551
|
Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 2008; 8:290-301. [PMID: 18323850 DOI: 10.1038/nri2279] [Citation(s) in RCA: 406] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Haematopoietic stem cell (HSC) niches are specialized microenvironments that contain stem cells and regulate their maintenance. Cells at the interface of bone and the bone marrow (the endosteum) contribute to the creation of HSC niches. It remains uncertain whether this interface itself is a niche, or whether endosteal cells secrete factors that diffuse to nearby niches. Vascular and/or perivascular cells may also create niches as many HSCs are observed around sinusoidal blood vessels, and perivascular cells secrete factors that regulate HSC maintenance. Do endosteal and perivascular cells create distinct niches, or do they contribute to a common niche? We discuss a range of niche models consistent with recent evidence.
Collapse
Affiliation(s)
- Mark J Kiel
- Howard Hughes Medical Institute, Life Sciences Institute, Department of Internal Medicine, and Center for Stem Cell Biology, University of Michigan, Ann Arbor, Michigan, 48109-2216, USA
| | | |
Collapse
|
552
|
Abstract
Establishment and maintenance of the blood system relies on self-renewing hematopoietic stem cells (HSCs) that normally reside in small numbers in the bone marrow niche of adult mammals. This Review describes the developmental origins of HSCs and the molecular mechanisms that regulate lineage-specific differentiation. Studies of hematopoiesis provide critical insights of general relevance to other areas of stem cell biology including the role of cellular interactions in development and tissue homeostasis, lineage programming and reprogramming by transcription factors, and stage- and age-specific differences in cellular phenotypes.
Collapse
Affiliation(s)
- Stuart H Orkin
- Division of Hematology/Oncology, Children's Hospital Boston and the Dana Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|
553
|
Dual targeting of the proteasome regulates survival and homing in Waldenstrom macroglobulinemia. Blood 2008; 111:4752-63. [PMID: 18316628 DOI: 10.1182/blood-2007-11-120972] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Waldenström macroglobulinemia (WM) is an incurable low-grade B-cell lymphoma characterized by high protein turnover. We dissected the biologic role of the proteasome in WM using 2 proteasome inhibitors, NPI-0052 and bortezomib. We found that NPI-0052 inhibited proliferation and induced apoptosis in WM cells, and that the combination of NPI-0052 and bortezomib induced synergistic cytotoxicity in WM cells, leading to inhibition of nuclear translocation of p65NF-kappaB and synergistic induction of caspases-3, -8, and -9 and PARP cleavage. These 2 agents inhibited the canonical and noncanonical NF-kappaB pathways and acted synergistically through their differential effect on Akt activity and on chymotrypsin-like, caspaselike, and trypsinlike activities of the proteasome. We demonstrated that NPI-0052-induced cytotoxicity was completely abrogated in an Akt knockdown cell line, indicating that its major activity is mediated through the Akt pathway. Moreover, we demonstrated that NPI-0052 and bortezomib inhibited migration and adhesion in vitro and homing of WM cells in vivo, and overcame resistance induced by mesenchymal cells or by the addition of interleukin-6 in a coculture in vitro system. Theses studies enhance our understanding of the biologic role of the proteasome pathway in WM, and provide the preclinical basis for clinical trials of combinations of proteasome inhibitors in WM.
Collapse
|
554
|
Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches. Nat Immunol 2008; 9:388-95. [PMID: 18311142 DOI: 10.1038/ni1571] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 02/01/2008] [Indexed: 01/02/2023]
Abstract
Beyond its established function in hematopoiesis, the bone marrow hosts mature lymphocytes and acts as a secondary lymphoid organ in the initiation of T cell and B cell responses. Here we report the characterization of bone marrow-resident dendritic cells (bmDCs). Multiphoton imaging showed that bmDCs were organized into perivascular clusters that enveloped blood vessels and were seeded with mature B lymphocytes and T lymphocytes. Conditional ablation of bmDCs in these bone marrow immune niches led to the specific loss of mature B cells, a phenotype that could be reversed by overexpression of the antiapoptotic factor Bcl-2 in B cells. The presence of bmDCs promoted the survival of recirculating B cells in the bone marrow through the production of macrophage migration-inhibitory factor. Thus, bmDCs are critical for the maintenance of recirculating B cells in the bone marrow.
Collapse
|
555
|
Shiozawa Y, Havens AM, Pienta KJ, Taichman RS. The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells, and unwitting host to molecular parasites. Leukemia 2008; 22:941-50. [PMID: 18305549 DOI: 10.1038/leu.2008.48] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In post-fetal life, hematopoiesis occurs in unique microenvironments or 'niches' in the marrow. Niches facilitate the maintenance of hematopoietic stem cells (HSCs) as unipotent, while supporting lineage commitment of the expanding blood populations. As the physical locale that regulates HSC function, the niche function is vitally important to the survival of the organism. This places considerable selective pressure on HSCs, as only those that are able to engage the niche in the appropriate context are likely to be maintained as stem cells. Since niches are central regulators of stem cell function, it is not surprising that molecular parasites like neoplasms are likely to seek out opportunities to harvest resources from the niche environment. As such, the niche may unwittingly participate in tumorigenesis as a leukemic or neoplastic niche. The niche may also promote metastasis or chemo-resistance of hematogenous neoplasms or solid tumors. This review focuses on what is known about the physical structures of the niche, how the niche participates in hematopoiesis and neoplastic growth and what molecules are involved. Further understanding of the interactions between stem cells and the niche may be useful for developing therapeutic strategies.
Collapse
Affiliation(s)
- Y Shiozawa
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | | | | | | |
Collapse
|
556
|
Affiliation(s)
- Jiwang Zhang
- Oncology Institute, Department of Pathology, Loyola University Medical Center, Chicago, IL 60153, USA
| | | |
Collapse
|
557
|
McCormack E, Bruserud O, Gjertsen BT. Review: genetic models of acute myeloid leukaemia. Oncogene 2008; 27:3765-79. [PMID: 18264136 DOI: 10.1038/onc.2008.16] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The use of genetically engineered mice (GEM) have been critical in understanding disease states such as cancer, and none more so than acute myelogenous leukaemia (AML), a disease characterized by over 100 distinct chromosomal translocations. A substantial proportion of cases exhibiting recurrent reciprocal translocations at diagnosis, such as t(8;21) or t(15;17) have been exhaustively studied and are currently employed in clinical diagnosis. However, a definitive conclusion regarding the leukaemogenic potential of defined transgenes for this disease remains elusive. While it is increasingly apparent that a number of cooperating mutations are necessary to develop a leukaemic phenotype, the number of models reflecting these synergisms remains few. Furthermore, little emphasis has been paid to the effect of chromosomal translocations other than recurrent genetic abnormalities, with no models reflecting the multiple abnormalities observed in high-risk cases of AML accounting for 8-10% of adult AML. Here we review the differing technologies employed in generation of GEM of AML. We discuss the relevance of GEM AML from embryonic stem cell-mediated (for example retinoic acid receptor-alpha fusions and AML1/ETO) models; through to the valuable retroviral-mediated gene transfer models. The latter have been used to great effect in defining the transforming properties of chromosomal translocation products such as MLL (found in 5-6% of all AML cases) and NUP98 (denoting poor prognosis in therapy-related disease) and particularly when co-transduced with bad prognostic factors such as Flt3 mutations. Finally, we comment on the emergence of newer transduction technologies, which can regulate the level of expression to defined cell lineages in both primary murine and human xenografts, and discuss how combining multiple genetic modalities, more relevant models of this complex disease are being generated.
Collapse
Affiliation(s)
- E McCormack
- Institute of Medicine, Haematology Section, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
558
|
Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 2008; 14:181-7. [DOI: 10.1038/nm1703] [Citation(s) in RCA: 478] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 12/05/2007] [Indexed: 02/07/2023]
|
559
|
Colmone A, Sipkins DA. Beyond angiogenesis: the role of endothelium in the bone marrow vascular niche. Transl Res 2008; 151:1-9. [PMID: 18061122 DOI: 10.1016/j.trsl.2007.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 08/30/2007] [Accepted: 09/04/2007] [Indexed: 11/18/2022]
Abstract
Specific tissue microenvironments, or niches, are critical for homing and maintenance of both stem cells and tumor cells in vivo. Little is known, however, about the molecular interactions between individual cells within these microenvironments. Recent studies that describe a newly identified hematopoietic stem and tumor cell vascular niche in the bone marrow (BM) suggest a critical role for vascular endothelial cell signaling and raise the possibility that bidirectional interactions of these cells with the vasculature regulate the niche dynamically. The mechanisms that govern hematopoietic stem cell (HSC)/tumor cell cross-talk with endothelial cells provide a promising new direction for future studies. Here we review recent advances that open new avenues of study in this field.
Collapse
Affiliation(s)
- Angela Colmone
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, Ill 60637, USA
| | | |
Collapse
|
560
|
Hidalgo A. Hematopoietic stem cell homing: The long, winding and adhesive road to the bone marow. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s0213-9626(08)70046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
561
|
Kim P, Puoris’haag M, Côté D, Lin CP, Yun SH. In vivo confocal and multiphoton microendoscopy. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:010501. [PMID: 18315346 PMCID: PMC2752311 DOI: 10.1117/1.2839043] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability to conduct high-resolution fluorescence imaging in internal organs of small animal models in situ and over time can make a significant impact in biomedical research. Toward this goal, we developed a real-time confocal and multiphoton endoscopic imaging system. Using 1-mm-diameter endoscopes based on gradient index lenses, we demonstrate video-rate multicolor multimodal imaging with cellular resolution in live mice.
Collapse
|
562
|
Louis DN. Molecular pathology of malignant gliomas. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 2:277-305. [PMID: 18039109 DOI: 10.1146/annurev.pathol.2.010506.091930] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malignant gliomas, the most common type of primary brain tumor, are a spectrum of tumors of varying differentiation and malignancy grades. These tumors may arise from neural stem cells and appear to contain tumor stem cells. Early genetic events differ between astrocytic and oligodendroglial tumors, but all tumors have an initially invasive phenotype, which complicates therapy. Progression-associated genetic alterations are common to different tumor types, targeting growth-promoting and cell cycle control pathways and resulting in focal hypoxia, necrosis, and angiogenesis. Knowledge of malignant glioma genetics has already impacted clinical management of these tumors, and researchers hope that further knowledge of the molecular pathology of malignant gliomas will result in novel therapies.
Collapse
Affiliation(s)
- David N Louis
- Molecular Pathology Unit, Department of Pathology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
563
|
Alt C, Veilleux I, Lee H, Pitsillides CM, Côté D, Lin CP. Retinal flow cytometer. OPTICS LETTERS 2007; 32:3450-2. [PMID: 18059963 PMCID: PMC2794483 DOI: 10.1364/ol.32.003450] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The in vivo flow cytometer is an instrument capable of continuous, real-time monitoring of fluorescently labeled cells in the circulation without the need to draw blood samples. However, the original system probes a single vessel in the mouse ear; the small sample volume limits the sensitivity of the technique. We describe an in vivo retinal flow cytometer that simultaneously probes five artery-vein pairs in the mouse eye by circularly scanning a small laser spot rapidly around the optic nerve head. We demonstrate that the retinal flow cytometer detects about five times more cells per minute than the original in vivo flow cytometer does in the ear.
Collapse
Affiliation(s)
- C. Alt
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | - I. Veilleux
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - H. Lee
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Kyongpook National University, Daegu 702-701, South Korea
| | - C. M. Pitsillides
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - D. Côté
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - C. P. Lin
- Advanced Microscopy Program, Center for Systems Biology and Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
- Corresponding author:
| |
Collapse
|
564
|
Watt SM, Forde SP. The central role of the chemokine receptor, CXCR4, in haemopoietic stem cell transplantation: will CXCR4 antagonists contribute to the treatment of blood disorders? Vox Sang 2007; 94:18-32. [PMID: 18042197 DOI: 10.1111/j.1423-0410.2007.00995.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent clinical trials have used CXCR4 antagonists for the rapid mobilization of CD34(+) haemopoietic stem/progenitor cells (HSC/HPC) from the bone marrow to the blood in patients refractory to granulocyte-colony-stimulating factor (G-CSF). These antagonists not only mobilize non-cycling cells with a higher proportion of repopulating cells, but also enhance CD34(+) cell mobilization when used in combination with G-CSF. Here, we review the importance of CXCR4 and its ligand CXCL12 in haemopoiesis, and the potential roles of CXCR4 antagonists in the clinical HSC transplant setting.
Collapse
Affiliation(s)
- S M Watt
- Stem Cells and Immunotherapies, NHS Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, UK and Nuffield Department of Clinical Laboratory Sciences, University of Oxford, Oxford, UK
| | | |
Collapse
|
565
|
Basu S, Ray NT, Atkinson SJ, Broxmeyer HE. Protein phosphatase 2A plays an important role in stromal cell-derived factor-1/CXC chemokine ligand 12-mediated migration and adhesion of CD34+ cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:3075-85. [PMID: 17709522 DOI: 10.4049/jimmunol.179.5.3075] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Migration of hemopoietic stem and progenitor cells (HSPC) is required for homing to bone marrow following transplantation. Therefore, it is critical to understand signals underlying directional movement of HSPC. Stromal cell-derived factor-1 (SDF-1)/CXCL12 is a potent chemoattractant for HSPC. In this study, we demonstrate that the serine-threonine protein phosphatase (PP)2A plays an important role in regulation of optimal level and duration of Akt/protein kinase B activation (a molecule important for efficient chemotaxis), in response to SDF-1. Inhibition of PP2A, using various pharmacological inhibitors of PP2A including okadaic acid (OA) as well as using genetic approaches including dominant-negative PP2A-catalytic subunit (PP2A-C) or PP2A-C small interfering RNA, in primary CD34(+) cord blood (CB) cells led to reduced chemotaxis. This was associated with impairment in polarization and slower speed of movement in response to SDF-1. Concomitantly, SDF-1-induced Akt phosphorylation was robust and prolonged. Following SDF-1 stimulation, Akt and PP2A-C translocate to plasma membrane with enhanced association of PP2A-C with Akt observed at the plasma membrane. Inhibition of PI3K by low-dose LY294002 partially recovered chemotactic activity of cells pretreated with OA. In addition to chemotaxis, adhesion of CD34(+) cells to fibronectin was impaired by OA pretreatment. Our study demonstrates PP2A plays an important role in chemotaxis and adhesion of CD34(+) CB cells in response to SDF-1. CD34(+) CB cells pretreated with OA showed impaired ability to repopulate NOD-SCID mice in vivo, suggesting physiological relevance of these observations.
Collapse
Affiliation(s)
- Sunanda Basu
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
566
|
Bürkle A, Niedermeier M, Schmitt-Gräff A, Wierda WG, Keating MJ, Burger JA. Overexpression of the CXCR5 chemokine receptor, and its ligand, CXCL13 in B-cell chronic lymphocytic leukemia. Blood 2007; 110:3316-25. [PMID: 17652619 DOI: 10.1182/blood-2007-05-089409] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
CXCL13 is a homeostatic chemokine for lymphocyte homing and positioning within follicles of secondary lymphoid tissues, acting through its cognate receptor, CXCR5. Moreover, the CXCR5-CXCL13 axis plays a unique role in trafficking and homing of B1 cells. Here, we report that chronic lymphocytic leukemia (CLL) B cells express high levels of functional CXCR5. CXCR5 expression levels were similar on CLL B cells and normal CD5+ B cells, and higher compared with normal CD5− B cells, follicular B-helper T cells (TFH cells), or neoplastic B cells from other B-cell neoplasias. Stimulation of CLL cells with CXCL13 induces actin polymerization, CXCR5 endocytosis, chemotaxis, and prolonged activation of p44/42 mitogen-activated protein kinases. Anti-CXCR5 antibodies, pertussis toxin, and wortmannin inhibited chemotaxis to CXCL13, demonstrating the importance of Gi proteins and PI3 kinases for CXCR5 signaling. Moreover, CLL patients had significantly higher CXCL13 serum levels than volunteers, and CXCL13 levels correlated with β2 microglobulin. We detected CXCL13 mRNA expression by nurselike cells, and high levels of CXCL13 protein in supernatants of CLL nurselike cell cultures. By immunohistochemistry, we detected CXCL13+ expression by CD68+ macrophages in situ within CLL lymph nodes. These data suggest that CXCR5 plays a role in CLL cell positioning and cognate interactions between CLL and CXCL13-secreting CD68+ accessory cells in lymphoid tissues.
Collapse
MESH Headings
- Actins/metabolism
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
- CD5 Antigens/metabolism
- Chemokine CXCL12/metabolism
- Chemokine CXCL13/blood
- Chemokine CXCL13/metabolism
- Chemokine CXCL13/pharmacology
- Chemotaxis, Leukocyte/physiology
- Endocytosis
- Enzyme Activation/drug effects
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Receptors, CXCR5/metabolism
- T-Lymphocytes, Helper-Inducer/metabolism
- T-Lymphocytes, Helper-Inducer/pathology
- Tumor Cells, Cultured
- Up-Regulation
Collapse
Affiliation(s)
- Andrea Bürkle
- Department of Medicine, Division of Hematology/Oncology, Freiburg University Hospital, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
567
|
Abstract
Until recently most studies of metastasis only measured the end point of the process--macroscopic metastases. Although these studies have provided much useful information, the details of the metastatic process remain somewhat mysterious owing to difficulties in studying cell behaviour with high spatial and temporal resolution in vivo. The use of luminescent and fluorescent proteins and developments in optical imaging technology have enabled the direct observation of cancer cells spreading from their site of origin and arriving at secondary sites. This Review will describe recent advances in our understanding of the different steps of metastasis gained from cellular resolution imaging, and how these techniques can be used in preclinical drug evaluation.
Collapse
Affiliation(s)
- Erik Sahai
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK.
| |
Collapse
|
568
|
Schaefer C, Krause M, Fuhrhop I, Schroeder M, Algenstaedt P, Fiedler W, Rüther W, Hansen-Algenstaedt N. Time-course-dependent microvascular alterations in a model of myeloid leukemia in vivo. Leukemia 2007; 22:59-65. [PMID: 17898789 DOI: 10.1038/sj.leu.2404947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functional and morphological properties of tumor microcirculation play a pivotal role in tumor progression, metastasis and inefficiency of tumor therapies. Despite enormous insights into tumor angiogenesis in solid tumors, little is known about the time-course-dependent properties of tumor vascularization in hematologic malignancies. The aim of this study was to establish a model of myeloid leukemia, which allows long-term monitoring of tumor progression and associated microcirculation. Red fluorescent protein-transduced human leukemic cell lines (M-07e) were implanted into cranial windows of severe combined immunodeficient mice. Intravital microscopy was performed over 55 days to measure functional (microvascular permeability, tissue perfusion rate and leukocyte-endothelium interactions) and morphological vascular parameters (vessel density, distribution and diameter). Tumor progression was associated with elevated microvascular permeability and an initial angiogenic wave followed by decreased vessel density combined with reduced tissue perfusion due to loss in small vessels and development of heterogenous tumor vascularization. Following altered geometric resistance of microcirculation, leukocyte-endothelium interactions were more frequent without increased leukocyte extravasation. It was concluded that time-dependent alterations of leukemic tumor vascularization exhibit strong similarities to those found in solid tumors. The potential contribution to the development of barriers to drug delivery in leukemic tumors is discussed.
Collapse
Affiliation(s)
- C Schaefer
- Department of Neurological Surgery, Spine Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
569
|
Kim KH, Buehler C, Bahlmann K, Ragan T, Lee WCA, Nedivi E, Heffer EL, Fantini S, So PTC. Multifocal multiphoton microscopy based on multianode photomultiplier tubes. OPTICS EXPRESS 2007; 15:11658-78. [PMID: 19547526 PMCID: PMC3060709 DOI: 10.1364/oe.15.011658] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Multifocal multiphoton microscopy (MMM) enhances imaging speed by parallelization. It is not well understood why the imaging depth of MMM is significantly shorter than conventional single-focus multiphoton microscopy (SMM). In this report, we show that the need for spatially resolved detectors in MMM results in a system that is more sensitive to the scattering of emission photons with reduced imaging depth. For imaging depths down to twice the scattering mean free path length of emission photons (2xl (s) (em)), the emission point spread function (PSF(em)) is found to consist of a narrow, diffraction limited distribution from ballistic emission photons and a broad, relatively low amplitude distribution from scattered photons. Since the scattered photon distribution is approximately 100 times wider than that of the unscattered photons at 2xl (s) (em), image contrast and depth are degraded without compromising resolution. To overcome the imaging depth limitation of MMM, we present a new design that replaces CCD cameras with multi-anode photomultiplier tubes (MAPMTs) allowing more efficient collection of scattered emission photons. We demonstrate that MAPMT-based MMM has imaging depth comparable to SMM with equivalent sensitivity by imaging tissue phantoms, ex vivo human skin specimens based on endogenous fluorophores, and green fluorescent protein (GFP) expressing neurons in mouse brain slices.
Collapse
Affiliation(s)
- Ki Hean Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Christof Buehler
- Novartis Institutes for Biomedical Research, A-1235, Vienna, Austria
| | - Karsten Bahlmann
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- TissueVision Inc., Somerville, MA 02143
| | - Timothy Ragan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- TissueVision Inc., Somerville, MA 02143
| | - Wei-Chung A. Lee
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Elly Nedivi
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Erica L. Heffer
- Department of Biomedical Engineering, Tufts University, Medford MA 02155
| | - Sergio Fantini
- Department of Biomedical Engineering, Tufts University, Medford MA 02155
| | - Peter T. C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139
- Corresponding author:
| |
Collapse
|
570
|
Leleu X, Jia X, Runnels J, Ngo HT, Moreau AS, Farag M, Spencer JA, Pitsillides CM, Hatjiharissi E, Roccaro A, O'Sullivan G, McMillin DW, Moreno D, Kiziltepe T, Carrasco R, Treon SP, Hideshima T, Anderson KC, Lin CP, Ghobrial IM. The Akt pathway regulates survival and homing in Waldenstrom macroglobulinemia. Blood 2007; 110:4417-26. [PMID: 17761832 PMCID: PMC2234792 DOI: 10.1182/blood-2007-05-092098] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Waldenstrom macroglobulinemia (WM) is an incurable low-grade lymphoplasmacytic lymphoma. We demonstrate up-regulated Akt activity in WM, and that Akt down-regulation by Akt knockdown and the inhibitor perifosine leads to significant inhibition of proliferation and induction of apoptosis in WM cells in vitro, but not in normal donor peripheral blood and hematopoietic progenitors. Importantly, down-regulation of Akt induced cytotoxicity of WM cells in the bone marrow microenvironment (BMM) context. Perifosine induced significant reduction in WM tumor growth in vivo in a subcutaneous xenograft model through inhibition of Akt phosphorylation and downstream targets. We also demonstrated that Akt pathway down-regulation inhibited migration and adhesion in vitro and homing of WM tumor cells to the BMM in vivo. Proteomic analysis identified other signaling pathways modulated by perifosine, such as activation of ERK MAPK pathway, which induces survival of tumor cells. Interestingly, MEK inhibitor significantly enhanced perifosine-induced cytotoxicity in WM cells. Using Akt knockdown experiments and specific Akt and PI3K inhibitors, we demonstrated that ERK activation is through a direct effect, rather than feedback activation, of perifosine upstream ERK pathway. These results provide understanding of biological effects of Akt pathway in WM and provide the framework for clinical evaluation of perifosine in WM patients.
Collapse
Affiliation(s)
- Xavier Leleu
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
571
|
Mitsiadis TA, Barrandon O, Rochat A, Barrandon Y, De Bari C. Stem cell niches in mammals. Exp Cell Res 2007; 313:3377-85. [PMID: 17764674 DOI: 10.1016/j.yexcr.2007.07.027] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 12/13/2022]
Abstract
Stem cells safeguard tissue homeostasis and guarantee tissue repair throughout life. The decision between self-renewal and differentiation is influenced by a specialized microenvironment called stem cell niche. Physical and molecular interactions with niche cells and orientation of the cleavage plane during stem cell mitosis control the balance between symmetric and asymmetric division of stem cells. Here we highlight recent progress made on the anatomical and molecular characterization of mammalian stem cell niches, focusing particularly on bone marrow, tooth and hair follicle. The knowledge of the regulation of stem cells within their niches in health and disease will be instrumental to develop novel therapies that target stem cell niches to achieve tissue repair and re-establish tissue homeostasis.
Collapse
Affiliation(s)
- Thimios A Mitsiadis
- Department of Orofacial Development and Structure, Institute of Oral Biology, University of Zurich, Plattenstrasse 11, CH 8032, Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
572
|
Kim Y, Choi Y, Weissleder R, Tung CH. Membrane permeable esterase-activated fluorescent imaging probe. Bioorg Med Chem Lett 2007; 17:5054-7. [PMID: 17664067 PMCID: PMC1995663 DOI: 10.1016/j.bmcl.2007.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/03/2007] [Accepted: 07/06/2007] [Indexed: 11/17/2022]
Abstract
An esterase-triggered probe 2 derived from a cyanine-based pH sensitive dye was developed for cell labeling. Permeation of probe 2 into cells and subsequent hydrolytic activation by cellular esterases result in a bright fluorescent intracellular signal.
Collapse
Affiliation(s)
- Youngmi Kim
- Center for Molecular Imaging Research, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | | | |
Collapse
|
573
|
Burger JA, Bürkle A. The CXCR4 chemokine receptor in acute and chronic leukaemia: a marrow homing receptor and potential therapeutic target. Br J Haematol 2007; 137:288-96. [PMID: 17456052 DOI: 10.1111/j.1365-2141.2007.06590.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemokine (C-X-C motif) receptor 4 (CXCR4) is essential for homing and maintenance of haematopoietic stem cells in distinct stromal cell niches within the marrow. Chemotactic responsiveness of haematopoietic stem cells is restricted to the ligand for CXCR4, stromal cell-derived factor-1 (SDF-1/CXCL12), which is constitutively secreted by marrow stromal cells. Myeloid and lymphoid leukaemia cells also express CXCR4 that induces leukaemia cell chemotaxis and migration beneath marrow stromal cells. CXCR4 expression levels have a major prognostic impact in acute myeloid leukaemia. There is growing in vitro and in vivo evidence that CXCR4 expression by leukaemia cells allows for homing and their retention within the marrow. As such, leukaemia cells appear to utilise CXCR4 to access niches that are normally restricted to progenitor cells, and thereby reside in a microenvironment that favours their growth and survival. CXCR4- and integrin-mediated contact between leukaemia cells and stromal cells protects leukaemia cells from spontaneous and chemotherapy-induced cell death and therefore may represent a mechanism to explain minimal residual disease and subsequent relapses commonly seen in the treatment of these diseases. This review summarises our current knowledge regarding the importance of CXCR4 in acute and chronic leukaemia, discusses the importance of CXCR4 detection by flow cytometry in the diagnostic workup of leukaemia patients, and introduces the potential role of CXCR4-targeting compounds for the treatment of leukaemia patients.
Collapse
Affiliation(s)
- Jan A Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77230-1402, USA.
| | | |
Collapse
|
574
|
Kollet O, Dar A, Lapidot T. The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annu Rev Immunol 2007; 25:51-69. [PMID: 17042735 DOI: 10.1146/annurev.immunol.25.022106.141631] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone remodeling by bone-forming osteoblasts and bone-resorbing osteoclasts dynamically alters the bone inner wall and the endosteum region, which harbors osteoblastic niches for hematopoietic stem cells. Investigators have recently elucidated mechanisms of recruitment and mobilization; these mechanisms consist of stress signals that drive migration of leukocytes and progenitor cells from the bone marrow reservoir to the circulation and drive their homing to injured tissues as part of host defense and repair. The physical bone marrow vasculature barrier that is crossed by mobilized cells actively transmits chemotactic signals between the blood and the bone marrow, facilitating organ communication and cell trafficking. Osteoclasts play a dual role in regulation of bone resorption and homeostatic release or stress-induced mobilization of hematopoietic stem/progenitor cells. In this review, we discuss the orchestrated interplay between bone remodeling, the immune system, and the endosteal stem cell niches in the context of stem cell proliferation and migration during homeostasis, which are accelerated during alarm situations.
Collapse
Affiliation(s)
- Orit Kollet
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
575
|
Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, Spencer JA, Kimlinger T, Ghobrial JM, Jia X, Lu G, Timm M, Kumar A, Côté D, Veilleux I, Hedin KE, Roodman GD, Witzig TE, Kung AL, Hideshima T, Anderson KC, Lin CP, Ghobrial IM. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 2007; 109:2708-17. [PMID: 17119115 PMCID: PMC1852222 DOI: 10.1182/blood-2006-07-035857] [Citation(s) in RCA: 328] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mechanisms by which multiple myeloma (MM) cells migrate and home to the bone marrow are not well understood. In this study, we sought to determine the effect of the chemokine SDF-1 (CXCL12) and its receptor CXCR4 on the migration and homing of MM cells. We demonstrated that CXCR4 is differentially expressed at high levels in the peripheral blood and is down-regulated in the bone marrow in response to high levels of SDF-1. SDF-1 induced motility, internalization, and cytoskeletal rearrangement in MM cells evidenced by confocal microscopy. The specific CXCR4 inhibitor AMD3100 and the anti-CXCR4 antibody MAB171 inhibited the migration of MM cells in vitro. CXCR4 knockdown experiments demonstrated that SDF-1-dependent migration was regulated by the P13K and ERK/ MAPK pathways but not by p38 MAPK. In addition, we demonstrated that AMD3100 inhibited the homing of MM cells to the bone marrow niches using in vivo flow cytometry, in vivo confocal microscopy, and whole body bioluminescence imaging. This study, therefore, demonstrates that SDF-1/CXCR4 is a critical regulator of MM homing and that it provides the framework for inhibitors of this pathway to be used in future clinical trials to abrogate MM trafficking.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Benzylamines
- Bone Marrow/immunology
- Bone Marrow/pathology
- Case-Control Studies
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/physiology
- Chemokine CXCL12
- Chemokines, CXC/antagonists & inhibitors
- Chemokines, CXC/blood
- Chemokines, CXC/physiology
- Chemotaxis/drug effects
- Chemotaxis/physiology
- Cyclams
- Cytoskeleton/physiology
- Heterocyclic Compounds/pharmacology
- Humans
- MAP Kinase Signaling System
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Multiple Myeloma/physiopathology
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/blood
- Receptors, CXCR4/genetics
- Receptors, CXCR4/physiology
Collapse
Affiliation(s)
- Yazan Alsayed
- University of Pittsburgh Cancer Institute, Division of Hematology/Oncology, Department of Internal Medicine, University of Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
576
|
Arya M, Ahmed H, Silhi N, Williamson M, Patel HRH. Clinical importance and therapeutic implications of the pivotal CXCL12-CXCR4 (chemokine ligand-receptor) interaction in cancer cell migration. Tumour Biol 2007; 28:123-31. [PMID: 17510563 DOI: 10.1159/000102979] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 12/01/2006] [Indexed: 12/20/2022] Open
Abstract
Chemokines are small, secreted proteins and are now the largest known cytokine family. They mediate their effects through a family of G-protein-coupled receptors and were initially recognized for their ability to act as chemo-attractants and activators of specific types of leucocytes in a variety of immune and inflammatory responses. However, during the past 5 years there has been a chemokine revolution in cancer and all scientists and clinicians in oncology-related fields are now aware of their crucial role at all stages of neoplastic transformation and progression. The most important chemokine ligand-receptor interaction is that of the CXCL12 (stromal cell-derived factor-1, SDF-1) ligand with its exclusive receptor CXCR4; this interaction has a pivotal role in the directional migration of cancer cells during the metastatic process. This has been demonstrated by in vitro and in vivo experiments in addition to retrospective clinical studies. These findings have exciting implications in the field of cancer therapeutics, with several small molecule CXCR4 antagonists having been developed, which may provide clinical benefit in the therapy of cancer metastasis. Interestingly, it is likely that the effect of the anti-HER2 antibody [trastuzumab (Herceptin] in breast cancer involves downregulation of the CXCR4 receptor. Unfortunately, a major problem is that chemokine receptors are expressed in other cells within the body, particularly those of the immune system and it is not clear what effects long-term CXCR4 antagonism could have on innate and adaptive immunity. However, there is little doubt that the great strides made in elucidating the complex relationship between chemokines and their role in cancer will soon translate into significant survival benefits for patients.
Collapse
|
577
|
Faber A, Roderburg C, Wein F, Saffrich R, Seckinger A, Horsch K, Diehlmann A, Wong D, Bridger G, Eckstein V, Ho AD, Wagner W. The many facets of SDF-1alpha, CXCR4 agonists and antagonists on hematopoietic progenitor cells. J Biomed Biotechnol 2007; 2007:26065. [PMID: 17541466 PMCID: PMC1874670 DOI: 10.1155/2007/26065] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/04/2007] [Accepted: 02/14/2007] [Indexed: 01/08/2023] Open
Abstract
Stromal cell-derived factor-1alpha (SDF-1α) has pleiotropic effects on hematopoietic progenitor cells (HPCs). We have monitored podia formation, migration, proliferation, and cell-cell adhesion of human HPC under the influence of SDF-1α, a peptide agonist of CXCR4 (CTCE-0214), a peptide antagonist (CTCE-9908), and a nonpeptide antagonist (AMD3100). Whereas SDF-1α induced migration of CD34+ cells in a dose-dependent manner, CTCE-0214, CTCE-9908, and AMD3100 did not induce chemotaxis in this concentration range albeit the peptides CTCE-0214 and CTCE-9908 increased podia formation. Cell-cell adhesion of HPC to human mesenchymal stromal cells was impaired by the addition of SDF-1α, CTCE-0214, and AMD3100. Proliferation was not affected by SDF-1α or its analogs. Surface antigen detection of CXCR4 was reduced upon treatment with SDF-1α or AMD3100 and it was enhanced by CTCE-9908. Despite the fact that all these molecules target the same CXCR4 receptor, CXCR4 agonists and antagonists have selective effects on different functions of the natural molecule.
Collapse
Affiliation(s)
- Anne Faber
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Christoph Roderburg
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Frederik Wein
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Rainer Saffrich
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Anja Seckinger
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Kerstin Horsch
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Anke Diehlmann
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Donald Wong
- Chemokine Therapeutics Corporation, 6190 Agronomy Road, Vancouver, BC, Canada V6T 1Z3
| | - Gary Bridger
- AnorMED Inc., 20353 64th Avenue, Langley, BC, Canada V2Y 1N5
| | - Volker Eckstein
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Anthony D. Ho
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- *Anthony D. Ho:
| | - Wolfgang Wagner
- Department of Medicine V, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- Department of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| |
Collapse
|
578
|
Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S A 2007; 104:5431-6. [PMID: 17374716 PMCID: PMC1838452 DOI: 10.1073/pnas.0701152104] [Citation(s) in RCA: 628] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The interaction of stem cells with their bone marrow microenvironment is a critical process in maintaining normal hematopoiesis. We applied an approach to resolve the spatial organization that underlies these interactions by evaluating the distribution of hematopoietic cell subsets along an in vivo Hoechst 33342 (Ho) dye perfusion gradient. Cells isolated from different bone marrow regions according to Ho fluorescence intensity contained the highest concentration of hematopoietic stem cell (HSC) activity in the lowest end of the Ho gradient (i.e., in the regions reflecting diminished perfusion). Consistent with the ability of Ho perfusion to simulate the level of oxygenation, bone marrow fractions separately enriched for HSCs were found to be the most positive for the binding of the hypoxic marker pimonidazole. Moreover, the in vivo administration of the hypoxic cytotoxic agent tirapazamine exhibited selective toxicity to the primitive stem cell subset. These data collectively indicate that HSCs and the supporting cells of the stem cell niche are predominantly located at the lowest end of an oxygen gradient in the bone marrow with the implication that regionally defined hypoxia plays a fundamental role in regulating stem cell function.
Collapse
Affiliation(s)
- Kalindi Parmar
- *Department of Radiation Oncology, Dana–Farber Cancer Institute
- To whom correspondence may be addressed at:
Department of Radiation Oncology, Jimmy Fund Building, Room 518B, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115. E-mail:
| | - Peter Mauch
- *Department of Radiation Oncology, Dana–Farber Cancer Institute
- Departments of Radiation Oncology and
- To whom correspondence may be addressed at:
Department of Radiation Oncology, ASB1-L2, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115. E-mail:
| | | | - Robert Sackstein
- Departments of Dermatology and Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | | |
Collapse
|
579
|
Abstract
Metastasis, the spread of invasive carcinoma to sites distant from the primary tumor, is responsible for the majority of cancer-related deaths (Weigelt, B., Peterse, J. L., & van 't Veer, L. J. (2005). Breast cancer metastasis: Markers and models. Nature Reviews. Cancer, 5, 591-602). Despite progress in other areas of cancer therapeutics, the complexities of this process remain poorly understood. Consequently, there are few successful treatments that directly target this stage of carcinogenesis. Particularly enigmatic is the tissue-specificity of different tumor types observed in metastatic spread. One example is the predilection of colon cancer to spread to liver whereas breast, prostate, and lung carcinomas have a particular affinity to target and proliferate in bone. In 1889, Stephen Paget observed that circulating tumour cells would only "seed" where there was "congenial soil". Since then, attention has focused on explaining the dynamic adhesive and migratory capabilities intrinsic to tumor cells. Meanwhile, the earliest changes occurring within distant tissues that prime the "soil" to receive incoming cancer cells have largely been neglected. Recent work characterizing the importance of bone marrow-derived hematopoietic progenitor cells (HPC) in initiating these early changes has opened new avenues for cancer research and chemotherapeutic targeting (Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820-827). This review discusses the inextricable relationship between bone stromal components, metastasizing cells, and bone marrow-derived hematopoietic cells, and their roles in carcinogenesis and metastasis. Understanding these dynamics may help explain the tissue-specific tropism seen in metastasis. Moreover, exploring the earliest events promoting circulating cancer cells to engraft and establish at secondary sites may expose new targets for diagnostic and therapeutic strategies and reduce the morbidity and mortality from metastatic disease.
Collapse
Affiliation(s)
- Rosandra N Kaplan
- Department of Pediatrics, Cell and Developmental Biology, Weill College of Medicine at Cornell University, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | |
Collapse
|
580
|
Boutrus S, Greiner C, Hwu D, Chan M, Kuperwasser C, Lin CP, Georgakoudi I. Portable two-color in vivo flow cytometer for real-time detection of fluorescently-labeled circulating cells. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:020507. [PMID: 17477705 PMCID: PMC2798734 DOI: 10.1117/1.2722733] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The recent introduction of the in vivo flow cytometer for real-time, noninvasive detection and quantification of cells circulating in the vasculature of small animals has provided a powerful tool for tracking the roles of different types of cells in disease progression. We describe a portable version of the device, which provides the capability to: a) excite and detect fluorescence at two distinct colors simultaneously, and b) perform data analysis in real time. These advances improve significantly the utility of the instrument and provide a means of increasing detection specificity. As examples, we present the depletion kinetics of circulating green fluorescent protein (GFP)-labeled breast cancer cells in the vasculature of mice, and the specific detection of circulating hematopoietic stem cells labeled in vivo with two antibodies.
Collapse
Affiliation(s)
- Steven Boutrus
- Tufts University, Biomedical Engineering Department, Medford, Massachusetts 02155
| | - Cherry Greiner
- Tufts University, Biomedical Engineering Department, Medford, Massachusetts 02155
| | - Derrick Hwu
- Tufts University, Biomedical Engineering Department, Medford, Massachusetts 02155
| | - Michael Chan
- Tufts-New England Medical Center, Department of Radiation Oncology, Boston, Massachusetts 02111
| | - Charlotte Kuperwasser
- Tufts University School of Medicine, Department of Anatomy and Cellular Biology, Tufts-New England Medical Center, Molecular Oncology Research Institute, Boston, Massachusetts 02111
| | - Charles P. Lin
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
| | - Irene Georgakoudi
- Tufts University, Biomedical Engineering Department, Medford, Massachusetts 02155
- Harvard Medical School, Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, Massachusetts 02114
- Tel.: 617-627-4353;
| |
Collapse
|
581
|
Contag CH. Molecular imaging using visible light to reveal biological changes in the brain. Neuroimaging Clin N Am 2007; 16:633-54, ix. [PMID: 17148024 DOI: 10.1016/j.nic.2006.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Advances in imaging have enabled the study of cellular and molecular processes in the context of the living body that include cell migration patterns, location and extent of gene expression, degree of protein-protein interaction, and levels of enzyme activity. These tools, which operate over a range of scales, resolutions, and sensitivities, have opened up broad new areas of investigation where the influence of organ systems and functional circulation is intact. There are a myriad of imaging modalities available, each with its own advantages and disadvantages, depending on the specific application. Among these modalities, optical imaging techniques, including in vivo bioluminescence imaging and fluorescence imaging, use visible light to interrogate biology in the living body. Optimal imaging with these modalities require that the appropriate marker be used to tag the process of interest to make it uniquely visible using a particular imaging technology. For each optical modality, there are various labels to choose from that range from dyes that permit tissue contrast and dyes that can be activated by enzymatic activity, to gene-encoding proteins with optical signatures that can be engineered into specific biological processes. This article provides and overview of optical imaging technologies and commonly used labels, focusing on bioluminescence and fluorescence, and describes several examples of how these tools are applied to biological questions relating to the central nervous system.
Collapse
Affiliation(s)
- Christopher H Contag
- Departments of Pediatrics, Microbiology & Immunology and Radiology, E150 Clark Center, MC 5427, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
582
|
Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2007; 25:977-88. [PMID: 17174120 DOI: 10.1016/j.immuni.2006.10.016] [Citation(s) in RCA: 1714] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 07/17/2006] [Accepted: 10/17/2006] [Indexed: 12/24/2022]
Abstract
In the bone marrow, the special microenvironment niches nurture a pool of hematopoietic stem cells (HSCs). Many HSCs reside near the vasculature, but the molecular regulatory mechanism of niches for HSC maintenance remains unclear. Here we showed that the induced deletion of CXCR4, a receptor for CXC chemokine ligand (CXCL) 12 in adult mice, resulted in severe reduction of HSC numbers and increased sensitivity to myelotoxic injury, although it did not impair expansion of the more mature progenitors. Most HSCs were found in contact with the cells expressing high amounts of CXCL12, which we have called CXCL12-abundant reticular (CAR) cells. CAR cells surrounded sinusoidal endothelial cells or were located near the endosteum. CXCL12-CXCR4 signaling plays an essential role in maintaining the quiescent HSC pool, and CAR cells appear to be a key component of HSC niches, including both vascular and endosteal niches in adult bone marrow.
Collapse
Affiliation(s)
- Tatsuki Sugiyama
- Department of Medical Systems Control, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|
583
|
Abstract
Bone marrow (BM) is a source of various stem and progenitor cells in the adult, and it is able to regenerate a variety of tissues following transplantation. In the 1970s the first BM stem cells identified were hematopoietic stem cells (HSCs). HSCs have the potential to differentiate into all myeloid (including erythroid) and lymphoid cell lineages in vitro and reconstitute the entire hematopoietic and immune systems following transplantation in vivo. More recently, nonhematopoietic stem and progenitor cells have been identified that can differentiate into other cell types such as endothelial progenitor cells (EPCs), contributing to the neovascularization of tumors as well as ischemic tissues, and mesenchymal stem cells (MSCs), which are able to differentiate into many cells of ectodermal, endodermal, and mesodermal origins in vitro as well as in vivo. Following adequate stimulation, stem and progenitor cells can be forced out of the BM to circulate into the peripheral blood, a phenomenon called "mobilization." This chapter reviews the molecular mechanisms behind mobilization and how these have led to the various strategies employed to mobilize BM-derived stem and progenitor cells in experimental and clinical settings. Mobilization of HSCs will be reviewed first, as it has been best-explored--being used extensively in clinics to transplant large numbers of HSCs to rescue cancer patients requiring hematopoietic reconstitution--and provides a paradigm that can be generalized to the mobilization of other types of BM-derived stem and progenitor cells in order to repair other tissues.
Collapse
Affiliation(s)
- J-P Lévesque
- Biotherapy Program, Mater Medical Research Institute, University of Queensland, Aubigny Place, Raymond Terrace, 4101 South Brisbane, Queensland, Australia.
| | | | | | | |
Collapse
|
584
|
Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11:69-82. [PMID: 17222791 DOI: 10.1016/j.ccr.2006.11.020] [Citation(s) in RCA: 1560] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 10/03/2006] [Accepted: 11/28/2006] [Indexed: 12/11/2022]
Abstract
Cancers are believed to arise from cancer stem cells (CSCs), but it is not known if these cells remain dependent upon the niche microenvironments that regulate normal stem cells. We show that endothelial cells interact closely with self-renewing brain tumor cells and secrete factors that maintain these cells in a stem cell-like state. Increasing the number of endothelial cells or blood vessels in orthotopic brain tumor xenografts expanded the fraction of self-renewing cells and accelerated the initiation and growth of tumors. Conversely, depletion of blood vessels from xenografts ablated self-renewing cells from tumors and arrested tumor growth. We propose that brain CSCs are maintained within vascular niches that are important targets for therapeutic approaches.
Collapse
Affiliation(s)
- Christopher Calabrese
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
585
|
Cho HM, Hong JW, Kim JG, Kim JA. The Role of Bone Marrow Mononuclear Cells in Angiogenesis in Mouse Hind Limb Ischemic Model. THE KOREAN JOURNAL OF HEMATOLOGY 2007. [DOI: 10.5045/kjh.2007.42.2.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Hyeon-Min Cho
- Department of General Surgery, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jong-Wook Hong
- Hematopoietic Stem Cell Transplantation Labaratory, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jun-Gi Kim
- Department of General Surgery, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jeong-A Kim
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
- Hematopoietic Stem Cell Transplantation Labaratory, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
586
|
Duda J, Karimi M, Negrin RS, Contag CH. Methods for Imaging Cell Fates in Hematopoiesis. BONE MARROW AND STEM CELL TRANSPLANTATION 2007; 134:17-34. [PMID: 17666740 DOI: 10.1007/978-1-59745-223-6_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Modern imaging technologies that allow for in vivo monitoring of cells in intact research subjects have opened up broad new areas of investigation. In the field of hematopoiesis and stem cell research, studies of cell trafficking involved in injury repair and hematopoietic engraftment have made great progress using these new tools. Multiple imaging modalities are available, each with its own advantages and disadvantages, depending on the specific application. For mouse models, clinically validated technologies such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been joined by optical imaging techniques such as in vivo bioluminescence imaging (BLI) and fluorescence imaging, and all have been used to monitor bone marrow and stem cells after transplantation into mice. Each modality requires that the cells of interest be marked with a distinct label that makes them uniquely visible using that technology. For each modality, there are several labels to choose from. Finally, multiple methods for applying these different labels are available. This chapter provides an overview of the imaging technologies and commonly used labels for each, as well as detailed protocols for gene delivery into hematopoietic cells for the purposes of applying these labels. The goal of this chapter is to provide adequate background information to allow the design and implementation of an experimental system for in vivo imaging in mice.
Collapse
Affiliation(s)
- Jennifer Duda
- Program in Molecular Imaging at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | |
Collapse
|
587
|
Abstract
Metastatic cancer spread to bones, causing intractable pain, pathological fractures, spinal cord compression, and ultimately death, represents massive clinical problem. Intravascular cell-to-cell heterotypic (between cancer and other types of cells) and homotypic (between cancer cells) adhesive interactions, leading to the establishment of metastatic deposits in bone marrow vasculature, represent important rate-limiting steps in bone metastasis. In this review, we discuss molecular and cellular mechanisms underpinning metastasis-associated intravascular cell-to-cell adhesive interactions, their role in a multi-step metastatic cascade, and a potential for therapeutic targeting of early metastasis-associated adhesive events.
Collapse
|
588
|
Fehm T, Becker S, Bachmann C, Beck V, Gebauer G, Banys M, Wallwiener D, Solomayer EF. Detection of disseminated tumor cells in patients with gynecological cancers. Gynecol Oncol 2006; 103:942-7. [PMID: 16889820 DOI: 10.1016/j.ygyno.2006.05.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/25/2006] [Accepted: 05/26/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The presence of disseminated tumor cells (DTC) in breast cancer patients is associated with poor prognosis. However, there are limited data about the prevalence and prognostic impact of DTC in patients with gynecological tumors. The aim of this study was to evaluate the presence of DTC in the bone marrow (BM) of patients with gynecological cancers and to correlate their presence with established prognostic factors. METHODS BM aspirates of 201 patients with primary ovarian (n=69), cervical (n=54) and endometrial cancer (n=78), undergoing surgery at the Department of Gynecology and Obstetrics, University Hospital, Tuebingen, Germany between 1/2002 and 01/2006, were included into the study. Cytokeratin (CK)-positive cells were identified by immunocytochemistry using the pancytokeratin antibody A45B/B3. RESULTS The bone marrow positivity rate was 36% in ovarian, 26% in cervical and 17% in endometrial cancer, respectively. Presence of DTC was significantly correlated with FIGO (International Federation of Gynecology and Obstetrics) tumor stage (p<0.05). The recurrence rate was 14% in patients with CK-positive cells compared to 8% in CK-negative patients (p=0.2). There was no correlation between DTC and other established prognostic factors including nodal status or grading except for cervical cancer. Patients with positive lymph node status were more likely to be bone marrow positive compared to those with negative lymph node status (p<0.05). CONCLUSIONS Disseminated tumor cells seem to be a general phenomenon in epithelial tumors even though their clinical impact remains to be evaluated. The hypothesis that bone marrow is the homing site of disseminated tumor cells is further supported by these data since gynecological tumors only rarely metastasize to the skeletal system.
Collapse
Affiliation(s)
- T Fehm
- Department of Obstetrics and Gynecology, University of Tuebingen, Calwerstrasse 7, D- 72076 Tuebingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
589
|
Nikolova G, Strilic B, Lammert E. The vascular niche and its basement membrane. Trends Cell Biol 2006; 17:19-25. [PMID: 17129728 DOI: 10.1016/j.tcb.2006.11.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 10/20/2006] [Accepted: 11/15/2006] [Indexed: 12/13/2022]
Abstract
Over the past few years, scientists have realized that many cellular and developmental processes, including pancreatic beta-cell growth and differentiation, stem cell and progenitor cell proliferation and cancer cell metastasis, occur in what are known as 'vascular niches'. Despite increasing numbers of reports on these niches, few common mechanisms have been identified to explain their various effects. Here, we define the term 'vascular niche' and suggest that a common and conserved feature of this niche is to provide a basement membrane to cells that are unable to form their own. We further propose that these cells require a vascular niche when they retain a high degree of plasticity.
Collapse
Affiliation(s)
- Ganka Nikolova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | | | | |
Collapse
|
590
|
|
591
|
Dagia NM, Gadhoum SZ, Knoblauch CA, Spencer JA, Zamiri P, Lin CP, Sackstein R. G-CSF induces E-selectin ligand expression on human myeloid cells. Nat Med 2006; 12:1185-90. [PMID: 16980970 DOI: 10.1038/nm1470] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 07/25/2006] [Indexed: 11/08/2022]
Abstract
Clinical use of G-CSF can result in vascular and inflammatory complications. To investigate the molecular basis of these effects, we analyzed the adherence of G-CSF-mobilized human peripheral blood leukocytes (ML) to inflamed (TNF-alpha-stimulated) vascular endothelium. Studies using parallel plate assays under physiologic flow conditions and intravital microscopy in a mouse inflammation model each showed that ML take part in heightened adhesive interactions with endothelium compared to unmobilized (native) blood leukocytes, mediated by markedly increased E-selectin receptor-ligand interactions. Biochemical studies showed that ML express the potent E-selectin ligand HCELL (ref. 8) and another, previously unrecognized approximately 65-kDa E-selectin ligand, and possess enhanced levels of transcripts encoding glycosyltransferases (ST3GalIV, FucT-IV and FucT-VII) conferring glycan modifications associated with E-selectin ligand activity. Enzymatic treatments and physiologic binding assays showed that HCELL and the approximately 65-kDa E-selectin ligand contribute prominently to the observed G-CSF-induced myeloid cell adhesion to inflamed endothelium. Treatment of normal human bone marrow cells with a pharmacokinetically relevant concentration of G-CSF in vitro resulted in increased expression of these two molecules, coincident with increased transcripts encoding pertinent glycosyltransferases and heightened E-selectin binding. These findings provide direct evidence for a role of G-CSF in the induction of E-selectin ligands on myeloid cells, thus providing mechanistic insight into the pathobiology of G-CSF complications.
Collapse
Affiliation(s)
- Nilesh M Dagia
- Department of Dermatology, Brigham & Women's Hospital, 77 Avenue Louis Pasteur, Room 671, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
592
|
Kalchenko V, Shivtiel S, Malina V, Lapid K, Haramati S, Lapidot T, Brill A, Harmelin A. Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:050507. [PMID: 17092148 DOI: 10.1117/1.2364903] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We develop an optical whole-body imaging technique for monitoring normal and leukemic hematopoietic cell homing in vivo. A recently developed near-infrared (NIR) lipophilic carbocyanine dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) is used to safely and directly label the membranes of human leukemic Pre-B ALL G2 cell lines as well as primary murine lymphocytes and erythrocytes. DiR has absorption and fluorescence maxima at 750 and 782 nm, respectively, which corresponds to low light absorption and autofluorescence in living tissues. This allows us to obtain a significant signal with very low background level. A charge-coupled device (CCD)-based imager is used for noninvasive whole-body imaging of DiR-labeled cell homing in intact animals. This powerful technique can potentially visualize any cell type without use of specific antibodies conjugated with NIR fluorescent tag or loading cells with transporter-delivered NIR fluorophores. Thus, in vivo imaging based on NIR lipophilic carbocyanine dyes in combination with advanced optical techniques may serve as a powerful alternative or complementation to other small animal imaging methods.
Collapse
|
593
|
Zharov VP, Galanzha EI, Menyaev Y, Tuchin VV. In vivo high-speed imaging of individual cells in fast blood flow. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:054034. [PMID: 17092183 DOI: 10.1117/1.2355666] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In vivo, label-free, high-speed (up to 10,000 with the potential for 40,000 frames per second), high-resolution (up to 300 nm) real-time continuous imaging with successive framing of circulating individual erythrocytes, leukocytes, and platelets in fast blood flow is developed. This technique, used in an animal model, reveals the extremely high dynamic deformability of erythrocytes in natural flow. Potential applications of this technique are discussed with focus on time-resolved monitoring of the cell deformation dynamics in the native biological environment, which may have diagnostic value for the early diagnosis of diseases.
Collapse
Affiliation(s)
- Vladimir P Zharov
- Philips Classic Laser Biomedical Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199, USA
| | | | | | | |
Collapse
|
594
|
Dar A, Kollet O, Lapidot T. Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 2006; 34:967-75. [PMID: 16863903 DOI: 10.1016/j.exphem.2006.04.002] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Indexed: 12/16/2022]
Abstract
The chemokine SDF-1 (CXCL12) and its receptor CXCR4 are involved in regulation of migration, survival, and development of multiple cell types, including human hematopoietic CD34+/CD38-/low and stromal STRO-1+ stem cells. During steady-state homeostasis, CXCR4 is expressed by hematopoietic cells and also by stromal cells, which are the main source for SDF-1 in the bone marrow (BM). Stress-induced modulations in SDF-1 and CXCR4 levels participate in recruitment of immature and maturing leukocytes from the BM reservoir to damaged organs as part of host defense and repair mechanism. In addition, trafficking of SDF-1 is mediated by CXCR4, expressed by endothelial and various stromal cell types in the BM, spleen, and other organs, but not by hematopoietic cells. Transcytosis of functional SDF-1 to the BM takes place also in the stem cell-rich endothelium and endosteum regions, regulating hematopoietic and stromal interactions in the stem cell niche. Dynamic levels of SDF-1 and CXCR4 expression induce proliferation of hematopoietic and mesenchymal progenitors, recruitment of bone-resorbing osteoclasts, osteoblasts, neutrophils, and other myeloid cells, leading to leukocyte mobilization. These studies will be reviewed together with the mechanisms that regulate SDF-1 and CXCR4 physiologic function, inactivation, presentation, and availability. Moreover, the role and the dynamic modulations of this ligand and its receptor in alarm and pathologic conditions will be discussed as well.
Collapse
Affiliation(s)
- Ayelet Dar
- Department of Immunology, Weizmann Institute, Rehovot, Israel
| | | | | |
Collapse
|
595
|
Lee H, Alt C, Pitsillides CM, Puoris’haag M, Lin CP. In vivo imaging flow cytometer. OPTICS EXPRESS 2006; 14:7789-800. [PMID: 19529148 PMCID: PMC2801598 DOI: 10.1364/oe.14.007789] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We introduce an in vivo imaging flow cytometer, which provides fluorescence images simultaneously with quantitative information on the cell population of interest in a live animal. As fluorescent cells pass through the slit of light focused across a blood vessel, the excited fluorescence is confocally detected. This cell signal triggers a strobe beam and a high sensitivity CCD camera that captures a snapshot image of the cell as it moves down-stream from the slit. We demonstrate that the majority of signal peaks detected in the in vivo flow cytometer arise form individual cells. The instrument's capability to image circulating T cells and measure their speed in the blood vessel in real time in vivo is demonstrated. The cell signal irradiance variation, clustering percentage, and potential applications in biology and medicine are discussed.
Collapse
Affiliation(s)
- Ho Lee
- Wellman Center for Pholomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA, Kyongpook National University, Daegu 702-701, South Korea
| | - Clemens Alt
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA, Department of Biomedical Engineering, Tufts University, Medford, MA 02155,USA
| | - Costas M. Pitsillides
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA, Department of Biomedical Engineering, Boston University, Boston, MA 02215,USA
| | - Mehron Puoris’haag
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Charles P. Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston. MA 02114, USA
| |
Collapse
|
596
|
Hatfield K, Ryningen A, Corbascio M, Bruserud O. Microvascular endothelial cells increase proliferation and inhibit apoptosis of native human acute myelogenous leukemia blasts. Int J Cancer 2006; 119:2313-21. [PMID: 16921487 DOI: 10.1002/ijc.22180] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Interactions between acute myelogenous leukemia (AML) blasts and neighbouring endothelial cells in the bone marrow seem important both for disease development and susceptibility to chemotherapy. We investigated the effects of soluble mediators released by microvascular endothelial cells on native human AML cells. AML cells derived from 33 patients were cocultured with microvascular endothelial cells, separated by a semipermeable membrane. We investigated the effect of coculture on AML cell proliferation, viability/apoptosis and cytokine release. Coculture increased AML cell proliferation, and this growth enhancement included the clonogenic leukemia cell subset. Increased release of several soluble mediators was also detected (interleukin 3, interleukin 6, granulocyte-macrophage and granulocyte colony-stimulating factors) in cocultures. Our cytokine neutralization experiments suggest that an intercellular crosstalk involving several soluble mediators contribute to the increased leukemia cell proliferation. The presence of endothelial cells had an additional antiapoptotic effect on the AML cells. The endothelial cells did not have any growth-enhancing effect on native human acute lymphoblastic leukemia cells. Our in vitro results suggest that the release of soluble mediators by microvascular endothelial cells supports leukemic hematopoiesis through paracrine mechanisms by direct enhancement of AML blast proliferation and by inhibition of leukemic cell apoptosis.
Collapse
Affiliation(s)
- Kimberley Hatfield
- Section for Hematology, Institute of Medicine, The University of Bergen, Bergen, Norway
| | | | | | | |
Collapse
|
597
|
Sommerfeldt N, Schütz F, Sohn C, Förster J, Schirrmacher V, Beckhove P. The Shaping of a Polyvalent and Highly Individual T-Cell Repertoire in the Bone Marrow of Breast Cancer Patients. Cancer Res 2006; 66:8258-65. [PMID: 16912206 DOI: 10.1158/0008-5472.can-05-4201] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
We analyzed the T-cell repertoires from the bone marrow of 39 primary operated breast cancer patients and 11 healthy female donors for the presence and frequencies of spontaneously induced effector/memory T lymphocytes with peptide-HLA-A2-restricted reactivity against 10 breast tumor-associated antigens (TAA) and 3 normal breast tissue–associated antigens by short-term IFN-γ enzyme-linked immunospot (ELISpot) analysis. Sixty-seven percent of the patients recognized TAAs with a mean frequency of 144 TAA reactive cells per 106 T cells. These patients recognized simultaneously an average of 47% of the tested TAAs. The T-cell repertoire was highly polyvalent and exhibited pronounced interindividual differences in the pattern of TAAs recognized by each patient. Strong differences of reactivity were noticed between TAAs, ranging from 100% recognition of prostate-specific antigenp141-149 to only 25% recognition of MUC1p12-20 or Her-2/neup369-377. In comparison with TAAs, reactivity to normal breast tissue–associated antigens was lower with respect to the proportions of responding patients (30%) and recognized antigens (27%), with a mean frequency of only 85/106 T cells. Healthy individuals also contained TAA-reactive T cells but this repertoire was more restricted and the frequencies were in the same range as T cells reacting to normal breast tissue–associated antigens. Our data show a highly individual T-cell repertoire for recognition of TAAs in breast cancer patients. This has potential relevance for T-cell immune diagnostics, for tumor vaccine design, and for predicting immune responsiveness. (Cancer Res 2006; 66(16): 8258-65)
Collapse
Affiliation(s)
- Nora Sommerfeldt
- Department of Cellular Immunology, The German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
598
|
Zharov VP, Galanzha EI, Tuchin VV. In vivo photothermal flow cytometry: imaging and detection of individual cells in blood and lymph flow. J Cell Biochem 2006; 97:916-32. [PMID: 16408292 DOI: 10.1002/jcb.20766] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Flow cytometry is a well-established, powerful technique for studying cells in artificial flow in vitro. This review covers a new potential application of this technique for studying normal and abnormal cells in their native condition in blood or lymph flow in vivo. Specifically, the capabilities of the label-free photothermal (PT) technique for detecting and imaging cells in the microvessel network of rat mesentery are analyzed from the point of view of overcoming the problems of flow cytometry in vivo. These problems include, among others, the influences of light scattering and absorption in vessel walls and surrounding tissues, instability of cell velocity, and cells numbers and positions in a vessel's cross-section. The potential applications of this new approach in cell biochemistry and medicine are discussed, including molecular imaging; studying the metabolism and pathogenesis of many diseases at a cellular level; and monitoring and quantifying metastatic and apoptotic cells, and/or their responses to therapeutic interventions (e.g., drug or radiation), in natural biological environments.
Collapse
Affiliation(s)
- Vladimir P Zharov
- Philips Classic Laser Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| | | | | |
Collapse
|
599
|
Winkler IG, Lévesque JP. Mechanisms of hematopoietic stem cell mobilization: When innate immunity assails the cells that make blood and bone. Exp Hematol 2006; 34:996-1009. [PMID: 16863906 DOI: 10.1016/j.exphem.2006.04.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Indexed: 01/13/2023]
Abstract
Mobilization is now used worldwide to collect large numbers of hematopoietic stem and progenitor cells (HSPCs) for transplantation. Although the first mobilizing agents were discovered largely by accident, discovery of more efficient mobilizing agents will require a better understanding of the molecular mechanisms responsible. During the past 5 years, a number of mechanisms have been identified, shedding new light on the dynamics of the hematopoietic system in vivo and on the intricate relationship between hematopoiesis, innate immunity, and bone. After briefly reviewing the mechanisms by which circulating HSPCs home into the bone marrow and what keeps them there, the current knowledge of mechanisms responsible for HSPC mobilization in response to hematopoietic growth factors such as granulocyte colony-stimulating factor, chemotherapy, chemokines, and polyanions will be discussed together with current strategies developed to further increase HSPC mobilization.
Collapse
Affiliation(s)
- Ingrid G Winkler
- Haematopoietic Stem Cell Laboratory, Cancer Biotherapies Program, Mater Medical Research Institute, University of Queensland, South Brisbane, Queensland, Australia
| | | |
Collapse
|
600
|
Abstract
Stem-cell populations are established in 'niches'--specific anatomic locations that regulate how they participate in tissue generation, maintenance and repair. The niche saves stem cells from depletion, while protecting the host from over-exuberant stem-cell proliferation. It constitutes a basic unit of tissue physiology, integrating signals that mediate the balanced response of stem cells to the needs of organisms. Yet the niche may also induce pathologies by imposing aberrant function on stem cells or other targets. The interplay between stem cells and their niche creates the dynamic system necessary for sustaining tissues, and for the ultimate design of stem-cell therapeutics.
Collapse
Affiliation(s)
- David T Scadden
- Massachusetts General Hospital Center for Regenerative Medicine, Harvard Stem Cell Institute, 185 Cambridge Street, CPZN - 4265A, Boston, Massachusetts 02114, USA.
| |
Collapse
|