 0.16 μM) and potentiate β-lactam activity against producer strains. X-ray crystallography reveals that inhibition involves direct interaction of the MMTZ thiol with the mono- or dizinc centers of Sfh-I/L1, respectively. This is further enhanced by sulfur-π interactions with a conserved active site tryptophan. Computational studies reveal that the stereochemistry at chiral centers is critical, showing less potent MMTZ stereoisomers (up to 800-fold) as unable to replicate sulfur-π interactions in Sfh-I, largely through steric constraints in a compact active site. Furthermore, in silico replacement of the thiazolidine sulfur with oxygen (forming an oxazolidine) resulted in less favorable aromatic interactions with B2 MBLs, though the effect is less than that previously observed for the subclass B1 enzyme NDM-1. In the B3 enzyme L1, these effects are offset by additional MMTZ interactions with the protein main chain. MMTZs can therefore inhibit all MBL classes by maintaining conserved binding modes through different routes.
Collapse
Affiliation(s)
- Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences
Building, University Walk, Bristol BS8 1TD, U.K
| | - Diego M. Moreno
- Instituto de Química de Rosario (IQUIR, CONICET-UNR), Suipacha 570, S2002LRK Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | - Maria-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina
| | - Maria F. Mojica
- Infectious Diseases Department, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá 11001, DC Colombia
| | - Veronica Martinez
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo 11800, Uruguay
| | - Valentina Villamil
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo 11800, Uruguay
| | - Brad Spellberg
- Los Angeles County and University of Southern California (LAC + USC) Medical Center, Los Angeles, California 90033, United States
| | - George L. Drusano
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida 32827-7400, United States
| | - Claudia Banchio
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo 11800, Uruguay
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
- Medical Service, GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio 44106,United States
| | - Alejandro J. Vila
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences
Building, University Walk, Bristol BS8 1TD, U.K
| |
Collapse
|
5598
|
RAS specific protease induces irreversible growth arrest via p27 in several KRAS mutant colorectal cancer cell lines. Sci Rep 2021; 11:17925. [PMID: 34504197 PMCID: PMC8429734 DOI: 10.1038/s41598-021-97422-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Ras-specific proteases to degrade RAS within cancer cells are under active development as an innovative strategy to treat tumorigenesis. The naturally occurring biological toxin effector called RAS/RAP1-specific endopeptidase (RRSP) is known to cleave all RAS within a cell, including HRAS, KRAS, NRAS and mutant KRAS G13D. Yet, our understanding of the mechanisms by which RRSP drives growth inhibition are unknown. Here, we demonstrate, using isogenic mouse fibroblasts expressing a single isoform of RAS or mutant KRAS, that RRSP equally inactivates all isoforms of RAS as well as the major oncogenic KRAS mutants. To investigate how RAS processing might lead to varying outcomes in cell fate within cancer cells, we tested RRSP against four colorectal cancer cell lines with a range of cell fates. While cell lines highly susceptible to RRSP (HCT116 and SW1463) undergo apoptosis, RRSP treatment of GP5d and SW620 cells induces G1 cell cycle arrest. In some cell lines, growth effects were dictated by rescued expression of the tumor suppressor protein p27 (Kip1). The ability of RRSP to irreversibly inhibit cancer cell growth highlights the antitumor potential of RRSP, and further warrants investigation as a potential anti-tumor therapeutic.
Collapse
|
5599
|
Uliassi E, de Oliveira AS, de Camargo Nascente L, Romeiro LAS, Bolognesi ML. Cashew Nut Shell Liquid (CNSL) as a Source of Drugs for Alzheimer's Disease. Molecules 2021; 26:5441. [PMID: 34576912 PMCID: PMC8466601 DOI: 10.3390/molecules26185441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder with a multifaceted pathogenesis. This fact has long halted the development of effective anti-AD drugs. Recently, a therapeutic strategy based on the exploitation of Brazilian biodiversity was set with the aim of discovering new disease-modifying and safe drugs for AD. In this review, we will illustrate our efforts in developing new molecules derived from Brazilian cashew nut shell liquid (CNSL), a natural oil and a byproduct of cashew nut food processing, with a high content of phenolic lipids. The rational modification of their structures has emerged as a successful medicinal chemistry approach to the development of novel anti-AD lead candidates. The biological profile of the newly developed CNSL derivatives towards validated AD targets will be discussed together with the role of these molecular targets in the context of AD pathogenesis.
Collapse
Affiliation(s)
- Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy;
| | - Andressa Souza de Oliveira
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Luciana de Camargo Nascente
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Luiz Antonio Soares Romeiro
- Department of Pharmacy, Health Sciences Faculty, Campus Universitário Darcy Ribeiro, University of Brasília, Brasília 70910-900, DF, Brazil; (A.S.d.O.); (L.d.C.N.)
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy;
| |
Collapse
|
5600
|
Day DP, Mora Vargas JA, Burtoloso ACB. Direct Synthesis of α-Fluoro-α-Triazol-1-yl Ketones from Sulfoxonium Ylides: A One-Pot Approach. J Org Chem 2021; 86:12427-12435. [PMID: 34424699 DOI: 10.1021/acs.joc.1c01441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The work reported herein showcases a new route to access α-fluoro-α-triazol-1-yl ketones from sulfoxonium ylides via α-azido-α-fluoro ketone intermediates. In a one-pot, two-step sequence, the ketosulfoxonium reactant initially undergoes insertion of F+ and N3-, followed by a subsequent CuAAC reaction with arylacetylenes to install a 1,4-triazolo moiety. The approach allows for modification to both the sulfoxonium ylide and arylacetylene reactants. Fifteen examples have been reported, with yields ranging between 22% and 75%.
Collapse
Affiliation(s)
- David Philip Day
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | - Jorge Andrés Mora Vargas
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo CEP 13560-970, Brazil
| | | |
Collapse
|