551
|
Matey-Hernandez ML, Williams FMK, Potter T, Valdes AM, Spector TD, Menni C. Genetic and microbiome influence on lipid metabolism and dyslipidemia. Physiol Genomics 2018; 50:117-126. [PMID: 29341867 PMCID: PMC5867613 DOI: 10.1152/physiolgenomics.00053.2017] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disruption in the metabolism of lipids is broadly classified under dyslipidemia and relates to the concentration of lipids in the blood. Dyslipidemia is a predictor of cardio-metabolic disease including obesity. Traditionally, the large interindividual variation has been related to genetic factors and diet. Genome-wide association studies have identified over 150 loci related to abnormal lipid levels, explaining ~40% of the total variation. Part of the unexplained variance has been attributed to environmental factors including diet, but the extent of the dietary contribution remains unquantified. Furthermore, other factors are likely to influence lipid metabolism including the gut microbiome, which plays an important role in the digestion of different dietary components including fats and polysaccharides. Here we describe the contributing role of host genetics and the gut microbiome to dyslipidemia and discuss the potential therapeutic implications of advances in understanding the gut microbiome to the treatment of dyslipidemia.
Collapse
Affiliation(s)
- Maria Luisa Matey-Hernandez
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Westminster Bridge Road, London , United Kingdom
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Westminster Bridge Road, London , United Kingdom
| | - Tilly Potter
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Westminster Bridge Road, London , United Kingdom
| | - Ana M Valdes
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Westminster Bridge Road, London , United Kingdom
- School of Medicine, University of Nottingham, City Hospital Hucknall Rd , Nottingham , United Kingdom
- NIHR Nottingham Biomedical Research Centre , Nottingham , United Kingdom
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Westminster Bridge Road, London , United Kingdom
| | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, Westminster Bridge Road, London , United Kingdom
| |
Collapse
|
552
|
Gut Dysbiosis and Muscle Aging: Searching for Novel Targets against Sarcopenia. Mediators Inflamm 2018; 2018:7026198. [PMID: 29686533 PMCID: PMC5893006 DOI: 10.1155/2018/7026198] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
Advanced age is characterized by several changes, one of which is the impairment of the homeostasis of intestinal microbiota. These alterations critically influence host health and have been associated with morbidity and mortality in older adults. “Inflammaging,” an age-related chronic inflammatory process, is a common trait of several conditions, including sarcopenia. Interestingly, imbalanced intestinal microbial community has been suggested to contribute to inflammaging. Changes in gut microbiota accompanying sarcopenia may be attenuated by supplementation with pre- and probiotics. Although muscle aging has been increasingly recognized as a biomarker of aging, the pathophysiology of sarcopenia is to date only partially appreciated. Due to its development in the context of the age-related inflammatory milieu, several studies favor the hypothesis of a tight connection between sarcopenia and inflammaging. However, conclusive evidence describing the signaling pathways involved has not yet been produced. Here, we review the current knowledge of the changes in intestinal microbiota that occur in advanced age with a special emphasis on findings supporting the idea of a modulation of muscle physiology through alterations in gut microbial composition and activity.
Collapse
|
553
|
Harper A, Naghibi MM, Garcha D. The Role of Bacteria, Probiotics and Diet in Irritable Bowel Syndrome. Foods 2018; 7:E13. [PMID: 29373532 PMCID: PMC5848117 DOI: 10.3390/foods7020013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/18/2018] [Accepted: 01/24/2018] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome is a highly prevalent gastrointestinal disorder that threatens the quality of life of millions and poses a substantial financial burden on healthcare systems around the world. Intense research into the human microbiome has led to fascinating discoveries which directly and indirectly implicate the diversity and function of this occult organ in irritable bowel syndrome (IBS) pathophysiology. The benefit of manipulating the gastrointestinal microbiota with diet and probiotics to improve symptoms has been demonstrated in a wealth of both animal and human studies. The positive and negative mechanistic roles bacteria play in IBS will be explored and practical probiotic and dietary choices offered.
Collapse
Affiliation(s)
- Ashton Harper
- Protexin, Medical Affairs, Probiotics International Ltd., Lopen Head, Somerset TA13 5JH, UK.
| | - Malwina M Naghibi
- Protexin, Medical Affairs, Probiotics International Ltd., Lopen Head, Somerset TA13 5JH, UK.
| | - Davinder Garcha
- Protexin, Medical Affairs, Probiotics International Ltd., Lopen Head, Somerset TA13 5JH, UK.
| |
Collapse
|
554
|
Inoue R, Fujiwara S, Tsukahara T. Ileal mucosal response to the same probiotic Lactobacillus strains is markedly different between suckling and adult mice. Biosci Biotechnol Biochem 2018; 82:329-333. [PMID: 29316868 DOI: 10.1080/09168451.2017.1422387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
While evidence shows that probiotic supplementation exerts beneficial effects on developing children and animals, it is unclear whether it would exert equal or similar effects on adult human and animals. In this study, response to probiotic lactobacilli in ileal mucosa of suckling and adult mice was compared by evaluating gene expression profiles using DNA microarray. Two probiotic strains, Lactobacillus gasseri CP2305s and Lactobacillus plantarum CPA305C were used. Supplementation of probiotics for 7 days affected completely different genes in suckling and adult mice, regardless of the probiotic strain. The results suggested that ileal mucosal responses to probiotics are age stage specific.
Collapse
Affiliation(s)
- Ryo Inoue
- a Laboratory of Animal Science , Kyoto Prefectural University , Kyoto , Japan
| | - Shigeru Fujiwara
- b Core Technology Laboratories , Asahi Group Holdings, Ltd. , Sagamihara , Kanagawa , Japan
| | | |
Collapse
|
555
|
Increased Abundance of Clostridium and Fusobacterium in Gastric Microbiota of Patients with Gastric Cancer in Taiwan. Sci Rep 2018; 8:158. [PMID: 29317709 PMCID: PMC5760541 DOI: 10.1038/s41598-017-18596-0] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/13/2017] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is recognised as a main risk factor for gastric cancer. However, approximately half of the patients with gastritis are negative for H. pylori infection, and the abundance of H. pylori decreases in patients with cancer. In the current study, we profiled gastric epithelium-associated bacterial species in patients with gastritis, intestinal metaplasia, and gastric cancer to identify additional potential pathogenic bacteria. The overall composition of the microbiota was similar between the patients with gastritis and those with intestinal metaplasia. H. pylori was present in half of the non-cancer group, and the dominant bacterial species in the H. pylori-negative patients were Burkholderia, Enterobacter, and Leclercia. The abundance of those bacteria was similar between the cancer and non-cancer groups, whereas the frequency and abundance of H. pylori were significantly lower in the cancer group. Instead, Clostridium, Fusobacterium, and Lactobacillus species were frequently abundant in patients with gastric cancer, demonstrating a gastric cancer-specific bacterial signature. A receiver operating characteristic curve analysis showed that Clostridium colicanis and Fusobacterium nucleatum exhibited a diagnostic ability for gastric cancer. Our findings indicate that the gastric microenvironment is frequently colonised by Clostridium and Fusobacterium in patients with gastric cancer.
Collapse
|
556
|
Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry 2018; 9:44. [PMID: 29593576 PMCID: PMC5859128 DOI: 10.3389/fpsyt.2018.00044] [Citation(s) in RCA: 513] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
The vagus nerve represents the main component of the parasympathetic nervous system, which oversees a vast array of crucial bodily functions, including control of mood, immune response, digestion, and heart rate. It establishes one of the connections between the brain and the gastrointestinal tract and sends information about the state of the inner organs to the brain via afferent fibers. In this review article, we discuss various functions of the vagus nerve which make it an attractive target in treating psychiatric and gastrointestinal disorders. There is preliminary evidence that vagus nerve stimulation is a promising add-on treatment for treatment-refractory depression, posttraumatic stress disorder, and inflammatory bowel disease. Treatments that target the vagus nerve increase the vagal tone and inhibit cytokine production. Both are important mechanism of resiliency. The stimulation of vagal afferent fibers in the gut influences monoaminergic brain systems in the brain stem that play crucial roles in major psychiatric conditions, such as mood and anxiety disorders. In line, there is preliminary evidence for gut bacteria to have beneficial effect on mood and anxiety, partly by affecting the activity of the vagus nerve. Since, the vagal tone is correlated with capacity to regulate stress responses and can be influenced by breathing, its increase through meditation and yoga likely contribute to resilience and the mitigation of mood and anxiety symptoms.
Collapse
Affiliation(s)
- Sigrid Breit
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Aleksandra Kupferberg
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
557
|
Lin F, Wu H, Zeng M, Yu G, Dong S, Yang H. Probiotic/prebiotic correction for adverse effects of iron fortification on intestinal resistance to Salmonella infection in weaning mice. Food Funct 2018; 9:1070-1078. [DOI: 10.1039/c7fo00990a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Our study provides experimental evidence for the increased diarrhea risk upon iron fortification with high pathogen load, and demonstrates that probiotic or prebiotic supplementation can be used to eliminate the potential harm of iron fortification on gut health.
Collapse
Affiliation(s)
- Feifei Lin
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Haohao Wu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Mingyong Zeng
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Guangli Yu
- School of Medicine and Pharmacy
- Ocean University of China
- Qingdao
- China
| | - Shiyuan Dong
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute
- Zhoushan
- PR China
| |
Collapse
|
558
|
Lach G, Schellekens H, Dinan TG, Cryan JF. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics 2018; 15:36-59. [PMID: 29134359 PMCID: PMC5794698 DOI: 10.1007/s13311-017-0585-0] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complex bidirectional communication between the gut and the brain is finely orchestrated by different systems, including the endocrine, immune, autonomic, and enteric nervous systems. Moreover, increasing evidence supports the role of the microbiome and microbiota-derived molecules in regulating such interactions; however, the mechanisms underpinning such effects are only beginning to be resolved. Microbiota-gut peptide interactions are poised to be of great significance in the regulation of gut-brain signaling. Given the emerging role of the gut-brain axis in a variety of brain disorders, such as anxiety and depression, it is important to understand the contribution of bidirectional interactions between peptide hormones released from the gut and intestinal bacteria in the context of this axis. Indeed, the gastrointestinal tract is the largest endocrine organ in mammals, secreting dozens of different signaling molecules, including peptides. Gut peptides in the systemic circulation can bind cognate receptors on immune cells and vagus nerve terminals thereby enabling indirect gut-brain communication. Gut peptide concentrations are not only modulated by enteric microbiota signals, but also vary according to the composition of the intestinal microbiota. In this review, we will discuss the gut microbiota as a regulator of anxiety and depression, and explore the role of gut-derived peptides as signaling molecules in microbiome-gut-brain communication. Here, we summarize the potential interactions of the microbiota with gut hormones and endocrine peptides, including neuropeptide Y, peptide YY, pancreatic polypeptide, cholecystokinin, glucagon-like peptide, corticotropin-releasing factor, oxytocin, and ghrelin in microbiome-to-brain signaling. Together, gut peptides are important regulators of microbiota-gut-brain signaling in health and stress-related psychiatric illnesses.
Collapse
Affiliation(s)
- Gilliard Lach
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Harriet Schellekens
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- Food for Health Ireland, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland.
- Food for Health Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
559
|
Andrew R, Izzo AA. Principles of pharmacological research of nutraceuticals. Br J Pharmacol 2017; 174:1177-1194. [PMID: 28500635 DOI: 10.1111/bph.13779] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Ruth Andrew
- Centre for Cardiovascular Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Angelo A Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
560
|
Herd P, Schaeffer NC, DiLoreto K, Jacques K, Stevenson J, Rey F, Roan C. The Influence of Social Conditions Across the Life Course on the Human Gut Microbiota: A Pilot Project With the Wisconsin Longitudinal Study. J Gerontol B Psychol Sci Soc Sci 2017; 73:124-133. [PMID: 28444239 PMCID: PMC5926979 DOI: 10.1093/geronb/gbx029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/03/2017] [Indexed: 02/06/2023] Open
Abstract
Objective To test the feasibility of collecting and integrating data on the gut microbiome into one of the most comprehensive longitudinal studies of aging and health, the Wisconsin Longitudinal Study (WLS). The long-term goal of this integration is to clarify the contribution of social conditions in shaping the composition of the gut microbiota late in life. Research on the microbiome, which is considered to be of parallel importance to human health as the human genome, has been hindered by human studies with nonrandomly selected samples and with limited data on social conditions over the life course. Methods No existing population-based longitudinal study had collected fecal specimens. Consequently, we created an in-person protocol to collect stool specimens from a subgroup of WLS participants. Results We collected 429 stool specimens, yielding a 74% response rate and one of the largest human samples to date. Discussion The addition of data on the gut microbiome to the WLS-and to other population based longitudinal studies of aging-is feasible, under the right conditions, and can generate innovative research on the relationship between social conditions and the gut microbiome.
Collapse
Affiliation(s)
- Pamela Herd
- Lafollette School of Public Affairs, University of Wisconsin-Madison
| | | | - Kerryann DiLoreto
- Lafollette School of Public Affairs, University of Wisconsin-Madison
| | - Karen Jacques
- Lafollette School of Public Affairs, University of Wisconsin-Madison
| | - John Stevenson
- Lafollette School of Public Affairs, University of Wisconsin-Madison
| | - Federico Rey
- Lafollette School of Public Affairs, University of Wisconsin-Madison
| | - Carol Roan
- Lafollette School of Public Affairs, University of Wisconsin-Madison
| |
Collapse
|
561
|
Probiotics, Prebiotics, and Synbiotics for the Treatment and Prevention of Adult Dermatological Diseases. Am J Clin Dermatol 2017; 18:721-732. [PMID: 28681230 DOI: 10.1007/s40257-017-0300-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Probiotic, prebiotic, and synbiotic supplementation is becoming more prevalent nowadays. Clinical studies have demonstrated some of the medical benefits of probiotics, prebiotics, and synbiotics within dermatology but an evidence-based review of their effects in adults is needed. OBJECTIVE The aim of this study was to identify evidence for the use of supplementation with probiotics, prebiotics, or synbiotics for the prevention and treatment of dermatological diseases in adults. DATA SOURCES We conducted a search of the Ovid MEDLINE, Cochrane Central Register of Controlled trials and EMBASE electronic databases from 1 January 1946 to 11 January 2017. STUDY SELECTION Trials examining supplementation in the treatment of dermatological diseases using oral or topical probiotics, synbiotics, and prebiotics in adults over the age of 18 years were selected. DATA EXTRACTION Of 315 articles, 12 met the inclusion criteria. DATA SYNTHESIS Nutritional supplementation with probiotics and prebiotics was shown to improve atopic dermatitis (AD) symptomatology, quality of life, or clinical severity in six of nine studies. One study in psoriasis was shown to improve inflammatory markers, and one study suggested that probiotics could be used as adjunctive therapy in the treatment of acne. CONCLUSION Preliminary studies are optimistic for the use of some strains of probiotics for symptomatic and clinical improvement in AD, and as adjunctive treatment with antibiotics for acne. Further research is necessary to better assess how probiotics and prebiotics may be used within dermatology.
Collapse
|
562
|
Ho L, Ono K, Tsuji M, Mazzola P, Singh R, Pasinetti GM. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer's disease-type beta-amyloid neuropathological mechanisms. Expert Rev Neurother 2017; 18:83-90. [PMID: 29095058 DOI: 10.1080/14737175.2018.1400909] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dietary fibers are metabolized by gastrointestinal (GI) bacteria into short-chain fatty acids (SCFAs). We investigated the potential role of these SCFAs in β-amyloid (Aβ) mediated pathological processes that play key roles in Alzheimer's disease (AD) pathogenesis. RESEARCH DESIGN AND METHODS Multiple complementary assays were used to investigate individual SCFAs for their dose-responsive effects in interfering with the assembly of Aβß1-40 and Aβ1-42 peptides into soluble neurotoxic Aβ aggregates. RESULTS We found that several select SCFAs are capable of potently inhibiting Aβ aggregations, in vitro. CONCLUSION Our studies support the hypothesis that intestinal microbiota may help protect against AD, in part, by supporting the generation of select SCFAs, which interfere with the formation of toxic soluble Aβ aggregates.
Collapse
Affiliation(s)
- Lap Ho
- a Department of Neurology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Kenjiro Ono
- b Department of Neurology , Showa University School of Medicine , Tokyo , Japan
| | - Mayumi Tsuji
- c Department of Pharmacology , Showa University School of Medicine , Tokyo , Japan
| | - Paolo Mazzola
- d Department of Medicine , Center for Neuroscience, University of Milano-Bicocca , Monza , Italy
| | - Risham Singh
- a Department of Neurology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | - Giulio M Pasinetti
- a Department of Neurology , Icahn School of Medicine at Mount Sinai , New York , NY , USA
| |
Collapse
|
563
|
Singh P, Medronho B, Alves L, da Silva G, Miguel M, Lindman B. Development of carboxymethyl cellulose-chitosan hybrid micro- and macroparticles for encapsulation of probiotic bacteria. Carbohydr Polym 2017; 175:87-95. [DOI: 10.1016/j.carbpol.2017.06.119] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/29/2017] [Accepted: 06/29/2017] [Indexed: 01/31/2023]
|
564
|
Li J, Riaz Rajoka MS, Shao D, Jiang C, Jin M, Huang Q, Yang H, Shi J. Strategies to increase the efficacy of using gut microbiota for the modulation of obesity. Obes Rev 2017; 18:1260-1271. [PMID: 28742949 DOI: 10.1111/obr.12590] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/03/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
Abstract
Obesity is one of the most serious global public health challenges of the 21st century. The adjustment of gut microbiota is often recommended as an efficient strategy to treat obesity. This modulation of gut microbiota can be performed by many methods, including dietary intervention, antibiotic application, the use of prebiotics and probiotics, bariatric surgery and faecal microbiota transplantation. In most cases, positive effects have been observed in response to treatment, but invalid and even contrary effects have also been observed in some cases due to factors that are unrelated to intervention methods, such as genetic factors, patient age or gender, environmental microbiota, climate, geography and lifestyle. These factors can cause variation of gut microbial populations and thus should also be taken into consideration when selecting modulation strategies.
Collapse
Affiliation(s)
- J Li
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - M S Riaz Rajoka
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - D Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - C Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - M Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - Q Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - H Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| | - J Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Shaanxi, People's Republic of China
| |
Collapse
|
565
|
Yin X, Heeney D, Srisengfa Y, Golomb B, Griffey S, Marco M. Bacteriocin biosynthesis contributes to the anti-inflammatory capacities of probiotic Lactobacillus plantarum. Benef Microbes 2017; 9:333-344. [PMID: 29065706 DOI: 10.3920/bm2017.0096] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Plantaricin EF (PlnEF) is a class IIb bacteriocin produced by Lactobacillus plantarum. We compared L. plantarum NCIMB8826 and LM0419, a plnEFI deletion mutant of that strain lacking plnEF and the gene for the cognate immunity protein plnI, in a 2,4,6-trinitrobenzenesulfonic acid (TNBS) induced mouse model of acute inflammatory bowel disease. Mice fed either L. plantarum NCIMB8826 or LM0419 were not protected against TNBS according to either disease activity or histology (Ameho) scores. Mice consuming NCIMB8826 exhibited intermediate (non-significant) levels of colonic tumour necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) that ranged between the TNBS-treated animals and healthy controls. By comparison, TNF-α and IL-6 quantities were elevated in mice given L. plantarum LM0419 and equivalent to mice given TNBS alone. Both strains survived digestive tract transit in equal numbers and did not result in global changes to the bacterial composition in the intestine according to 16S rRNA gene sequencing either prior to or after TNBS administration. Examination of intestinal taxa showed that mice consuming wild-type L. plantarum, but not LM0419 contained lower proportions of Mucispirillum (Deferribacteres phylum) in the faeces prior to TNBS administration and Parabacteroides (Bacteroidetes phylum) in the caecum after disease induction. Parabacteroides also positively correlated with disease activity and histology scores. These findings suggest a role for PlnEFI production by L. plantarum in benefiting digestive tract health.
Collapse
Affiliation(s)
- X Yin
- 1 Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA.,2 Department of Plant Pathology, University of California, One Shields Avenue, Davis CA 95616-8751, USA
| | - D Heeney
- 1 Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Y Srisengfa
- 1 Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - B Golomb
- 1 Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA.,3 Bayer U.S. LLC, Crop Science Division, 890 Embarcadero Dr, West Sacramento, CA 95605, USA
| | - S Griffey
- 4 Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, 944 Garrod Dr. 2045 Davis, CA 95616, USA
| | - M Marco
- 1 Department of Food Science and Technology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
566
|
Yin L, Yang H, Li J, Li Y, Ding X, Wu G, Yin Y. Pig models on intestinal development and therapeutics. Amino Acids 2017; 49:2099-2106. [PMID: 28986749 DOI: 10.1007/s00726-017-2497-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023]
Abstract
The gastrointestinal tract plays a vital role in nutrient supply, digestion, and absorption, and has a crucial impact on the entire organism. Much attention is being paid to utilize animal models to study the pathogenesis of gastrointestinal diseases in response to intestinal development and health. The piglet has a body size similar to that of the human and is an omnivorous animal with comparable anatomy, nutritional requirements, and digestive and associated inflammatory processes, and displays similarities to the human intestinal microbial ecosystem, which make piglets more appropriate as an animal model for human than other non-primate animals. Therefore, the objective of this review is to summarize key attributes of the piglet model with which to study human intestinal development and intestinal health through probing into the etiology of several gastrointestinal diseases, thus providing a theoretical and hopefully practical, basis for further studies on mammalian nutrition, health, and disease, and therapeutics. Given the comparable nutritional requirements and strikingly similar brain developmental patterns between young piglets and humans, the piglet has been used as an important translational model for studying neurodevelopmental outcomes influenced by pediatric nutrition. Because of similarities in anatomy and physiology between pigs and mankind, more emphasises are put on how to use the piglet model for human organ transplantation research.
Collapse
Affiliation(s)
- Lanmei Yin
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, China
| | - Huansheng Yang
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, China. .,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, Hunan, China.
| | - Jianzhong Li
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, China
| | - Yali Li
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, China
| | - Xueqing Ding
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, China
| | - Guoyao Wu
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, Hunan, China.,Texas A&M University, College Station, TX, 77843, USA
| | - Yulong Yin
- Animal Nutrition and Human Health Laboratory, School of Life Sciences, Hunan Normal University, Changsha City, 410081, Hunan, China. .,Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding of Livestock and Poultry, Hunan Engineering and Research Center of Animal and Poultry Science and Key Laboratory for Agroecological Processes in Subtropical Region Scientific Observation and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, 410125, Hunan, China.
| |
Collapse
|
567
|
Roselli M, Devirgiliis C, Zinno P, Guantario B, Finamore A, Rami R, Perozzi G. Impact of supplementation with a food-derived microbial community on obesity-associated inflammation and gut microbiota composition. GENES AND NUTRITION 2017; 12:25. [PMID: 29043005 PMCID: PMC5628415 DOI: 10.1186/s12263-017-0583-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/13/2017] [Indexed: 02/07/2023]
Abstract
Background Obesity is a complex pathology associated with dysbiosis, metabolic alterations, and low-grade chronic inflammation promoted by immune cells, infiltrating and populating the adipose tissue. Probiotic supplementation was suggested to be capable of counteracting obesity-associated immune and microbial alterations, based on its proven immunomodulatory activity and positive effect on gut microbial balance. Traditional fermented foods represent a natural source of live microbes, including environmental strains with probiotic features, which could transiently colonise the gut. The aim of our work was to evaluate the impact of supplementation with a complex foodborne bacterial consortium on obesity-associated inflammation and gut microbiota composition in a mouse model. Methods C57BL/6J mice fed a 45% high fat diet (HFD) for 90 days were supplemented with a mixture of foodborne lactic acid bacteria derived from the traditional fermented dairy product “Mozzarella di Bufala Campana” (MBC) or with the commercial probiotic GG strain of Lactobacillus rhamnosus (LGG). Inflammation was assessed in epididymal white adipose tissue (WAT) following HFD. Faecal microbiota composition was studied by next-generation sequencing. Results Significant reduction of epididymal WAT weight was observed in MBC-treated, as compared to LGG and control, animals. Serum metabolic profiling showed correspondingly reduced levels of triglycerides and higher levels of HDL cholesterol, as well as a trend toward reduction of LDL-cholesterol levels. Analysis of the principal leucocyte subpopulations in epididymal WAT revealed increased regulatory T cells and CD4+ cells in MBC microbiota-supplemented mice, as well as decreased macrophage and CD8+ cell numbers, suggesting anti-inflammatory effects. These results were associated with lower levels of pro-inflammatory cytokines and chemokines in WAT explants. Faecal bacterial profiling demonstrated increased Firmicutes/Bacteroidetes ratio in all mice groups following HFD. Conclusions Taken together, these results indicate a protective effect of MBC microbiota supplementation toward HFD-induced fat accumulation and triglyceride and cholesterol levels, as well as inflammation, suggesting a stronger effect of a mixed microbial consortium vs single-strain probiotic supplementation. The immunomodulatory activity exerted by the MBC microbiota could be due to synergistic interactions within the microbial consortium, highlighting the important role of dietary microbes with yet uncharacterised probiotic effect. Electronic supplementary material The online version of this article (10.1186/s12263-017-0583-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marianna Roselli
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Chiara Devirgiliis
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Paola Zinno
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Barbara Guantario
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Alberto Finamore
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Rita Rami
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| | - Giuditta Perozzi
- Food and Nutrition Research Centre, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
568
|
Dong LN, Wang JP, Liu P, Yang YF, Feng J, Han Y. Faecal and mucosal microbiota in patients with functional gastrointestinal disorders: Correlation with toll-like receptor 2/toll-like receptor 4 expression. World J Gastroenterol 2017; 23:6665-6673. [PMID: 29085211 PMCID: PMC5643287 DOI: 10.3748/wjg.v23.i36.6665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/27/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the intestinal luminal microbiota (LM) and mucosa-associated microbiota (MAM) in Chinese patients with functional gastrointestinal disorders (FGIDs) and examine the association between these communities and the expression of toll-like receptor (TLR) 2 and TLR4.
METHODS Thirty-two Chinese subjects who suffered from symptoms of FGIDs, as confirmed by gastroenterologists, were enrolled in this study. Fresh faecal samples and descending colonic mucosal biopsies were collected from the subjects before (faecal) and during (mucosal) flexible colonoscopy. For analysis of the samples, we performed high-throughput sequencing of the V3-V4 region of the 16S rRNA gene and reverse transcription (RT)-PCR to detect the expression of colonic TLR2 and TLR4. Differences in the stool and mucosal microbiota were examined and a correlation network analysis was performed.
RESULTS The microbiota of faecal samples was significantly more diverse and richer than that of the mucosal samples, and the LM and MAM populations differed significantly. TLR2 expression showed a significant positive correlation with TLR4 expression. In the MAM samples, the genera Faecalibacterium and Ruminococcus, which belong to the family Ruminococcaceae, were inversely correlated with TLR4 expression (r = -0.45817, P = 0.0083 and r = -0.5306, P = 0.0018, respectively). Granulicatella, which belongs to Carnobacteriaceae, and Streptococcus, which belongs to Streptococcaceae, were inversely correlated with TLR2 expression (r = -0.5573, P = 0.0010 and r = -0.5435, P = 0.0013, respectively). In the LM samples, examination at phylum, class, or order level revealed no correlation with TLR4 expression. Faecalibacterium, which belongs to Ruminococcaceae, and Streptococcus, which belongs to Streptococcaceae, were inversely correlated with TLR2 expression (r = -0.5743, P = 0.0058 and r = -0.3905, P = 0.0271, respectively).
CONCLUSION Microbial compositions of LM and MAM in Chinese patients with FGIDs are different. Expression of TLRs may be affected by the type of bacteria that are present in the gut.
Collapse
Affiliation(s)
- Li-Na Dong
- Central Laboratory, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Jun-Ping Wang
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Ping Liu
- Department of Gynaecology, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Yun-Feng Yang
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Jing Feng
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Yi Han
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| |
Collapse
|
569
|
Bletz MC, Myers J, Woodhams DC, Rabemananjara FCE, Rakotonirina A, Weldon C, Edmonds D, Vences M, Harris RN. Estimating Herd Immunity to Amphibian Chytridiomycosis in Madagascar Based on the Defensive Function of Amphibian Skin Bacteria. Front Microbiol 2017; 8:1751. [PMID: 28959244 PMCID: PMC5604057 DOI: 10.3389/fmicb.2017.01751] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022] Open
Abstract
For decades, Amphibians have been globally threatened by the still expanding infectious disease, chytridiomycosis. Madagascar is an amphibian biodiversity hotspot where Batrachochytrium dendrobatidis (Bd) has only recently been detected. While no Bd-associated population declines have been reported, the risk of declines is high when invasive virulent lineages become involved. Cutaneous bacteria contribute to host innate immunity by providing defense against pathogens for numerous animals, including amphibians. Little is known, however, about the cutaneous bacterial residents of Malagasy amphibians and the functional capacity they have against Bd. We cultured 3179 skin bacterial isolates from over 90 frog species across Madagascar, identified them via Sanger sequencing of approximately 700 bp of the 16S rRNA gene, and characterized their functional capacity against Bd. A subset of isolates was also tested against multiple Bd genotypes. In addition, we applied the concept of herd immunity to estimate Bd-associated risk for amphibian communities across Madagascar based on bacterial antifungal activity. We found that multiple bacterial isolates (39% of all isolates) cultured from the skin of Malagasy frogs were able to inhibit Bd. Mean inhibition was weakly correlated with bacterial phylogeny, and certain taxonomic groups appear to have a high proportion of inhibitory isolates, such as the Enterobacteriaceae, Pseudomonadaceae, and Xanthamonadaceae (84, 80, and 75% respectively). Functional capacity of bacteria against Bd varied among Bd genotypes; however, there were some bacteria that showed broad spectrum inhibition against all tested Bd genotypes, suggesting that these bacteria would be good candidates for probiotic therapies. We estimated Bd-associated risk for sampled amphibian communities based on the concept of herd immunity. Multiple amphibian communities, including those in the amphibian diversity hotspots, Andasibe and Ranomafana, were estimated to be below the 80% herd immunity threshold, suggesting they may be at higher risk to chytridiomycosis if a lethal Bd genotype emerges in Madagascar. While this predictive approach rests on multiple assumptions, and incorporates only one component of hosts' defense against Bd, their culturable cutaneous bacterial defense, it can serve as a foundation for continued research on Bd-associated risk for the endemic frogs of Madagascar.
Collapse
Affiliation(s)
- Molly C Bletz
- Zoologisches Institut, Technische Universität BraunschweigBraunschweig, Germany.,Department of Biology, James Madison UniversityHarrisonburg, VA, United States
| | - Jillian Myers
- Ecology and Evolutionary Biology, University of MichiganAnn Arbor, MI, United States
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts BostonBoston, MA, United States
| | | | | | - Che Weldon
- Unit for Environmental Sciences and Management, North-West UniversityPotchefstroom, South Africa
| | - Devin Edmonds
- Illinois Natural History Survey University of Illinois at Urbana-ChampaignChampaign, IL, United States
| | - Miguel Vences
- Zoologisches Institut, Technische Universität BraunschweigBraunschweig, Germany
| | - Reid N Harris
- Department of Biology, James Madison UniversityHarrisonburg, VA, United States
| |
Collapse
|
570
|
Analysis of newly detected tetracycline resistance genes and their flanking sequences in human intestinal bifidobacteria. Sci Rep 2017; 7:6267. [PMID: 28740169 PMCID: PMC5524971 DOI: 10.1038/s41598-017-06595-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/13/2017] [Indexed: 11/22/2022] Open
Abstract
Due to tetracycline abuse, the safe bifidobacteria in the human gastrointestinal intestinal tract (GIT) may serve as a reservoir of tetracycline resistance genes. In the present investigation of 92 bifidobacterial strains originating from the human GIT, tetracycline resistance in 29 strains was mediated by the tet(W), tet(O) or tet(S) gene, and this is the first report of tet(O)- and tet(S)-mediated tetracycline resistance in bifidobacteria. Antibiotic resistance genes harbored by bifidobacteria are transferred from other bacteria. However, the characteristics of the spread and integration of tetracycline resistance genes into the human intestinal bifidobacteria chromosome are poorly understood. Here, conserved sequences were identified in bifidobacterial strains positive for tet(W), tet(O), or tet(S), including the tet(W), tet(O), or tet(S) and their partial flanking sequences, which exhibited identity with the sequences in multiple human intestinal pathogens, and genes encoding 23 S rRNA, an ATP transporter, a Cpp protein, and a membrane-spanning protein were flanking by the 1920-bp tet(W), 1920-bp tet(O), 1800-bp tet(O) and 252-bp tet(S) in bifidobacteria, respectively. These findings suggest that tetracycline resistance genes harbored by human intestinal bifidobacteria might initially be transferred from pathogens and that each kind of tetracycline resistance gene might tend to insert in the vicinity of specific bifidobacteria genes.
Collapse
|
571
|
Abstract
Microbiota play a key role in various body functions, as well as in physiological, metabolic, and immunological processes, through different mechanisms such as the regulation of the development and/or functions of different types of immune cells in the intestines. Evidence indicates that alteration in the gut microbiota can influence infectious and non-infectious diseases. Bacteria that reside on the mucosal surface or within the mucus layer interact with the host immune system, thus, a healthy gut microbiota is essential for the development of mucosal immunity. In patients with human immunodeficiency virus (HIV), including those who control their disease with antiretroviral drugs (ART), the gut microbiome is very different than the microbiome of those not infected with HIV. Recent data suggests that, for these patients, dysbiosis may lead to a breakdown in the gut’s immunologic activity, causing systemic bacteria diffusion and inflammation. Since in HIV-infected patients in this state, including those in ART therapy, the treatment of gastrointestinal tract disorders is frustrating, many studies are in progress to investigate the ability of probiotics to modulate epithelial barrier functions, microbiota composition, and microbial translocation. This mini-review analyzed the use of probiotics to prevent and attenuate several gastrointestinal manifestations and to improve gut-associated lymphoid tissue (GALT) immunity in HIV infection.
Collapse
|
572
|
Duranti S, Ferrario C, van Sinderen D, Ventura M, Turroni F. Obesity and microbiota: an example of an intricate relationship. GENES AND NUTRITION 2017. [PMID: 28638490 PMCID: PMC5473000 DOI: 10.1186/s12263-017-0566-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is widely accepted that metabolic disorders, such as obesity, are closely linked to lifestyle and diet. Recently, the central role played by the intestinal microbiota in human metabolism and in progression of metabolic disorders has become evident. In this context, animal studies and human trials have demonstrated that alterations of the intestinal microbiota towards enhanced energy harvest is a characteristic of the obese phenotype. Many publications, involving both animal studies and clinical trials, have reported on the successful exploitation of probiotics and prebiotics to treat obesity. However, the molecular mechanisms underlying these observed anti-obesity effects of probiotics and prebiotic therapies are still obscure. The aim of this mini-review is to discuss the intricate relationship of various factors, including diet, gut microbiota, and host genetics, that are believed to impact on the development of obesity, and to understand how modulation of the gut microbiota with dietary intervention may alleviate obesity-associated symptoms.
Collapse
Affiliation(s)
- Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
| |
Collapse
|
573
|
Wu Y, Zhang Q, Ren Y, Ruan Z. Effect of probiotic Lactobacillus on lipid profile: A systematic review and meta-analysis of randomized, controlled trials. PLoS One 2017; 12:e0178868. [PMID: 28594860 PMCID: PMC5464580 DOI: 10.1371/journal.pone.0178868] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/19/2017] [Indexed: 12/15/2022] Open
Abstract
Objective To assess the efficacy of probiotic Lactobacillus on serum lipids using a meta-analysis of randomized, controlled trials. Methods Fifteen studies containing 15 trials, with 976 subjects were included. The pooled WMD was calculated by random effects model. Results Probiotic Lactobacillus consumption significantly reduced TC by 0.26mmol/l (95% CI, -0.40 to -0.12) and LDL-C by 0.23mmol/l (95% CI, -0.36 to -0.10). Subgroup analysis of trials found significantly reduction of TC using L. plantarum and reduction of LDL-C using L. plantarum or L. reuteri. No significant effects were found on TG and HDL-C levels after supplementation with probiotic Lactobacillus. While, subgroup analysis found significantly beneficial effects on TG and HDL-C by consuming synbiotic food, containing L. sporogenes and inulin. Conclusion Consuming probiotic Lactobacillus, especially L. reuteri and L. plantarm, could reduce TC and LDL-C significantly. The study also suggested significantly beneficial effects on TG and HDL-C by consuming synbiotic food, containing L. sporogenes and inulin.
Collapse
Affiliation(s)
- Yucheng Wu
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Qingqing Zhang
- Department of Endocrinology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Yin Ren
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Zhongbao Ruan
- Department of Cardiology, Taizhou People's Hospital, Taizhou, Jiangsu, China
- * E-mail:
| |
Collapse
|
574
|
Evaluation of the transcription of interleukin-12 in the intestinal mucosa of mice subjected to experimental toxocariasis and supplemented with Saccharomyces boulardii. Vet Parasitol 2017; 242:59-62. [PMID: 28606326 DOI: 10.1016/j.vetpar.2017.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/01/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022]
|
575
|
Dairy Propionibacteria: Versatile Probiotics. Microorganisms 2017; 5:microorganisms5020024. [PMID: 28505101 PMCID: PMC5488095 DOI: 10.3390/microorganisms5020024] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 12/18/2022] Open
Abstract
Dairy propionibacteria are used as cheese ripening starters, as biopreservative and as beneficial additives, in the food industry. The main species, Propionibacterium freudenreichii, is known as GRAS (Generally Recognized As Safe, USA, FDA). In addition to another dairy species, Propionibacterium acidipropionici, they are included in QPS (Qualified Presumption of Safety) list. Additional to their well-known technological application, dairy propionibacteria increasingly attract attention for their promising probiotic properties. The purpose of this review is to summarize the probiotic characteristics of dairy propionibacteria reported by the updated literature. Indeed, they meet the selection criteria for probiotic bacteria, such as the ability to endure digestive stressing conditions and to adhere to intestinal epithelial cells. This is a prerequisite to bacterial persistence within the gut. The reported beneficial effects are ranked according to property’s type: microbiota modulation, immunomodulation, and cancer modulation. The proposed molecular mechanisms are discussed. Dairy propionibacteria are described as producers of nutraceuticals and beneficial metabolites that are responsible for their versatile probiotic attributes include short chain fatty acids (SCFAs), conjugated fatty acids, surface proteins, and 1,4-dihydroxy-2-naphtoic acid (DHNA). These metabolites possess beneficial properties and their production depends on the strain and on the growth medium. The choice of the fermented food matrix may thus determine the probiotic properties of the ingested product. This review approaches dairy propionibacteria, with an interest in both technological abilities and probiotic attributes.
Collapse
|
576
|
Bifidobacterium Bacteremia: Clinical Characteristics and a Genomic Approach To Assess Pathogenicity. J Clin Microbiol 2017; 55:2234-2248. [PMID: 28490487 DOI: 10.1128/jcm.00150-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
Bifidobacteria are commensals that colonize the orogastrointestinal tract and rarely cause invasive human infections. However, an increasing number of bifidobacterial blood culture isolates has lately been observed in Norway. In order to investigate the pathogenicity of the Bifidobacterium species responsible for bacteremia, we studied Bifidobacterium isolates from 15 patients for whom cultures of blood obtained from 2013 to 2015 were positive. We collected clinical data and analyzed phenotypic and genotypic antibiotic susceptibility. All isolates (11 Bifidobacterium longum, 2 B. breve, and 2 B. animalis isolates) were subjected to whole-genome sequencing. The 15 patients were predominantly in the extreme lower or upper age spectrum, many were severely immunocompromised, and 11 of 15 had gastrointestinal tract-related conditions. In two elderly patients, the Bifidobacterium bacteremia caused a sepsis-like picture, interpreted as the cause of death. Most bifidobacterial isolates had low MICs (≤0.5 mg/liter) to beta-lactam antibiotics, vancomycin, and clindamycin and relatively high MICs to ciprofloxacin and metronidazole. We performed a pangenomic comparison of invasive and noninvasive B. longum isolates based on 65 sequences available from GenBank and the sequences of 11 blood culture isolates from this study. Functional annotation identified unique genes among both invasive and noninvasive isolates of Bifidobacterium Phylogenetic clusters of invasive isolates were identified for a subset of the B. longum subsp. longum isolates. However, there was no difference in the number of putative virulence genes between invasive and noninvasive isolates. In conclusion, Bifidobacterium has an invasive potential in the immunocompromised host and may cause a sepsis-like picture. Using comparative genomics, we could not delineate specific pathogenicity traits characterizing invasive isolates.
Collapse
|
577
|
Martínez-Martínez MI, Calabuig-Tolsá R, Cauli O. The effect of probiotics as a treatment for constipation in elderly people: A systematic review. Arch Gerontol Geriatr 2017; 71:142-149. [PMID: 28467916 DOI: 10.1016/j.archger.2017.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/07/2016] [Accepted: 04/09/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE Treating constipation in elderly people remains a challenge; the administration of probiotics may be a valid therapy for this problem as an alternative to traditional drug-based treatments. The objective of this systematic review was to evaluate the efficiency of probiotics in treating constipation in elderly people. METHODS Articles related to this topic and published, without any time limitations, in the Medline, Embase, Scopus, Lilacs, or Cochrane databases were systematically reviewed according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. The primary search terms were 'constipation' and 'probiotics'. The main inclusion criteria were: 1) the article was original and the whole text was published in English or Spanish and 2) included the primary search terms in the title, summary, or body text; 3) the studies had to have included 60 or more participants defined as 'elderly' and 4) have specifically evaluated the effect of the administration of probiotics. RESULTS Of the 475 articles consulted, 9 met the inclusion criteria. Among the selected studies, there were four randomised and placebo-controlled trials and the remaining five reports were observational. Overall, our analysis of the randomised and placebo-controlled trials suggests that administration of probiotics significantly improved constipation in elderly individuals by 10-40% compared to placebo controls in which no probiotic was administered. The strain of bacteria most commonly tested was Bifidobacterium longum. However, caution is needed when interpreting these reports because of the heterogeneity of the original study designs, populations, and the risk of bias. Therefore, further placebo-controlled trials are necessary to determine the most efficient strains, doses, and the optimal treatment duration.
Collapse
Affiliation(s)
| | | | - Omar Cauli
- Department of Nursing, University of Valencia, Valencia, Spain.
| |
Collapse
|
578
|
Mobini R, Tremaroli V, Ståhlman M, Karlsson F, Levin M, Ljungberg M, Sohlin M, Bertéus Forslund H, Perkins R, Bäckhed F, Jansson PA. Metabolic effects of Lactobacillus reuteri DSM 17938 in people with type 2 diabetes: A randomized controlled trial. Diabetes Obes Metab 2017; 19:579-589. [PMID: 28009106 DOI: 10.1111/dom.12861] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022]
Abstract
AIMS To investigate the metabolic effects of 12-week oral supplementation with Lactobacillus reuteri DSM 17938 in patients with type 2 diabetes on insulin therapy. MATERIALS AND METHODS In a double-blind trial, we randomized 46 people with type 2 diabetes to placebo or a low (108 CFU/d) or high dose (1010 CFU/d) of L. reuteri DSM 17938 for 12 weeks. The primary endpoint was the effect of supplementation on glycated haemoglobin (HbA1c). Secondary endpoints were insulin sensitivity (assessed by glucose clamp), liver fat content, body composition, body fat distribution, faecal microbiota composition and serum bile acids. RESULTS Supplementation with L. reuteri DSM 17938 for 12 weeks did not affect HbA1c, liver steatosis, adiposity or microbiota composition. Participants who received the highest dose of L. reuteri exhibited increases in insulin sensitivity index (ISI) and serum levels of the secondary bile acid deoxycholic acid (DCA) compared with baseline, but these differences were not significant in the between-group analyses. Post hoc analysis showed that participants who responded with increased ISI after L. reuteri supplementation had higher microbial diversity at baseline, and increased serum levels of DCA after supplementation. In addition, increases in DCA levels correlated with improvement in insulin sensitivity in the probiotic recipients. CONCLUSIONS Intake of L. reuteri DSM 17938 for 12 weeks did not affect HbA1c in people with type 2 diabetes on insulin therapy; however, L. reuteri improved insulin sensitivity in a subset of participants and we propose that high diversity of the gut microbiota at baseline may be important.
Collapse
Affiliation(s)
- Reza Mobini
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Karlsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Max Levin
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Ljungberg
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maja Sohlin
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Heléne Bertéus Forslund
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rosie Perkins
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per-Anders Jansson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
579
|
Irwin C, Khalesi S, Cox AJ, Grant G, Davey AK, Bulmer AC, Desbrow B. Effect of 8-weeks prebiotics/probiotics supplementation on alcohol metabolism and blood biomarkers of healthy adults: a pilot study. Eur J Nutr 2017; 57:1523-1534. [PMID: 28317073 DOI: 10.1007/s00394-017-1437-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/06/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE Modulating gut bacteria via regular prebiotics/probiotics consumption may improve the metabolism of acute alcohol ingestion. This study investigated the impact of 8-weeks prebiotics/probiotics supplementation on microbiome changes and responses to acute alcohol consumption. METHODS 38 participants (21 females, 23.6 ± 3.4 kg m-2, mean ± SD) attended the laboratory on two occasions separated by an 8-week intervention period. On each of these visits, a dose of alcohol (0.40 ± 0.04 g kg-1, Vodka + Soda-Water) was consumed over 10 min. Breath alcohol concentration was sampled over 5 h and alcohol pharmacokinetics was analysed using WinNonlin non-compartmental modelling (C max, t max, AUClast). For the intervention, participants were randomised to receive Placebo + Placebo (PLA), Placebo + Prebiotics (PRE), Probiotics + Placebo (PRO), or Probiotics + Prebiotics (SYN) in a double-blinded manner. Probiotics were a commercially available source of Lactobacillus acidophilus (NCFM®) and Bifidobacterium lactis (Bi-07). Prebiotics were a commercially available source of Larch Gum (from Larix occidentalis). Placebo was microcrystalline cellulose. Each visit, participants provided a stool sample, which was analysed to determine the presence of L. acidophilus and B. lactis. Differences between trials were analysed using paired samples t tests. RESULTS Increased counts for at least one bacterial strain (L. acidophilus or B. lactis) were observed for all participants on SYN (n = 10) and PRO (n = 10) trials. No difference in C max or t max was observed between trials when analysed by treatment condition or microbiome outcome. A significant decrease in AUClast was observed between trials for PLA (p = 0.039) and PRE (p = 0.030) treatments, and when increases in at least one bacterial strain (p = 0.003) and no microbiome changes (p = 0.016) were observed. CONCLUSION Consumption of probiotics appears to alter faecal counts of supplemental bacterial strains in otherwise healthy individuals. However, translation to any possible beneficial impact on alcohol metabolism remains to be elucidated.
Collapse
Affiliation(s)
- Christopher Irwin
- Menzies Health Institute Queensland, Gold Coast, Australia.
- School of Allied Health Sciences, Griffith University, Gold Coast, Australia.
| | - Saman Khalesi
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Australia
| | - Amanda J Cox
- Menzies Health Institute Queensland, Gold Coast, Australia
- School of Medical Science, Griffith University, Gold Coast, Australia
| | - Gary Grant
- Menzies Health Institute Queensland, Gold Coast, Australia
- School of Pharmacy, Griffith University, Gold Coast, Australia
- Quality Use of Medicines Network, Gold Coast, Australia
| | - Andrew K Davey
- Menzies Health Institute Queensland, Gold Coast, Australia
- School of Pharmacy, Griffith University, Gold Coast, Australia
- Quality Use of Medicines Network, Gold Coast, Australia
| | - Andrew C Bulmer
- Menzies Health Institute Queensland, Gold Coast, Australia
- School of Medical Science, Griffith University, Gold Coast, Australia
| | - Ben Desbrow
- Menzies Health Institute Queensland, Gold Coast, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, Australia
| |
Collapse
|
580
|
He Y, Mao C, Wen H, Chen Z, Lai T, Li L, Lu W, Wu H. Influence of ad Libitum Feeding of Piglets With Bacillus Subtilis Fermented Liquid Feed on Gut Flora, Luminal Contents and Health. Sci Rep 2017; 7:44553. [PMID: 28291252 PMCID: PMC5349548 DOI: 10.1038/srep44553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 02/10/2017] [Indexed: 12/25/2022] Open
Abstract
Some scholars caution that long-term ad libitum feeding with probiotic fermented food poses potential health risks to baby animals. We conducted a feeding experiment to investigate the influence of ad libitum feeding of pre-and post-weaned piglets with a Bacillus subtilis fermented diet on the gut microbiome, gut metabolomic profiles, bile acid metabolism, proinflammatory cytokines and faecal consistency. Compared with piglets fed a Bacillus subtilis-supplemented pellet diet, piglets fed the Bacillus subtilis fermented liquid diet had lower intestinal bacterial diversity (P > 0.05), higher intestinal fungal diversity (P > 0.05), more Firmicutes (P > 0.05), fewer Bacteroidetes, Actinobacteria and Proteobacteria (P > 0.05), higher concentrations of 3-hydroxypropionic acid (P < 0.05), orotic acid (P < 0.05), interleukin-6 (P < 0.01), lactic acid (P < 0.01), deoxycholic acid (P > 0.05) and lithocholic acid (P < 0.01) and a higher incidence of diarrhoea (P > 0.05). The data show that ad libitum feeding of piglets with a Bacillus subtilis fermented liquid diet during the suckling and early post-weaning periods promotes the growth of lactic acid bacteria, bile salt hydrolase-active bacteria and 7a-dehydroxylase-active bacteria in the intestinal lumen; disturbs the normal production of lactic acid, orotic acid and unconjugated bile acids; and increases circulating interleukin-6 levels and diarrhoea incidence.
Collapse
Affiliation(s)
- Yuyong He
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chunxia Mao
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hong Wen
- Jiangxi Provincial Institute of Veterinary Drugs and Feed Control, Nanchang 330096, China
| | - Zhiyu Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Tao Lai
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingyu Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wei Lu
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huadong Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
581
|
Tremellen K, McPhee N, Pearce K. Metabolic endotoxaemia related inflammation is associated with hypogonadism in overweight men. Basic Clin Androl 2017; 27:5. [PMID: 28286655 PMCID: PMC5341351 DOI: 10.1186/s12610-017-0049-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/25/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is associated with both impaired testosterone production and a chronic state of low grade inflammation. Previously it was believed that this inflammation was mediated by a decline in the immunosuppressive action of testosterone. However, more recently an alternative hypothesis (GELDING theory) has suggested that inflammation originating from the passage of intestinal bacteria into the circulation (metabolic endotoxaemia) may actually be the cause of impaired testicular function in obese men. The aim of this study is to investigate if metabolic endotoxaemia, as quantified by serum Lipopolysaccharide Binding Protein (LBP), is associated with impaired testicular endocrine function. METHODS A total of 50 men aged between 21 and 50 years (mean 35.1 ± 6.8 years) were assessed for adiposity (BMI, waist circumference and % body fat using bio-impedance), inflammatory status (serum CRP, IL-1β, IL-6, TNFα and LBP) and testicular endocrine function (serum testosterone, estradiol, AMH, LH and FSH). Statistical analysis was performed using Pearson correlation analysis, with log transformation of data where appropriate, and multi-variate regression. RESULTS Overall increasing adiposity (% body fat) was positively associated with metabolic endotoxaemia (LBP, r = 0.366, p = 0.009) and inflammation (CRP r = 0.531, p < 0.001; IL-6 r = 0.463, p = 0.001), while also being negatively correlated with serum testosterone (r = -0.403, p = 0.004). Serum testosterone levels were significantly negatively correlated with inflammation (CRP r = -0.471, p = 0.001; IL-6 r = -0.516, p < 0.001) and endotoxaemia (LBP) after adjusting for serum LH levels (p = -0.317, p = 0.03). Furthermore, serum IL-6 was negatively associated with AMH levels (r = -0.324, p = 0.023), with a negative trend between LBP and AMH also approaching significance (r = -0.267, p = 0.064). CONCLUSIONS Obesity and its associated metabolic endotoxaemia helps initiate a pro-inflammatory state characterised by raised serum IL-6 levels, which in turn is correlated with impairment of both Leydig (testosterone) and Sertoli cell function (AMH). These results open up the potential for new treatments of obesity related male hypogonadism that focus on preventing the endotoxaemia associated chronic inflammatory state.
Collapse
Affiliation(s)
- Kelton Tremellen
- Department of Obstetrics Gynaecology and Reproductive Medicine, Flinders University, Bedford Park, South Australia.,School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, 5001 South Australia.,Repromed, 180 Fullarton Road, Dulwich, South Australia
| | - Natalie McPhee
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, 5001 South Australia
| | - Karma Pearce
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, 5001 South Australia
| |
Collapse
|
582
|
Gupta RS, Nanda A, Khadka B. Novel molecular, structural and evolutionary characteristics of the phosphoketolases from bifidobacteria and Coriobacteriales. PLoS One 2017; 12:e0172176. [PMID: 28212383 PMCID: PMC5315409 DOI: 10.1371/journal.pone.0172176] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/12/2017] [Indexed: 12/23/2022] Open
Abstract
Members from the order Bifidobacteriales, which include many species exhibiting health promoting effects, differ from all other organisms in using a unique pathway for carbohydrate metabolism, known as the "bifid shunt", which utilizes the enzyme phosphoketolase (PK) to carry out the phosphorolysis of both fructose-6-phosphate (F6P) and xylulose-5-phosphate (X5P). In contrast to bifidobacteria, the PKs found in other organisms (referred to XPK) are able to metabolize primarily X5P and show very little activity towards F6P. Presently, very little is known about the molecular or biochemical basis of the differences in the two forms of PKs. Comparative analyses of PK sequences from different organisms reported here have identified multiple high-specific sequence features in the forms of conserved signature inserts and deletions (CSIs) in the PK sequences that clearly distinguish the X5P/F6P phosphoketolases (XFPK) of bifidobacteria from the XPK homologs found in most other organisms. Interestingly, most of the molecular signatures that are specific for the XFPK from bifidobacteria are also shared by the PK homologs from the Coriobacteriales order of Actinobacteria. Similarly to the Bifidobacteriales, the order Coriobacteriales is also made up of commensal organisms, that are saccharolytic and able to metabolize wide variety of carbohydrates, producing lactate and other metabolites. Phylogenetic studies provide evidence that the XFPK from bifidobacteria are specifically related to those found in the Coriobacteriales and suggest that the gene for PK (XFPK) was horizontally transferred between these two groups. A number of the identified CSIs in the XFPK sequence, which serve to distinguish the XFPK homologs from XPK homologs, are located at the subunit interface in the structure of the XFPK dimer protein. The results of protein modelling and subunit docking studies indicate that these CSIs are involved in the formation/stabilization of the protein dimer. The significance of these observations regarding the differences in the activities of the XFPK and XPK homologs are discussed. Additionally, this work also discusses the significance of the XFPK-like homologs, similar to those found in bifidobacteria, in the order Coriobacteriales.
Collapse
Affiliation(s)
- Radhey S. Gupta
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Anish Nanda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Bijendra Khadka
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
583
|
|
584
|
Cueva C, Gil-Sánchez I, Ayuda-Durán B, González-Manzano S, González-Paramás AM, Santos-Buelga C, Bartolomé B, Moreno-Arribas MV. An Integrated View of the Effects of Wine Polyphenols and Their Relevant Metabolites on Gut and Host Health. Molecules 2017; 22:E99. [PMID: 28067835 PMCID: PMC6155716 DOI: 10.3390/molecules22010099] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/16/2022] Open
Abstract
Over the last few decades, polyphenols, and flavonoids in particular, have attracted the interest of researchers, as they have been associated with the health-promoting effects derived from diets rich in vegetables and fruits, including moderate wine consumption. Recent scientific evidence suggests that wine polyphenols exert their effects through interactions with the gut microbiota, as they seem to modulate microbiota and, at the same time, are metabolized by intestinal bacteria into specific bioavailable metabolites. Microbial metabolites are better absorbed than their precursors and may be responsible for positive health activities in the digestive system (local effects) and, after being absorbed, in tissues and organs (systemic effects). Differences in gut microbiota composition and functionality among individuals can affect polyphenol activity and, therefore, their health effects. The aim of this review is to integrate the understanding of the metabolism and mechanisms of action of wine polyphenols at both local and systemic levels, underlining their impact on the gut microbiome and the inter-individual variability associated with polyphenols' metabolism and further physiological effects. The advent of promising dietary approaches linked to wine polyphenols beyond the gut microbiota community and metabolism are also discussed.
Collapse
Affiliation(s)
- Carolina Cueva
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Irene Gil-Sánchez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| | - Begoña Ayuda-Durán
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Susana González-Manzano
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Ana María González-Paramás
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles, Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | - Begoña Bartolomé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM. Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
585
|
Yang L, Wang L, Wang X, Xian CJ, Lu H. A Possible Role of Intestinal Microbiota in the Pathogenesis of Ankylosing Spondylitis. Int J Mol Sci 2016; 17:ijms17122126. [PMID: 27999312 PMCID: PMC5187926 DOI: 10.3390/ijms17122126] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 12/12/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease primarily affecting the sacroiliac joints and the spine, for which the pathogenesis is thought to be a result of the combination of host genetic factors and environmental triggers. However, the precise factors that determine one’s susceptibility to AS remain to be unraveled. With 100 trillion bacteria residing in the mammalian gut having established a symbiotic relation with their host influencing many aspects of host metabolism, physiology, and immunity, a growing body of evidence suggests that intestinal microbiota may play an important role in AS. Several mechanisms have been suggested to explain the potential role of the microbiome in the etiology of AS, such as alterations of intestinal permeability, stimulation of immune responses, and molecular mimicry. In this review, the existing evidence for the involvement of the microbiome in AS pathogenesis was discussed and the potential of intestinal microbiome-targeting strategies in the prevention and treatment of AS was evaluated.
Collapse
Affiliation(s)
- Lianjun Yang
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| | - Liping Wang
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA5001, Australia.
| | - Xin Wang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane QLD4059, Australia.
| | - Cory J Xian
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
- Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA5001, Australia.
| | - Hai Lu
- Academy of Orthopedics of Guangdong Province, Orthopaedic Hospital of Guangdong Province, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China.
| |
Collapse
|