551
|
Zhou X, Lu Z, Wang T, Huang Z, Zhu W, Miao Y. Plasma miRNAs in diagnosis and prognosis of pancreatic cancer: A miRNA expression analysis. Gene 2018; 673:181-193. [PMID: 29913239 DOI: 10.1016/j.gene.2018.06.037] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/12/2018] [Indexed: 02/06/2023]
Abstract
The differential expression of microRNAs (miRNAs) in plasma of pancreatic cancer (PC) patients may act as a diagnostic biomarker. A four-stage study was performed to identify plasma miRNAs with potential in detecting PC. Exiqon panels (20 PC vs. 10 normal controls (NCs)) were applied in the screening phase to obtain miRNA profiling. The identified miRNAs were further assessed in the training (40 PC vs. 40 NCs) and testing stages (112 PC vs. 116 NCs) with qRT-PCR assays. A six-miRNA signature including up-regulated miR-122-5p, miR-125b-5p, miR-192-5p, miR-193b-3p, miR-221-3p and miR-27b-3p was identified. The signature could accurately discriminate PC patients from NCs with areas under the receiver operating characteristic curve of 0.848, 0.833 and 0.937 for the training, testing and the external validation stage (41 PC vs. 50 NCs), respectively. The multivariate Cox regression analyses showed that down-regulated plasma miR-125b-5p could predict worse OS independent from late tumor stage and high CA19-9. All the six miRNAs except miR-122-5p showed high expression levels in PC tissues than those in matched normal tissues. MiR-122-5p and miR-193b-3p were up-regulated, while miR-221-3p was down-regulated in plasma exosomes from PC patients. Bioinformatics analysis demonstrated that the miRNAs might involve in several molecular pathways closely related with PC such as p53 signaling pathway, pancreatic cancer, TGF-beta signaling pathway and so on. In conclusion, we identified a six-miRNA signature in plasma which could act as a non-invasive biomarker in diagnosis and prognosis of PC. Plasma miR-125b-5p might act as an independent biomarker in predicting OS of PC patients.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China.
| | - Zipeng Lu
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China
| | - Tongshan Wang
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China
| | - Zebo Huang
- Department of Oncology, The Affiliated Hospital of Jiangnan University, 200 Huihe Road, Wuxi 214062, Jiangsu Province, PR China
| | - Wei Zhu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China.
| | - Yi Miao
- Pancreas Center, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu Province, PR China; Pancreas Institute, Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China.
| |
Collapse
|
552
|
Akkafa F, Koyuncu İ, Temiz E, Dagli H, Dïlmec F, Akbas H. miRNA-mediated apoptosis activation through TMEM 48 inhibition in A549 cell line. Biochem Biophys Res Commun 2018; 503:323-329. [PMID: 29906465 DOI: 10.1016/j.bbrc.2018.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 01/04/2023]
Abstract
Lung has critic function in gas exchange, supplying oxygen to all cells. Rapid metastasis and the high rate of mortality characterises lung cancer. There are two types of this disease, small cell and non-small cell, which differs from each other according to histopathologic features. To date, many therapeutic approaches have been developed to destroy this deadly type of cancer, which one of them is mRNA targeted therapies through miRNA. miRNAs are 19-25 base paired molecules be able to suppress and destruct mRNA and found to be involved in development and progression of lung cancer. Transmembrane Protein 48 (TMEM48) is localised on nuclear pore complex and plays critic roles in nuclear traffic. Known that TMEM48 gene overexpressed in non-small lung cancer cells. Growing TMEM48 suppressed therapeutic studies indicated that decreased TMEM48 level might reveal a therapeutic effect for non-small cell lung cancers. TMEM48 studies based on the same strategy of gene-silencing, however, to our knowledge, any report has been published evaluates TMEM48's regulation by miRNAs. We aimed to clarify if miR-421 might be therapeutic player for non-small cancer cell lines (A549), hereby we suppressed TMEM48 by miR-421 and performed advanced molecular tests. Consequently, we recorded that while miR-421 is significantly suppressing TMEM48 expression; it increased apoptotic and tumor suppressor players CASPASE 3, PTEN and TP53 in A549 line, which is consistent with Annexin V - PI results: 30,6% of A549 observed to be apoptotic - 68,5% of A549 was in GO/G1. Our study indicated that miR-421 can suppress TMEM48 so that leads the cells to apoptosis. But it is not entirely clear how miR-421 triggers apoptosis and whether it interacts with the other cellular death pathways in A549.
Collapse
Affiliation(s)
- Feridun Akkafa
- Faculty of Medicine, Department of Medical Biology, Harran University, Sanliurfa, Turkey.
| | - İsmail Koyuncu
- Faculty of Medicine, Department of Medical Biochemistry, Harran University, Sanlıurfa, Turkey.
| | - Ebru Temiz
- Faculty of Medicine, Department of Medical Biochemistry, Harran University, Sanlıurfa, Turkey.
| | - Hasan Dagli
- Faculty of Medicine, Department of Biochemistry, Sutcu Imam University, Kahramanmaras, Turkey.
| | - Fuat Dïlmec
- Faculty of Medicine, Department of Medical Biology, Harran University, Sanliurfa, Turkey.
| | - Halit Akbas
- Faculty of Medicine, Department of Medical Biology, Harran University, Sanliurfa, Turkey.
| |
Collapse
|
553
|
Le UT, Bronsert P, Picardo F, Riethdorf S, Haager B, Rylski B, Czerny M, Beyersdorf F, Wiesemann S, Pantel K, Passlick B, Kaifi JT, Schmid S. Intraoperative detection of circulating tumor cells in pulmonary venous blood during metastasectomy for colorectal lung metastases. Sci Rep 2018; 8:8751. [PMID: 29884810 PMCID: PMC5993733 DOI: 10.1038/s41598-018-26410-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/10/2018] [Indexed: 01/15/2023] Open
Abstract
Circulating tumor cells (CTC) have been studied extensively in various tumor types and are a well-established prognosticator in colorectal cancer (CRC). This is the first study to isolate CTC directly from the tumor outflow in secondary lung tumors. For this purpose in 24 patients with CRC who underwent pulmonary metastasectomy in curative intent blood was drawn intraoperatively from the pulmonary vein (tumor outflow). In 22 samples CTC-enumeration was performed using CellSieve-microfilters and immunohistochemical- and Giemsa-staining. Additionally 10 blood samples were analyzed using the CellSearch-System. We could isolate more CTC in pulmonary venous blood (total 41, range 0-15) than in samples taken from the periphery at the same time (total 6, range 0-5, p = 0.09). Tumor positive lymph nodes correlated with presence of CTC in pulmonary venous blood as in all cases CTC were present (p = 0.006). Our findings suggest a tumor cell release from pulmonary metastases in CRC and a correlation of CTC isolated from the tumor outflow with established negative prognostic markers in metastasized CRC. The presented data warrant further investigations regarding the significance of local tumor compartments when analyzing circulating markers and the possibility of tumor cell shedding from secondary lung tumors.
Collapse
Affiliation(s)
- Uyen-Thao Le
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Center - University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Francesco Picardo
- Laboratory of Molecular Medicine and Biotechnology, Campus Bio-Medico University of Rome, Rome, Italy
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Riethdorf
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt Haager
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bartosz Rylski
- Department of Cardiovascular Surgery, University Heart Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Czerny
- Department of Cardiovascular Surgery, University Heart Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Friedhelm Beyersdorf
- Department of Cardiovascular Surgery, University Heart Center Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Wiesemann
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Pantel
- Institute for Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernward Passlick
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany
- Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jussuf Thomas Kaifi
- Section for Thoracic Surgery, Hugh E. Stephenson Jr., MD, Department of Surgery, Ellis Fischel Cancer Center, University of Missouri, Columbia, USA
| | - Severin Schmid
- Department of Thoracic Surgery, Medical Center - University of Freiburg, Freiburg, Germany.
- Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
554
|
Zare A, Petrova A, Agoumi M, Amstrong H, Bigras G, Tonkin K, Wine E, Baksh S. RIPK2: New Elements in Modulating Inflammatory Breast Cancer Pathogenesis. Cancers (Basel) 2018; 10:cancers10060184. [PMID: 29874851 PMCID: PMC6025367 DOI: 10.3390/cancers10060184] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare and aggressive form of breast cancer that is associated with significantly high mortality. In spite of advances in IBC diagnoses, the prognosis is still poor compared to non-IBC. Due to the aggressive nature of the disease, we hypothesize that elevated levels of inflammatory mediators may drive tumorigenesis and metastasis in IBC patients. Utilizing IBC cell models and patient tumor samples, we can detect elevated NF-κB activity and hyperactivation of non-canonical drivers of NF-κB (nuclear factor kappaB)-directed inflammation such as tyrosine phosphorylated receptor-interacting protein kinase 2 (pY RIPK2), when compared to non-IBC cells or patients. Interestingly, elevated RIPK2 activity levels were present in a majority of pre-chemotherapy samples from IBC patients at the time of diagnosis to suggest that patients at diagnosis had molecular activation of NF-κB via RIPK2, a phenomenon we define as “molecular inflammation”. Surprisingly, chemotherapy did cause a significant increase in RIPK2 activity and thus molecular inflammation suggesting that chemotherapy does not resolve the molecular activation of NF-κB via RIPK2. This would impact on the metastatic potential of IBC cells. Indeed, we can demonstrate that RIPK2 activity correlated with advanced tumor, metastasis, and group stage as well as body mass index (BMI) to indicate that RIPK2 might be a useful prognostic marker for IBC and advanced stage breast cancer.
Collapse
Affiliation(s)
- Alaa Zare
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
| | - Alexandra Petrova
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
| | - Mehdi Agoumi
- Anatomic Pathologist at DynalifeDx, Diagnostic Laboratory Services; Department of Laboratory Medicine and Pathology, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2R3, Canada.
| | - Heather Amstrong
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
| | - Gilbert Bigras
- Cross Cancer Institute Department of Laboratory Medicine and Pathology, University of Alberta, 11560 University Ave, Edmonton, AB T6G 1Z2, Canada.
| | - Katia Tonkin
- Division of Medical Oncology, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada.
| | - Eytan Wine
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
| | - Shairaz Baksh
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
- Division of Medical Oncology, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada.
- Division of Experimental Oncology, Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada.
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2R7, Canada.
- Women and Children's Health Research Institute, Edmonton Clinic Health Academy (ECHA), University of Alberta, 4-081 11405 87 Avenue NW Edmonton, AB T6G 1C9, Canada.
| |
Collapse
|
555
|
Reed L, Edriss H, Nugent K. Gastric Ulceration and Bleeding with Hemodynamic Instability Caused by an Intragastric Balloon for Weight Loss. Clin Endosc 2018; 51:584-586. [PMID: 29852729 PMCID: PMC6283766 DOI: 10.5946/ce.2018.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/31/2018] [Indexed: 11/14/2022] Open
Abstract
Obesity in the United States is a medical crisis with many people attempting to lose weight with caloric restriction. Some patients choose minimally invasive weight loss solutions, such as intragastric balloon systems. These balloon systems were approved by the Federal Drug Administration (FDA) in 2015-2016 and have been considered safe, with minimal side effects. We report a patient with a two-day history of melena, abdominal pain, hypotension, and syncope which developed five months after placement of an intragastric balloon. Esophagogastroduodenoscopy with balloon removal revealed a small 8-mm gastric ulcer in the incisura. This gastric ulcer probably developed secondary to mechanical compression of the stomach mucosa by the gastric balloon which contained 900 mL of saline. The FDA is now investigating five deaths since 2016 associated with these second-generation balloons. Clinicians should be aware of these complications when evaluating patients with gastrointestinal complications, such as bleeding.
Collapse
Affiliation(s)
- Larrite Reed
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hawa Edriss
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
556
|
Ansari MO, Ahmad MF, Shadab G, Siddique HR. Superparamagnetic iron oxide nanoparticles based cancer theranostics: A double edge sword to fight against cancer. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
557
|
Mittra I, Pal K, Pancholi N, Shaikh A, Rane B, Tidke P, Kirolikar S, Khare NK, Agrawal K, Nagare H, Nair NK. Prevention of chemotherapy toxicity by agents that neutralize or degrade cell-free chromatin. Ann Oncol 2018; 28:2119-2127. [PMID: 28911066 DOI: 10.1093/annonc/mdx318] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Toxicity associated with chemotherapy is a major therapeutic challenge and is caused by chemotherapy-induced DNA damage and inflammation. We have recently reported that cell-free chromatin (cfCh) fragments released from dying cells can readily enter into healthy cells of the body to integrate into their genomes and induce DNA double-strand breaks, apoptosis and inflammation in them. We hypothesized that much of the toxicity of chemotherapy might be due to release of large quantities of cfCh from dying cells that could trigger an exaggerated DNA damage, apoptotic and inflammatory response in healthy cells over and above that caused by the drugs themselves. Methods We tested this hypothesis by administering cfCh neutralizing/degrading agents namely, anti-histone antibody complexed nanoparticles, DNase I and a novel DNA degrading agent-Resveratrol-Cu concurrently with five different chemotherapeutic agents to examine if chemotherapy-induced toxicity could be minimized. Results We observed (i) significant reduction in chemotherapy-induced surge of cfCh in blood; (ii) significant reduction in chemotherapy-induced surge of inflammatory cytokines CRP, IL-6, IFNγ and TNFα in blood; (iii) abolition of chemotherapy-induced tissue DNA damage (γH2AX), apoptosis (active caspase-3) and inflammation (NFκB and IL-6) in multiple organs and peripheral blood mononuclear cells; (iv) prevention of prolonged neutropenia following a single injection of adriamycin and (v) significant reduction in death following a lethal dose of adriamycin. Conclusion Our results suggest that toxicity of chemotherapy is caused to a large extent by cfCh released from dying cells and can be prevented by concurrent treatment with cfCh neutralizing/degrading agents.
Collapse
Affiliation(s)
- I Mittra
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Sector 22, Utsav Chowk - CISF Road, Kharghar, Navi Mumbai, Raigad, Maharashtra 410210, India
| | - K Pal
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Sector 22, Utsav Chowk - CISF Road, Kharghar, Navi Mumbai, Raigad, Maharashtra 410210, India
| | - N Pancholi
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Sector 22, Utsav Chowk - CISF Road, Kharghar, Navi Mumbai, Raigad, Maharashtra 410210, India
| | - A Shaikh
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Sector 22, Utsav Chowk - CISF Road, Kharghar, Navi Mumbai, Raigad, Maharashtra 410210, India
| | - B Rane
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Sector 22, Utsav Chowk - CISF Road, Kharghar, Navi Mumbai, Raigad, Maharashtra 410210, India
| | - P Tidke
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Sector 22, Utsav Chowk - CISF Road, Kharghar, Navi Mumbai, Raigad, Maharashtra 410210, India
| | - S Kirolikar
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Sector 22, Utsav Chowk - CISF Road, Kharghar, Navi Mumbai, Raigad, Maharashtra 410210, India
| | - N K Khare
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Sector 22, Utsav Chowk - CISF Road, Kharghar, Navi Mumbai, Raigad, Maharashtra 410210, India
| | - K Agrawal
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Sector 22, Utsav Chowk - CISF Road, Kharghar, Navi Mumbai, Raigad, Maharashtra 410210, India
| | - H Nagare
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Sector 22, Utsav Chowk - CISF Road, Kharghar, Navi Mumbai, Raigad, Maharashtra 410210, India
| | - N K Nair
- Translational Research Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Sector 22, Utsav Chowk - CISF Road, Kharghar, Navi Mumbai, Raigad, Maharashtra 410210, India
| |
Collapse
|
558
|
Inhibition of the CCL5/CCR5 Axis against the Progression of Gastric Cancer. Int J Mol Sci 2018; 19:ijms19051477. [PMID: 29772686 PMCID: PMC5983686 DOI: 10.3390/ijms19051477] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Despite the progress made in molecular and clinical research, patients with advanced-stage gastric cancer (GC) have a bad prognosis and very low survival rates. Furthermore, it is challenging to find the complex molecular mechanisms that are involved in the development of GC, its progression, and its resistance to therapy. The interactions of chemokines, also known as chemotactic cytokines, with their receptors regulate immune and inflammatory responses. However, updated research demonstrates that cancer cells subvert the normal chemokine role, transforming them into fundamental constituents of the tumor microenvironment (TME) with tumor-promoting effects. C-C chemokine ligand 5 (CCL5) is a chemotactic cytokine, and its expression and secretion are regulated in T cells. C-C chemokine receptor type 5 (CCR5) is expressed in T cells, macrophages, other leukocytes, and certain types of cancer cells. The interaction between CCL5 and CCR5 plays an active role in recruiting leukocytes into target sites. This review summarizes recent information on the role of the CCL5 chemokine and its receptor CCR5 in GC cell proliferation, metastasis formation, and in the building of an immunosuppressive TME. Moreover, it highlights the development of new therapeutic strategies to inhibit the CCL5/CCR5 axis in different ways and their possible clinical relevance in the treatment of GC.
Collapse
|
559
|
Cui H, Loftus KM, Noell CR, Solmaz SR. Identification of Cyclin-dependent Kinase 1 Specific Phosphorylation Sites by an In Vitro Kinase Assay. J Vis Exp 2018. [PMID: 29782014 DOI: 10.3791/57674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cyclin-dependent kinase 1 (Cdk1) is a master controller for the cell cycle in all eukaryotes and phosphorylates an estimated 8 - 13% of the proteome; however, the number of identified targets for Cdk1, particularly in human cells is still low. The identification of Cdk1-specific phosphorylation sites is important, as they provide mechanistic insights into how Cdk1 controls the cell cycle. Cell cycle regulation is critical for faithful chromosome segregation, and defects in this complicated process lead to chromosomal aberrations and cancer. Here, we describe an in vitro kinase assay that is used to identify Cdk1-specific phosphorylation sites. In this assay, a purified protein is phosphorylated in vitro by commercially available human Cdk1/cyclin B. Successful phosphorylation is confirmed by SDS-PAGE, and phosphorylation sites are subsequently identified by mass spectrometry. We also describe purification protocols that yield highly pure and homogeneous protein preparations suitable for the kinase assay, and a binding assay for the functional verification of the identified phosphorylation sites, which probes the interaction between a classical nuclear localization signal (cNLS) and its nuclear transport receptor karyopherin α. To aid with experimental design, we review approaches for the prediction of Cdk1-specific phosphorylation sites from protein sequences. Together these protocols present a very powerful approach that yields Cdk1-specific phosphorylation sites and enables mechanistic studies into how Cdk1 controls the cell cycle. Since this method relies on purified proteins, it can be applied to any model organism and yields reliable results, especially when combined with cell functional studies.
Collapse
Affiliation(s)
- Heying Cui
- Department of Chemistry, State University of New York at Binghamton
| | - Kyle M Loftus
- Department of Chemistry, State University of New York at Binghamton
| | - Crystal R Noell
- Department of Chemistry, State University of New York at Binghamton
| | - Sozanne R Solmaz
- Department of Chemistry, State University of New York at Binghamton;
| |
Collapse
|
560
|
Liu J, Zhao Y, Ge W, Zhang P, Liu X, Zhang W, Hao Y, Yu S, Li L, Chu M, Min L, Zhang H, Shen W. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways. Oncotarget 2018; 8:42673-42692. [PMID: 28487501 PMCID: PMC5522097 DOI: 10.18632/oncotarget.17349] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 01/01/2023] Open
Abstract
The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China.,Core Laboratories of Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yong Zhao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Pengfei Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xinqi Liu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Weidong Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yanan Hao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Shuai Yu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Meiqiang Chu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lingjiang Min
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
561
|
Abstract
Artifical Intelligence (AI) was reviewed with a focus on its potential applicability to radiation oncology. The improvement of process efficiencies and the prevention of errors were found to be the most significant contributions of AI to radiation oncology. It was found that the prevention of errors is most effective when data transfer processes were automated and operational decisions were based on logical or learned evaluations by the system. It was concluded that AI could greatly improve the efficiency and accuracy of radiation oncology operations.
Collapse
Affiliation(s)
| | - Georg A Weidlich
- Radiation Oncology, National Medical Physics and Dosimetry Comp., Inc
| |
Collapse
|
562
|
Dutta P, Sarkissyan M, Paico K, Wu Y, Vadgama JV. MCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasis. Breast Cancer Res Treat 2018; 170:477-486. [PMID: 29594759 PMCID: PMC6022526 DOI: 10.1007/s10549-018-4760-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/16/2018] [Indexed: 01/10/2023]
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer that lacks ER/PR and HER2 receptors. Hence, there is urgency in developing new or novel therapeutic strategies for treatment of TNBC. Our study shows that the Monocyte Chemoattractant Protein-1 (MCP-1) is a marker associated with TNBC and may play a key role in TNBC disease progression. Experimental design ELISA method was used to measure secreted MCP-1, and mRNA levels were determined by Real-time PCR in numerous cancer cell lines, representing various breast cancer subtypes. Cellular invasiveness was determined by Boyden chamber assay. Results Our data show that MCP-1 is upregulated in TNBC cell lines both transcriptionally as well as in secreted protein levels compared to ER-positive luminal cell line, MCF-7. Breast cancer patients, with Basal or Claudin-low subtypes, also showed high expression of MCP-1. MCP-1 treatment induced cell invasion in various breast cancer cell types, without affecting cell proliferation. Small molecule antagonists against Chemokine Receptor 2 (CCR2), cognate receptor for MCP-1 as well as the MAP kinase pathway inhibitor U0126 negatively affected MCP-1 induced MCF-7 cell invasion. This suggests that MCP-1-CCR2 axis may regulate invasiveness via the MAP Kinase pathway. Knocking down MCP-1 decreased cell invasion in TNBC cell line BT-549, along with downregulation of key epithelial to mesenchymal transition markers, N-cadherin and Vimentin. Conclusion Our study suggests that MCP-1 mediated pathways could be potential therapeutic targets for the treatment of TNBC, and could reduce cancer health disparities. Electronic supplementary material The online version of this article (10.1007/s10549-018-4760-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pranabananda Dutta
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA, 90059, USA
| | - Marianna Sarkissyan
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA, 90059, USA
| | - Kimberly Paico
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA, 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA, 90059, USA.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, 1731 East 120th Street, Los Angeles, CA, 90059, USA. .,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
563
|
MiR-675-5p supports hypoxia induced epithelial to mesenchymal transition in colon cancer cells. Oncotarget 2018; 8:24292-24302. [PMID: 28061476 PMCID: PMC5421847 DOI: 10.18632/oncotarget.14464] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/27/2016] [Indexed: 02/06/2023] Open
Abstract
The survival rates in colon cancer patients are inversely proportional to the number of lymph node metastases. The hypoxia-induced Epithelial to Mesenchymal Transition (EMT), driven by HIF1α, is known to be involved in cancer progression and metastasis. Recently, we have reported that miR-675-5p promotes glioma growth by stabilizing HIF1α; here, by use of the syngeneic cell lines we investigated the role of the miR-675-5p in colon cancer metastasis.Our results show that miR-675-5p, over expressed in metastatic colon cancer cells, participates to tumour progression by regulating HIF1α induced EMT. MiR-675-5p increases Snail transcription by a dual strategy: i) stabilizing the activity of the transcription factor HIF1α and ii) and inhibiting Snail's repressor DDB2 (Damage specific DNA Binding protein 2).Moreover, transcriptional analyses on specimens from colon cancer patients confirmed, in vivo, the correlation between miR-675-5p over-expression and metastasis, thus identifying miR-675-5p as a new marker for colon cancer progression and therefore a putative target for therapeutic strategies.
Collapse
|
564
|
Xu S, Yang Z, Jin P, Yang X, Li X, Wei X, Wang Y, Long S, Zhang T, Chen G, Sun C, Ma D, Gao Q. Metformin Suppresses Tumor Progression by Inactivating Stromal Fibroblasts in Ovarian Cancer. Mol Cancer Ther 2018; 17:1291-1302. [PMID: 29545331 DOI: 10.1158/1535-7163.mct-17-0927] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/21/2017] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Sen Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zongyuan Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Jin
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoting Li
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao Wei
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ya Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sixiang Long
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Taoran Zhang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Gang Chen
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chaoyang Sun
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ding Ma
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
565
|
González-Montoya M, Hernández-Ledesma B, Silván JM, Mora-Escobedo R, Martínez-Villaluenga C. Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chem 2018; 242:75-82. [PMID: 29037738 DOI: 10.1016/j.foodchem.2017.09.035] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/25/2017] [Accepted: 09/07/2017] [Indexed: 01/07/2023]
Abstract
The aim was to investigate the potential of germinated soybean proteins asa source of peptides with anticancer and anti-inflammatory activities produced after simulated gastrointestinal digestion. Protein concentrate from germinated soybean was hydrolysed with pepsin/pancreatin and fractionated by ultrafiltration. Whole digest and fractions>10, 5-10, and<5kDa caused cytotoxicity to Caco-2, HT-29, HCT-116 human colon cancer cells, and reduced inflammatory response caused by lipopolysaccharide in macrophages RAW 264.7. Antiproliferative and anti-inflammatory effects were generally higher in 5-10kDa fractions. This fraction was further purified by semi-preparative chromatography and characterised by HPLC-MS/MS. The most potent fraction was mainly composed of β-conglycinin and glycinin fragments rich in glutamine. This is the first report on the anti-cancer and anti-inflammatory effects of newly isolated and identified peptides from germinated soybean released during gastrointestinal digestion. These findings highlight the potential of germination as a process to obtain functional foods or nutraceuticals for colon cancer prevention.
Collapse
Affiliation(s)
- Marcela González-Montoya
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Wilfrido Massieu s/n., 07738 Ciudad de México, Mexico
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Jose Manuel Silván
- Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Rosalva Mora-Escobedo
- Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Wilfrido Massieu s/n., 07738 Ciudad de México, Mexico
| | | |
Collapse
|
566
|
Interactome analysis of transforming growth factor-β-activated kinase 1 in Helicobacter pylori-infected cells revealed novel regulators tripartite motif 28 and CDC37. Oncotarget 2018; 9:14366-14381. [PMID: 29581850 PMCID: PMC5865676 DOI: 10.18632/oncotarget.24544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 02/10/2018] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGFβ)-activated kinase 1 (TAK1) plays a central role in controlling the cellular pro-inflammatory response via the activation of the nuclear factor κB (NF-κB)- and mitogen-activated protein (MAP) kinases-dependent transcriptional programs. Here, we show that depletion of TAK1 and the TAK1-binding proteins TAB1 and TAB2 affects NF-κB, JNK and p38 phosphorylation and suppresses NF-κB activity in AGS cells infected with Helicobacter pylori or stimulated with the cytokines TNF and IL-1β. To increase our understanding of TAK1 regulation and function, we performed mass spectrometry (MS)-based TAK1 interactomics. In addition to the identification of known and novel TAK1 interacting proteins, including TRIM28, CDC37 and STOML2, analysis of the MS data revealed various post-translational modifications within the TAK1/TAB complex. By applying siRNAs, TRIM28 and CDC37 were found to regulate phosphorylations of TAK1, IκB kinases IKKα/IKKβ and MAP kinases, NF-κB transactivation activity and IL-8 expression in the infected epithelial cells.
Collapse
|
567
|
Epidermal Growth Factor Improves Intestinal Integrity and Survival in Murine Sepsis Following Chronic Alcohol Ingestion. Shock 2018; 47:184-192. [PMID: 27465753 DOI: 10.1097/shk.0000000000000709] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Epidermal growth factor (EGF) is a cytoprotective protein that improves survival in preclinical models of sepsis through its beneficial effects on intestinal integrity. Alcohol use disorder worsens intestinal integrity and is associated with increased morbidity and mortality in critical illness. We sought to determine whether chronic alcohol ingestion alters the host response to systemic administration of EGF in sepsis. Six-week-old FVB/N mice were randomized to receive 20% alcohol or water for 12 weeks. All mice then underwent cecal ligation and puncture to induce polymicrobial sepsis. Mice were then randomized to receive either intraperitoneal injection of EGF (150 μg/kg/day) or normal saline. Water-fed mice given EGF had decreased 7-day mortality compared with water-fed mice (18% vs. 55%). Alcohol-fed mice given EGF also had decreased 7-day mortality compared with alcohol-fed mice (48% vs. 79%). Notably, while systemic EGF improved absolute survival to a similar degree in both water-fed and alcohol-fed mice, mortality was significantly higher in alcohol+EGF mice compared with water+EGF mice. Compared with water-fed septic mice, alcohol-fed septic mice had worsened intestinal integrity with intestinal hyperpermeability, increased intestinal epithelial apoptosis, decreased proliferation and shorter villus length. Systemic administration of EGF to septic alcohol-fed mice decreased intestinal permeability compared with septic alcohol-fed mice given vehicle, with increased levels of the tight junction mediators claudin-5 and JAM-A. Systemic administration of EGF to septic alcohol-fed mice also decreased intestinal apoptosis with an improvement in the Bax/Bcl-2 ratio. EGF also improved both crypt proliferation and villus length in septic alcohol-fed mice. EGF administration resulted in lower levels of both pro- and anti-inflammatory cytokines monocyte chemoattractant protein-1, tumor necrosis factor, and interleukin 10 in alcohol-fed mice. EGF is therefore effective at improving both intestinal integrity and mortality following sepsis in mice with chronic alcohol ingestion. However, the efficacy of EGF in sepsis is blunted in the setting of chronic alcohol ingestion, as intestinal integrity and mortality in alcohol-fed mice given EGF improves animals to levels seen in water-fed mice given vehicle but does not approach levels seen in water-fed mice given EGF.
Collapse
|
568
|
Núñez C, Estévez SV, del Pilar Chantada M. Inorganic nanoparticles in diagnosis and treatment of breast cancer. J Biol Inorg Chem 2018; 23:331-345. [DOI: 10.1007/s00775-018-1542-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/04/2018] [Indexed: 12/26/2022]
|
569
|
Sonowal H, Pal P, Shukla K, Saxena A, Srivastava SK, Ramana KV. Aldose reductase inhibitor, fidarestat prevents doxorubicin-induced endothelial cell death and dysfunction. Biochem Pharmacol 2018; 150:181-190. [PMID: 29458045 DOI: 10.1016/j.bcp.2018.02.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/14/2018] [Indexed: 12/14/2022]
Abstract
Despite doxorubicin (Dox) being one of the most widely used chemotherapy agents for breast, blood and lung cancers, its use in colon cancer is limited due to increased drug resistance and severe cardiotoxic side effects that increase mortality associated with its use at high doses. Therefore, better adjuvant therapies are warranted to improve the chemotherapeutic efficacy and to decrease cardiotoxicity. We have recently shown that aldose reductase inhibitor, fidarestat, increases the Dox-induced colon cancer cell death and reduces cardiomyopathy. However, the efficacy of fidarestat in the prevention of Dox-induced endothelial dysfunction, a pathological event critical to cardiovascular complications, is not known. Here, we have examined the effect of fidarestat on Dox-induced endothelial cell toxicity and dysfunction in vitro and in vivo. Incubation of human umbilical vein endothelial cells (HUVECs) with Dox significantly increased the endothelial cell death, and pre-treatment of fidarestat prevented it. Further, fidarestat prevented the Dox-induced oxidative stress, formation of reactive oxygen species (ROS) and activation of Caspase-3 in HUVECs. Fidarestat also prevented Dox-induced monocyte adhesion to HUVECs and expression of ICAM-1 and VCAM-1. Fidarestat pre-treatment to HUVECs restored the Dox-induced decrease in the Nitric Oxide (NO)-levels and eNOS expression. Treatment of HUVECs with Dox caused a significant increase in the activation of NF-κB and expression of various inflammatory cytokines and chemokines which were prevented by fidarestat pre-treatment. Most importantly, fidarestat prevented the Dox-induced mouse cardiac cell hypertrophy and expression of eNOS, iNOS, and 3-Nitrotyrosine in the aorta tissues. Further, fidarestat blunted the Dox-induced expression of various inflammatory cytokines and chemokines in vivo. Thus, our results suggest that by preventing Dox-induced endothelial cytotoxicity and dysfunction, AR inhibitors could avert cardiotoxicity associated with anthracycline chemotherapy.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pabitra Pal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kirtikar Shukla
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashish Saxena
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
570
|
Zhao J, Xu J, Zhang R. SRPX2 regulates colon cancer cell metabolism by miR-192/215 via PI3K-Akt. Am J Transl Res 2018; 10:483-490. [PMID: 29511442 PMCID: PMC5835813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 02/07/2017] [Indexed: 06/08/2023]
Abstract
Colon cancer is one of common cancer in the world and glycolysis is one of the major problems in colon cancer therapy. MicroRNAs (miRNAs) involve in colon cancer progression. Sushi repeat-containing protein X-linked 2 (SRPX2) is associated with poor prognosis in some cancer patients, however, the role of SRPX2 including glycolytic metabolism regulated by miRNAs is unclear in colon cancer. So, the purpose of the present study is to elucidate the underlying mechanism in colon cancer metabolism mediated by SRPX2. Our results revealed that miR-192-5p (miR-192) and miR-215-5p (miR-215) inhibited glycolysis by regulating SRPX2 expression in colon cancer cells. We also found that miR-192 and miR-215 were both regulated by PI3K-Akt. Our results indicate that SRPX2 facilitates colon cancer cell glycolysis by miR-192 and miR-215, which are down-regulated by PI3K-Akt.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang, China
| | - Jian Xu
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang, China
| | - Rui Zhang
- Department of Colorectal Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & InstituteShenyang, China
| |
Collapse
|
571
|
Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer 2018; 1869:189-199. [PMID: 29408395 DOI: 10.1016/j.bbcan.2018.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/07/2023]
Abstract
Doxorubicin (DOX) is a widely used antineoplastic agent for a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, DOX exhibits a dose-related toxicity that results in life-threatening cardiomyopathy. In addition to the heart, there is evidence that DOX toxicity extends to other organs. This general toxicity seems to be related to mitochondrial network structural, molecular and functional impairments. Several countermeasures for these negative effects have been proposed, being physical exercise, not only one of the most effective non-pharmacologic strategy but also widely recommended as booster against cancer-related fatigue. It is widely accepted that mitochondria are critical sensors of tissue functionality, both modulated by DOX and exercise. Therefore, this review focuses on the current understanding of the mitochondrial-mediated mechanisms underlying the protective effect of exercise against DOX-induced toxicity, not only limited to the cardiac tissue, but also in other tissues such as skeletal muscle, liver and brain. We here analyze recent developments regarding the beneficial effects of exercise targeting mitochondrial responsive phenotypes against redox changes, mitochondrial bioenergetics, apoptotic, dynamics and quality control signalling affected by DOX treatment.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Psychology, Education and Sport, University Lusófona of Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | - P J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
| | - P I Moreira
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
572
|
Lü Y, Han B, Yu H, Cui Z, Li Z, Wang J. Berberine regulates the microRNA-21-ITGΒ4-PDCD4 axis and inhibits colon cancer viability. Oncol Lett 2018; 15:5971-5976. [PMID: 29564000 DOI: 10.3892/ol.2018.7997] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/16/2017] [Indexed: 12/12/2022] Open
Abstract
Berberine is sourced from multiple medicinal herb resources and is easy to extract. With the advantages of low price, safety and convenience, berberine may have potential for wide clinical use. The present study aimed to investigate whether berberine inhibited the viability of colon cancer and whether it regulated the three-gene network microRNA (miR)-21-integrin β4 (ITGβ4)-programmed cell death 4 (PDCD4). It was demonstrated that berberine treatment suppressed colon cancer cell viability, and induced apoptosis and activated caspase-3 activity in the human colon carcinoma HCT116 cell line. Berberine inhibited miR-21 expression and promoted ITGβ4 and PDCD4 protein expression in the HCT116 cell line. Overexpression of miR-21 reduced the anti-cancer effects of berberine on cell viability, apoptosis rate and caspase-3 activity of the HCT116 cell line. However, it was revealed that the overexpression of miR-21 also suppressed ITGβ4 and PDCD4 protein expression in the HCT116 cell line. In conclusion, miR-21, ITGβ4 and PDCD4 are involved in the anti-cancer effects of berberine on cell viability and apoptosis in the HCT116 cell line.
Collapse
Affiliation(s)
- Yanfeng Lü
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Bingbing Han
- Microcirculation Laboratory, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Hualong Yu
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhenghua Cui
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Zhiwen Li
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jianxin Wang
- Department of Anoproctology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
573
|
ADAR1 prevents small intestinal injury from inflammation in a murine model of sepsis. Cytokine 2018; 104:30-37. [PMID: 29414324 DOI: 10.1016/j.cyto.2018.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1), a double-stranded RNA-editing enzyme that converts adenosine (A) to inosine (I), has been identified as a modulator of immune responses. However, the role of ADAR1 in small intestinal homeostasis during sepsis remains unclear. In this study, we examined the role of ADAR1 on intestinal inflammation in a murine model of sepsis. We found that ADAR1 was highly expressed in "septic" macrophages and small intestinal tissue of septic mice. Deletion of ADAR1 in "septic" macrophages led to rapid apoptosis. In addition, suppression of ADAR1 in "septic" macrophages significantly enhanced inflammation, while over-expression of ADAR1 significantly suppressed the level of inflammatory cytokines. Furthermore, suppression of ADAR1 in septic mice significantly enhanced inflammation and intestinal damage, while enhanced ADAR1 expression resulted in reduced damage and inflammation. Finally, over-expression of ADAR1 improved survival of septic mice. In conclusion, we have identified a novel ADAR1 protective effect for maintaining intestinal homeostasis. Our findings may provide a new targeted therapy for sepsis treatment.
Collapse
|
574
|
Tariq R, Weatherly R, Kammer P, Pardi DS, Khanna S. Donor Screening Experience for Fecal Microbiota Transplantation in Patients With Recurrent C. difficile Infection. J Clin Gastroenterol 2018; 52:146-150. [PMID: 27984397 DOI: 10.1097/mcg.0000000000000768] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GOALS To evaluate our experience with stool donor recruitment, screening, retention, and donor perception for fecal microbiota transplantation (FMT). BACKGROUND Multiply recurrent Clostridium difficile infection is being increasingly managed with FMT from donor stools. However, donor selection and recruitment is challenging due to lack of standard evidence-based guidelines, donor exclusion criteria, frequency of screening and donor commitment. METHODS Data on donors screened using institutional guidelines with history, blood and stool testing and their perspectives on donation were analyzed. RESULTS Overall 42 potential donors (21 known and 21 standard) were prescreened. Of known donors (median age 34 y, 66.6% female), none failed prescreening, blood or stool tests. Twelve standard donors (57%) failed prescreening based on history (depression, diarrhea, autoimmune disease, recent antibiotic exposure, colon polyps, pregnancy). Nine (median age 35 y, 44.4% female) passed blood and stool testing. On repeat screening, 3 were excluded (2-positive stool shiga toxin (asymptomatic), 1-pregnancy). One donor opted out and 5 became long-term donors; 3 have donated >50 times and 2 have donated >25 times. On the basis of donor perception questionnaire, most standard donors were aware of FMT for C. difficile infection as a treatment option and would not consider 3-monthly blood and stool testing inconvenient. CONCLUSIONS A significant proportion of healthy individuals who volunteered to become a standard donor failed prescreening and were not subjected to blood and stool testing. Repeat testing for asymptomatic donors may be a barrier to donor retention. Universal guidelines are needed to develop strategies to facilitate donor screening.
Collapse
Affiliation(s)
- Raseen Tariq
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | | | | | | |
Collapse
|
575
|
Ramu A, Kathiresan S, Ramadoss H, Nallu A, Kaliyan R, Azamuthu T. Gramine attenuates EGFR-mediated inflammation and cell proliferation in oral carcinogenesis via regulation of NF-κB and STAT3 signaling. Biomed Pharmacother 2018; 98:523-530. [PMID: 29287200 DOI: 10.1016/j.biopha.2017.12.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 12/03/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
|
576
|
Lu C, Wang H, Chen S, Yang R, Li H, Zhang G. Baicalein inhibits cell growth and increases cisplatin sensitivity of A549 and H460 cells via miR-424-3p and targeting PTEN/PI3K/Akt pathway. J Cell Mol Med 2018; 22:2478-2487. [PMID: 29392841 PMCID: PMC5867147 DOI: 10.1111/jcmm.13556] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of death in individuals with malignant disease. Non‐small‐cell lung cancer (NSCLC) is the most common type of lung cancer, and chemotherapy drugs such as cisplatin are the most widely used treatment for this disease. Baicalein is a purified flavonoid compound that has been reported to inhibit cancer cell growth and metastasis and increase sensitization to chemotherapeutic drugs via different pathways. Therefore, we assessed the effects of baicalein on the proliferation, apoptosis and cisplatin sensitivity in the NSCLC A549 and H460 cell lines and determined the pathways through which baicalein exerts its effects. Baicalein was slightly toxic to normal human bronchial NHBE cells but inhibited growth, induced apoptosis and increased cisplatin sensitivity in A549 and H460 cells. Baicalein down‐regulated miR‐424‐3p, up‐regulated PTEN expression and down‐regulated expression of PI3K and p‐Akt in A549 and H460 cells. Dual‐luciferase reporter assay demonstrated that PTEN is a target gene of miR‐424‐3p, and overexpression of miR‐424‐3p or silencing of PTEN partially attenuated the effects of baicalein on A549 and H460 cells. Taken together, we concluded that baicalein inhibits cell growth and increases cisplatin sensitivity to A549 and H460 cells via down‐regulation of miR‐424‐3p and targeting the PTEN/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Chunya Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huaqi Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shanshan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Yang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
577
|
Abstract
Purpose: Clinical provider peer review (CPPR) is a process for evaluating a patient's experience in encounters of care. It is part of ongoing professional practice evaluation and focused professional practice evaluation—important contributors to provider credentialing and privileging. Critical access hospitals are hindered in CPPR by having a limited number of providers, shortages of staff resources, and relationships among staff members that make unbiased review difficult. Small departments within larger institutions may face similar challenges. Methods: A CPPR process created at Mayo Clinic Health System is described. It involved a case review questionnaire built on the Institute of Medicine “Six Aims for Changing the Health Care System,” a standardized intervention algorithm and tracking tool. Outcomes: During 2007 through 2014, a total of 994 cases were reviewed; 31% led to provider dialog and education or intervention. Findings were applied to core measure processes with success rate going from 87% to 97%. Changes were adopted in end-of-life care, contributing to a 50% reduction in all-cause mortality rate. Conclusions: Providing peer review tools to a critical access hospital can keep peer review within a group with knowledge of the individual provider's practice and can make process improvement the everyday work of those involved.
Collapse
|
578
|
Liu Z, Shi Y, Na Y, Zhang Q, Cao S, Duan X, Zhang X, Yang H, Jin T, Li Y. Genetic polymorphisms in TNIP1 increase the risk of gastric carcinoma. Oncotarget 2018; 7:40500-40507. [PMID: 27250029 PMCID: PMC5130023 DOI: 10.18632/oncotarget.9637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/13/2016] [Indexed: 12/31/2022] Open
Abstract
The distribution and levels of TNIP1 in malignant and normal gastric mucosa are different, but it is not known whether TNIP1 polymorphisms are related to gastric carcinogenesis. To assess the association between four TNIP1 SNPs (rs3792792, rs4958881, rs7708392, rs10036748) and carcinogenesis, we used Sequenom Mass-ARRAY technology to determine the genotypes of 302 gastric carcinoma patients and 300 healthy controls in a Northwest Chinese Han population. These data were then compared using the Chi-square test/Fisher's exact test, genetic model analysis, and haplotype analysis. Odds ratios (OR) and 95% confidence intervals (CI) were used to evaluate the correlation. We observed that patients with the "G" allele of rs7708392 and the "C" allele of rs10036748 showed an increased risk of gastric carcinoma (OR= 1.335, 95%CI: 1.021-1.745, P= 0.035; OR= 1.358, 95%CI: 1.039-1.774, P= 0.025, respectively). Conversely, the haplotype "CT" of TNIP1 (rs7708392-rs10036748) may act as a genetic protective factor for gastric carcinoma (adjusted OR= 0.731, 95%CI: 0.552-0.970, P= 0.030). Our results are the first to suggest that genetic variation in TNIP1 gene is associated with gastric carcinoma, though, this finding must be confirmed in other populations with larger sample size.
Collapse
Affiliation(s)
- Zhao Liu
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China.,Department of Surgery, Xi'an Chest Hospital, Xi'an TB&Thoracic Tumor Hospital, Xi'an 710100, China
| | - Yuting Shi
- Department of Medical Oncology, Graduate School of Inner Mongolia Medical University, Hohhot 010000, China
| | - Yuyan Na
- Department of Pediatric Orthopedics, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010030, China
| | - Qi Zhang
- Department of Medical, Xi'an Chest Hospital, Xi'an TB&Thoracic Tumor Hospital, Xi'an 710100, China
| | - Sizhe Cao
- Department of Medical, Xi'an Chest Hospital, Xi'an TB&Thoracic Tumor Hospital, Xi'an 710100, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Province People's Hospital, Xi'an 710001, China
| | - Xiyang Zhang
- Department of Biochemistry, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Hua Yang
- Department of Biochemistry, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Tianbo Jin
- Department of Biochemistry, School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yiming Li
- Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
579
|
Enhanced and Selective Antiproliferative Activity of Methotrexate-Functionalized-Nanocapsules to Human Breast Cancer Cells (MCF-7). NANOMATERIALS 2018; 8:nano8010024. [PMID: 29300349 PMCID: PMC5791111 DOI: 10.3390/nano8010024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 02/06/2023]
Abstract
Methotrexate is a folic acid antagonist and its incorporation into nanoformulations is a promising strategy to increase the drug antiproliferative effect on human breast cancer cells by overexpressing folate receptors. To evaluate the efficiency and selectivity of nanoformulations containing methotrexate and its diethyl ester derivative, using two mechanisms of drug incorporation (encapsulation and surface functionalization) in the in vitro cellular uptake and antiproliferative activity in non-tumoral immortalized human keratinocytes (HaCaT) and in human breast carcinoma cells (MCF-7). Methotrexate and its diethyl ester derivative were incorporated into multiwall lipid-core nanocapsules with hydrodynamic diameters lower than 160 nm and higher drug incorporation efficiency. The nanoformulations were applied to semiconfluent HaCaT or MCF-7 cells. After 24 h, the nanocapsules were internalized into HaCaT and MCF-7 cells; however, no significant difference was observed between the nanoformulations in HaCaT (low expression of folate receptors), while they showed significantly higher cellular uptakes than the blank-nanoformulation in MCF-7, which was the highest uptakes observed for the drug functionalized-nanocapsules. No antiproliferative activity was observed in HaCaT culture, whereas drug-containing nanoformulations showed antiproliferative activity against MCF-7 cells. The effect was higher for drug-surface functionalized nanocapsules. In conclusion, methotrexate-functionalized-nanocapsules showed enhanced and selective antiproliferative activity to human breast cancer cells (MCF-7) being promising products for further in vivo pre-clinical evaluations.
Collapse
|
580
|
Opoku-Temeng C, Dayal N, Hernandez DE, Naganna N, Sintim HO. Tetrahydro-3H-pyrazolo[4,3-a]phenanthridine-based CDK inhibitor. Chem Commun (Camb) 2018; 54:4521-4524. [PMID: 29629444 DOI: 10.1039/c8cc01154k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinases have emerged as important targets for cancer therapy.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Chemistry Department
- Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
| | - Neetu Dayal
- Chemistry Department
- Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
| | - Delmis E. Hernandez
- Chemistry Department
- Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
| | - N. Naganna
- Chemistry Department
- Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
| | - Herman O. Sintim
- Chemistry Department
- Institute for Drug Discovery
- Purdue University
- West Lafayette
- USA
| |
Collapse
|
581
|
Chen G, Zhu L, Yang Y, Long Y, Li X, Wang Y. Prognostic Role of Neutrophil to Lymphocyte Ratio in Ovarian Cancer: A Meta-Analysis. Technol Cancer Res Treat 2018; 17:1533033818791500. [PMID: 30145940 PMCID: PMC6111397 DOI: 10.1177/1533033818791500] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The aim of the study was to investigate the prognostic role of neutrophil to lymphocyte ratio in ovarian cancer. Growing number of articles reported the relationship between neutrophil to lymphocyte ratio and prognosis in ovarian cancer, but the results remains inconclusive. The meta-analysis was conducted to analyze the association of pretreatment neutrophil to lymphocyte ratio with overall survival and progression-free survival. METHODS We performed a systematic literature research of PubMed, EMBASE, Medline, and Cochrane library for relevant studies up to October 8, 2017. The quality of included studies was assessed by the Newcastle-Ottawa Quality Assessment Scale. The hazard ratio and corresponding 95% confidence intervals were calculated. We checked the heterogeneity by the Q test and Higgins I-squared statistic. Begg funnel plot and Egger linear regression test were also applied for ascertain publication bias. All of the statistical analyses were performed using STATA version 12.0. RESULTS A total of 12 studies with 4046 patients were included in our study. The results indicated that depressed neutrophil to lymphocyte ratio was significantly correlated with higher overall survival (hazard ratio = 1.409, 95% confidence intervals = 1.112-1.786, P = .005) and progression-free survival (hazard ratio = 1.523, 95% confidence intervals = 1.187-1.955, P = .001) in ovarian cancer. Subgroup analysis by ethnicity of overall survival and progression-free survival showed that the prognostic effect of neutrophil to lymphocyte ratio was found both in Asians and Caucasians. CONCLUSION Patients with depressed neutrophil to lymphocyte ratio had a higher overall survival and progression-free survival in ovarian cancer. This meta-analysis provided neutrophil to lymphocyte ratio as an available predictor of overall survival and progression-free survival for patients with ovarian cancer.
Collapse
Affiliation(s)
- Gaowen Chen
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical
University, Guangzhou, Guangdong, China
| | - Lin Zhu
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong,
China
| | - Yulu Yang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong,
China
| | - Yusheng Long
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong,
China
| | - Xiangyuan Li
- Department of Reproductive Medical Center, Women and Children Hospital of
Guangdong Province, Guangzhou, Guangdong, China
| | - Yifeng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical
University, Guangzhou, Guangdong, China
| |
Collapse
|
582
|
Validation of inflammation-based prognostic models in patients with hepatitis B-associated hepatocellular carcinoma: a retrospective observational study. Eur J Gastroenterol Hepatol 2018; 30:60-70. [PMID: 29189392 DOI: 10.1097/meg.0000000000001021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND OBJECTIVE The objective of this study was to investigate the prognostic significance of several inflammation-based models in hepatitis B-associated hepatocellular carcinoma (HCC). PATIENTS AND METHODS We retrospectively reviewed 470 cases of hepatitis B-associated HCC. Preoperative data were collected to calculate the inflammation-based markers, including systemic immune-inflammation index (neutrophil×platelets/lymphocyte), platelets-to-lymphocyte ratio, and neutrophil-to-lymphocyte ratio (NLR). Overall survival and recurrence-free survival were estimated by the Kaplan-Meier method and Cox analysis. RESULTS During a median follow-up time of 29 months, 34.0% (160/470) of patients died and 36.0% (169/470) experienced recurrence. Compared with patients with lower scores of inflammation models, patients in the higher group had larger tumor diameter and higher risk of vascular invasion (both P<0.05). Multivariate analysis revealed that age, tumor size, platelets-to-lymphocyte ratio, NLR, and systemic immune-inflammation index were the independent predictors for both overall survival and recurrence-free survival. Furthermore, the combination of tumor size and NLR showed a significantly better discrimination ability for survival (C-index=0.716, 95% confidence interval: 0.664-0.768) than both Barcelona Clinic Liver Cancer and Cancer of Liver Italian Program. CONCLUSION The inflammation-based markers, in particular the combination of NLR with tumor size, are effective tools for assessing prognosis in hepatitis B-associated HCC.
Collapse
|
583
|
Shirafkan N, Mansoori B, Mohammadi A, Shomali N, Ghasbi M, Baradaran B. MicroRNAs as novel biomarkers for colorectal cancer: New outlooks. Biomed Pharmacother 2018; 97:1319-1330. [DOI: 10.1016/j.biopha.2017.11.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/04/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
|
584
|
Duarte-Chavez R, Wojda TR, Zanders TB, Geme B, Fioravanti G, Stawicki SP. Early Results of Fecal Microbial Transplantation Protocol Implementation at a Community-based University Hospital. J Glob Infect Dis 2018; 10:47-57. [PMID: 29910564 PMCID: PMC5987372 DOI: 10.4103/jgid.jgid_145_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Introduction: Clostridium difficile (CD) is a serious and increasingly prevalent healthcare-associated infection. The pathogenesis of CD infection (CDI) involves the acquisition of CD with a concurrent disruption of the native gut flora. Antibiotics are a major risk although other contributing factors have also been identified. Clinical management combines discontinuation of the offending antibiotic, initiation of CD-specific antibiotic therapy, probiotic agent use, fecal microbiota transplantation (FMT), and surgery as the “last resort” option. The aim of this study is to review short-term clinical results following the implementation of FMT protocol (FMTP) at our community-based university hospital. Methods: After obtaining Institutional Review Board and Infection Control Committee approvals, we implemented an institution-wide FMTP for patients diagnosed with CDI. Prospective tracking of all patients receiving FMT between July 1, 2015, and February 1, 2017, was conducted using REDCap™ electronic data capture system. According to the FMTP, indications for FMT included (a) three or more CDI recurrences, (b) two or more hospital admissions with severe CDI, or (c) first episode of complicated CDI (CCDI). Risk factors for initial infection and for treatment failure were assessed. Patients were followed for at least 3 months to monitor for cure/failure, relapse, and side effects. Frozen 250 mL FMT samples were acquired from OpenBiome (Somerville, MA, USA). After 4 h of thawing, the liquid suspension was applied using colonoscopy, beginning with terminal ileum and proceeding distally toward mid-transverse colon. Monitored clinical parameters included disease severity (Hines VA CDI Severity Score or HVCSS), concomitant medications, number of FMT treatments, non-FMT therapies, cure rates, and mortality. Descriptive statistics were utilized to outline the study results. Results: A total of 35 patients (mean age 58.5 years, 69% female) were analyzed, with FMT-attributable primary cure achieved in 30/35 (86%) cases. Within this subgroup, 2/30 (6.7%) patients recurred and were subsequently cured with long-term oral vancomycin. Among five primary FMT failures (14% total sample), 3 (60%) achieved medical cure with long-term oral vancomycin therapy and 2 (40%) required colectomy. For the seven patients who either failed FMT or recurred, long-term vancomycin therapy was curative in all but two cases. For patients with severe CDI (HVCSS ≥3), primary and overall cure rates were 6/10 (60%) and 8/10 (80%), respectively. Patients with CCDI (n = 4) had higher HVCSS (4 vs. 3) and a mortality of 25%. Characteristics of patients who failed initial FMT included older age (70 vs. 57 years), female sex (80% vs. 67%), severe CDI (80% vs. 13%), and active opioid use during the initial infection (60% vs. 37%) and at the time of FMT (60% vs. 27%). The most commonly reported side effect of FMT was loose stools. Conclusions: This pilot study supports the efficacy and safety of FMT administration for CDI in the setting of a community-based university hospital. Following FMTP implementation, primary (86%) and overall (94%) nonsurgical cure rates were similar to those reported in other studies. The potential role of opioids as a modulator of CDI warrants further clinical investigation.
Collapse
Affiliation(s)
- Rodrigo Duarte-Chavez
- Department of Internal Medicine, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Thomas R Wojda
- Department of Family Medicine, Warren Hospital, St. Luke's University Health Network, Phillipsburg, NJ, USA
| | - Thomas B Zanders
- Division of Pulmonary/Critical Care Medicine, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Berhanu Geme
- Division of Gastroenterology, St. Luke's University Health Network, Bethlehem, PA, USA
| | - Gloria Fioravanti
- Department of Internal Medicine, St. Luke's University Health Network, Bethlehem, PA, USA
| | | |
Collapse
|
585
|
Lawson ND, Boyd JW. Do state physician health programs encourage referrals that violate the Americans with Disabilities Act? INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2018; 56:65-70. [PMID: 29701601 DOI: 10.1016/j.ijlp.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 06/08/2023]
Abstract
The websites of many physician health programs provide lists describing signs of impairment or indications to refer physician-employees for evaluation and possible treatment. This study aimed (1) to determine how many of these descriptions likely provide physicians' employers with sufficient evidence to legally request mental health examinations under the general regulations of the Americans with Disabilities Act (ADA); and (2) to find out who they described. The authors applied US Equal Employment Opportunity Commission guidance documents and sought expert legal advice to evaluate the descriptions for their consistency with the ADA. They used directed content analysis to review and code these descriptions into categories. Very few, if any, of the 571 descriptions appeared to provide sufficient evidence for employers to request an examination under the ADA. About 14%, however, could refer to physicians attempting to defend themselves, assert their ADA rights, or otherwise complain about the hospital; and 27% either described physicians who complain or else had discriminatory effects in one of several different ways. Leaders within the medical field should ensure that their policies and state laws pertaining to physician impairment comply with and incorporate the language of the ADA. They should also reevaluate the functions of these policies, laws, and physician health programs, and the implications for patient safety, physician wellness, suicide, and other important issues.
Collapse
Affiliation(s)
| | - J Wesley Boyd
- Center for Bioethics, Harvard Medical School, United States; Department of Psychiatry, Cambridge Health Alliance/Harvard Medical School, United States.
| |
Collapse
|
586
|
Mentoor I, Engelbrecht AM, van Jaarsveld PJ, Nell T. Chemoresistance: Intricate Interplay Between Breast Tumor Cells and Adipocytes in the Tumor Microenvironment. Front Endocrinol (Lausanne) 2018; 9:758. [PMID: 30619088 PMCID: PMC6297254 DOI: 10.3389/fendo.2018.00758] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Excess adipose tissue is a hallmark of an overweight and/or obese state as well as a primary risk factor for breast cancer development and progression. In an overweight/obese state adipose tissue becomes dysfunctional due to rapid hypertrophy, hyperplasia, and immune cell infiltration which is associated with sustained low-grade inflammation originating from dysfunctional adipokine synthesis. Evidence also supports the role of excess adipose tissue (overweight/obesity) as a casual factor for the development of chemotherapeutic drug resistance. Obesity-mediated effects/modifications may contribute to chemotherapeutic drug resistance by altering drug pharmacokinetics, inducing chronic inflammation, as well as altering tumor-associated adipocyte adipokine secretion. Adipocytes in the breast tumor microenvironment enhance breast tumor cell survival and decrease the efficacy of chemotherapeutic agents, resulting in chemotherapeutic resistance. A well-know chemotherapeutic agent, doxorubicin, has shown to negatively impact adipose tissue homeostasis, affecting adipose tissue/adipocyte functionality and storage. Here, it is implied that doxorubicin disrupts adipose tissue homeostasis affecting the functionality of adipose tissue/adipocytes. Although evidence on the effects of doxorubicin on adipose tissue/adipocytes under obesogenic conditions are lacking, this narrative review explores the potential role of obesity in breast cancer progression and treatment resistance with inflammation as an underlying mechanism.
Collapse
Affiliation(s)
- Ilze Mentoor
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Paul J. van Jaarsveld
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Theo Nell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Theo Nell
| |
Collapse
|
587
|
Robb CM, Kour S, Contreras JI, Agarwal E, Barger CJ, Rana S, Sonawane Y, Neilsen BK, Taylor M, Kizhake S, Thakare RN, Chowdhury S, Wang J, Black JD, Hollingsworth MA, Brattain MG, Natarajan A. Characterization of CDK(5) inhibitor, 20-223 (aka CP668863) for colorectal cancer therapy. Oncotarget 2017; 9:5216-5232. [PMID: 29435174 PMCID: PMC5797045 DOI: 10.18632/oncotarget.23749] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/10/2017] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer related deaths in the United States. Currently, there are limited therapeutic options for patients suffering from CRC, none of which focus on the cell signaling mechanisms controlled by the popular kinase family, cyclin dependent kinases (CDKs). Here we evaluate a Pfizer developed compound, CP668863, that inhibits cyclin-dependent kinase 5 (CDK5) in neurodegenerative disorders. CDK5 has been implicated in a number of cancers, most recently as an oncogene in colorectal cancers. Our lab synthesized and characterized CP668863 - now called 20-223. In our established colorectal cancer xenograft model, 20-223 reduced tumor growth and tumor weight indicating its value as a potential anti-CRC agent. We subjected 20-223 to a series of cell-free and cell-based studies to understand the mechanism of its anti-tumor effects. In our hands, in vitro 20-223 is most potent against CDK2 and CDK5. The clinically used CDK inhibitor AT7519 and 20-223 share the aminopyrazole core and we used it to benchmark the 20-223 potency. In CDK5 and CDK2 kinase assays, 20-223 was ∼3.5-fold and ∼65.3-fold more potent than known clinically used CDK inhibitor, AT7519, respectively. Cell-based studies examining phosphorylation of downstream substrates revealed 20-223 inhibits the kinase activity of CDK5 and CDK2 in multiple CRC cell lines. Consistent with CDK5 inhibition, 20-223 inhibited migration of CRC cells in a wound-healing assay. Profiling a panel of CRC cell lines for growth inhibitory effects showed that 20-223 has nanomolar potency across multiple CRC cell lines and was on an average >2-fold more potent than AT7519. Cell cycle analyses in CRC cells revealed that 20-223 phenocopied the effects associated with AT7519. Collectively, these findings suggest that 20-223 exerts anti-tumor effects against CRC by targeting CDK 2/5 and inducing cell cycle arrest. Our studies also indicate that 20-223 is a suitable lead compound for colorectal cancer therapy.
Collapse
Affiliation(s)
- Caroline M Robb
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Smit Kour
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Jacob I Contreras
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Ekta Agarwal
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Carter J Barger
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Sandeep Rana
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Yogesh Sonawane
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Beth K Neilsen
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Margaret Taylor
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Smitha Kizhake
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Rhishikesh N Thakare
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Sanjib Chowdhury
- Section of Gastroenterology, Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118, USA
| | - Jing Wang
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Michael G Brattain
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| | - Amarnath Natarajan
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5950, USA
| |
Collapse
|
588
|
|
589
|
Ray AL, Berggren KL, Restrepo Cruz S, Gan GN, Beswick EJ. Inhibition of MK2 suppresses IL-1β, IL-6, and TNF-α-dependent colorectal cancer growth. Int J Cancer 2017; 142:1702-1711. [PMID: 29197088 DOI: 10.1002/ijc.31191] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/22/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) development and progression is associated with chronic inflammation. We have identified the MAPK-activated protein kinase 2 (MK2) pathway as a primary mediator of inflammation in CRC. MK2 signaling promotes production of proinflammatory cytokines IL-1β, IL-6 and TNF-α. These cytokines have been implicated in tumor growth, invasion and metastasis. For the first time, we investigate whether MK2 inhibition can improve outcome in two mouse models of CRC. In our azoxymethane/dextran sodium sulfate (AOM/DSS) model of colitis-associated CRC, MK2 inhibitor treatment eliminated murine tumor development. Using the implanted, syngeneic murine CRC cell line CT26, we observe significant tumor volume reduction following MK2 inhibition. Tumor cells treated with MK2 inhibitors produced 80% less IL-1β, IL-6 and TNF-α and demonstrated decreased invasion. Replenishment of downstream proinflammatory MK2-mediated cytokines (IL-1β, IL-6 and TNF-α) to tumors led to restoration of tumor proliferation and rapid tumor regrowth. These results demonstrate the importance of MK2 in driving proinflammatory cytokine production, its relevance to in vivo tumor proliferation and invasion. Inhibition of MK2 may represent an attractive therapeutic target to suppress tumor growth and progression in patients.
Collapse
Affiliation(s)
- Anita L Ray
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Kiersten L Berggren
- Department of Internal Medicine, Division of Medical Oncology, Section of Radiation Oncology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Sebastian Restrepo Cruz
- Department of Internal Medicine, Division of Medical Oncology, Section of Radiation Oncology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Gregory N Gan
- Department of Internal Medicine, Division of Medical Oncology, Section of Radiation Oncology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Ellen J Beswick
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
590
|
Vychytilova-Faltejskova P, Merhautova J, Machackova T, Gutierrez-Garcia I, Garcia-Solano J, Radova L, Brchnelova D, Slaba K, Svoboda M, Halamkova J, Demlova R, Kiss I, Vyzula R, Conesa-Zamora P, Slaby O. MiR-215-5p is a tumor suppressor in colorectal cancer targeting EGFR ligand epiregulin and its transcriptional inducer HOXB9. Oncogenesis 2017; 6:399. [PMID: 29199273 PMCID: PMC5868056 DOI: 10.1038/s41389-017-0006-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022] Open
Abstract
Growing evidence suggests that microRNAs are involved in the development and progression of colorectal cancer (CRC). In the present study, deregulation and functioning of tumor-suppressive miR-215-5p was evaluated in CRC. In total, 448 tumor tissues and 325 paired adjacent healthy tissues collected from Czech and Spain cohorts of CRC patients have been used for miR-215-5p expression analyses. A series of in vitro experiments have been performed using transient transfection of miR-215-5p mimics into four CRC cell lines to identify specific cellular processes affected by miR-215-5p. Further, the effects of miR-215-5p on tumor growth were evaluated in vivo using NSG mice and stable cell line overexpressing miR-215-5p. Target mRNAs of miR-215-5p were tested using luciferase assay and western blot analyses. We found that miR-215-5p is significantly downregulated in tumor tissues compared with non-tumor adjacent tissues and its decreased levels correlate with the presence of lymph node metastases, tumor stage, and shorter overall survival in CRC patients. Overexpression of miR-215-5p significantly reduced proliferation, clonogenicity, and migration of CRC cells, lead to cell cycle arrest in G2/M phase and p53-dependent induction of apoptosis. The ability of miR-215-5p to inhibit tumor growth was confirmed in vivo. Finally, we confirmed epiregulin and HOXB9 to be the direct targets of miR-215-5p. As epiregulin is EGFR ligand and HOXB9 is its transcriptional inducer, we suggest that the main molecular link between miR-215-5p and CRC cells phenotypes presents the EGFR signaling pathway, which is one of the canonical pathogenic pathways in CRC.
Collapse
Affiliation(s)
- Petra Vychytilova-Faltejskova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Merhautova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tana Machackova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - José Garcia-Solano
- Department of Pathology, Santa Lucia University Hospital, Cartagena, Spain
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Dominika Brchnelova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Katerina Slaba
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marek Svoboda
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Halamkova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Regina Demlova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Rostislav Vyzula
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pablo Conesa-Zamora
- Department of Clinical Analysis, Santa Lucia University Hospital, Cartagena, Spain
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic. .,Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
591
|
Lyons JD, Klingensmith NJ, Otani S, Mittal R, Liang Z, Ford ML, Coopersmith CM. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle. FASEB J 2017; 31:5507-5519. [PMID: 28842422 PMCID: PMC5690387 DOI: 10.1096/fj.201700015rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
Cell production and death are tightly regulated in the rapidly renewing gut epithelium, with proliferation confined to crypts and apoptosis occurring in villi and crypts. This study sought to determine how stress alters these compartmentalized processes. Wild-type mice made septic via cecal ligation and puncture had decreased crypt proliferation and increased crypt and villus apoptosis. Fabpi-TAg mice expressing large T-antigen solely in villi had ectopic enterocyte proliferation with increased villus apoptosis in unmanipulated animals. Septic fabpi-TAg mice had an unexpected increase in villus proliferation compared with unmanipulated littermates, whereas crypt proliferation was decreased. Cell cycle regulators cyclin D1 and cyclin D2 were decreased in jejunal tissue in septic transgenic mice. In contrast, villus and crypt apoptosis were increased in septic fabpi-TAg mice. To examine the relationship between apoptosis and proliferation in a compartment-specific manner, fabpi-TAg mice were crossed with fabpl-Bcl-2 mice, resulting in expression of both genes in the villus but Bcl-2 alone in the crypt. Septic bi-transgenic animals had decreased crypt apoptosis but had a paradoxical increase in villus apoptosis compared with septic fabpi-TAg mice, associated with decreased proliferation in both compartments. Thus, sepsis unmasks compartment-specific proliferative and apoptotic regulation that is not present under homeostatic conditions.-Lyons, J. D., Klingensmith, N. J., Otani, S., Mittal, R., Liang, Z., Ford, M. L., Coopersmith, C. M. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle.
Collapse
Affiliation(s)
- John D Lyons
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nathan J Klingensmith
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shunsuke Otani
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Rohit Mittal
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zhe Liang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mandy L Ford
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Craig M Coopersmith
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA;
- Emory Critical Care Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
592
|
Sulciner ML, Serhan CN, Gilligan MM, Mudge DK, Chang J, Gartung A, Lehner KA, Bielenberg DR, Schmidt B, Dalli J, Greene ER, Gus-Brautbar Y, Piwowarski J, Mammoto T, Zurakowski D, Perretti M, Sukhatme VP, Kaipainen A, Kieran MW, Huang S, Panigrahy D. Resolvins suppress tumor growth and enhance cancer therapy. J Exp Med 2017; 215:115-140. [PMID: 29191914 PMCID: PMC5748851 DOI: 10.1084/jem.20170681] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/15/2017] [Accepted: 10/11/2017] [Indexed: 12/22/2022] Open
Abstract
Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Sulciner et al. demonstrate that specific resolvins (RvD1, RvD2, and RvE1) inhibit tumor growth and enhance cancer therapy through the clearance of tumor cell debris. Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy (“tumor cell debris”) stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure. Debris-stimulated tumors were inhibited by antiinflammatory and proresolving lipid autacoids, namely resolvin D1 (RvD1), RvD2, or RvE1. These mediators specifically inhibit debris-stimulated cancer progression by enhancing clearance of debris via macrophage phagocytosis in multiple tumor types. Resolvins counterregulate the release of cytokines/chemokines, including TNFα, IL-6, IL-8, CCL4, and CCL5, by human macrophages stimulated with cell debris. These results demonstrate that enhancing endogenous clearance of tumor cell debris is a new therapeutic target that may complement cytotoxic cancer therapies.
Collapse
Affiliation(s)
- Megan L Sulciner
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Dayna K Mudge
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Jaimie Chang
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Allison Gartung
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Kristen A Lehner
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Birgitta Schmidt
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Emily R Greene
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Yael Gus-Brautbar
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Julia Piwowarski
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - David Zurakowski
- Department of Anesthesia, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, England, UK
| | - Vikas P Sukhatme
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Arja Kaipainen
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Mark W Kieran
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA .,Department of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Sui Huang
- Institute of Systems Biology, Seattle, WA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.,Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
593
|
Verbeke F, Janssens Y, Wynendaele E, De Spiegeleer B. Faecal microbiota transplantation: a regulatory hurdle? BMC Gastroenterol 2017; 17:128. [PMID: 29179687 PMCID: PMC5704511 DOI: 10.1186/s12876-017-0687-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023] Open
Abstract
During faecal microbiota transplantation, stool from a healthy donor is transplanted to treat a variety of dysbiosis-associated gut diseases. Competent authorities are faced with the challenge to provide adequate regulation. Currently, regulatory harmonization is completely lacking and authorities apply non-existing to most stringent requirements. A regulatory approach for faecal microbiota transplantation could be inserting faecal microbiota transplantation in the gene-, cell- and tissue regulations, including the hospital exemption system in the European Advanced Therapy Medicinal Products regulation, providing a pragmatic and efficacy-risk balanced approach and granting all patients as a matter of principle access to this therapy.
Collapse
Affiliation(s)
- Frederick Verbeke
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Yorick Janssens
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium.
| |
Collapse
|
594
|
Vyas D, Deshpande K, Pandya Y. Advances in endoscopic balloon therapy for weight loss and its limitations. World J Gastroenterol 2017; 23:7813-7817. [PMID: 29209122 PMCID: PMC5703910 DOI: 10.3748/wjg.v23.i44.7813] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/04/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023] Open
Abstract
The field of medical and surgical weight loss is undergoing an explosion of new techniques and devices. A lot of these are geared towards endoscopic approaches rather than the conventional and more invasive laparoscopic or open approach. One such recent advance is the introduction of intrgastric balloons. In this article, we discuss the recently Food and Drug Administration approved following balloons for weight loss: the Orbera™ Intragastric Balloon System (Apollo Endosurgery Inc, Austin, TX, United States), the ReShape® Integrated Dual Balloon System (ReShape Medical, Inc., San Clemente, CA, United States), and the Obalon (Obalon® Therapeutics, Inc.). The individual features of each of these balloons, the method of introduction and removal, and the expected weight loss and possible complications are discussed. This review of the various balloons highlights the innovation in the field of weight loss.
Collapse
Affiliation(s)
- Dinesh Vyas
- Department of Surgery, Texas Tech University, Odessa, TX 79763, United States
| | - Kaivalya Deshpande
- Department Of Surgery, Michigan State University, Lansing, MI 48912, United States
| | - Yagnik Pandya
- Department of Surgery, MetroWest Medical Center, Natick, MA 01760, United States
| |
Collapse
|
595
|
Mokhtarzadeh A, Hassanpour S, Vahid ZF, Hejazi M, Hashemi M, Ranjbari J, Tabarzad M, Noorolyai S, de la Guardia M. Nano-delivery system targeting to cancer stem cell cluster of differentiation biomarkers. J Control Release 2017; 266:166-186. [PMID: 28941992 DOI: 10.1016/j.jconrel.2017.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are one of the most important origins of cancer progression and metastasis. CSCs have unique self-renewal properties and diverse cell membrane receptors that induced the resistance to the conventional chemotherapeutic agents. Therefore, the therapeutic removal of CSCs could result in the cancer cure with lack of recurrence and metastasis. In this regard, targeting CSCs in accordance to their specific biomarkers is a talented attitude in cancer therapy. Various CSCs surface biomarkers have been described, which some of them exhibited similarities on different cancer cell types, while the others are cancer specific and have just been reported on one or a few types of cancers. In this review, the importance of CSCs in cancer development and therapeutic response has been stated. Different CSCs cluster of differentiation (CD) biomarkers and their specific function and applications in the treatment of cancers have been discussed, Special attention has been made on targeted nano-delivery systems. In this regard, several examples have been illustrated concerning specific natural and artificial ligands against CSCs CD biomarkers that could be decorated on various nanoparticulated drug delivery systems to enhance therapeutic index of chemotherapeutic agents or anticancer gene therapy. The outlook of CSCs biomarkers discovery and therapeutic/diagnostic applications was discussed.
Collapse
Affiliation(s)
- Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Soodabeh Hassanpour
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | | | | | - Maryam Hashemi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Noorolyai
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
596
|
Reines HD, Trickey AW, Donovan J. Morbidity and mortality conference is not sufficient for surgical quality control: Processes and outcomes of a successful attending Physician Peer Review committee. Am J Surg 2017; 214:780-785. [DOI: 10.1016/j.amjsurg.2017.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/21/2017] [Accepted: 04/01/2017] [Indexed: 11/16/2022]
|
597
|
Thapa RK, Nguyen HT, Gautam M, Shrestha A, Lee ES, Ku SK, Choi HG, Yong CS, Kim JO. Hydrophobic binding peptide-conjugated hybrid lipid-mesoporous silica nanoparticles for effective chemo-photothermal therapy of pancreatic cancer. Drug Deliv 2017; 24:1690-1702. [PMID: 29098877 PMCID: PMC8240994 DOI: 10.1080/10717544.2017.1396382] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 01/14/2023] Open
Abstract
Nanoparticle-based drug delivery systems are designed to reach tumor sites based on their enhanced permeation and retention effects. However, a lack of interaction of these nanoparticles with cancer cells might lead to reduced uptake in the tumors, which might compromise the therapeutic efficacy of the system. Therefore, we developed bortezomib and IR-820-loaded hybrid-lipid mesoporous silica nanoparticles conjugated with the hydrophobic-binding peptide, cyclosporine A (CsA), and referred to them as CLMSN/BIR. Upon reaching the tumor site, CsA interacts hydrophobically with the cancer cell membranes to allow effective uptake of the nanoparticles. Nanoparticles ∼160 nm in size were prepared and the stability of IR-820 significantly improved. High cellular uptake of the nanoparticles was evident with pronounced apoptotic effects in PANC-1 and MIA PaCa-2 cells that were mediated by the chemotherapeutic effect of bortezomib and the photothermal and reactive oxygen species generation effects of IR-820. An in vivo biodistribution study indicated there was high accumulation in the tumor with an enhanced photothermal effect in PANC-1 xenograft mouse tumors. Furthermore, enhanced antitumor effects in PANC-1 xenograft tumors were observed with minimal toxicity induction in the organs of mice. Cumulatively, these results indicated the promising effects of CLMSN/BIR for effective chemo-phototherapy of pancreatic cancers.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, Republic of Korea
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, Republic of Korea
| | - Milan Gautam
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, Republic of Korea
| | - Aarajana Shrestha
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, Republic of Korea
| | - Eung Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Sangnok-gu, Ansan, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Gyeongsanbuk-do, Republic of Korea
| |
Collapse
|
598
|
Zhao X, Cheng Q, Qian Y, Yi R, Gu L, Wang S, Song JL. Insect tea attenuates hydrochloric acid and ethanol-induced mice acute gastric injury. Exp Ther Med 2017; 14:5135-5142. [PMID: 29201228 PMCID: PMC5704295 DOI: 10.3892/etm.2017.5181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 06/22/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to investigate the protective effect of insect tea on HCl/ethanol-induced gastric ulcers in ICR mice. The serum levels of vasoactive intestinal peptide, substance P, somatostatin, motilin and endothelin-1 in mice were assessed using commercial kits and gastric tissues of superoxide dismutase (SOD, nitric oxide (NO) and malondialdehyde (MDA) were determined using western blot analysis Insect tea significantly reduced HCl/ethanol-induced gastric juice secretion and increased the pH of gastric juice (P<0.05). Insect tea treatment signfiicantly increased vasoactive intestinal peptide and somatostatin, and significantly decreased motilin, substance P and endothelin levels in the serum (P<0.05). Treatment with insect tea was demonstrated to significantly increase levels of gastric SOD and NO and to reduce levels of MDA in the gastric ulcer mouse model (P<0.05). The gastric expression of inhibitor of nuclear factor-κB (NF-κB), epidermal growth factor (EGF), EGF receptor, neuronal nitric oxide synthase (nNOS), endothelial NOS, Mn-SOD, Cu/Zn-SOD and catalase was significantly increased in mice treated with inset tea compared with untreated model mice (P<0.05). Levels of NF-κB, and inducible NOS were demonstrated to be decreased in mice treated with insect tea compared with untreated model mice (P<0.05). The results of the present study suggest that insect tea has a protective effect against HCl/ethanol-induced gastric ulcers in ICR mice. This effect may be achieved via modulating serum neuropeptide levels, reducing gastric juice secretion, and modulating the inflammation- and antioxidant-associated protein expressions in gastric tissue.
Collapse
Affiliation(s)
- Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
- Department of Food Quality and Safety, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Qiang Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
- Institute of Preventive Medicine, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yu Qian
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
- Department of Food Quality and Safety, Chongqing University of Education, Chongqing 400067, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
- Institute of Preventive Medicine, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Ruokun Yi
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
- Department of Food Quality and Safety, Chongqing University of Education, Chongqing 400067, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
- Institute of Preventive Medicine, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Lianjie Gu
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Shanshan Wang
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Jia-Le Song
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
- Institute of Preventive Medicine, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
599
|
Lahtinen P, Mattila E, Anttila VJ, Tillonen J, Teittinen M, Nevalainen P, Salminen S, Satokari R, Arkkila P. Faecal microbiota transplantation in patients with Clostridium difficile and significant comorbidities as well as in patients with new indications: A case series. World J Gastroenterol 2017; 23:7174-7184. [PMID: 29093626 PMCID: PMC5656465 DOI: 10.3748/wjg.v23.i39.7174] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is effective in recurrent Clostridium difficile infection (rCDI). Knowledge of the safety and efficacy of FMT treatment in immune deficient patients is scarce. FMT has been suggested as a potential method for an increasing number of new indications besides rCDI. Among our FMT-treated rCDI patients, we reviewed those with major comorbidities: two human immunodeficiency virus patients, six haemodialysis patients, two kidney transplant patients, two liver transplant patients and a patient with chronic lymphatic leukaemia. We also reviewed those treated with FMT for indications other than rCDI: Salmonella carriage (two patients), trimethylaminuria (two patients), small intestinal bacterial overgrowth (SIBO; one patient), and lymphocytic colitis (one patient), as well as a common variable immunodeficiency patient with chronic norovirus infection and ESBL-producing Escherichia coli (E. coli) carriage. Of the thirteen rCDI patients treated with FMT, eleven cleared the CDI. The observed adverse events were not directly attributable to FMT. Concerning the special indications, both Salmonellas and ESBL-producing E. coli were eradicated. One trimethylaminuria patient and one SIBO-patient reported a reduction of symptoms. Three patients did not experience a benefit from FMT: chronic norovirus, lymphocytic colitis and the other fish malodour syndrome. There were no reported side effects in this group. FMT appeared to be safe and effective for immunocompromised patients with rCDI. FMT showed promise for the eradication of antibiotic-resistant bacteria, but further research is warranted.
Collapse
Affiliation(s)
- Perttu Lahtinen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti 15850, Finland
| | - Eero Mattila
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki 00029, Finland
| | - Veli-Jukka Anttila
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki 00029, Finland
| | - Jyrki Tillonen
- Department of Gastroenterology, Päijät-Häme Central Hospital, Lahti 15850, Finland
| | - Matti Teittinen
- Department of Medicine, Hyvinkää Hospital 05850, Hyvinkää, Finland
| | - Pasi Nevalainen
- Department of Medicine, Tampere University Hospital 33521, Tampere, Finland
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, Turku 20014, Finland
| | - Reetta Satokari
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| | - Perttu Arkkila
- Department of Gastroenterology, Helsinki University Hospital, Helsinki 00029, Finland
| |
Collapse
|
600
|
miR-216a inhibits osteosarcoma cell proliferation, invasion and metastasis by targeting CDK14. Cell Death Dis 2017; 8:e3103. [PMID: 29022909 PMCID: PMC5682665 DOI: 10.1038/cddis.2017.499] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/18/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023]
Abstract
Osteosarcoma (OS) has emerged as the most common primary musculoskeletal malignant tumour affecting children and young adults. Cyclin-dependent kinases (CDKs) are closely associated with gene regulation in tumour biology. Accumulating evidence indicates that the aberrant function of CDK14 is involved in a broad spectrum of diseases and is associated with clinical outcomes. MicroRNAs (miRNAs) are crucial epigenetic regulators in the development of OS. However, the essential role of CDK14 and the molecular mechanisms by which miRNAs regulate CDK14 in the oncogenesis and progression of OS have not been fully elucidated. Here we found that CDK14 expression was closely associated with poor prognosis and overall survival of OS patients. Using dual-luciferase reporter assays, we also found that miR-216a inhibits CDK14 expression by binding to the 3′-untranslated region of CDK14. Overexpression of miR-216a significantly suppressed cell proliferation, migration and invasion in vivo and in vitro by inhibiting CDK14 production. Overexpression of CDK14 in the miR-216a-transfected OS cells effectively rescued the suppression of cell proliferation, migration and invasion caused by miR-216a. In addition, Kaplan–Meier analysis indicated that miR-216a expression predicted favourable clinical outcomes for OS patients. Moreover, miR-216a expression was downregulated in OS patients and was negatively associated with CDK14 expression. Overall, these data highlight the role of the miR-216a/CDK14 axis as a novel pleiotropic modulator and demonstrate the associated molecular mechanisms, thus suggesting the intriguing possibility that miR-216a activation and CDK14 inhibition may be novel and attractive therapeutic strategies for treating OS patients.
Collapse
|