551
|
Cardoso SM, Empadinhas N. The Microbiome-Mitochondria Dance in Prodromal Parkinson's Disease. Front Physiol 2018; 9:471. [PMID: 29867531 PMCID: PMC5954091 DOI: 10.3389/fphys.2018.00471] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/16/2018] [Indexed: 12/22/2022] Open
Abstract
The brain is an immunologically active organ where neurons and glia cells orchestrate complex innate immune responses against infections and injuries. Neuronal responses involve Toll-like or Nod-like receptors and the secretion of antimicrobial peptides and cytokines. The endosymbiotic theory for the evolutionary origin of mitochondria from primitive bacteria, suggests that they may have also retained the capacity to activate neuronal innate immunity. In fact, it was shown that mitochondrial damage-associated molecular patterns could signal and activate innate immunity and inflammation. Moreover, the mitochondrial cascade hypothesis for sporadic Parkinson’s disease (PD) argues that altered mitochondrial metabolism and function can drive neurodegeneration. Additionally, a neuroinflammatory signature with increased levels of pro-inflammatory mediators in PD affected brain areas was recently detected. Herein, we propose that a cascade of events initiating in a dysbiotic gut microbiome drive the production of toxins or antibiotics that target and damage mitochondria. This in turn activates neuronal innate immunity and triggers sterile inflammation phenomena that culminate in the neurodegenerative processes observed in the enteric and in the central nervous systems and that ultimately lead to Parkinson’s disease.
Collapse
Affiliation(s)
- Sandra M Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute of Cellular and Molecular Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
552
|
Qian Y, Yang X, Xu S, Wu C, Song Y, Qin N, Chen SD, Xiao Q. Alteration of the fecal microbiota in Chinese patients with Parkinson's disease. Brain Behav Immun 2018; 70:194-202. [PMID: 29501802 DOI: 10.1016/j.bbi.2018.02.016] [Citation(s) in RCA: 272] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/18/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022] Open
Abstract
Emerging evidences suggest that gut microbiota dysbiosis plays a role in Parkinson's disease (PD). However, the alterations in fecal microbiome in Chinese PD patients remains unknown. This case-control study was conducted to explore fecal microbiota compositions in Chinese PD patients. Microbiota communities in the feces of 45 patients and their healthy spouses were investigated using high-throughput Illumina Miseq sequencing targeting the V3-V4 region of 16S ribosomal RNA (rRNA) gene. The relationships between fecal microbiota and PD clinical characteristics were analyzed. The structure and richness of the fecal microbiota differed between PD patients and healthy controls. Genera Clostridium IV, Aquabacterium, Holdemania, Sphingomonas, Clostridium XVIII, Butyricicoccus and Anaerotruncus were enriched in the feces of PD patients after adjusting for age, gender, body mass index (BMI), and constipation. Furthermore, genera Escherichia/Shigella were negatively associated with disease duration. Genera Dorea and Phascolarctobacterium were negatively associated with levodopa equivalent doses (LED). Among the non-motor symptoms (NMSs), genera Butyricicoccus and Clostridium XlVb were associated with cognitive impairment. Overall, we confirmed that gut microbiota dysbiosis occurs in Chinese patients with PD. A well-controlled population involved was beneficial for the identification of microbiota associated with diseases. Additionally, the fecal microbiota was closely related to PD clinical characteristics. Elucidating these differences in the fecal microbiome will provide a foundation to improve our understanding the pathogenesis of PD and to support the potentially therapeutic options modifying the gut microbiota.
Collapse
Affiliation(s)
- Yiwei Qian
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Xiaodong Yang
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Shaoqing Xu
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Chunyan Wu
- Realbio Genomics Institute, Shanghai 200050, PR China
| | - Yanyan Song
- Department of Biostatistics, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Nan Qin
- Realbio Genomics Institute, Shanghai 200050, PR China.
| | - Sheng-Di Chen
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Qin Xiao
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
553
|
Nixon AM, Meadowcroft MD, Neely EB, Snyder AM, Purnell CJ, Wright J, Lamendella R, Nandar W, Huang X, Connor JR. HFE Genotype Restricts the Response to Paraquat in a Mouse Model of Neurotoxicity. J Neurochem 2018; 145:299-311. [PMID: 29315562 DOI: 10.1111/jnc.14299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/05/2017] [Accepted: 01/03/2018] [Indexed: 12/30/2022]
Abstract
Parkinson's disease is marked clinically by motor dysfunction and pathologically by dopaminergic cell loss in the substantia nigra and iron accumulation in the substantia nigra. The driver underlying iron accumulation remains unknown and could be genetic or environmental. The HFE protein is critical for the regulation of cellular iron uptake. Mutations within this protein are associated with increased iron accumulation including in the brain. We have focused on the commonly occurring H63D variant of the HFE gene as a disease modifier in a number of neurodegenerative diseases. To investigate the role of H63D HFE genotype, we generated a mouse model in which the wild-type (WT) HFE gene is replaced by the H67D gene variant (mouse homolog of the human H63D gene variant). Using paraquat toxicity as the model for Parkinson's disease, we found that WT mice responded as expected with significantly greater motor function, loss of tyrosine hydroxylase staining and increase microglial staining in the substantia nigra, and an increase in R2 relaxation rate within the substantia nigra of the paraquat-treated mice compared to their saline-treated counterparts. In contrast, the H67D mice showed a remarkable resistance to paraquat treatment; specifically differing from the WT mice with no changes in motor function or changes in R2 relaxation rates following paraquat exposure. At baseline, there were differences between the H67D HFE mice and WT mice in gut microbiome profile and increased L-ferritin staining in the substantia nigra that could account for the resistance to paraquat. Of particular note, the H67D HFE mice regardless of whether or not they were treated with paraquat had significantly less tyrosine hydroxylase immunostaining than WT. Our results clearly demonstrate that the HFE genotype impacts the expression of tyrosine hydroxylase in the substantia nigra, the gut microbiome and the response to paraquat providing additional support that the HFE genotype is a disease modifier for Parkinson's disease. Moreover, the finding that the HFE mutant mice are resistant to paraquat may provide a model in which to study resistant mechanisms to neurotoxicants.
Collapse
Affiliation(s)
- Anne M Nixon
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Mark D Meadowcroft
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
- Department of Radiology, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Elizabeth B Neely
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Amanda M Snyder
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Carson J Purnell
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | | | - Regina Lamendella
- Wright Labs, Huntingdon, Pennsylvania, USA
- Department of Microbiology, Juniata College, Huntingdon, Pennsylvania, USA
| | - Wint Nandar
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuemei Huang
- Department of Neurology, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - James R Connor
- Department of Neurosurgery, M.S. Hershey Penn State University College of Medicine, M.S. Hershey Medical Center, Hershey, Pennsylvania, USA
| |
Collapse
|
554
|
Sun MF, Zhu YL, Zhou ZL, Jia XB, Xu YD, Yang Q, Cui C, Shen YQ. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson's disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav Immun 2018; 70:48-60. [PMID: 29471030 DOI: 10.1016/j.bbi.2018.02.005] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/14/2018] [Accepted: 02/12/2018] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) patients display alterations in gut microbiota composition. However, mechanism between gut microbial dysbiosis and pathogenesis of PD remains unexplored, and no recognized therapies are available to halt or slow progression of PD. Here we identified that gut microbiota from PD mice induced motor impairment and striatal neurotransmitter decrease on normal mice. Sequencing of 16S rRNA revealed that phylum Firmicutes and order Clostridiales decreased, while phylum Proteobacteria, order Turicibacterales and Enterobacteriales increased in fecal samples of PD mice, along with increased fecal short-chain fatty acids (SCFAs). Remarkably, fecal microbiota transplantation (FMT) reduced gut microbial dysbiosis, decreased fecal SCFAs, alleviated physical impairment, and increased striatal DA and 5-HT content of PD mice. Further, FMT reduced the activation of microglia and astrocytes in the substantia nigra, and reduced expression of TLR4/TNF-α signaling pathway components in gut and brain. Our study demonstrates that gut microbial dysbiosis is involved in PD pathogenesis, and FMT can protect PD mice by suppressing neuroinflammation and reducing TLR4/TNF-α signaling.
Collapse
Affiliation(s)
- Meng-Fei Sun
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Ying-Li Zhu
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Zhi-Lan Zhou
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Xue-Bing Jia
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Yi-Da Xu
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Qin Yang
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Chun Cui
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China
| | - Yan-Qin Shen
- Wuxi Medical School, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
555
|
Brown EG, Tanner CM, Goldman SM. The Microbiome in Neurodegenerative Disease. CURRENT GERIATRICS REPORTS 2018. [DOI: 10.1007/s13670-018-0240-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
556
|
Lee JA, Chico TJA, Renshaw SA. The triune of intestinal microbiome, genetics and inflammatory status and its impact on the healing of lower gastrointestinal anastomoses. FEBS J 2018; 285:1212-1225. [PMID: 29193751 PMCID: PMC5947287 DOI: 10.1111/febs.14346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/07/2017] [Accepted: 11/24/2017] [Indexed: 12/11/2022]
Abstract
Gastrointestinal resections are a common operation and most involve an anastomosis to rejoin the ends of the remaining bowel to restore gastrointestinal (GIT) continuity. While most joins heal uneventfully, in up to 26% of patients healing fails and an anastomotic leak (AL) develops. Despite advances in surgical technology and techniques, the rate of anastomotic leaks has not decreased over the last few decades raising the possibility that perhaps we do not yet fully understand the phenomenon of AL and are thus ill-equipped to prevent it. As in all complex conditions, it is necessary to isolate each different aspect of disease for interrogation of its specific role, but, as we hope to demonstrate in this article, it is a dangerous oversimplification to consider any single aspect as the full answer to the problem. Instead, consideration of important individual observations in parallel could illuminate the way forward towards a possibly simple solution amidst the complexity. This article details three aspects that we believe intertwine, and therefore should be considered together in wound healing within the GIT during postsurgical recovery: the microbiome, the host genetic make-up and their relationship to the perioperative inflammatory status. Each of these, alone or in combination, has been linked with various states of health and disease, and in combining these three aspects in the case of postoperative recovery from bowel resection, we may be nearer an answer to preventing anastomotic leaks than might have been thought just a few years ago.
Collapse
Affiliation(s)
- Jou A. Lee
- Department of Infection Immunity and Cardiovascular DiseaseThe Bateson CentreUniversity of SheffieldUK
| | - Timothy J. A. Chico
- Department of Infection Immunity and Cardiovascular DiseaseThe Bateson CentreUniversity of SheffieldUK
| | - Stephen A. Renshaw
- Department of Infection Immunity and Cardiovascular DiseaseThe Bateson CentreUniversity of SheffieldUK
| |
Collapse
|
557
|
Houser MC, Chang J, Factor SA, Molho ES, Zabetian CP, Hill-Burns EM, Payami H, Hertzberg VS, Tansey MG. Stool Immune Profiles Evince Gastrointestinal Inflammation in Parkinson's Disease. Mov Disord 2018; 33:793-804. [PMID: 29572994 DOI: 10.1002/mds.27326] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/17/2017] [Accepted: 01/11/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gastrointestinal symptoms are common in Parkinson's disease and frequently precede the development of motor impairments. Intestinal inflammation has been proposed as a driver of disease pathology, and evaluation of inflammatory mediators in stool could possibly identify valuable early-stage biomarkers. We measured immune- and angiogenesis-related proteins in human stool to examine inflammatory profiles associated with Parkinson's disease. METHODS Stool samples and subjects' self-reported metadata were obtained from 156 individuals with Parkinson's disease and 110 without, including spouse and nonhousehold controls. Metadata were probed for disease-associated differences, and levels of 37 immune and angiogenesis factors in stool homogenates were measured by multiplexed immunoassay and compared across experimental groups. RESULTS Parkinson's disease patients reported greater incidence of intestinal disease and digestive problems than controls. Direct comparison of levels of stool analytes in patients and controls revealed elevated vascular endothelial growth factor receptor 1, interleukin-1α, and CXCL8 in patients' stool. Paired comparison of patients and spouses suggested higher levels of multiple factors in patients, but this was complicated by sex differences. Sex, body mass index, a history of smoking, and use of probiotics were found to strongly influence levels of stool analytes. Multivariate analysis accounting for these and other potential confounders confirmed elevated levels of interleukin-1α and CXCL8 and also revealed increased interleukin-1β and C-reactive protein in stool in Parkinson's disease. These differences were not dependent on subject age or disease duration. CONCLUSIONS Levels of stool immune factors indicate that intestinal inflammation is present in patients with Parkinson's disease. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Madelyn C Houser
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jianjun Chang
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stewart A Factor
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric S Molho
- Department of Neurology, Albany Medical College, Albany, New York, USA
| | - Cyrus P Zabetian
- Veterans Affairs Puget Sound Health Care System and Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Erin M Hill-Burns
- Department of Neurology, University of Alabama at Birmingham, Birminham, Alabama, USA
| | - Haydeh Payami
- Department of Neurology, University of Alabama at Birmingham, Birminham, Alabama, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Vicki S Hertzberg
- Center for Nursing Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA
| | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
558
|
Flores Saiffe Farías A, Mendizabal AP, Morales JA. An Ontology Systems Approach on Human Brain Expression and Metaproteomics. Front Microbiol 2018; 9:406. [PMID: 29568289 PMCID: PMC5852110 DOI: 10.3389/fmicb.2018.00406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Research in the last decade has shown growing evidence of the gut microbiota influence on brain physiology. While many mechanisms of this influence have been proposed in animal models, most studies in humans are the result of a pathology–dysbiosis association and very few have related the presence of certain taxa with brain substructures or molecular pathways. In this paper, we associated the functional ontologies in the differential expression of brain substructures from the Allen Brain Atlas database, with those of the metaproteome from the Human Microbiome Project. Our results showed several coherent clustered ontologies where many taxa could influence brain expression and physiology. A detailed analysis of psychobiotics showed specific slim ontologies functionally associated with substructures in the basal ganglia and cerebellar cortex. Some of the most relevant slim ontology groups are related to Ion transport, Membrane potential, Synapse, DNA and RNA metabolism, and Antigen processing, while the most relevant neuropathology found was Parkinson disease. In some of these cases, new hypothetical gut microbiota-brain interaction pathways are proposed.
Collapse
|
559
|
Environmental and Genetic Variables Influencing Mitochondrial Health and Parkinson's Disease Penetrance. PARKINSONS DISEASE 2018; 2018:8684906. [PMID: 29707191 PMCID: PMC5863306 DOI: 10.1155/2018/8684906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022]
Abstract
There is strong evidence that impairment of mitochondrial function plays a key role in the pathogenesis of PD. The two key PD genes related to mitochondrial function are Parkin (PARK2) and PINK1 (PARK6), and also mutations in several other PD genes, including SNCA, LRRK2, DJ1, CHCHD2, and POLG, have been shown to induce mitochondrial stress. Many mutations are clearly pathogenic in some patients while carriers of other mutations either do not develop the disease or show a delayed onset, a phenomenon known as reduced penetrance. Indeed, for several mutations in autosomal dominant PD genes, penetrance is markedly reduced, whereas heterozygous carriers of recessive mutations may predispose to PD in a dominant manner, although with highly reduced penetrance, if additional disease modifiers are present. The identification and validation of such modifiers leading to reduced penetrance or increased susceptibility in the case of heterozygous carriers of recessive mutations are relevant for a better understanding of mechanisms contributing to disease onset. We discuss genetic and environmental factors as well as mitochondrial DNA alterations and protein-protein interactions, all involved in mitochondrial function, as potential causes to modify penetrance of mutations in dominant PD genes and to determine manifestation of heterozygous mutations in recessive PD genes.
Collapse
|
560
|
Johnson ME, Stringer A, Bobrovskaya L. Rotenone induces gastrointestinal pathology and microbiota alterations in a rat model of Parkinson’s disease. Neurotoxicology 2018; 65:174-185. [DOI: 10.1016/j.neuro.2018.02.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/12/2018] [Accepted: 02/18/2018] [Indexed: 12/20/2022]
|
561
|
Zhang J, Culp ML, Craver JG, Darley-Usmar V. Mitochondrial function and autophagy: integrating proteotoxic, redox, and metabolic stress in Parkinson's disease. J Neurochem 2018; 144:691-709. [PMID: 29341130 PMCID: PMC5897151 DOI: 10.1111/jnc.14308] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a movement disorder with widespread neurodegeneration in the brain. Significant oxidative, reductive, metabolic, and proteotoxic alterations have been observed in PD postmortem brains. The alterations of mitochondrial function resulting in decreased bioenergetic health is important and needs to be further examined to help develop biomarkers for PD severity and prognosis. It is now becoming clear that multiple hits on metabolic and signaling pathways are likely to exacerbate PD pathogenesis. Indeed, data obtained from genetic and genome association studies have implicated interactive contributions of genes controlling protein quality control and metabolism. For example, loss of key proteins that are responsible for clearance of dysfunctional mitochondria through a process called mitophagy has been found to cause PD, and a significant proportion of genes associated with PD encode proteins involved in the autophagy-lysosomal pathway. In this review, we highlight the evidence for the targeting of mitochondria by proteotoxic, redox and metabolic stress, and the role autophagic surveillance in maintenance of mitochondrial quality. Furthermore, we summarize the role of α-synuclein, leucine-rich repeat kinase 2, and tau in modulating mitochondrial function and autophagy. Among the stressors that can overwhelm the mitochondrial quality control mechanisms, we will discuss 4-hydroxynonenal and nitric oxide. The impact of autophagy is context depend and as such can have both beneficial and detrimental effects. Furthermore, we highlight the potential of targeting mitochondria and autophagic function as an integrated therapeutic strategy and the emerging contribution of the microbiome to PD susceptibility.
Collapse
Affiliation(s)
- Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| | - M Lillian Culp
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jason G Craver
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| |
Collapse
|
562
|
Hirano A, Umeno J, Okamoto Y, Shibata H, Ogura Y, Moriyama T, Torisu T, Fujioka S, Fuyuno Y, Kawarabayasi Y, Matsumoto T, Kitazono T, Esaki M. Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis. J Gastroenterol Hepatol 2018; 33:1590-1597. [PMID: 29462845 DOI: 10.1111/jgh.14129] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM The gut microbiota is suggested to play an important role in the pathogenesis of ulcerative colitis (UC). However, interindividual and spatial variations hamper the identification of UC-related changes. We thus investigated paired mucosa-associated microbiota obtained from both inflamed and non-inflamed sites of UC patients and corresponding sites of non-inflammatory bowel disease (IBD) controls. METHODS Mucosal biopsies of both inflamed and non-inflamed sites were obtained from 14 patients with active UC of the left-sided or proctitis type. Paired mucosal biopsies of the corresponding sites were obtained from 14 non-IBD controls. The microbial community structure was investigated using 16S ribosomal RNA gene sequences, followed by data analysis using qiime and LEfSe softwares. RESULTS Microbial alpha diversity in both inflamed and non-inflamed sites was significantly lower in UC patients compared with non-IBD controls. There were more microbes of the genus Cloacibacterium and the Tissierellaceae family, and there were less microbes of the genus Neisseria at the inflamed site when compared with the non-inflamed site in UC patients. Decreased abundance of the genera Prevotella, Eubacterium, Neisseria, Leptotrichia, Bilophila, Desulfovibrio, and Butyricimonas was evident at the inflamed site of UC patients compared with the corresponding site of non-IBD controls. Among these taxa, the genera Prevotella and Butyricimonas were also less abundant at the non-inflamed site of UC patients compared with the corresponding site in non-IBD controls. CONCLUSIONS Mucosal microbial dysbiosis occurs at both inflamed and non-inflamed sites in UC patients. The taxa showing altered abundance in UC patients might mediate colonic inflammation.
Collapse
Affiliation(s)
- Atsushi Hirano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuharu Okamoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Shibata
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiko Moriyama
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin Fujioka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Fuyuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Kawarabayasi
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Esaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
563
|
Mulak A. A controversy on the role of short-chain fatty acids in the pathogenesis of Parkinson's disease. Mov Disord 2018; 33:398-401. [PMID: 29436731 DOI: 10.1002/mds.27304] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
564
|
Tetel MJ, de Vries GJ, Melcangi RC, Panzica G, O'Mahony SM. Steroids, stress and the gut microbiome-brain axis. J Neuroendocrinol 2018; 30:10.1111/jne.12548. [PMID: 29024170 PMCID: PMC6314837 DOI: 10.1111/jne.12548] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022]
Abstract
It is becoming well established that the gut microbiome has a profound impact on human health and disease. In this review, we explore how steroids can influence the gut microbiota and, in turn, how the gut microbiota can influence hormone levels. Within the context of the gut microbiome-brain axis, we discuss how perturbations in the gut microbiota can alter the stress axis and behaviour. In addition, human studies on the possible role of gut microbiota in depression and anxiety are examined. Finally, we present some of the challenges and important questions that need to be addressed by future research in this exciting new area at the intersection of steroids, stress, gut-brain axis and human health.
Collapse
Affiliation(s)
- M J Tetel
- Neuroscience Program, Wellesley College, Wellesley, MA, USA
| | - G J de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - R C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - G Panzica
- Dipartimento di Neuroscienze "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi (NICO), Università degli Studi di Torino, Orbassano, Italy
| | - S M O'Mahony
- Department of Anatomy and Neuroscience, APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
565
|
Yang X, Qian Y, Xu S, Song Y, Xiao Q. Longitudinal Analysis of Fecal Microbiome and Pathologic Processes in a Rotenone Induced Mice Model of Parkinson's Disease. Front Aging Neurosci 2018; 9:441. [PMID: 29358918 PMCID: PMC5766661 DOI: 10.3389/fnagi.2017.00441] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
Recent studies reported an association between gut microbiota composition and Parkinson’s disease (PD). However, we know little about the relationship between microbiome dysbiosis and the pathogenesis of PD. The objective of this study was to describe the evolution of fecal microbiota using an oral rotenone model of PD from a longitudinal study over a period of 4 weeks. Gastrointestinal function was assessed by measuring fecal pellet output, motor functions was assessed by open-field and pole tests every week. α-synuclein pathology, inflammation and tyrosine hydroxylase (TH) neuron loss from the middle brain were also analyzed. Fecal samples were collected every week followed by 16S rRNA sequencing and bioinformatics analysis. We reported that chronically oral administered rotenone caused gastrointestinal dysfunction and microbiome dysbiosis prior to motor dysfunction and central nervous system (CNS) pathology. 16S rRNA sequencing of fecal microbiome showed rotenone-treated mice exhibited fecal microbiota dysbiosis characterized by an overall decrease in bacterial diversity and a significant change of microbiota composition, notably members of the phyla Firmicutes and Bacteroidetes, with an increase in Firmicutes/Bacteroidetes ratio after 3 weeks of rotenone treatment. Moreover, rotenone-induced gastrointestinal and motor dysfunctions were observed to be robustly correlated with changes in the composition of fecal microbiota. Our results demonstrated that gut microbiome perturbation might contribute to rotenone toxicity in the initiation of PD and brought a new insight in the pathogenesis of PD. Novel therapeutic options aimed at modifying the gut microbiota composition might postpone the onset and following cascade of neurodegeneration.
Collapse
Affiliation(s)
- Xiaodong Yang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiwei Qian
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoqing Xu
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Song
- Department of Biostatistics, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Xiao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
566
|
Lionnet A, Leclair-Visonneau L, Neunlist M, Murayama S, Takao M, Adler CH, Derkinderen P, Beach TG. Does Parkinson's disease start in the gut? Acta Neuropathol 2018; 135:1-12. [PMID: 29039141 DOI: 10.1007/s00401-017-1777-8] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is pathologically characterized by the presence of intraneuronal inclusions, termed Lewy bodies and Lewy neurites, whose main component is alpha-synuclein. Based on the topographic distribution of Lewy bodies and neurites established after autopsy from PD patients, Braak and coworkers hypothesized that PD pathology may start in the gastrointestinal tract then spread through the vagus nerve to the brain. This hypothesis has been reinforced by the discovery that alpha-synuclein may be capable of spreading transcellularly, thereby providing a mechanistic basis for Braak's hypothesis. This 'gut to brain' scenario has ignited heated debates within the movement disorders community and prompted a large number of studies in both humans and animals. Here, we review the arguments for and against the gut as the origin of PD. We conclude that the human autopsy evidence does not support the hypothesis and that it is too early to draw any definitive conclusions. We discuss how this issue might be further addressed in future research.
Collapse
Affiliation(s)
- Arthur Lionnet
- Department of Neurology, CHU Nantes, 44093, Nantes, France
- Inserm, U1235, 1, rue Gaston Veil, 44035, Nantes Cedex 1, France
| | - Laurène Leclair-Visonneau
- Inserm, U1235, 1, rue Gaston Veil, 44035, Nantes Cedex 1, France
- Nantes University, 44035, Nantes, France
- Department of Clinical Neurophysiology, CHU Nantes, 44093, Nantes, France
| | - Michel Neunlist
- Inserm, U1235, 1, rue Gaston Veil, 44035, Nantes Cedex 1, France
- Nantes University, 44035, Nantes, France
| | - Shigeo Murayama
- Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Masaki Takao
- Department of Neurology, Saitama International Medical Center, Saitama Medical University, Yamane, Hidaka, Saitama, 350-1298, Japan
| | | | - Pascal Derkinderen
- Department of Neurology, CHU Nantes, 44093, Nantes, France.
- Inserm, U1235, 1, rue Gaston Veil, 44035, Nantes Cedex 1, France.
- Nantes University, 44035, Nantes, France.
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| |
Collapse
|
567
|
Abstract
It has become apparent that the intestinal microbiota orchestrates important aspects of our metabolism, immunity, and development. Recent work has demonstrated that the microbiota also influences brain function in healthy and diseased individuals. Of great interest are reports that intestinal bacteria play a role in the pathogenic cascade of both Parkinson and Alzheimer diseases. These neurodegenerative disorders both involve misfolding of endogenous proteins that spreads from one region of the body to another in a manner analogous to prions. The mechanisms of how the microbiota influences or is correlated with disease require elaboration. Microbial proteins or metabolites may influence neurodegeneration through the promotion of amyloid formation by human proteins or by enhancing inflammatory responses to endogenous neuronal amyloids. We review the current knowledge concerning bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation. We propose the term “mapranosis” to describe the process of microbiota-associated proteopathy and neuroinflammation. The study of amyloid proteins made by the microbiota and their influence on health and disease is in its infancy. This is a promising area for therapeutic intervention because there are many ways to alter our microbial partners and their products, including amyloid proteins.
Collapse
Affiliation(s)
- Robert P. Friedland
- Department of Neurology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| | - Matthew R. Chapman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
568
|
Hutz MH, Rieder CR. The future of pharmacogenetics in Parkinson's disease treatment. Pharmacogenomics 2017; 19:171-174. [PMID: 29191064 DOI: 10.2217/pgs-2017-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mara H Hutz
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 91501-970, Brazil
| | - Carlos Rm Rieder
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
| |
Collapse
|
569
|
Perez-Pardo P, Hartog M, Garssen J, Kraneveld AD. Microbes Tickling Your Tummy: the Importance of the Gut-Brain Axis in Parkinson's Disease. Curr Behav Neurosci Rep 2017; 4:361-368. [PMID: 29201595 PMCID: PMC5694504 DOI: 10.1007/s40473-017-0129-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose of Review Patients suffering from Parkinson's disease (PD) are known to experience gastrointestinal dysfunction that might precede the onset of motor symptoms by several years. Evidence suggests an important role of the gut-brain axis in PD pathogenesis. These interactions might be essentially influenced by the gut microbiota. Here, we review recent findings supporting that changes in the gut microbiota composition might be a trigger for inflammation contributing to neurodegeneration in PD. Recent Findings Recent research revealed that PD patients exhibit a pro-inflammatory microbiota profile in their intestinal tract that might increase gut permeability, allowing leakage of bacterial products and inflammatory mediators from the intestines. Evidence in literature indicates that alpha-synuclein deposition might start in the enteric nervous system by pro-inflammatory immune activity and then propagates to the CNS. Alternatively, the peripheral inflammatory response could impact the brain through systemic mechanisms. Summary A better understanding of the gut-brain interactions and the role of the intestinal microbiota in the regulation of immune responses might bring new insights in PD pathological progression and might lead to novel diagnostics and therapeutic approaches.
Collapse
Affiliation(s)
- Paula Perez-Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mitch Hartog
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Nutricia Research, Utrecht, The Netherlands
| | - Aletta D. Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
570
|
Minato T, Maeda T, Fujisawa Y, Tsuji H, Nomoto K, Ohno K, Hirayama M. Progression of Parkinson's disease is associated with gut dysbiosis: Two-year follow-up study. PLoS One 2017; 12:e0187307. [PMID: 29091972 PMCID: PMC5665539 DOI: 10.1371/journal.pone.0187307] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 10/17/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND We previously reported gut dysbiosis in patients with Parkinson's disease (PD). OBJECTIVE The aim of this study is to examine whether gut dysbiosis correlates with the progression of PD. METHODS We examined changes in gut microbiota and demographic features in 2 years in 36 PD patients. RESULTS A change of total UPDRS scores in 2 years was predicted by the counts of Bifidobacterium and Atopobium cluster at year 0 with a correlation coefficient of 0.52. Correlation analysis additionally revealed that low counts of Bifidobacterium and Bacteroides fragilis at year 0 were associated with worsening of UPDRS I scores in 2 years. In addition, low counts of Bifidobacterium at year 0 were associated with worsening of hallucinations/delusions in 2 years. Similarly, low counts of B. fragilis at year 0 were associated with worsening of motivation/initiative in 2 years. The patients were evenly divided into the deteriorated and stable groups based on the degree of worsening of total UPDRS scores. The deteriorated group had lower counts of Bifidobacterium, B. fragilis, and Clostridium leptium than the stable group at year 0 but not at year 2, suggesting that the deteriorated group may demonstrate accelerated lowering of these bacteria at year 0. CONCLUSIONS The total counts of intestinal bacterial decrease in the course of PD progression. Temporal profiles of lowering of bacterial counts are likely to be different from bacteria to bacteria, and also between the deteriorating and stable groups, which may be able to be exploited to differentiate patients with rapidly and slowly progressive PD pathology.
Collapse
Affiliation(s)
- Tomomi Minato
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of medicine, Iwate Medical University, Morioka, Japan
| | - Yoshiro Fujisawa
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (MH); (KO)
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail: (MH); (KO)
| |
Collapse
|
571
|
Scheperjans F. The prodromal microbiome. Mov Disord 2017; 33:5-7. [DOI: 10.1002/mds.27197] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/29/2022] Open
Affiliation(s)
- Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology); University of Helsinki; Helsinki Finland
| |
Collapse
|
572
|
Tan AH, Chong CW, Song SL, Teh CSJ, Yap IKS, Loke MF, Tan YQ, Yong HS, Mahadeva S, Lang AE, Lim SY. Altered gut microbiome and metabolome in patients with multiple system atrophy. Mov Disord 2017; 33:174-176. [DOI: 10.1002/mds.27203] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 12/31/2022] Open
Affiliation(s)
- Ai Huey Tan
- Division of Neurology and the Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
| | - Chun Wie Chong
- Centre for Translational Research, Institute for Research, Development and Innovation; International Medical University; Kuala Lumpur Malaysia
- Department of Life Sciences, School of Pharmacy; International Medical University; Kuala Lumpur Malaysia
| | - Sze Looi Song
- Institute of Ocean and Earth Sciences; University of Malaya; Kuala Lumpur Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
| | - Ivan Kok Seng Yap
- Centre for Translational Research, Institute for Research, Development and Innovation; International Medical University; Kuala Lumpur Malaysia
- Department of Life Sciences, School of Pharmacy; International Medical University; Kuala Lumpur Malaysia
| | - Mun Fai Loke
- Department of Medical Microbiology, Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
| | - Yong Qi Tan
- Division of Neurology and the Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
| | - Hoi Sen Yong
- Institute of Biological Sciences; University of Malaya; Kuala Lumpur Malaysia
| | - Sanjiv Mahadeva
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
| | - Anthony E. Lang
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital; Division of Neurology, Department of Medicine; University of Toronto; Toronto Canada
| | - Shen-Yang Lim
- Division of Neurology and the Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
| |
Collapse
|
573
|
Abstract
PURPOSE OF REVIEW The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. RECENT FINDINGS Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.
Collapse
|
574
|
Vázquez-Baeza Y, Callewaert C, Debelius J, Hyde E, Marotz C, Morton JT, Swafford A, Vrbanac A, Dorrestein PC, Knight R. Impacts of the Human Gut Microbiome on Therapeutics. Annu Rev Pharmacol Toxicol 2017; 58:253-270. [PMID: 28968189 DOI: 10.1146/annurev-pharmtox-042017-031849] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human microbiome contains a vast source of genetic and biochemical variation, and its impacts on therapeutic responses are just beginning to be understood. This expanded understanding is especially important because the human microbiome differs far more among different people than does the human genome, and it is also dramatically easier to change. Here, we describe some of the major factors driving differences in the human microbiome among individuals and populations. We then describe some of the many ways in which gut microbes modify the action of specific chemotherapeutic agents, including nonsteroidal anti-inflammatory drugs and cardiac glycosides, and outline the potential of fecal microbiota transplant as a therapeutic. Intriguingly, microbes also alter how hosts respond to therapeutic agents through various pathways acting at distal sites. Finally, we discuss some of the computational and practical issues surrounding use of the microbiome to stratify individuals for drug response, and we envision a future where the microbiome will be modified to increase everyone's potential to benefit from therapy.
Collapse
Affiliation(s)
- Yoshiki Vázquez-Baeza
- Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA;
| | - Chris Callewaert
- Department of Pediatrics, University of California, San Diego, California 92093, USA
| | - Justine Debelius
- Department of Pediatrics, University of California, San Diego, California 92093, USA
| | - Embriette Hyde
- Department of Pediatrics, University of California, San Diego, California 92093, USA
| | - Clarisse Marotz
- Biomedical Sciences, University of California, San Diego, California 92093, USA
| | - James T Morton
- Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA;
| | - Austin Swafford
- Center for Microbiome Innovation, University of California, San Diego, California 92093, USA
| | - Alison Vrbanac
- Biomedical Sciences, University of California, San Diego, California 92093, USA
| | - Pieter C Dorrestein
- Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California 92093, USA
| | - Rob Knight
- Department of Computer Science and Engineering, University of California, San Diego, California 92093, USA; .,Department of Pediatrics, University of California, San Diego, California 92093, USA.,Center for Microbiome Innovation, University of California, San Diego, California 92093, USA
| |
Collapse
|
575
|
Heintz-Buschart A, Pandey U, Wicke T, Sixel-Döring F, Janzen A, Sittig-Wiegand E, Trenkwalder C, Oertel WH, Mollenhauer B, Wilmes P. The nasal and gut microbiome in Parkinson's disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord 2017; 33:88-98. [PMID: 28843021 PMCID: PMC5811909 DOI: 10.1002/mds.27105] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background Increasing evidence connects the gut microbiota and the onset and/or phenotype of Parkinson's disease (PD). Differences in the abundances of specific bacterial taxa have been reported in PD patients. It is, however, unknown whether these differences can be observed in individuals at high risk, for example, with idiopathic rapid eye movement sleep behavior disorder, a prodromal condition of α‐synuclein aggregation disorders including PD. Objectives To compare microbiota in carefully preserved nasal wash and stool samples of subjects with idiopathic rapid eye movement sleep behavior disorder, manifest PD, and healthy individuals. Methods Microbiota of flash‐frozen stool and nasal wash samples from 76 PD patients, 21 idiopathic rapid eye movement sleep behavior disorder patients, and 78 healthy controls were assessed by 16S and 18S ribosomal RNA amplicon sequencing. Seventy variables, related to demographics, clinical parameters including nonmotor symptoms, and sample processing, were analyzed in relation to microbiome variability and controlled differential analyses were performed. Results Differentially abundant gut microbes, such as Akkermansia, were observed in PD, but no strong differences in nasal microbiota. Eighty percent of the differential gut microbes in PD versus healthy controls showed similar trends in idiopathic rapid eye movement sleep behavior disorder, for example, Anaerotruncus and several Bacteroides spp., and correlated with nonmotor symptoms. Metagenomic sequencing of select samples enabled the reconstruction of genomes of so far uncharacterized differentially abundant organisms. Conclusion Our study reveals differential abundances of gut microbial taxa in PD and its prodrome idiopathic rapid eye movement sleep behavior disorder in comparison to the healthy controls, and highlights the potential of metagenomics to identify and characterize microbial taxa, which are enriched or depleted in PD and/or idiopathic rapid eye movement sleep behavior disorder. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Heintz-Buschart
- Eco-Systems Biology Research Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Urvashi Pandey
- Eco-Systems Biology Research Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Tamara Wicke
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurology, Philipps University Marburg, Germany
| | - Friederike Sixel-Döring
- Paracelsus-Elena-Klinik, Kassel, Germany.,Department of Neurology, Philipps University Marburg, Germany
| | - Annette Janzen
- Department of Neurology, Philipps University Marburg, Germany
| | | | - Claudia Trenkwalder
- Paracelsus-Elena-Klinik, Kassel, Germany.,University Medical Center Goettingen, Department of Neurosurgery, Goettingen, Germany
| | | | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany.,University Medical Center Goettingen, Department of Neurology, Goettingen, Germany
| | - Paul Wilmes
- Eco-Systems Biology Research Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
576
|
Sherwin E, Dinan TG, Cryan JF. Recent developments in understanding the role of the gut microbiota in brain health and disease. Ann N Y Acad Sci 2017; 1420:5-25. [PMID: 28768369 DOI: 10.1111/nyas.13416] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022]
Abstract
There is a growing appreciation of the role of the gut microbiota in all aspects of health and disease, including brain health. Indeed, roles for the bacterial commensals in various psychiatric and neurological conditions, such as depression, autism, stroke, Parkinson's disease, and Alzheimer's disease, are emerging. Microbiota dysregulation has been documented in all of these conditions or in animal models thereof. Moreover, depletion or modulation of the gut microbiota can affect the severity of the central pathology or behavioral deficits observed in a variety of brain disorders. However, the mechanisms underlying such effects are only slowly being unraveled. Additionally, recent preclinical and clinical evidence suggest that targeting the microbiota through prebiotic, probiotic, or dietary interventions may be an effective "psychobiotic" strategy for treating symptoms in mood, neurodevelopmental disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Eoin Sherwin
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
577
|
Rousseaux MWC, Shulman JM, Jankovic J. Progress toward an integrated understanding of Parkinson's disease. F1000Res 2017; 6:1121. [PMID: 28751973 PMCID: PMC5510019 DOI: 10.12688/f1000research.11820.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting over 10 million individuals worldwide. While numerous effective symptomatic treatments are currently available, no curative or disease-modifying therapies exist. An integrated, comprehensive understanding of PD pathogenic mechanisms will likely address this unmet clinical need. Here, we highlight recent progress in PD research with an emphasis on promising translational findings, including (i) advances in our understanding of disease susceptibility, (ii) improved knowledge of cellular dysfunction, and (iii) insights into mechanisms of spread and propagation of PD pathology. We emphasize connections between these previously disparate strands of PD research and the development of an emerging systems-level understanding that will enable the next generation of PD therapeutics.
Collapse
Affiliation(s)
- Maxime W C Rousseaux
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Joshua M Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund St, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.,Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, 7200 Cambridge, Houston, TX, 77030-4202, USA.,Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, 7200 Cambridge, Houston, TX, 77030-4202, USA
| |
Collapse
|
578
|
Payami H. The emerging science of precision medicine and pharmacogenomics for Parkinson's disease. Mov Disord 2017; 32:1139-1146. [PMID: 28686320 DOI: 10.1002/mds.27099] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/12/2017] [Accepted: 06/18/2017] [Indexed: 12/12/2022] Open
Abstract
Current therapies for Parkinson's disease are problematic because they are symptomatic and have adverse effects. New drugs have failed in clinical trials because of inadequate efficacy. At the core of the problem is trying to make one drug work for all Parkinson's disease patients, when we know this premise is wrong because (1) Parkinson's disease is not a single disease, and (2) no two individuals have the same biological makeup. Precision medicine is the goal to strive for, but we are only at the beginning stages of building the infrastructure for one of the most complex projects in the history of science, and it will be a long time before Parkinson's disease reaps the benefits. Pharmacogenomics, a cornerstone of precision medicine, has already proven successful for many conditions and could also propel drug discovery and improve treatment for Parkinson's disease. To make progress in the pharmacogenomics of Parkinson's disease, we need to change course from small inconclusive candidate gene studies to large-scale rigorously planned genome-wide studies that capture the nuclear genome and the microbiome. Pharmacogenomic studies must use homogenous subtypes of Parkinson's disease or apply the brute force of statistical power to overcome heterogeneity, which will require large sample sizes achievable only via internet-based methods and electronic databases. Large-scale pharmacogenomic studies, together with biomarker discovery efforts, will yield the knowledge necessary to design clinical trials with precision to alleviate confounding by disease heterogeneity and interindividual variability in drug response, two of the major impediments to successful drug discovery and effective treatment. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Haydeh Payami
- Departments of Neurology and Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| |
Collapse
|
579
|
Hopfner F, Künstner A, Müller SH, Künzel S, Zeuner KE, Margraf NG, Deuschl G, Baines JF, Kuhlenbäumer G. Gut microbiota in Parkinson disease in a northern German cohort. Brain Res 2017; 1667:41-45. [PMID: 28506555 DOI: 10.1016/j.brainres.2017.04.019] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 11/16/2022]
Abstract
Pathologic and epidemiologic studies suggest that Parkinson disease (PD) may in some cases start in the enteric nervous system and spread via the vagal nerve to the brainstem. Mounting evidence suggests that the gut microbiome plays an important role in the communication between gut and brain and that alteration of the gut microbiome is involved in the pathogenesis of numerous diseases, including Parkinson disease. The aim of this study was to determine whether Parkinson disease is associated with qualitative or quantitative changes in the gut microbiome. We analyzed the gut microbiome in 29 PD cases and 29 age-matched controls by next-generation-sequencing of the 16S rRNA gene and compared diversity indices and bacterial abundances between cases and controls. Alpha diversity measures and the abundance of major phyla did not differ between cases and controls. Beta diversity analyses and analysis on the bacterial family level revealed significant differences between cases and controls for four bacterial families. In keeping with recently published studies, Lactobacillaceae were more abundant in cases. Barnesiellaceae and Enterococcacea were also more abundant in cases in this study but not in other studies. Larger studies, accounting for drug effects and further functional investigations of the gut microbiome are necessary to delineate the role of the gut microbiome in the pathogenesis of PD.
Collapse
Affiliation(s)
| | - Axel Künstner
- Group of Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, 23538 Lübeck, Germany; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | | | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | | | | | | | - John F Baines
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany; Institute for Experimental Medicine, Kiel University, 24105 Kiel, Germany
| | | |
Collapse
|
580
|
Wampach L, Heintz-Buschart A, Hogan A, Muller EEL, Narayanasamy S, Laczny CC, Hugerth LW, Bindl L, Bottu J, Andersson AF, de Beaufort C, Wilmes P. Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life. Front Microbiol 2017; 8:738. [PMID: 28512451 PMCID: PMC5411419 DOI: 10.3389/fmicb.2017.00738] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/10/2017] [Indexed: 12/26/2022] Open
Abstract
Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365) within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD) infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD) infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants, which affects not only bacteria but also archaea and microeukaryotes. This further highlights the need for resolving bacterial, archaeal, and microeukaryotic dynamics in future longitudinal studies of microbial colonization and succession within the neonatal gastrointestinal tract.
Collapse
Affiliation(s)
- Linda Wampach
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Anna Heintz-Buschart
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Angela Hogan
- Integrated BioBank of LuxembourgLuxembourg, Luxembourg
| | - Emilie E L Muller
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Shaman Narayanasamy
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Cedric C Laczny
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| | - Luisa W Hugerth
- Science for Life Laboratory, Division of Gene Technology, School of Biotechnology, Royal Institute of TechnologyStockholm, Sweden
| | - Lutz Bindl
- Centre Hospitalier de LuxembourgLuxembourg, Luxembourg
| | - Jean Bottu
- Centre Hospitalier de LuxembourgLuxembourg, Luxembourg
| | - Anders F Andersson
- Science for Life Laboratory, Division of Gene Technology, School of Biotechnology, Royal Institute of TechnologyStockholm, Sweden
| | - Carine de Beaufort
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg.,Centre Hospitalier de LuxembourgLuxembourg, Luxembourg
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of LuxembourgEsch-sur-Alzette, Luxembourg
| |
Collapse
|
581
|
Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F, Bork P, Wüllner U. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson's disease patients. Genome Med 2017; 9:39. [PMID: 28449715 PMCID: PMC5408370 DOI: 10.1186/s13073-017-0428-y] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/08/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) presently is conceptualized as a protein aggregation disease in which pathology involves both the enteric and the central nervous system, possibly spreading from one to another via the vagus nerves. As gastrointestinal dysfunction often precedes or parallels motor symptoms, the enteric system with its vast diversity of microorganisms may be involved in PD pathogenesis. Alterations in the enteric microbial taxonomic level of L-DOPA-naïve PD patients might also serve as a biomarker. METHODS We performed metagenomic shotgun analyses and compared the fecal microbiomes of 31 early stage, L-DOPA-naïve PD patients to 28 age-matched controls. RESULTS We found increased Verrucomicrobiaceae (Akkermansia muciniphila) and unclassified Firmicutes, whereas Prevotellaceae (Prevotella copri) and Erysipelotrichaceae (Eubacterium biforme) were markedly lowered in PD samples. The observed differences could reliably separate PD from control with a ROC-AUC of 0.84. Functional analyses of the metagenomes revealed differences in microbiota metabolism in PD involving the ẞ-glucuronate and tryptophan metabolism. While the abundances of prophages and plasmids did not differ between PD and controls, total virus abundance was decreased in PD participants. Based on our analyses, the intake of either a MAO inhibitor, amantadine, or a dopamine agonist (which in summary relates to 90% of PD patients) had no overall influence on taxa abundance or microbial functions. CONCLUSIONS Our data revealed differences of colonic microbiota and of microbiota metabolism between PD patients and controls at an unprecedented detail not achievable through 16S sequencing. The findings point to a yet unappreciated aspect of PD, possibly involving the intestinal barrier function and immune function in PD patients. The influence of the parkinsonian medication should be further investigated in the future in larger cohorts.
Collapse
Affiliation(s)
- J R Bedarf
- Department of Neurology, University of Bonn, Bonn, Germany.,German Centre for neurodegenerative disease research (DZNE), Bonn, Germany
| | - F Hildebrand
- European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
| | - L P Coelho
- European Molecular Biology Laboratory, EMBL, Heidelberg, Germany
| | - S Sunagawa
- European Molecular Biology Laboratory, EMBL, Heidelberg, Germany.,ETH Zurich, Institute of Microbiology, Vladimir-Prelog-1-5/10, 8093, Zurich, Switzerland
| | - M Bahram
- Evolutionary Biology Centre, Uppsala University, Norbyva ̈gen 18D, 75236, Uppsala, Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., 51005, Tartu, Estonia
| | - F Goeser
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), Bonn-Cologne, Germany
| | - P Bork
- European Molecular Biology Laboratory, EMBL, Heidelberg, Germany. .,Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory, Heidelberg, Germany. .,Max Delbrück Centre for Molecular Medicine, 13125, Berlin, Germany. .,Department of Bioinformatics, University of Würzburg, 97074, Würzburg, Germany. .,, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| | - U Wüllner
- Department of Neurology, University of Bonn, Bonn, Germany. .,German Centre for neurodegenerative disease research (DZNE), Bonn, Germany. .,, Sigmund-Freud-Str. 25, 53127, Bonn, Germany.
| |
Collapse
|