551
|
Español-Suñer R, Carpentier R, Van Hul N, Legry V, Achouri Y, Cordi S, Jacquemin P, Lemaigre F, Leclercq IA. Liver progenitor cells yield functional hepatocytes in response to chronic liver injury in mice. Gastroenterology 2012; 143:1564-1575.e7. [PMID: 22922013 DOI: 10.1053/j.gastro.2012.08.024] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 08/10/2012] [Accepted: 08/10/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Self-renewal of mature hepatocytes promotes homeostasis and regeneration of adult liver. However, recent studies have indicated that liver progenitor cells (LPC) could give rise to hepatic epithelial cells during normal turnover of the liver and after acute injury. We investigated the capacity of LPC to differentiate into hepatocytes in vivo and contribute to liver regeneration. METHODS We performed lineage tracing experiments, using mice that express tamoxifen-inducible Cre recombinase under control of osteopontin regulatory region crossed with yelow fluorescent protein reporter mice, to follow the fate of LPC and biliary cells. Adult mice received partial (two-thirds) hepatectomy, acute or chronic administration of carbon tetrachloride (CCl(4)), choline-deficient diet supplemented with ethionine, or 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet. RESULTS LPC and/or biliary cells generated 0.78% and 2.45% of hepatocytes during and upon recovery of mice from liver injury, respectively. Repopulation efficiency by LPC and/or biliary cells increased when extracellular matrix and laminin deposition were reduced. The newly formed hepatocytes integrated into hepatic cords, formed biliary canaliculi, expressed hepato-specific enzymes, accumulated glycogen, and proliferated in response to partial hepatectomy, as neighboring native hepatocytes. By contrast, LPC did not contribute to hepatocyte regeneration during normal liver homeostasis, in response to surgical or toxic loss of liver mass, during chronic liver injury (CCl(4)-induced), or during ductular reactions. CONCLUSIONS LPC or biliary cells terminally differentiate into functional hepatocytes in mice with liver injury.
Collapse
Affiliation(s)
- Regina Español-Suñer
- Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
552
|
Abstract
The liver has an enormous potential to restore the parenchymal tissue loss due to injury. This is accomplished by the proliferation of either the hepatocytes or liver progenitor cells in cases where massive damage prohibits hepatocytes from entering the proliferative response. Under debate is still whether hepatic stem cells are involved in liver tissue maintenance and regeneration or even whether they exist at all. The definition of an adult tissue-resident stem cell comprises basic functional stem cell criteria like the potential of self-renewal, multipotent, i.e. at least bipotent differentiation capacity and serial transplantability featuring the ability of functional tissue repopulation. The relationship between a progenitor and its progeny should exemplify the lineage commitment from the putative stem cell to the differentiated cell. This is mainly assessed by lineage tracing and immunohistochemical identification of markers specific to progenitors and their descendants. Flow cytometry approaches revealed that the liver stem cell population in animals is likely to be heterogeneous giving rise to progeny with different molecular signatures, depending on the stimulus to activate the putative stem cell compartment. The stem cell criteria are met by a variety of cells identified in the fetal and adult liver both under normal and injury conditions. It is the purpose of this review to verify hepatic stem cell candidates in the light of the stem cell definition criteria mentioned. Also from this point of view adult stem cells from non-hepatic tissues such as bone marrow, umbilical cord blood or adipose tissue, have the potential to differentiate into cells featuring functional hepatocyte characteristics. This has great impact because it opens the possibility of generating hepatocyte-like cells from adult stem cells in a sufficient amount and quality for their therapeutical application to treat end-stage liver diseases by stem cell-based hepatocytes in place of whole organ transplantation.
Collapse
Affiliation(s)
- Bruno Christ
- Translational Centre for Regenerative Medicine-TRM, University of Leipzig, Philipp-Rosenthal-Straße 55, D-04103 Leipzig, Germany.
| | | |
Collapse
|
553
|
Lemaigre F. Le développement des lignages hépatiques dans le foie normal et durant la régénération. Med Sci (Paris) 2012; 28:958-62. [DOI: 10.1051/medsci/20122811014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
554
|
Ioannou M, Serafimidis I, Arnes L, Sussel L, Singh S, Vasiliou V, Gavalas A. ALDH1B1 is a potential stem/progenitor marker for multiple pancreas progenitor pools. Dev Biol 2012; 374:153-63. [PMID: 23142317 DOI: 10.1016/j.ydbio.2012.10.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 01/09/2023]
Abstract
Aldehyde dehydrogenase (ALDH) genes are increasingly associated with stem/progenitor cell status but their role in the maintenance of pluripotency remains uncertain. In a screen conducted for downstream Ngn3 target genes using ES derived pancreas progenitors we identified Aldh1b1, encoding a mitochondrial enzyme, as one of the genes strongly up regulated in response to Ngn3 expression. We found both by in situ hybridization and immunofluorescence using a specific antibody that ALDH1B1 is exclusively expressed in the emerging pancreatic buds of the early embryo (9.5 dpc) in a Pdx1 dependent manner. Around the time of secondary transition, ALDH1B1 expression was restricted in the tip tripotent progenitors of the branching epithelium and in a subset of the trunk epithelium. Expression in the latter was Ngn3 dependent. Subsequently, ALDH1B1 expression persisted only in the tip cells that become restricted to the exocrine lineage and declined rapidly as these cells mature. In the adult pancreas we identified rare ALDH1B1(+) cells that become abundant following pancreas injury in either the caerulein or streptozotocin paradigms. Blocking ALDH catalytic activity in pancreas embryonic explants resulted in reduced size of the explants and accelerated differentiation suggesting for the first time that ALDH activity may be necessary in the developing pancreas for the maintenance and expansion of progenitor pools.
Collapse
Affiliation(s)
- Marilia Ioannou
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | | | | | | | | | | | | |
Collapse
|
555
|
Abstract
Pancreatic ductal adenocarcinoma is the 10th most common cancer and the fourth leading cause of cancer-related death in the United States. Despite great effort, the prognosis for patients with this disease remains dismal with a 5-year survival rate of just 4% to 6%. Although several important advances have improved our understanding of the underlying biology of pancreatic cancer, this knowledge has not translated into novel therapeutic approaches and effective systemic or targeted therapies. Pancreatic cancer is one of the malignancies most difficult to treat, with remarkable intrinsic resistance to both standard and targeted chemotherapy as well as ionizing radiation. Surgical intervention remains the only potentially curative approach. However, most patients present with inoperable and/or metastatic disease and are therefore excluded from surgery. Accordingly, new therapeutic options are desperately needed. In vivo models to study innovative and alternative treatment approaches are of major importance. A variety of genetically engineered mouse models of pancreatic cancer have been developed over the last decade. However, these models display different characteristics, and not all of them are suited for preclinical studies. In this review, we aim to review the mouse models available, their experimental use, their clinical relevance and limitations, and future directions.
Collapse
Affiliation(s)
- C. Benedikt Westphalen
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Kenneth P. Olive
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Medical Center, New York, NY 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
556
|
Multipotent stem/progenitor cells in the human foetal biliary tree. J Hepatol 2012; 57:987-94. [PMID: 22820480 DOI: 10.1016/j.jhep.2012.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/21/2012] [Accepted: 07/05/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Biliary tree, liver, and pancreas share a common embryological origin. We previously demonstrated the presence of stem/progenitor cells of endodermal origin in the adult human extrahepatic biliary tree. This study evaluated the human foetal biliary trees as sources of stem/progenitor cells of multiple endodermal-derived mature fates. METHODS Human foetal intrahepatic and extrahepatic biliary tree tissues and isolated cells were tested for cytoplasmic and surface markers of stem cells and committed progenitors, as well as endodermal transcription factors requisite for a liver versus pancreatic fate. In vitro and in vivo experiments were conducted to evaluate the potential mature fates of differentiation. RESULTS Foetal biliary tree cells proliferated clonogenically for more than 1 month on plastic in a serum-free Kubota medium. After culture expansion, cells exhibited multipotency and could be restricted to certain lineages under defined microenvironments, including hepatocytes, cholangiocytes, and pancreatic islet cells. Transplantation of foetal biliary tree cells into the livers of immunodeficient mice resulted in effective engraftment and differentiation into mature hepatocytes and cholangiocytes. CONCLUSIONS Foetal biliary trees contain multipotent stem/progenitor cells comparable with those in adults. These cells can be easily expanded and induced in vitro to differentiate into liver and pancreatic mature fates, and engrafted and differentiated into mature cells when transplanted in vivo. These findings further characterise the development of these stem/progenitor cell populations from foetuses to adults, which are thought to contribute to liver and pancreas organogenesis throughout life.
Collapse
|
557
|
Lund PK. Fixing the breaks in intestinal stem cells after radiation: a matter of DNA damage and death or DNA repair and regeneration. Gastroenterology 2012; 143:1144-1147. [PMID: 23000480 DOI: 10.1053/j.gastro.2012.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Pauline Kay Lund
- Department of Cell Biology and Physiology and Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
558
|
Ryu JY, Siswanto A, Harimoto K, Tagawa YI. Chimeric analysis of EGFP and DsRed2 transgenic mice demonstrates polyclonal maintenance of pancreatic acini. Transgenic Res 2012; 22:549-56. [DOI: 10.1007/s11248-012-9661-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 09/21/2012] [Indexed: 10/27/2022]
|
559
|
Snijders AM, Marchetti F, Bhatnagar S, Duru N, Han J, Hu Z, Mao JH, Gray JW, Wyrobek AJ. Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility. PLoS One 2012; 7:e45394. [PMID: 23077491 PMCID: PMC3471924 DOI: 10.1371/journal.pone.0045394] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/22/2012] [Indexed: 11/18/2022] Open
Abstract
High dose ionizing radiation (IR) is a well-known risk factor for breast cancer but the health effects after low-dose (LD, <10 cGy) exposures remain highly uncertain. We explored a systems approach that compared LD-induced chromosome damage and transcriptional responses in strains of mice with genetic differences in their sensitivity to radiation-induced mammary cancer (BALB/c and C57BL/6) for the purpose of identifying mechanisms of mammary cancer susceptibility. Unirradiated mammary and blood tissues of these strains differed significantly in baseline expressions of DNA repair, tumor suppressor, and stress response genes. LD exposures of 7.5 cGy (weekly for 4 weeks) did not induce detectable genomic instability in either strain. However, the mammary glands of the sensitive strain but not the resistant strain showed early transcriptional responses involving: (a) diminished immune response, (b) increased cellular stress, (c) altered TGFβ-signaling, and (d) inappropriate expression of developmental genes. One month after LD exposure, the two strains showed opposing responses in transcriptional signatures linked to proliferation, senescence, and microenvironment functions. We also discovered a pre-exposure expression signature in both blood and mammary tissues that is predictive for poor survival among human cancer patients (p = 0.0001), and a post-LD-exposure signature also predictive for poor patient survival (p<0.0001). There is concordant direction of expression in the LD-exposed sensitive mouse strain, in biomarkers of human DCIS and in biomarkers of human breast tumors. Our findings support the hypothesis that genetic mechanisms that determine susceptibility to LD radiation induced mammary cancer in mice are similar to the tissue mechanisms that determine poor-survival in breast cancer patients. We observed non-linearity of the LD responses providing molecular evidence against the LNT risk model and obtained new evidence that LD responses are strongly influenced by genotype. Our findings suggest that the biological assumptions concerning the mechanisms by which LD radiation is translated into breast cancer risk should be reexamined and suggest a new strategy to identify genetic features that predispose or protect individuals from LD-induced breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Andrew J. Wyrobek
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
560
|
Abstract
The detailed understanding of adult tissue stem cells has significance for both regenerative medicine and oncology. This perspective will discuss how major advances in our ability to identify and monitor these cells, which include genetic lineage tracing, FACS purification, and robust in vitro clonogenic assays, have changed our view of their roles in many organs. Label retention and quiescence are no longer considered obligatory stem cell features. Furthermore, some tissues have more than one type of stem cell, each used in only particular situations of regenerative stress. Thus, there is no "one size fits all" adult tissue stem cell paradigm.
Collapse
|
561
|
Abstract
During chronic injury a population of bipotent hepatic progenitor cells (HPCs) become activated to regenerate both cholangiocytes and hepatocytes. Here we show in human diseased liver and mouse models of the ductular reaction that Notch and Wnt signaling direct specification of HPCs via their interactions with activated myofibroblasts or macrophages. In particular, we found that during biliary regeneration, expression of Jagged 1 (a Notch ligand) by myofibroblasts promoted Notch signaling in HPCs and thus their biliary specification to cholangiocytes. Alternatively, during hepatocyte regeneration, macrophage engulfment of hepatocyte debris induced Wnt3a expression. This resulted in canonical Wnt signaling in nearby HPCs, thus maintaining expression of Numb (a cell fate determinant) within these cells and the promotion of their specification to hepatocytes. By these two pathways adult parenchymal regeneration during acute liver injury is promoted.
Collapse
Affiliation(s)
- Ben Z. Stanger
- Departments of Medicine and Cell and Developmental Biology Perelman
School of Medicine University of Pennsylvania, Philadelphia, PA
| | - Linda Greenbaum
- Departments of Cancer Biology and Medicine Thomas Jefferson
University School of Medicine Philadelphia, PA
| |
Collapse
|
562
|
Fine three-dimensional reconstruction of peripheral exocrine gland in rat pancreas using transmission electron microscopic examination of serial sections. Pancreas 2012; 41:1135-7. [PMID: 22940830 DOI: 10.1097/mpa.0b013e31824da396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
563
|
In vivo reprogramming of Sox9+ cells in the liver to insulin-secreting ducts. Proc Natl Acad Sci U S A 2012; 109:15336-41. [PMID: 22949652 DOI: 10.1073/pnas.1201701109] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In embryonic development, the pancreas and liver share developmental history up to the stage of bud formation. Therefore, we postulated that direct reprogramming of liver to pancreatic cells can occur when suitable transcription factors are overexpressed. Using a polycistronic vector we misexpress Pdx1, Ngn3, and MafA in the livers of NOD-SCID mice rendered diabetic by treatment with streptozotocin (STZ). The diabetes is relieved long term. Many ectopic duct-like structures appear that express a variety of β-cell markers, including dense core granules visible by electron microscopy (EM). Use of a vector also expressing GFP shows that the ducts persist long after the viral gene expression has ceased, indicating that this is a true irreversible cell reprogramming event. We have recovered the insulin(+) cells by cell sorting and shown that they display glucose-sensitive insulin secretion. The early formed insulin(+) cells can be seen to coexpress SOX9 and are also labeled in mice lineage labeled for Sox9 expression. SOX9(+) cells are normally found associated with small bile ducts in the periportal region, indicating that the duct-like structures arise from this source. This work confirms that developmentally related cells can be reprogrammed by suitable transcription factors and also suggests a unique therapy for diabetes.
Collapse
|
564
|
Fausto N, Campbell JS, Riehle KJ. Liver regeneration. J Hepatol 2012; 57:692-4. [PMID: 22613006 DOI: 10.1016/j.jhep.2012.04.016] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/12/2012] [Accepted: 04/23/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Nelson Fausto
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
565
|
Fukuda A, Morris JP, Hebrok M. Bmi1 is required for regeneration of the exocrine pancreas in mice. Gastroenterology 2012; 143:821-831.e2. [PMID: 22609312 PMCID: PMC3485080 DOI: 10.1053/j.gastro.2012.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 04/12/2012] [Accepted: 05/09/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Bmi1 is a member of the Polycomb protein family and represses transcription by modifying chromatin organization at specific promoters. Bmi1 is implicated in the control of stem cell self-renewal and has been shown to regulate cell proliferation, tissue homeostasis, and differentiation. Bmi1 is present in a subpopulation of self-renewing pancreatic acinar cells and is expressed in response to pancreatic damage. We investigated the role of Bmi1 in regeneration of exocrine pancreas. METHODS Acute pancreatitis was induced in Bmi1(-/-) mice with cerulein; pancreatic cell regeneration, differentiation, and apoptosis were assessed. Cultured Bmi1(-/-) and wild-type primary acini were analyzed in vitro to determine acinar-specific consequences of Bmi1 deletion. To investigate cell autonomous versus non-cell autonomous roles for Bmi1 in vivo, pancreatitis was induced in Bmi1(-/-) mice reconstituted with a wild-type hematopoietic system. RESULTS Bmi1 expression was up-regulated in the exocrine pancreas during regeneration after cerulein-induced pancreatitis. Exocrine regeneration was impaired following administration of cerulein to Bmi1(-/-) mice. Pancreata of Bmi1(-/-) mice were hypoplastic, and the exocrine pancreas was replaced with ductal metaplasia that had increased apoptosis and decreased cell proliferation compared with that of wild-type mice. Expression of Cdkn2a and p53-dependent apoptotic genes was markedly up-regulated in Bmi1(-/-) pancreas compared with wild-type mice after injury. Furthermore, after transplantation of bone marrow from wild-type to Bmi1(-/-) mice, the chimeric mice had intermediate levels of pancreatic hypoplasia and significant but incomplete rescue of impaired exocrine regeneration after cerulein injury. CONCLUSIONS Bmi1 contributes to regeneration of the exocrine pancreas after cerulein-induced injury through cell autonomous mechanisms, in part by regulating Cdkn2a expression, and non-cell autonomous mechanisms.
Collapse
Affiliation(s)
- Akihisa Fukuda
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - John P. Morris
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
566
|
Majumdar A, Curley SA, Wu X, Brown P, Hwang JP, Shetty K, Yao ZX, He AR, Li S, Katz L, Farci P, Mishra L. Hepatic stem cells and transforming growth factor β in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2012; 9:530-8. [PMID: 22710573 PMCID: PMC3745216 DOI: 10.1038/nrgastro.2012.114] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide. It arises from modulation of multiple genes by mutations, epigenetic regulation, noncoding RNAs and translational modifications of encoded proteins. Although >40% of HCCs are clonal and thought to arise from cancer stem cells (CSCs), the precise identification and mechanisms of CSC formation remain poorly understood. A functional role of transforming growth factor (TGF)-β signalling in liver and intestinal stem cell niches has been demonstrated through mouse genetics. These studies demonstrate that loss of TGF-β signalling yields a phenotype similar to a human CSC disorder, Beckwith-Wiedemann syndrome. Insights into this powerful pathway will be vital for developing new therapeutics in cancer. Current clinical approaches are aimed at establishing novel cancer drugs that target activated pathways when the TGF-β tumour suppressor pathway is lost, and TGF-β itself could potentially be targeted in metastases. Studies delineating key functional pathways in HCC and CSC formation could be important in preventing this disease and could lead to simple treatment strategies; for example, use of vitamin D might be effective when the TGF-β pathway is lost or when wnt signalling is activated.
Collapse
|
567
|
Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, Ribback S, Gores GJ, Dombrowski F, Evert M, Chen X, Willenbring H. Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest 2012; 122:2911-5. [PMID: 22797301 DOI: 10.1172/jci63212] [Citation(s) in RCA: 372] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/01/2012] [Indexed: 12/15/2022] Open
Abstract
Intrahepatic cholangiocarcinomas (ICCs) are primary liver tumors with a poor prognosis. The development of effective therapies has been hampered by a limited understanding of the biology of ICCs. Although ICCs exhibit heterogeneity in location, histology, and marker expression, they are currently thought to derive invariably from the cells lining the bile ducts, biliary epithelial cells (BECs), or liver progenitor cells (LPCs). Despite lack of experimental evidence establishing BECs or LPCs as the origin of ICCs, other liver cell types have not been considered. Here we show that ICCs can originate from fully differentiated hepatocytes. Using a mouse model of hepatocyte fate tracing, we found that activated NOTCH and AKT signaling cooperate to convert normal hepatocytes into biliary cells that act as precursors of rapidly progressing, lethal ICCs. Our findings suggest a previously overlooked mechanism of human ICC formation that may be targetable for anti-ICC therapy.
Collapse
Affiliation(s)
- Biao Fan
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
568
|
Sonoda Y, Sasaki K. Hepatic extramedullary hematopoiesis and macrophages in the adult mouse: histometrical and immunohistochemical studies. Cells Tissues Organs 2012; 196:555-64. [PMID: 22739117 DOI: 10.1159/000338336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2012] [Indexed: 11/19/2022] Open
Abstract
Fetal liver hematopoiesis in mice disappears approximately 2 weeks after birth; however, under experimental acute anemia extramedullary hematopoiesis occurs in the livers of adult mice. The hematopoietic foci in the liver during extramedullary hematopoiesis contain erythroblasts and macrophages. In this study, the extent of involvement of macrophages in the development and involutional process of the hematopoietic foci in adult mice livers was clarified by experimentally inducing extramedullary hematopoiesis. Hematopoietic cells appeared in the livers 2 days after phenylhydrazine (PHZ) injections. The number and area of the foci increased rapidly, reaching peak values on the sixth day. F4/80-positive macrophages were observed in the sinusoids as well as the hematopoietic foci, and were tightly surrounded by erythroblasts. Sinusoidal macrophages in normal adult livers were positive for F4/80 but negative for ER-HR3. However, in extramedullary hematopoiesis-induced livers, sinusoidal macrophages became positive for ER-HR3 antibodies. The number of ER-HR3-positive macrophages was 9.2 ± 2.9/mm(2) on the second day after PHZ was administered, and increased to 200.3 ± 4.2/mm(2) on the sixth day. On the seventh day after the PHZ injections, the number decreased and they were no longer detected at 30 days after PHZ was injected. The present study revealed that erythroblasts accumulate around sinusoidal macrophages to form an erythroblastic island with a central macrophage similar to erythropoiesis in the fetal liver. Furthermore, in line with development and regression of extramedullary hematopoiesis, macrophages express ER-HR3, a hematopoiesis related antigen.
Collapse
Affiliation(s)
- Yuji Sonoda
- Department of Anatomy, Kawasaki Medical School, Kurashiki, Japan. ysonoda @ med.kawasaki-m.ac.jp
| | | |
Collapse
|
569
|
Cleveland MH, Sawyer JM, Afelik S, Jensen J, Leach SD. Exocrine ontogenies: on the development of pancreatic acinar, ductal and centroacinar cells. Semin Cell Dev Biol 2012; 23:711-9. [PMID: 22743232 DOI: 10.1016/j.semcdb.2012.06.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
This review summarizes our current understanding of exocrine pancreas development, including the formation of acinar, ductal and centroacinar cells. We discuss the transcription factors associated with various stages of exocrine differentiation, from multipotent progenitor cells to fully differentiated acinar and ductal cells. Within the branching epithelial tree of the embryonic pancreas, this involves the progressive restriction of multipotent pancreatic progenitor cells to either a central "trunk" domain giving rise to the islet and ductal lineages, or a peripheral "tip" domain giving rise to acinar cells. This review also discusses the soluble morphogens and other signaling pathways that influence these events. Finally, we examine centroacinar cells as an enigmatic pancreatic cell type whose lineage remains uncertain, and whose possible progenitor capacities continue to be explored.
Collapse
Affiliation(s)
- Megan H Cleveland
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, United States
| | | | | | | | | |
Collapse
|
570
|
Rieck S, Bankaitis ED, Wright CVE. Lineage determinants in early endocrine development. Semin Cell Dev Biol 2012; 23:673-84. [PMID: 22728667 DOI: 10.1016/j.semcdb.2012.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic endocrine cells are produced from a dynamic epithelium in a process that, as in any developing organ, is driven by interacting programs of spatiotemporally regulated intercellular signals and autonomous gene regulatory networks. These algorithms work to push progenitors and their transitional intermediates through a series of railroad-station-like switching decisions to regulate flux along specific differentiation tracks. Extensive research on pancreas organogenesis over the last 20 years, greatly spurred by the potential to restore functional β-cell mass in diabetic patients by transplantation therapy, is advancing our knowledge of how endocrine lineage bias is established and allocation is promoted. The field is working towards the goal of generating a detailed blueprint of how heterogeneous cell populations interact and respond to each other, and other influences such as the extracellular matrix, to move into progressively refined and mature cell states. Here, we highlight how signaling codes and transcriptional networks might determine endocrine lineage within a complex and dynamic architecture, based largely on studies in the mouse. The process begins with the designation of multipotent progenitor cells (MPC) to pancreatic buds that subsequently move through a newly proposed period involving epithelial plexus formation-remodeling, and ends with formation of clustered endocrine islets connected to the vascular and peripheral nervous systems. Developing this knowledge base, and increasing the emphasis on direct comparisons between mouse and human, will yield a more complete and focused picture of pancreas development, and thereby inform β-cell-directed differentiation from human embryonic stem or induced pluripotent stem cells (hESC, iPSC). Additionally, a deeper understanding may provide surprising therapeutic angles by defining conditions that allow the controllable reprogramming of endodermal or pancreatic cell populations.
Collapse
Affiliation(s)
- Sebastian Rieck
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
571
|
Delous M, Yin C, Shin D, Ninov N, Debrito Carten J, Pan L, Ma TP, Farber SA, Moens CB, Stainier DYR. Sox9b is a key regulator of pancreaticobiliary ductal system development. PLoS Genet 2012; 8:e1002754. [PMID: 22719264 PMCID: PMC3375260 DOI: 10.1371/journal.pgen.1002754] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 04/23/2012] [Indexed: 01/19/2023] Open
Abstract
The pancreaticobiliary ductal system connects the liver and pancreas to the intestine. It is composed of the hepatopancreatic ductal (HPD) system as well as the intrahepatic biliary ducts and the intrapancreatic ducts. Despite its physiological importance, the development of the pancreaticobiliary ductal system remains poorly understood. The SRY-related transcription factor SOX9 is expressed in the mammalian pancreaticobiliary ductal system, but the perinatal lethality of Sox9 heterozygous mice makes loss-of-function analyses challenging. We turned to the zebrafish to assess the role of SOX9 in pancreaticobiliary ductal system development. We first show that zebrafish sox9b recapitulates the expression pattern of mouse Sox9 in the pancreaticobiliary ductal system and use a nonsense allele of sox9b, sox9bfh313, to dissect its function in the morphogenesis of this structure. Strikingly, sox9bfh313 homozygous mutants survive to adulthood and exhibit cholestasis associated with hepatic and pancreatic duct proliferation, cyst formation, and fibrosis. Analysis of sox9bfh313 mutant embryos and larvae reveals that the HPD cells appear to mis-differentiate towards hepatic and/or pancreatic fates, resulting in a dysmorphic structure. The intrahepatic biliary cells are specified but fail to assemble into a functional network. Similarly, intrapancreatic duct formation is severely impaired in sox9bfh313 mutants, while the embryonic endocrine and acinar compartments appear unaffected. The defects in the intrahepatic and intrapancreatic ducts of sox9bfh313 mutants worsen during larval and juvenile stages, prompting the adult phenotype. We further show that Sox9b interacts with Notch signaling to regulate intrahepatic biliary network formation: sox9b expression is positively regulated by Notch signaling, while Sox9b function is required to maintain Notch signaling in the intrahepatic biliary cells. Together, these data reveal key roles for SOX9 in the morphogenesis of the pancreaticobiliary ductal system, and they cast human Sox9 as a candidate gene for pancreaticobiliary duct malformation-related pathologies. The liver and pancreas function as exocrine glands that secrete bile and pancreatic juice, respectively, to aid the digestion and absorption of nutrients. These fluids reach the intestine via the pancreaticobiliary ductal system, a complex network of ducts. Despite its pivotal role, the development of this ductal system is poorly understood. We have discovered that the zebrafish transcription factor gene sox9b, like its mammalian ortholog, is specifically expressed in the pancreaticobiliary ductal system. The perinatal lethality of Sox9 heterozygous mice makes the analysis of SOX9 function challenging; thus, we turned to the zebrafish to analyze the role of SOX9 in pancreaticobiliary ductal system development. We found that zebrafish sox9b mutants, which survive to adulthood, display defects in the morphogenesis of this ductal network: the intrahepatic and intrapancreatic ducts fail to form a branched network, whereas the ducts connecting the liver and pancreas to the intestine are malformed. These ductal defects affect bile transport and lead to cholestasis in adult mutant fish. At the molecular level, Sox9b interacts with the Notch signaling pathway to regulate the development of the intrahepatic biliary network. Therefore, our work in zebrafish reveals a broad and complex role for SOX9 in pancreaticobiliary ductal system morphogenesis.
Collapse
Affiliation(s)
- Marion Delous
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MD); (DYRS)
| | - Chunyue Yin
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Donghun Shin
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Nikolay Ninov
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
| | - Juliana Debrito Carten
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Embryology, The Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Luyuan Pan
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Taylur P. Ma
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steven A. Farber
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Embryology, The Carnegie Institution for Science, Baltimore, Maryland, United States of America
| | - Cecilia B. Moens
- Howard Hughes Medical Institute and Division of Basic Science, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Program in Developmental and Stem Cell Biology, Liver Center and Diabetes Center, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MD); (DYRS)
| |
Collapse
|
572
|
Benitez CM, Goodyer WR, Kim SK. Deconstructing pancreas developmental biology. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a012401. [PMID: 22587935 DOI: 10.1101/cshperspect.a012401] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5329, USA
| | | | | |
Collapse
|
573
|
Abstract
Recent evidence has contradicted the prevailing view that homeostasis and regeneration of the adult liver are mediated by self duplication of lineage-restricted hepatocytes and biliary epithelial cells. These new data suggest that liver progenitor cells do not function solely as a backup system in chronic liver injury; rather, they also produce hepatocytes after acute injury and are in fact the main source of new hepatocytes during normal hepatocyte turnover. In addition, other evidence suggests that hepatocytes are capable of lineage conversion, acting as precursors of biliary epithelial cells during biliary injury. To test these concepts, we generated a hepatocyte fate-tracing model based on timed and specific Cre recombinase expression and marker gene activation in all hepatocytes of adult Rosa26 reporter mice with an adenoassociated viral vector. We found that newly formed hepatocytes derived from preexisting hepatocytes in the normal liver and that liver progenitor cells contributed minimally to acute hepatocyte regeneration. Further, we found no evidence that biliary injury induced conversion of hepatocytes into biliary epithelial cells. These results therefore restore the previously prevailing paradigms of liver homeostasis and regeneration. In addition, our new vector system will be a valuable tool for timed, efficient, and specific loop out of floxed sequences in hepatocytes.
Collapse
Affiliation(s)
- George K. Michalopoulos
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
574
|
Jiang H, Edgar BA. Intestinal stem cell function in Drosophila and mice. Curr Opin Genet Dev 2012; 22:354-60. [PMID: 22608824 DOI: 10.1016/j.gde.2012.04.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/29/2012] [Accepted: 04/11/2012] [Indexed: 11/17/2022]
Abstract
Epithelial cells of the digestive tracts of most animals are short-lived, and are constantly replenished by the progeny of long-lived, resident intestinal stem cells. Proper regulation of intestinal stem cell maintenance, proliferation and differentiation is critical for maintaining gut homeostasis. Here we review recent genetic studies of stem cell-mediated homeostatic growth in the Drosophila midgut and the mouse small intestine, highlighting similarities and differences in the mechanisms that control stem cell proliferation and differentiation.
Collapse
Affiliation(s)
- Huaqi Jiang
- Department of Developmental Biology, UT Southwestern Medical Center, Dallas, TX 75235-9133, USA.
| | | |
Collapse
|
575
|
Van Landeghem L, Santoro MA, Krebs AE, Mah AT, Dehmer JJ, Gracz AD, Scull BP, McNaughton K, Magness ST, Lund PK. Activation of two distinct Sox9-EGFP-expressing intestinal stem cell populations during crypt regeneration after irradiation. Am J Physiol Gastrointest Liver Physiol 2012; 302:G1111-32. [PMID: 22361729 PMCID: PMC3362093 DOI: 10.1152/ajpgi.00519.2011] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recent identification of intestinal epithelial stem cell (ISC) markers and development of ISC reporter mice permit visualization and isolation of regenerating ISCs after radiation to define their functional and molecular phenotypes. Previous studies in uninjured intestine of Sox9-EGFP reporter mice demonstrate that ISCs express low levels of Sox9-EGFP (Sox9-EGFP Low), whereas enteroendocrine cells (EEC) express high levels of Sox9-EGFP (Sox9-EGFP High). We hypothesized that Sox9-EGFP Low ISCs would expand after radiation, exhibit enhanced proliferative capacities, and adopt a distinct gene expression profile associated with rapid proliferation. Sox9-EGFP mice were given 14 Gy abdominal radiation and studied between days 3 and 9 postradiation. Radiation-induced changes in number, growth, and transcriptome of the different Sox9-EGFP cell populations were determined by histology, flow cytometry, in vitro culture assays, and microarray. Microarray confirmed that nonirradiated Sox9-EGFP Low cells are enriched for Lgr5 mRNA and mRNAs enriched in Lgr5-ISCs and identified additional putative ISC markers. Sox9-EGFP High cells were enriched for EEC markers, as well as Bmi1 and Hopx, which are putative markers of quiescent ISCs. Irradiation caused complete crypt loss, followed by expansion and hyperproliferation of Sox9-EGFP Low cells. From nonirradiated intestine, only Sox9-EGFP Low cells exhibited ISC characteristics of forming organoids in culture, whereas during regeneration both Sox9-EGFP Low and High cells formed organoids. Microarray demonstrated that regenerating Sox9-EGFP High cells exhibited transcriptomic changes linked to p53-signaling and ISC-like functions including DNA repair and reduced oxidative metabolism. These findings support a model in which Sox9-EGFP Low cells represent active ISCs, Sox9-EGFP High cells contain radiation-activatable cells with ISC characteristics, and both participate in crypt regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Adam D. Gracz
- Departments of 1Cellular and Molecular Physiology, ,4Medicine, University of North Carolina, Chapel Hill, North Carolina
| | | | | | - Scott T. Magness
- 4Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - P. Kay Lund
- Departments of 1Cellular and Molecular Physiology,
| |
Collapse
|
576
|
Cardinale V, Carpino G, Reid L, Gaudio E, Alvaro D. Multiple cells of origin in cholangiocarcinoma underlie biological, epidemiological and clinical heterogeneity. World J Gastrointest Oncol 2012; 4:94-102. [PMID: 22645632 PMCID: PMC3360107 DOI: 10.4251/wjgo.v4.i5.94] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/07/2012] [Accepted: 01/15/2012] [Indexed: 02/05/2023] Open
Abstract
Recent histological and molecular characterization of cholangiocarcinoma (CCA) highlights the heterogeneity of this cancer that may emerge at different sites of the biliary tree and with different macroscopic or morphological features. Furthermore, different stem cell niches have been recently described in the liver and biliary tree, suggesting this as the basis of the heterogeneity of intrahepatic (IH)- and extrahepatic (EH)-CCAs, which are two largely different tumors from both biological and epidemiological points of view. The complexity of the organization of the liver stem cell compartments could underlie the CCA clinical-pathological heterogeneity and the criticisms in classifying primitive liver tumors. These recent advances highlight a possible new classification of CCAs based on cells of origin and this responds to the need of generating homogenous diagnostic, prognostic and, hopefully, therapeutic categories of IH- and EH-CCAs.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Vincenzo Cardinale, Domenico Alvaro, Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, 00137 Rome, Italy
| | | | | | | | | |
Collapse
|
577
|
Wright NA. Stem cell identification-in vivo
lineage analysis versus in vitro
isolation and clonal expansion. J Pathol 2012; 227:255-66. [DOI: 10.1002/path.4018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/19/2022]
|
578
|
Johnson CL, Peat JM, Volante SN, Wang R, McLean CA, Pin CL. Activation of protein kinase Cδ leads to increased pancreatic acinar cell dedifferentiation in the absence of MIST1. J Pathol 2012; 228:351-65. [PMID: 22374815 DOI: 10.1002/path.4015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/14/2012] [Accepted: 02/22/2012] [Indexed: 12/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a 5 year survival rate post-diagnosis of < 5%. Individuals with chronic pancreatitis (CP) are 20-fold more likely to develop PDAC, making it a significant risk factor for PDAC. While the relationship for the increased susceptibility to PDAC is unknown, loss of the acinar cell phenotype is common to both pathologies. Pancreatic acinar cells can dedifferentiate or trans-differentiate into a number of cell types including duct cells, β cells, hepatocytes and adipocytes. Knowledge of the molecular pathways that regulate this plasticity should provide insight into PDAC and CP. MIST1 (encoded by Bhlha15 in mice) is a transcription factor required for complete acinar cell maturation. The goal of this study was to examine the plasticity of acinar cells that do not express MIST1 (Mist1(-/-) ). The fate of acinar cells from C57Bl6 or congenic Mist1(-/-) mice expressing an acinar specific, tamoxifen-inducible Cre recombinase mated to Rosa26 reporter LacZ mice (Mist1(CreERT/-) R26r) was determined following culture in a three-dimensional collagen matrix. Mist1(CreERT/-) R26r acini showed increased acinar dedifferentiation, formation of ductal cysts and transient increases in PDX1 expression compared to wild-type acinar cells. Other progenitor cell markers, including Foxa1, Sox9, Sca1 and Hes1, were elevated only in Mist1(-/-) cultures. Analysis of protein kinase C (PKC) isoforms by western blot and immunofluorescence identified increased PKCε accumulation and nuclear localization of PKCδ that correlated with increased duct formation. Treatment with rottlerin, a PKCδ-specific inhibitor, but not the PKCε-specific antagonist εV1-2, reduced acinar dedifferentiation, progenitor gene expression and ductal cyst formation. Immunocytochemistry on CP or PDAC tissue samples showed reduced MIST1 expression combined with increased nuclear PKCδ accumulation. These results suggest that the loss of MIST1 is a common event during PDAC and CP and events that affect MIST1 function and expression may increase susceptibility to these pathologies.
Collapse
|
579
|
Pérez-Mancera PA, Guerra C, Barbacid M, Tuveson DA. What we have learned about pancreatic cancer from mouse models. Gastroenterology 2012; 142:1079-92. [PMID: 22406637 DOI: 10.1053/j.gastro.2012.03.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 02/29/2012] [Accepted: 03/06/2012] [Indexed: 12/15/2022]
Affiliation(s)
- Pedro A Pérez-Mancera
- Li Ka Shing Centre, Cambridge Research Institute, and Department of Oncology, Cancer Research UK, Cambridge, England
| | | | | | | |
Collapse
|
580
|
Strazzabosco M, Fabris L. Development of the bile ducts: essentials for the clinical hepatologist. J Hepatol 2012; 56:1159-1170. [PMID: 22245898 PMCID: PMC3328609 DOI: 10.1016/j.jhep.2011.09.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 02/07/2023]
Abstract
Several cholangiopathies result from a perturbation of developmental processes. Most of these cholangiopathies are characterised by the persistence of biliary structures with foetal configuration. Developmental processes are also relevant in acquired liver diseases, as liver repair mechanisms exploit a range of autocrine and paracrine signals transiently expressed in embryonic life. We briefly review the ontogenesis of the intra- and extrahepatic biliary tree, highlighting the morphogens, growth factors, and transcription factors that regulate biliary development, and the relationships between developing bile ducts and other branching biliary structures. Then, we discuss the ontogenetic mechanisms involved in liver repair, and how these mechanisms are recapitulated in ductular reaction, a common reparative response to many forms of biliary and hepatocellular damage. Finally, we discuss the pathogenic aspects of the most important primary cholangiopathies related to altered biliary development, i.e. polycystic and fibropolycystic liver diseases, Alagille syndrome.
Collapse
Affiliation(s)
- Mario Strazzabosco
- Section of Digestive Diseases, Yale University, New Haven, CT, USA; Department of Clinical Medicine, University of Milan-Bicocca, Milan, Italy.
| | - Luca Fabris
- Department of Clinical Medicine, University of Milan-Bicocca, Milan, Italy,Department of Surgical and Gastroenterological Sciences, University of Padova, Italy
| |
Collapse
|
581
|
Karadimos MJ, Kapoor A, El Khattabi I, Sharma A. β-cell preservation and regeneration for diabetes treatment: where are we now? ACTA ACUST UNITED AC 2012; 2:213-222. [PMID: 23049620 DOI: 10.2217/dmt.12.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the last decade, our knowledge of β-cell biology has expanded with the use of new scientific techniques and strategies. Growth factors, hormones and small molecules have been shown to enhance β-cell proliferation and function. Stem cell technology and research into the developmental biology of the pancreas have yielded new methods for in vivo and in vitro regeneration of β cells from stem cells and endogenous progenitors as well as transdifferentiation of non-β cells. Novel pharmacological approaches have been developed to preserve and enhance β-cell function. Strategies to increase expression of insulin gene transcription factors in dysfunctional and immature β cells have ameliorated these impairments. Hence, we suggest that strategies to minimize β-cell loss and to increase their function and regeneration will ultimately lead to therapy for both Type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Michael J Karadimos
- Section of Islet Cell & Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA ; Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
582
|
Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148:1015-28. [PMID: 22385965 DOI: 10.1016/j.cell.2012.02.008] [Citation(s) in RCA: 760] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 10/08/2011] [Accepted: 02/03/2012] [Indexed: 02/08/2023]
Abstract
Regulatory networks orchestrated by key transcription factors (TFs) have been proposed to play a central role in the determination of stem cell states. However, the master transcriptional regulators of adult stem cells are poorly understood. We have identified two TFs, Slug and Sox9, that act cooperatively to determine the mammary stem cell (MaSC) state. Inhibition of either Slug or Sox9 blocks MaSC activity in primary mammary epithelial cells. Conversely, transient coexpression of exogenous Slug and Sox9 suffices to convert differentiated luminal cells into MaSCs with long-term mammary gland-reconstituting ability. Slug and Sox9 induce MaSCs by activating distinct autoregulatory gene expression programs. We also show that coexpression of Slug and Sox9 promotes the tumorigenic and metastasis-seeding abilities of human breast cancer cells and is associated with poor patient survival, providing direct evidence that human breast cancer stem cells are controlled by key regulators similar to those operating in normal murine MaSCs.
Collapse
|
583
|
Zebrafish sox9b is crucial for hepatopancreatic duct development and pancreatic endocrine cell regeneration. Dev Biol 2012; 366:268-78. [PMID: 22537488 DOI: 10.1016/j.ydbio.2012.04.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/28/2022]
Abstract
Recent zebrafish studies have shown that the late appearing pancreatic endocrine cells are derived from pancreatic ducts but the regulatory factors involved are still largely unknown. Here, we show that the zebrafish sox9b gene is expressed in pancreatic ducts where it labels the pancreatic Notch-responsive cells previously shown to be progenitors. Inactivation of sox9b disturbs duct formation and impairs regeneration of beta cells from these ducts in larvae. sox9b expression in the midtrunk endoderm appears at the junction of the hepatic and ventral pancreatic buds and, by the end of embryogenesis, labels the hepatopancreatic ductal system as well as the intrapancreatic and intrahepatic ducts. Ductal morphogenesis and differentiation are specifically disrupted in sox9b mutants, with the dysmorphic hepatopancreatic ducts containing misdifferentiated hepatocyte-like and pancreatic-like cells. We also show that maintenance of sox9b expression in the extrapancreatic and intrapancreatic ducts requires FGF and Notch activity, respectively, both pathways known to prevent excessive endocrine differentiation in these ducts. Furthermore, beta cell recovery after specific ablation is severely compromised in sox9b mutant larvae. Our data position sox9b as a key player in the generation of secondary endocrine cells deriving from pancreatic ducts in zebrafish.
Collapse
|
584
|
Arnold K, Sarkar A, Yram MA, Polo JM, Bronson R, Sengupta S, Seandel M, Geijsen N, Hochedlinger K. Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 2012; 9:317-29. [PMID: 21982232 DOI: 10.1016/j.stem.2011.09.001] [Citation(s) in RCA: 599] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 08/05/2011] [Accepted: 09/09/2011] [Indexed: 11/26/2022]
Abstract
The transcription factor Sox2 maintains the pluripotency of early embryonic cells and regulates the formation of several epithelia during fetal development. Whether Sox2 continues to play a role in adult tissues remains largely unknown. We show here that Sox2 marks adult cells in several epithelial tissues where its expression has not previously been characterized, including the stomach, cervix, anus, testes, lens, and multiple glands. Genetic lineage tracing and transplantation experiments demonstrate that Sox2-expressing cells continuously give rise to mature cell types within these tissues, documenting their self-renewal and differentiation potentials. Consistent with these findings, ablation of Sox2(+) cells in mice results in a disruption of epithelial tissue homeostasis and lethality. Developmental fate mapping reveals that Sox2(+) adult stem cells originate from fetal Sox2(+) tissue progenitors. Thus, our results identify Sox2 expression in numerous adult endodermal and ectodermal stem cell compartments, which are critical for normal tissue regeneration and survival.
Collapse
Affiliation(s)
- Katrin Arnold
- Howard Hughes Medical Institute and Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
585
|
Schepers A, Clevers H. Wnt signaling, stem cells, and cancer of the gastrointestinal tract. Cold Spring Harb Perspect Biol 2012; 4:a007989. [PMID: 22474007 DOI: 10.1101/cshperspect.a007989] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Wnt signaling pathway was originally uncovered as one of the prototype developmental signaling cascades in invertebrates as well as in vertebrates. The first indication that Wnt signaling also plays a role in the adult animal came from the study of the intestine of Tcf-4 (Tcf7L2) knockout mice. The gastrointestinal epithelium continuously self-renews over the lifetime of an organism and is, in fact, the most rapidly self-renewing tissue of the mammalian body. Recent studies indicate that Wnt signaling plays a central role in the biology of gastrointestinal stem cells. Furthermore, mutational activation of the Wnt cascade is the principle cause of colon cancer.
Collapse
Affiliation(s)
- Arnout Schepers
- Hubrecht Institute, KNAW and University Medical Centre Utrecht, 3584CT Utrecht, The Netherlands
| | | |
Collapse
|
586
|
Alison MR, Marongiu F, Laconi E. Transplanted hepatocytes: wiped out or washed out? J Hepatol 2012; 56:996-7. [PMID: 21939625 DOI: 10.1016/j.jhep.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/04/2011] [Accepted: 09/10/2011] [Indexed: 12/04/2022]
|
587
|
Tamoxifen-Induced Cre-loxP Recombination Is Prolonged in Pancreatic Islets of Adult Mice. PLoS One 2012; 7:e33529. [PMID: 22470452 PMCID: PMC3314663 DOI: 10.1371/journal.pone.0033529] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/13/2012] [Indexed: 12/17/2022] Open
Abstract
Tamoxifen (Tm)-inducible Cre recombinases are widely used to perform gene inactivation and lineage tracing studies in mice. Although the efficiency of inducible Cre-loxP recombination can be easily evaluated with reporter strains, the precise length of time that Tm induces nuclear translocation of CreERTm and subsequent recombination of a target allele is not well defined, and difficult to assess. To better understand the timeline of Tm activity in vivo, we developed a bioassay in which pancreatic islets with a Tm-inducible reporter (from Pdx1PB-CreERTm;R26RlacZ mice) were transplanted beneath the renal capsule of adult mice previously treated with three doses of 1 mg Tm, 8 mg Tm, or corn oil vehicle. Surprisingly, recombination in islet grafts, as assessed by expression of the β-galactosidase (β-gal) reporter, was observed days or weeks after Tm treatment, in a dose-dependent manner. Substantial recombination occurred in islet grafts long after administration of 3×8 mg Tm: in grafts transplanted 48 hours after the last Tm injection, 77.9±0.4% of β-cells were β-gal+; in β-cells placed after 1 week, 46.2±5.0% were β-gal+; after 2 weeks, 26.3±7.0% were β-gal+; and after 4 weeks, 1.9±0.9% were β-gal+. Islet grafts from mice given 3×1 mg Tm showed lower, but notable, recombination 48 hours (4.9±1.7%) and 1 week (4.5±1.9%) after Tm administration. These results show that Tm doses commonly used to induce Cre-loxP recombination may continue to label significant numbers of cells for weeks after Tm treatment, possibly confounding the interpretation of time-sensitive studies using Tm-dependent models. Therefore, investigators developing experimental approaches using Tm-inducible systems should consider both maximal recombination efficiency and the length of time that Tm-induced Cre-loxP recombination occurs.
Collapse
|
588
|
Oliver JA, Maarouf O, Cheema FH, Liu C, Zhang QY, Kraus C, Zeeshan Afzal M, Firdous M, Klinakis A, Efstratiadis A, Al-Awqati Q. SDF-1 activates papillary label-retaining cells during kidney repair from injury. Am J Physiol Renal Physiol 2012; 302:F1362-73. [PMID: 22461304 DOI: 10.1152/ajprenal.00202.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The adult kidney contains a population of low-cycling cells that resides in the papilla. These cells retain for long periods S-phase markers given as a short pulse early in life; i.e., they are label-retaining cells (LRC). In previous studies in adult rat and mice, we found that shortly after acute kidney injury many of the quiescent papillary LRC started proliferating (Oliver JA, Klinakis A, Cheema FH, Friedlander J, Sampogna RV, Martens TP, Liu C, Efstratiadis A, Al-Awqati Q. J Am Soc Nephrol 20: 2315-2327, 2009; Oliver JA, Maarouf O, Cheema FH, Martens TP, Al-Awqati Q. J Clin Invest 114: 795-804, 2004) and, with cell-tracking experiments, we found upward migration of some papillary cells including LRC (Oliver JA, Klinakis A, Cheema FH, Friedlander J, Sampogna RV, Martens TP, Liu C, Efstratiadis A, Al-Awqati Q. J Am Soc Nephrol 20: 2315-2327, 2009). To identify molecular cues involved in the activation (i.e., proliferation and/or migration) of the papillary LRC that follows injury, we isolated these cells from the H2B-GFP mice and found that they migrated and proliferated in response to the cytokine stromal cell-derived factor-1 (SDF-1). Moreover, in a papillary organ culture assay, the cell growth out of the upper papilla was dependent on the interaction of SDF-1 with its receptor Cxcr4. Interestingly, location of these two proteins in the kidney revealed a complementary location, with SDF-1 being preferentially expressed in the medulla and Cxcr4 more abundant in the papilla. Blockade of Cxcr4 in vivo prevented mobilization of papillary LRC after transient kidney ischemic injury and worsened its functional consequences. The data indicate that the SDF-1/Cxcr4 axis is a critical regulator of papillary LRC activation following transient kidney injury and during organ repair.
Collapse
Affiliation(s)
- Juan A Oliver
- 1Department of Medicine, Columbia University, 630 West 168th St., New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
589
|
Boulter L, Govaere O, Bird TG, Radulescu S, Ramachandran P, Pellicoro A, Ridgway RA, Seo SS, Spee B, Van Rooijen N, Sansom OJ, Iredale JP, Lowell S, Roskams T, Forbes SJ. Macrophage-derived Wnt opposes Notch signaling to specify hepatic progenitor cell fate in chronic liver disease. Nat Med 2012; 18:572-9. [PMID: 22388089 PMCID: PMC3364717 DOI: 10.1038/nm.2667] [Citation(s) in RCA: 569] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/09/2012] [Indexed: 12/14/2022]
Abstract
During chronic injury a population of bipotent hepatic progenitor cells (HPCs) become activated to regenerate both cholangiocytes and hepatocytes. Here we show in human diseased liver and mouse models of the ductular reaction that Notch and Wnt signaling direct specification of HPCs via their interactions with activated myofibroblasts or macrophages. In particular, we found that during biliary regeneration, expression of Jagged 1 (a Notch ligand) by myofibroblasts promoted Notch signaling in HPCs and thus their biliary specification to cholangiocytes. Alternatively, during hepatocyte regeneration, macrophage engulfment of hepatocyte debris induced Wnt3a expression. This resulted in canonical Wnt signaling in nearby HPCs, thus maintaining expression of Numb (a cell fate determinant) within these cells and the promotion of their specification to hepatocytes. By these two pathways adult parenchymal regeneration during chronic liver injury is promoted.
Collapse
Affiliation(s)
- Luke Boulter
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
590
|
Cardinale V, Wang Y, Carpino G, Mendel G, Alpini G, Gaudio E, Reid LM, Alvaro D. The biliary tree--a reservoir of multipotent stem cells. Nat Rev Gastroenterol Hepatol 2012; 9:231-40. [PMID: 22371217 DOI: 10.1038/nrgastro.2012.23] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biliary tree is composed of intrahepatic and extrahepatic bile ducts, lined by mature epithelial cells called cholangiocytes, and contains peribiliary glands deep within the duct walls. Branch points, such as the cystic duct, perihilar and periampullar regions, contain high numbers of these glands. Peribiliary glands contain multipotent stem cells, which self-replicate and can differentiate into hepatocytes, cholangiocytes or pancreatic islets, depending on the microenvironment. Similar cells-presumably committed progenitor cells-are found in the gallbladder (which lacks peribiliary glands). The stem and progenitor cell characteristics indicate a common embryological origin for the liver, biliary tree and pancreas, which has implications for regenerative medicine as well as the pathophysiology and oncogenesis of midgut organs. This Perspectives article describes a hypothetical model of cell lineages starting in the duodenum and extending to the liver and pancreas, and thought to contribute to ongoing organogenesis throughout life.
Collapse
Affiliation(s)
- Vincenzo Cardinale
- Division of Gastroenterology, Department of Medico-Surgical Sciences and Biotechnology, Fondazione Eleonora Lorillard Spencer Cenci, Polo Pontino, Corso della Repubblica 79, 04100 Latina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
591
|
Endo Y, Zhang M, Yamaji S, Cang Y. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells. PLoS One 2012; 7:e31846. [PMID: 22384083 PMCID: PMC3285627 DOI: 10.1371/journal.pone.0031846] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/13/2012] [Indexed: 11/20/2022] Open
Abstract
Quiescent hepatic stem cells (HSCs) can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1), an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs) by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer.
Collapse
Affiliation(s)
- Yoko Endo
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Mingjun Zhang
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Sachie Yamaji
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Yong Cang
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
592
|
|
593
|
Lysy PA, Weir GC, Bonner-Weir S. Concise review: pancreas regeneration: recent advances and perspectives. Stem Cells Transl Med 2012. [PMID: 23197762 DOI: 10.5966/sctm.2011-0025] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The replacement of functional pancreatic β-cells is seen as an attractive potential therapy for diabetes, because diabetes results from an inadequate β-cell mass. Inducing replication of the remaining β-cells and new islet formation from progenitors within the pancreas (neogenesis) are the most direct ways to increase the β-cell mass. Stimulation of both replication and neogenesis have been reported in rodents, but their clinical significance must still be shown. Because human islet transplantation is limited by the scarcity of donors and graft failure within a few years, efforts have recently concentrated on the use of stem cells to replace the deficient β-cells. Currently, embryonic stem cells and induced pluripotent stem cells achieve high levels of β-cell differentiation, but their clinical use is still hampered by ethical issues and/or the risk of developing tumors after transplantation. Pancreatic epithelial cells (duct, acinar, or α-cells) represent an appealing alternative to stem cells because they demonstrate β-cell differentiation capacities. Yet translation of such capacity to human cells after significant in vitro expansion has yet to be achieved. Besides providing new β-cells, cell therapy also has to address the question on how to protect the transplanted cells from destruction by the immune system via either allo- or autoimmunity. Encouraging developments have been made in encapsulation and immunomodulation techniques, but many challenges still remain. Herein, we discuss recent advances in the search for β-cell replacement therapies, current strategies for circumventing the immune system, and mandatory steps for new techniques to be translated from bench to clinics.
Collapse
Affiliation(s)
- Philippe A Lysy
- Joslin Diabetes Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
594
|
El-Gohary Y, Tulachan S, Branca M, Sims-Lucas S, Guo P, Prasadan K, Shiota C, Gittes GK. Whole-Mount Imaging Demonstrates Hypervascularity of the Pancreatic Ducts and Other Pancreatic Structures. Anat Rec (Hoboken) 2012; 295:465-73. [DOI: 10.1002/ar.22420] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/05/2012] [Indexed: 01/07/2023]
|
595
|
Matheu A, Collado M, Wise C, Manterola L, Cekaite L, Tye AJ, Canamero M, Bujanda L, Schedl A, Cheah KSE, Skotheim RI, Lothe RA, López de Munain A, Briscoe J, Serrano M, Lovell-Badge R. Oncogenicity of the developmental transcription factor Sox9. Cancer Res 2012; 72:1301-15. [PMID: 22246670 DOI: 10.1158/0008-5472.can-11-3660] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SOX9 [sex-determining region Y (SRY)-box 9 protein], a high mobility group box transcription factor, plays critical roles during embryogenesis and its activity is required for development, differentiation, and lineage commitment in various tissues including the intestinal epithelium. Here, we present functional and clinical data of a broadly important role for SOX9 in tumorigenesis. SOX9 was overexpressed in a wide range of human cancers, where its expression correlated with malignant character and progression. Gain of SOX9 copy number is detected in some primary colorectal cancers. SOX9 exhibited several pro-oncogenic properties, including the ability to promote proliferation, inhibit senescence, and collaborate with other oncogenes in neoplastic transformation. In primary mouse embryo fibroblasts and colorectal cancer cells, SOX9 expression facilitated tumor growth and progression whereas its inactivation reduced tumorigenicity. Mechanistically, we have found that Sox9 directly binds and activates the promoter of the polycomb Bmi1, whose upregulation represses the tumor suppressor Ink4a/Arf locus. In agreement with this, human colorectal cancers showed a positive correlation between expression levels of SOX9 and BMI1 and a negative correlation between SOX9 and ARF in clinical samples. Taken together, our findings provide direct mechanistic evidence of the involvement of SOX9 in neoplastic pathobiology, particularly, in colorectal cancer.
Collapse
Affiliation(s)
- Ander Matheu
- Division of Stem Cell Biology and Developmental Genetics, MRC National Institute for Medical Research, Mill Hill, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
596
|
Ramalingam S, Daughtridge GW, Johnston MJ, Gracz AD, Magness ST. Distinct levels of Sox9 expression mark colon epithelial stem cells that form colonoids in culture. Am J Physiol Gastrointest Liver Physiol 2012; 302:G10-20. [PMID: 21995959 PMCID: PMC3345960 DOI: 10.1152/ajpgi.00277.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/10/2011] [Indexed: 01/31/2023]
Abstract
Sox9 is an high-mobility group box transcription factor that is expressed in the stem cell zone of the small intestine and colon. We have previously used a Sox9EGFP mouse model to demonstrate that discrete levels of Sox9 expression mark small intestine epithelial stem cells that form crypt/villus-like structures in a three-dimensional culture system (Formeister EJ, Sionas AL, Lorance DK, Barkley CL, Lee GH, Magness ST. Am J Physiol Gastrointest Liver Physiol 296: G1108-G1118, 2009; Gracz AD, Ramalingam S, Magness ST. Am J Physiol Gastrointest Liver Physiol 298: G590-G600, 2010). In the present study, we hypothesized that discrete levels of Sox9 expression would also mark colonic epithelial stem cells (CESCs). Using the Sox9EGFP mouse model, we show that lower levels of Sox9 mark cells in the transit-amplifying progenitor cell zone, while higher levels of Sox9 mark cells in the colonic crypt base. Furthermore, we demonstrate that variable SOX9 levels persist in cells of colonic adenomas from mice and humans. Cells expressing lower Sox9 levels demonstrate gene expression profiles consistent with more differentiated populations, and cells expressing higher Sox9 levels are consistent with less differentiated populations. When placed in culture, cells expressing the highest levels of Sox9 formed "colonoids," which are defined as bodies of cultured colonic epithelial cells that possess multiple cryptlike structures and a pseudolumen. Cells expressing the highest levels of Sox9 also demonstrate multipotency and self-renewal in vitro, indicating functional stemness. These data suggest a dose-dependent role for Sox9 in normal CESCs and cells comprising colon tumors. Furthermore, distinct Sox9 levels represent a new biomarker to study CESC and progenitor biology in physiological and disease states.
Collapse
Affiliation(s)
- S Ramalingam
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
597
|
Godfrey KJ, Mathew B, Bulman JC, Shah O, Clement S, Gallicano GI. Stem cell-based treatments for Type 1 diabetes mellitus: bone marrow, embryonic, hepatic, pancreatic and induced pluripotent stem cells. Diabet Med 2012; 29:14-23. [PMID: 21883442 DOI: 10.1111/j.1464-5491.2011.03433.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 1 diabetes mellitus--characterized by the permanent destruction of insulin-secreting β-cells--is responsive to cell-based treatments that replace lost β-cell populations. The current gold standard of pancreas transplantation provides only temporary independence from exogenous insulin and is fraught with complications, including increased mortality. Stem cells offer a number of theoretical advantages over current therapies. Our review will focus on the development of treatments involving tissue stem cells from bone marrow, liver and pancreatic cells, as well as the potential use of embryonic and induced pluripotent stem cells for Type 1 diabetes therapy. While the body of research involving stem cells is at once promising and inconsistent, bone marrow-derived mesenchymal stem cell transplantation seems to offer the most compelling evidence of efficacy. These cells have been demonstrated to increase endogenous insulin production, while partially mitigating the autoimmune destruction of newly formed β-cells. However, recently successful experiments involving induced pluripotent stem cells could quickly move them into the foreground of therapeutic research. We address the limitations encountered by present research and look toward the future of stem cell treatments for Type 1 diabetes.
Collapse
Affiliation(s)
- K J Godfrey
- Georgetown University School of Medicine, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
598
|
Mastracci TL, Sussel L. The endocrine pancreas: insights into development, differentiation, and diabetes. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:609-28. [PMID: 23799564 PMCID: PMC3420142 DOI: 10.1002/wdev.44] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the developing embryo, appropriate patterning of the endoderm fated to become pancreas requires the spatial and temporal coordination of soluble factors secreted by the surrounding tissues. Once pancreatic progenitor cells are specified in the developing gut tube epithelium, epithelial-mesenchymal interactions, as well as a cascade of transcription factors, subsequently delineate three distinct lineages, including endocrine, exocrine, and ductal cells. Simultaneous morphological changes, including branching, vascularization, and proximal organ development, also influence the process of specification and differentiation. Decades of research using mouse genetics have uncovered many of the key factors involved in pancreatic cell fate decisions. When pancreas development or islet cell functions go awry, due to mutations in genes important for proper organogenesis and development, the result can lead to a common pancreatic affliction, diabetes mellitus. Current treatments for diabetes are adequate but not curative. Therefore, researchers are utilizing the current understanding of normal embryonic pancreas development in vivo, to direct embryonic stem cells toward a pancreatic fate with the goal of transplanting these in vitro generated 'islets' into patients. Mimicking development in vitro has proven difficult; however, significant progress has been made and the current differentiation protocols are becoming more efficient. The continued partnership between developmental biologists and stem cell researchers will guarantee that the in vitro generation of insulin-producing β cells is a possible therapeutic option for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Lori Sussel
- Department of Genetics and Development, Columbia University
| |
Collapse
|
599
|
Affiliation(s)
- Laurent Dollé
- Liver Cell Biology Lab, Department of Cell Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | |
Collapse
|
600
|
Rountree CB, Mishra L, Willenbring H. Stem cells in liver diseases and cancer: recent advances on the path to new therapies. Hepatology 2012; 55:298-306. [PMID: 22030746 PMCID: PMC3245372 DOI: 10.1002/hep.24762] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cells have potential for therapy of liver diseases, but may also be involved in the formation of liver cancer. Recently, the American Association for the Study of Liver Diseases Henry M. and Lillian Stratton Basic Research Single Topic Conference "Stem Cells in Liver Diseases and Cancer: Discovery and Promise" brought together a diverse group of investigators to define the status of research on stem cells and cancer stem cells in the liver and identify problems and solutions on the path to clinical translation. This report summarizes the outcomes of the conference and provides an update on recent research advances. Progress in liver stem cell research includes isolation of primary liver progenitor cells (LPCs), directed hepatocyte differentiation of primary LPCs and pluripotent stem cells, findings of transdifferentiation, disease-specific considerations for establishing a therapeutically effective cell mass, and disease modeling in cell culture. Tumor-initiating stem-like cells (TISCs) that emerge during chronic liver injury share the expression of signaling pathways, including those organized around transforming growth factor beta and β-catenin, and surface markers with normal LPCs. Recent investigations of the role of TISCs in hepatocellular carcinoma have provided insight into the transcriptional and post-transcriptional regulation of hepatocarcinogenesis. Targeted chemotherapies for TISC are in development as a means to overcome cellular resistance and mechanisms driving disease progression in liver cancer.
Collapse
Affiliation(s)
- C. Bart Rountree
- Department of Pediatrics and Pharmacology, Penn State College of Medicine, Hershey, PA,Corresponding authors: C. Bart Rountree, MD, Department of Pediatrics and Pharmacology, Penn State College of Medicine and Hershey Medical Center, 500 University Drive, H085, Hershey, PA 17033, Telephone: 717 531 5901, Fax: 717 531 0653, . Holger Willenbring, MD, PhD, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, Division of Transplantation, University of California San Francisco, 35 Medical Center Way, RMB-900C, Campus Box 0665, San Francisco, CA 94143, Telephone: 415 476 2417, Fax: 415 514 2346,
| | - Lopa Mishra
- Department of Gastroenterology, Hepatology and Nutrition, MD Anderson Cancer Center, Houston, TX
| | - Holger Willenbring
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA,Department of Surgery, Division of Transplantation, University of California San Francisco, San Francisco, CA,Liver Center, University of California San Francisco, San Francisco, CA,Corresponding authors: C. Bart Rountree, MD, Department of Pediatrics and Pharmacology, Penn State College of Medicine and Hershey Medical Center, 500 University Drive, H085, Hershey, PA 17033, Telephone: 717 531 5901, Fax: 717 531 0653, . Holger Willenbring, MD, PhD, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Surgery, Division of Transplantation, University of California San Francisco, 35 Medical Center Way, RMB-900C, Campus Box 0665, San Francisco, CA 94143, Telephone: 415 476 2417, Fax: 415 514 2346,
| |
Collapse
|