551
|
von Stedingk K, De Preter K, Vandesompele J, Noguera R, Øra I, Koster J, Versteeg R, Påhlman S, Lindgren D, Axelson H. Individual patient risk stratification of high-risk neuroblastomas using a two-gene score suited for clinical use. Int J Cancer 2015; 137:868-77. [PMID: 25652004 DOI: 10.1002/ijc.29461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/08/2015] [Indexed: 11/11/2022]
Abstract
Several gene expression-based prognostic signatures have been described in neuroblastoma, but none have successfully been applied in the clinic. Here we have developed a clinically applicable prognostic gene signature, both with regards to number of genes and analysis platform. Importantly, it does not require comparison between patients and is applicable amongst high-risk patients. The signature is based on a two-gene score (R-score) with prognostic power in high-stage tumours (stage 4 and/or MYCN-amplified diagnosed after 18 months of age). QPCR-based and array-based analyses of matched cDNAs confirmed cross platform (array-qPCR) transferability. We also defined a fixed cut-off value identifying prognostically differing subsets of high-risk patients on an individual patient basis. This gene expression signature independently contributes to the current neuroblastoma classification system, and if prospectively validated could provide further stratification of high-risk patients, and potential upfront identification of a group of patients that are in need of new/additional treatment regimens.
Collapse
Affiliation(s)
- Kristoffer von Stedingk
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.,Department of Pediatric Oncology and Hematology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Katleen De Preter
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Center for Medical Genetics, Department of Pediatrics and Genetics, Ghent University, Ghent, Belgium
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, Valencia, Spain
| | - Ingrid Øra
- Department of Pediatric Oncology and Hematology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, Amsterdam, The Netherlands
| | - Sven Påhlman
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - David Lindgren
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Håkan Axelson
- Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
552
|
Lopez-Delisle L, Pierre-Eugène C, Bloch-Gallego E, Birling MC, Duband JL, Durand E, Bourgeois T, Matrot B, Sorg T, Huerre M, Meziane H, Roux MJ, Champy MF, Gallego J, Delattre O, Janoueix-Lerosey I. Hyperactivation of Alk induces neonatal lethality in knock-in AlkF1178L mice. Oncotarget 2015; 5:2703-13. [PMID: 24811761 PMCID: PMC4058038 DOI: 10.18632/oncotarget.1882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ALK (Anaplastic Lymphoma Kinase) gene encodes a tyrosine kinase receptor preferentially expressed in the central and peripheral nervous systems. A syndromic presentation associating congenital neuroblastoma with severe encephalopathy and an abnormal shape of the brainstem has been described in patients harbouring de novo germline F1174V and F1245V ALK mutations. Here, we investigated the phenotype of knock-in (KI) mice bearing the AlkF1178L mutation (F1174L in human). Although heterozygous KI mice did not reproduce the severe breathing and feeding difficulties observed in human patients, behavioral tests documented a reduced activity during dark phases and an increased anxiety of mutated mice. Matings of heterozygotes yielded the expected proportions of wild-type, heterozygotes and homozygotes at birth but a high neonatal lethality was noticed for homozygotes. We documented Alk expression in several motor nuclei of the brainstem involved in the control of sucking and swallowing. Evaluation of basic physiological functions 12 hours after birth revealed slightly more apneas but a dramatic reduced milk intake for homozygotes compared to control littermates. Overall, our data demonstrate that Alk activation above a critical threshold is not compatible with survival in mice, in agreement with the extremely severe phenotype of patients carrying aggressive de novo ALK germline mutations.
Collapse
|
553
|
Abstract
Neuroblastoma is the most common extracranial solid tumor of infancy. Amplification of MYCN oncogene is found in approximately 20 % of all neuroblastoma patients and correlates with advanced disease stages, rapid tumor progression, and poor prognosis, making this gene an obvious therapeutic target. However, being a transcriptional factor MYCN is difficult for pharmacological targeting, and there are currently no clinical trials aiming MYCN protein directly. Here we describe an alternative approach to address deregulated MYCN expression. In particular, we focus on the role of a 3′ untranslated region (3′UTR) of the MYCN gene in the modulation of its mRNA fate and identification of compounds able to affect it. The luciferase reporter construct with the full length MYCN 3′UTR was generated and subsequently integrated in the CHP134 neuroblastoma cell line. After validation, the assay was used to screen a 2000 compound library. Molecules affecting luciferase activity were checked for reproducibility and counter-screened for promoter effects and cytotoxic activity resulting in selection of four hits. We propose this cell-based reporter gene assay as a valuable tool to screen chemical libraries for compounds modulating post-transcriptional control mechanisms. Identification of such compounds could potentially result in development of clinically relevant therapeutics for various diseases including neuroblastoma.
Collapse
|
554
|
Chen X, Pappo A, Dyer MA. Pediatric solid tumor genomics and developmental pliancy. Oncogene 2015; 34:5207-15. [PMID: 25639868 PMCID: PMC4522402 DOI: 10.1038/onc.2014.474] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022]
Abstract
Pediatric solid tumors are remarkably diverse in their cellular origins, developmental timing and clinical features. Over the last 5 years, there have been significant advances in our understanding of the genetic lesions that contribute to the initiation and progression of pediatric solid tumors. To date, over 1000 pediatric solid tumors have been analyzed by Next-Generation Sequencing. These genomic data provide the foundation to launch new research efforts to address one of the fundamental questions in cancer biology—why are some cells more susceptible to malignant transformation by particular genetic lesions at discrete developmental stages than others? Because of their developmental, molecular, cellular and genetic diversity, pediatric solid tumors provide an ideal platform to begin to answer this question. In this review, we highlight the diversity of pediatric solid tumors and provide a new framework for studying the cellular and developmental origins of pediatric cancer. We also introduce a new unifying concept called cellular pliancy as a possible explanation for susceptibility to cancer and the developmental origins of pediatric solid tumors.
Collapse
Affiliation(s)
- X Chen
- Department of Computational Biology and Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - A Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
555
|
Abstract
Neuroblastoma (NB) is the third most common pediatric cancer. Although NB accounts for 7% of pediatric malignancies, it is responsible for more than 10% of childhood cancer-related mortality. Prognosis and treatment are determined by clinical and biological risk factors. Estimated 5-year survival rates for patients with non-high-risk and high-risk NB are more than 90% and less than 50%, respectively. Recent clinical trials have continued to reduce therapy for patients with non-high-risk NB, including the most favorable subsets who are often followed with observation approaches. In contrast, high-risk patients are treated aggressively with chemotherapy, radiation, surgery, and myeloablative and immunotherapies.
Collapse
|
556
|
Wongtrakoongate P. Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries. World J Stem Cells 2015; 7:137-148. [PMID: 25621113 PMCID: PMC4300924 DOI: 10.4252/wjsc.v7.i1.137] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/01/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Recent advances in stem cell biology have shed light on how normal stem and progenitor cells can evolve to acquire malignant characteristics during tumorigenesis. The cancer counterparts of normal stem and progenitor cells might be occurred through alterations of stem cell fates including an increase in self-renewal capability and a decrease in differentiation and/or apoptosis. This oncogenic evolution of cancer stem and progenitor cells, which often associates with aggressive phenotypes of the tumorigenic cells, is controlled in part by dysregulated epigenetic mechanisms including aberrant DNA methylation leading to abnormal epigenetic memory. Epigenetic therapy by targeting DNA methyltransferases (DNMT) 1, DNMT3A and DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2’-deoxycytidine (Aza-dC) has proved to be successful toward treatment of hematologic neoplasms especially for patients with myelodysplastic syndrome. In this review, I summarize the current knowledge of mechanisms underlying the inhibition of DNA methylation by Aza and Aza-dC, and of their apoptotic- and differentiation-inducing effects on cancer stem and progenitor cells in leukemia, medulloblastoma, glioblastoma, neuroblastoma, prostate cancer, pancreatic cancer and testicular germ cell tumors. Since cancer stem and progenitor cells are implicated in cancer aggressiveness such as tumor formation, progression, metastasis and recurrence, I propose that effective therapeutic strategies might be achieved through eradication of cancer stem and progenitor cells by targeting the DNA methylation machineries to interfere their “malignant memory”.
Collapse
|
557
|
The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: evidence in experimental neuroblastoma. Oncogene 2015; 34:5240-51. [PMID: 25619831 DOI: 10.1038/onc.2014.444] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/21/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
Neuroblastoma (NB) is an aggressive pediatric tumor, responsible for 15% of cancer-related deaths in childhood, lacking an effective treatment in its advanced stages. The P2X7 receptor for extracellular ATP was associated to NB cell proliferation and recently emerged as a promoter of tumor engraftment, growth and vascularization. In an effort to identify new therapeutic options for neuroblastoma, we studied the role of P2X7 receptor in NB biology. We first analyzed the effect of P2X7 activation or down-modulation of the main biochemical ways involved in NB progression: the PI3K/Akt/GSK3β/MYCN and the HIF1α/VEGF pathways. In ACN human NB cells, P2X7 stimulation enhanced PI3K/Akt, while decreasing GSK3β activity. In the same model, P2X7 silencing or antagonist administration reduced the activity of PI3K/Akt and increased that of GSK3β, leading to a decrease in cellular glycogen stores. Similarly, P2X7 downmodulation caused a reduction in HIF1α levels and vascular endothelial growth factor (VEGF) secretion. Systemic administration of two different P2X7 antagonists (AZ10606120 or A740003) in nude/nude mice reduced ACN-derived tumor growth. An even stronger effect of P2X7 blockade was obtained in a syngeneic immune-competent neuroblastoma model: Neuro2A cells injected in AlbinoJ mice. Together with tumor regression, treatment with P2X7 antagonists caused downmodulation of the Akt/HIF1α axis, leading to reduced VEGF content and decreased vessel formation. Interestingly, in both experimental models, P2X7 antagonists strongly reduced the expression of the probably best-accepted oncogene in NB: MYCN. Finally, we associated P2X7 overexpression with poor prognosis in advanced-stage NB patients. Taken together, our data suggest that P2X7 receptor is an upstream regulator of the main signaling pathways involved in NB growth, metabolic activity and angiogenesis, and a promising therapeutic target for neuroblastoma treatment.
Collapse
|
558
|
Russo A, Okur MN, Bosland M, O'Bryan JP. Phosphatidylinositol 3-kinase, class 2 beta (PI3KC2β) isoform contributes to neuroblastoma tumorigenesis. Cancer Lett 2015; 359:262-8. [PMID: 25622909 DOI: 10.1016/j.canlet.2015.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 01/25/2023]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) play important roles in human tumorigenesis. Activation of the PI3K target AKT is frequent in neuroblastoma (NB) and correlates with poor prognosis. PI3K pan-inhibitors reduce NB tumor formation but present severe toxicity, which limits their therapeutic potential. Therefore, defining the importance of specific PI3K isoforms may aid in developing more effective therapeutic strategies. We previously demonstrated that PI3K Class IIβ (PI3KC2β) and its regulator intersectin 1 (ITSN1) are highly expressed in primary NB tumors and cell lines. Silencing ITSN1 dramatically reduced the tumorigenic potential of NB cells. Interestingly, overexpression of PI3KC2β rescued the anchorage-independent growth of ITSN1-silenced cells suggesting that PI3KC2β mediates ITSN1's function in NB cells. To address the importance of PI3KC2β in NBs, we generated PI3KC2β-silenced lines and examined their biologic activity. Herein, we demonstrate that PI3KC2β-silencing inhibits early stages of NB tumorigenic growth. We also show that loss of endogenous PI3KC2β or ITSN1 reduces AKT activation but does not impact ERK-MAPK activation. These data reveal a novel role for PI3KC2β in human NB tumorigenesis.
Collapse
Affiliation(s)
- Angela Russo
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612
| | - Mustafa Nazir Okur
- Department of Biochemistry, University of Illinois at Chicago, Chicago, IL 60612
| | - Maarten Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612
| | - John P O'Bryan
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 60612; Jesse Brown VA Medical Center, Chicago, IL 60612.
| |
Collapse
|
559
|
Suzuki M, Cheung NKV. Disialoganglioside GD2 as a therapeutic target for human diseases. Expert Opin Ther Targets 2015; 19:349-62. [PMID: 25604432 DOI: 10.1517/14728222.2014.986459] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Ganglioside GD2 is found in vertebrates and invertebrates, overexpressed among pediatric and adult solid tumors, including neuroblastoma, glioma, retinoblastoma, Ewing's family of tumors, rhabdomyosarcoma, osteosarcoma, leiomyosarcoma, liposarcoma, fibrosarcoma, small cell lung cancer and melanoma. It is also found on stem cells, neurons, some nerve fibers and basal layer of the skin. AREAS COVERED GD2 provides a promising clinical target for radiolabeled antibodies, bispecific antibodies, chimeric antigen receptor (CAR)-modified T cells, drug conjugates, nanoparticles and vaccines. Here, we review its biochemistry, normal physiology, role in tumorigenesis, important characteristics as a target, as well as anti-GD2-targeted strategies. EXPERT OPINION Bridging the knowledge gaps in understanding the interactions of GD2 with signaling molecules within the glycosynapses, and the regulation of its cellular expression should improve therapeutic strategies targeting this ganglioside. In addition to anti-GD2 IgG mAbs, their drug conjugates, radiolabeled forms especially when genetically engineered to improve therapeutic index and novel bispecific forms or CARs to retarget T-cells are promising candidates for treating metastatic cancers.
Collapse
Affiliation(s)
- Maya Suzuki
- Memorial Sloan Kettering Cancer Center, Department of Pediatrics , 1275 York Avenue, New York, NY 10065 , USA +1 646 888 2313 ; +1 631 422 0452 ;
| | | |
Collapse
|
560
|
Sidarovich V, Adami V, Gatto P, Greco V, Tebaldi T, Tonini GP, Quattrone A. Translational downregulation of HSP90 expression by iron chelators in neuroblastoma cells. Mol Pharmacol 2015; 87:513-24. [PMID: 25564462 DOI: 10.1124/mol.114.095729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Iron is an essential cellular nutrient, being a critical cofactor of several proteins involved in cell growth and replication. Compared with normal cells, neoplastic cells have been shown to require a greater amount of iron, thus laying the basis for the promising anticancer activity of iron chelators. In this work, we evaluated the effects of molecules with iron chelation activity on neuroblastoma (NB) cell lines. Of the 17 iron chelators tested, six reduced cell viability of two NB cell lines with an inhibition of growth of 50% below 10 µM; four of the six molecules-ciclopirox olamine (CPX), piroctone, 8-hydroxyquinoline, and deferasirox-were also shown to efficiently chelate intracellular iron within minutes after addition. Effects on cell viability of one of the compounds, CPX, were indeed dependent on chelation of intracellular iron and mediated by both G0/G1 cell cycle block and induction of apoptosis. By combined transcriptome and translatome profiling we identified early translational downregulation of several members of the heat shock protein group as a specific effect of CPX treatment. We functionally confirmed iron-dependent depletion of HSP90 and its client proteins at pharmacologically achievable concentrations of CPX, and we extended this effect to piroctone, 8-hydroxyquinoline, and deferasirox. Given the documented sensitivity of NB cells to HSP90 inhibition, we propose CPX and other iron chelators as investigational antitumor agents in NB therapy.
Collapse
Affiliation(s)
- Viktoryia Sidarovich
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| | - Valentina Adami
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| | - Pamela Gatto
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| | - Valentina Greco
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| | - Gian Paolo Tonini
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| |
Collapse
|
561
|
Penter L, Maier B, Frede U, Hackner B, Carell T, Hagemeier C, Truss M. A rapid screening system evaluates novel inhibitors of DNA methylation and suggests F-box proteins as potential therapeutic targets for high-risk neuroblastoma. Target Oncol 2015; 10:523-33. [DOI: 10.1007/s11523-014-0354-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 12/18/2014] [Indexed: 01/28/2023]
|
562
|
Cheung NKV, Ostrovnaya I, Kuk D, Cheung IY. Bone marrow minimal residual disease was an early response marker and a consistent independent predictor of survival after anti-GD2 immunotherapy. J Clin Oncol 2015; 33:755-63. [PMID: 25559819 DOI: 10.1200/jco.2014.57.6777] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Immunotherapy is a standard of care for children with high-risk neuroblastoma, where bone marrow (BM) is the predominant metastatic site. Early response markers of minimal residual disease (MRD) in the BM that are also predictive of survival could help individualize patient therapies. PATIENTS AND METHODS After achieving first remission (n = 163), primary refractory disease (n = 102), or second remission (n = 95), children with stage 4 neuroblastoma received anti-GD2 3F8 antibody immunotherapy. BM MRD before 3F8 treatment and after cycle 2 (postMRD) was measured using a four-marker panel (B4GALNT1, PHOX2B, CCND1, and ISL1) by quantitative reverse transcription polymerase chain reaction. Progression-free survival (PFS) and overall survival (OS) were estimated using the Kaplan-Meier method. Prognostic variables were tested in both univariable and multivariable analyses, and MRD markers were further assessed individually and in combination as binary composite (postMRD: 0 and 1) and as equal sum (postMRDSum: 0 to 4) using the Cox regression models, and their predictive accuracy was determined by the concordance index. RESULTS When BM was evaluated after cycle 2, individual markers were highly predictive of PFS and OS. The prediction accuracy improved when they were combined in postMRDSum. A multivariable model taking into account all the variables significant in the univariable analyses identified postMRDSum to be independently predictive of PFS and OS. When the model for OS also included missing killer immunoglobulin-like receptor ligand, human antimouse antibody response, and the enrollment disease status, the concordance index was 0.704. CONCLUSION BM MRD after two cycles of immunotherapy was confirmed as an early response marker and a consistent independent predictor of survival.
Collapse
Affiliation(s)
| | - Irina Ostrovnaya
- All authors: Memorial Sloan Kettering Cancer Center, New York, NY
| | - Deborah Kuk
- All authors: Memorial Sloan Kettering Cancer Center, New York, NY
| | - Irene Y Cheung
- All authors: Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
563
|
Aminzadeh S, Vidali S, Sperl W, Kofler B, Feichtinger RG. Energy metabolism in neuroblastoma and Wilms tumor. Transl Pediatr 2015; 4:20-32. [PMID: 26835356 PMCID: PMC4729069 DOI: 10.3978/j.issn.2224-4336.2015.01.04] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
To support high proliferation, the majority of cancer cells undergo fundamental metabolic changes such as increasing their glucose uptake and shifting to glycolysis for ATP production at the expense of far more efficient mitochondrial energy production by oxidative phosphorylation (OXPHOS), which at first glance is a paradox. This phenomenon is known as the Warburg effect. However, enhanced glycolysis is necessary to provide building blocks for anabolic growth. Apart from the generation of ATP, intermediates of glycolysis serve as precursors for a variety of biosynthetic pathways essential for cell proliferation. In the last 10-15 years the field of tumor metabolism has experienced an enormous boom in interest. It is now well established that tumor suppressor genes and oncogenes often play a central role in the regulation of cellular metabolism. Therefore, they significantly contribute to the manifestation of the Warburg effect. While much attention has focused on adult solid tumors, so far there has been comparatively little effort directed at elucidation of the mechanism responsible for the Warburg effect in childhood cancers. In this review we focus on metabolic pathways in neuroblastoma (NB) and Wilms tumor (WT), the two most frequent solid tumors in children. Both tumor types show alterations of the OXPHOS system and glycolytic features. Chromosomal alterations and activation of oncogenes like MYC or inactivation of tumor suppressor genes like TP53 can in part explain the changes of energy metabolism in these cancers. The strict dependence of cancer cells on glucose metabolism is a fairly common feature among otherwise biologically diverse types of cancer. Therefore, inhibition of glycolysis or starvation of cancer cells through glucose deprivation via a high-fat low-carbohydrate diet may be a promising avenue for future adjuvant therapeutic strategies.
Collapse
|
564
|
Tundo GR, Sbardella D, De Pascali SA, Ciaccio C, Coletta M, Fanizzi FP, Marini S. Novel Platinum(II) compounds modulate insulin-degrading enzyme activity and induce cell death in neuroblastoma cells. J Biol Inorg Chem 2015; 20:101-108. [PMID: 25450414 DOI: 10.1007/s00775-014-1217-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/02/2014] [Indexed: 01/12/2023]
Abstract
The properties of three novel Platinum(II) compounds toward the insulin-degrading enzyme (IDE) enzymatic activity have been investigated under physiological conditions. The rationale of this study resides on previous observations that these compounds, specifically designed and synthesized by some of us, induce apoptosis in various cancer cell lines, whereas IDE has been proposed as a putative oncogene involved in neuroblastoma onset and progression. Two of these compounds, namely [PtCl(O,O'-acac)(DMSO)] and [Pt(O,O'-acac)(γ-acac)(DMS)], display a modulatory behavior, wherefore activation or inhibition of IDE activity occurs over different concentration ranges (suggesting the existence of two binding sites on the enzyme). On the other hand, [Pt(O,O'-acac)(γ-acac)(DMSO)] shows a typical competitive inhibitory pattern, characterized by a meaningful affinity constant (K i = 0.95 ± 0.21 μM). Although all three compounds induce cell death in neuroblastoma SHSY5Y cells at concentrations exceeding 2 μM, the two modulators facilitate cells' proliferation at concentrations ≤ 1.5 μM, whereas the competitive inhibitor [Pt(O,O'-acac)(γ-acac)(DMSO)] only shows a pro-apoptotic activity at all investigated concentrations. These features render the [Pt(O,O'-acac)(γ-acac)(DMSO)] a promising "lead compound" for the synthesis of IDE-specific inhibitors (not characterized yet) with therapeutic potentiality.
Collapse
Affiliation(s)
- Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy
| | - Sandra A De Pascali
- CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy.,Department of Environmental Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy
| | - Francesco P Fanizzi
- CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy.,Department of Environmental Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Roma Tor Vergata, Via Montpellier 1, 00133, Rome, Italy. .,CIRCMSB, Via C. Ulpiani 27, 70125, Bari, Italy.
| |
Collapse
|
565
|
Liu Y, Song L. HMGB1-induced autophagy in Schwann cells promotes neuroblastoma proliferation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:504-510. [PMID: 25755740 PMCID: PMC4348936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Neuroblastoma inflicts mostly on children, and the pathogenesis remains elusive. Clinical diagnosis and therapeutic approaches are still on the incipient stage, so further understanding of the molecular and cellular mechanisms of the disease is necessary. Inflammation has been commonly regarded as a hallmark in tumorigenesis and development, and we identified a new inflammatory factor, HMGB1, is considerably increased in neuroblastoma. Our study shows that HMGB1 induces autophagy in Schwann cells through activation of TLR4, and knockdown of TLR4 obviates the HMGB1-induced autophagy. The HMGB1-induced autophagy is through classical pathway, as deficiency of Beclin 1 deprived autophagy in Schwann cells. Coculture of neuroblastoma with Schwann cells pretreated with HMGB1 promoted the proliferation of neuroblastoma cells, and if Beclin 1 is knocked down in Schwann cells, no promotion effects is observed. Taken together, our study demonstrates that HMGB1-induced autophagy in Schwann cells contributes to neuroblastoma cell proliferation, thus providing a potential therapeutic approach on neuroblastoma development.
Collapse
Affiliation(s)
- Yongsheng Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Department of Neurosurgery, The First People’s Hospital of ShangqiuShangqiu 476005, Henan, China
| | - Laijun Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
566
|
Xu H, Cheng M, Guo H, Chen Y, Huse M, Cheung NKV. Retargeting T cells to GD2 pentasaccharide on human tumors using Bispecific humanized antibody. Cancer Immunol Res 2014; 3:266-77. [PMID: 25542634 DOI: 10.1158/2326-6066.cir-14-0230-t] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anti-disialoganglioside GD2 IgG antibodies have shown clinical efficacy in solid tumors that lack human leukocyte antigens (e.g., neuroblastoma) by relying on Fc-dependent cytotoxicity. However, there are pain side effects secondary to complement activation. T-cell retargeting bispecific antibodies (BsAb) also have clinical potential, but it is thus far only effective against liquid tumors. In this study, a fully humanized hu3F8-BsAb was developed, in which the anti-CD3 huOKT3 single-chain Fv fragment (ScFv) was linked to the carboxyl end of the anti-GD2 hu3F8 IgG1 light chain, and was aglycosylated at N297 of Fc to prevent complement activation and cytokine storm. In vitro, hu3F8-BsAb activated T cells through classic immunologic synapses, inducing GD2-specific tumor cytotoxicity at femtomolar EC50 with >10⁵-fold selectivity over normal tissues, releasing Th1 cytokines (TNFα, IFNγ, and IL2) when GD2⁺ tumors were present. In separate murine neuroblastoma and melanoma xenograft models, intravenous hu3F8-BsAb activated T cells in situ and recruited intravenous T cells for tumor ablation, significantly prolonging survival from local recurrence or from metastatic disease. Hu3F8-BsAb, but not control BsAb, drove T cells and monocytes to infiltrate tumor stroma. These monocytes were necessary for sustained T-cell proliferation and/or survival and contributed significantly to the antitumor effect. The in vitro and in vivo antitumor properties of hu3F8-BsAb and its safety profile support its further clinical development as a cancer therapeutic, and provide the rationale for exploring aglycosylated IgG-scFv as a structural platform for retargeting human T cells.
Collapse
Affiliation(s)
- Hong Xu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ming Cheng
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hongfen Guo
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuedan Chen
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Morgan Huse
- Department of Immunology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
567
|
Hartomo TB, Van Huyen Pham T, Yamamoto N, Hirase S, Hasegawa D, Kosaka Y, Matsuo M, Hayakawa A, Takeshima Y, Iijima K, Nishio H, Nishimura N. Involvement of aldehyde dehydrogenase 1A2 in the regulation of cancer stem cell properties in neuroblastoma. Int J Oncol 2014; 46:1089-98. [PMID: 25524880 DOI: 10.3892/ijo.2014.2801] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/11/2014] [Indexed: 11/06/2022] Open
Abstract
Despite the introduction of 13-cis-retinoic acid (13-cis-RA) into the current chemotherapy, more than half of high-risk neuroblastoma patients have experienced tumor relapses driven by chemoresistant cancer stem cells (CSCs) that can be isolated by their ability to grow as spheres. Although aldehyde dehydrogenase (ALDH) has been used to characterize CSCs in certain cancers, ALDH remains elusive in neuroblastoma. In the present study, we determined ALDH activity and expression of its 19 isoforms in spheres and parental cells of neuroblastoma. ALDH activity and several ALDH isoforms were consistently induced in spheres of different neuroblastoma cells. While ALDH1A2, ALDH1L1 and ALDH3B2 expression was consistently induced in spheres and associated with the sphere and colony formation, only ALDH1A2 expression was significantly correlated with the poor prognosis of neuroblastoma patients. ALDH1A2 expression was further associated with the growth and undifferentiation of neuroblastoma xenografts and the resistance of neuroblastoma cells to 13-cis-RA. These results suggest that ALDH1A2 is involved in the regulation of CSC properties in neuroblastoma.
Collapse
Affiliation(s)
- Tri Budi Hartomo
- Department of Epidemiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Thi Van Huyen Pham
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Satoshi Hirase
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Daiichiro Hasegawa
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe 654-0081, Japan
| | - Yoshiyuki Kosaka
- Department of Hematology and Oncology, Kobe Children's Hospital, Kobe 654-0081, Japan
| | - Masafumi Matsuo
- Department of Medical Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Akira Hayakawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yasuhiro Takeshima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Hisahide Nishio
- Department of Epidemiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Noriyuki Nishimura
- Department of Epidemiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| |
Collapse
|
568
|
Maguire LH, Thomas AR, Goldstein AM. Tumors of the neural crest: Common themes in development and cancer. Dev Dyn 2014; 244:311-22. [PMID: 25382669 DOI: 10.1002/dvdy.24226] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022] Open
Abstract
The neural crest (NC) is a remarkable transient structure in the vertebrate embryo that gives rise to a highly versatile population of pluripotent cells that contribute to the formation of multiple tissues and organs throughout the body. In order to achieve their task, NC-derived cells have developed specialized mechanisms to promote (1) their transition from an epithelial to a mesenchymal phenotype, (2) their capacity for extensive migration and cell proliferation, and (3) their ability to produce diverse cell types largely depending on the microenvironment encountered during and after their migratory path. Following embryogenesis, these same features of cellular motility, invasion, and proliferation can become a liability by contributing to tumorigenesis and metastasis. Ample evidence has shown that cancer cells have cleverly co-opted many of the genetic and molecular features used by developing NC cells. This review focuses on tumors that arise from NC-derived tissues and examines mechanistic themes shared during their oncogenic and metastatic development with embryonic NC cell ontogeny.
Collapse
Affiliation(s)
- Lillias H Maguire
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | |
Collapse
|
569
|
Rogers K, Lenoir GM. Cancer research in France. Int J Cancer 2014; 135:2235-6. [PMID: 25132359 DOI: 10.1002/ijc.29131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
570
|
Ordóñez R, Gallo-Oller G, Martínez-Soto S, Legarra S, Pata-Merci N, Guegan J, Danglot G, Bernheim A, Meléndez B, Rey JA, Castresana JS. Genome-wide microarray expression and genomic alterations by array-CGH analysis in neuroblastoma stem-like cells. PLoS One 2014; 9:e113105. [PMID: 25392930 PMCID: PMC4231109 DOI: 10.1371/journal.pone.0113105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023] Open
Abstract
Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC), a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture). Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-β) and contribute to CSC phenotype. We focused on the aberrant activation of TGF-β and Hh signalling pathways, confirming the inhibition of repressors of TGF-β pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells.
Collapse
Affiliation(s)
- Raquel Ordóñez
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Gabriel Gallo-Oller
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Soledad Martínez-Soto
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | - Sheila Legarra
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| | | | | | | | | | - Bárbara Meléndez
- Molecular Pathology Research Unit, Department of Pathology, Virgen de la Salud Hospital, Toledo, Spain
| | - Juan A. Rey
- IdiPaz Research Unit, La Paz University Hospital, Madrid, Spain
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona, Spain
| |
Collapse
|
571
|
Bresler SC, Weiser DA, Huwe PJ, Park JH, Krytska K, Ryles H, Laudenslager M, Rappaport EF, Wood AC, McGrady PW, Hogarty MD, London WB, Radhakrishnan R, Lemmon MA, Mossé YP. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma. Cancer Cell 2014; 26:682-94. [PMID: 25517749 PMCID: PMC4269829 DOI: 10.1016/j.ccell.2014.09.019] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/13/2014] [Accepted: 09/25/2014] [Indexed: 02/01/2023]
Abstract
Genetic studies have established anaplastic lymphoma kinase (ALK), a cell surface receptor tyrosine kinase, as a tractable molecular target in neuroblastoma. We describe comprehensive genomic, biochemical, and computational analyses of ALK mutations across 1,596 diagnostic neuroblastoma samples. ALK tyrosine kinase domain mutations occurred in 8% of samples--at three hot spots and 13 minor sites--and correlated significantly with poorer survival in high- and intermediate-risk neuroblastoma. Biochemical and computational studies distinguished oncogenic (constitutively activating) from nononcogenic mutations and allowed robust computational prediction of their effects. The mutated variants also showed differential in vitro crizotinib sensitivities. Our studies identify ALK genomic status as a clinically important therapeutic stratification tool in neuroblastoma and will allow tailoring of ALK-targeted therapy to specific mutations.
Collapse
Affiliation(s)
- Scott C Bresler
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Daniel A Weiser
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peter J Huwe
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jin H Park
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hannah Ryles
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marci Laudenslager
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Eric F Rappaport
- Nucleic Acid Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Andrew C Wood
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Patrick W McGrady
- Department of Biostatistics, Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, FL 32611, USA
| | - Michael D Hogarty
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wendy B London
- Department of Biostatistics, Children's Oncology Group Statistics and Data Center, University of Florida, Gainesville, FL 32611, USA; Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Ravi Radhakrishnan
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Lemmon
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Yaël P Mossé
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
572
|
Abstract
Cancer testis antigens, such as NY-ESO-1, are expressed in a variety of prevalent tumors and represent potential targets for T-cell receptor (TCR) gene therapy. DNA encoding a murine anti-NY-ESO-1 TCR gene (mTCR) was isolated from immunized HLA-A*0201 transgenic mice and inserted into a γ-retroviral vector. Two mTCR vectors were produced and used to transduce human PBL. Transduced cells were cocultured with tumor target cell lines and T2 cells pulsed with the NY-ESO-1 peptide, and assayed for cytokine release and cell lysis activity. The most active TCR construct was selected for production of a master cell bank for clinical use. mTCR-transduced PBL maintained TCR expression in short-term and long-term culture, ranging from 50% to 90% efficiency 7-11 days after stimulation and 46%-82% 10-20 days after restimulation. High levels of interferon-γ secretion were observed (1000-12000 pg/mL), in tumor coculture assays and recognition of peptide-pulsed cells was observed at 0.1 ng/mL, suggesting that the new mTCR had high avidity for antigen recognition. mTCR-transduced T cells also specifically lysed human tumor targets. In all assays, the mTCR was equivalent or better than the comparable human TCR. As the functional activity of TCR-transduced cells may be affected by the formation of mixed dimers, mTCRs, which are less likely to form mixed dimers with endogenous hTCRs, may be more effective in vivo. This new mTCR targeted to NY-ESO-1 represents a novel potential therapeutic option for adoptive cell-transfer therapy for a variety of malignancies.
Collapse
|
573
|
Peng H, Ke XX, Hu R, Yang L, Cui H, Wei Y. Essential role of GATA3 in regulation of differentiation and cell proliferation in SK-N-SH neuroblastoma cells. Mol Med Rep 2014; 11:881-6. [PMID: 25351211 PMCID: PMC4262502 DOI: 10.3892/mmr.2014.2809] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 10/06/2014] [Indexed: 02/05/2023] Open
Abstract
Neuroblastoma is a common solid malignant tumor of the sympathetic nervous system, which contributes to 15% of cancer‑related mortality in children. The differentiation status of neuroblastoma is correlated with clinical outcome, and the induction of differentiation thus constitutes a therapeutic approach in this disease. However, the molecular mechanisms that control the differentiation of neuroblastoma remain poorly understood. The present study aimed to define whether GATA3 is involved in the differentiation of neuroblastoma cells. The results demonstrated that GATA3 is a prognostic marker for survival in patients with neuroblastoma, and that high‑level GATA3 expression is associated with increased self‑renewal and proliferation of neuroblastoma cells. Retinoic acid treatment led to GATA3 downregulation together with neuronal differentiation, suppression of cell proliferation and inhibition of tumorigenecity in neuroblastoma cells. These findings suggest that GATA3 is a key regulator of neuroblastoma differentiation, and provide a novel potential therapeutic strategy for the induction of neuroblastoma differentiation.
Collapse
Affiliation(s)
- Hongwei Peng
- Laboratory of Cancer Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Xue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Renjian Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Yuquan Wei
- Laboratory of Cancer Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
574
|
Yan X, Ke XX, Zhao H, Huang M, Hu R, Cui H. Triptolide inhibits cell proliferation and tumorigenicity of human neuroblastoma cells. Mol Med Rep 2014; 11:791-6. [PMID: 25354591 PMCID: PMC4262511 DOI: 10.3892/mmr.2014.2814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023] Open
Abstract
Triptolide is a diterpene triepoxide, extracted from the Chinese herb Tripterygium wilfordii Hook F, which has been shown to have antitumor activity in a number of cancers. Neuroblastoma is an aggressive extracranial pediatric solid tumor, with significant chemotherapeutic resistance. In this study, triptolide was hypothesized to be a potential therapeutic agent for neuroblastoma. The effects of triptolide on neuroblastoma cell growth and tumor development were investigated. Cell growth and proliferation were evaluated using a cell counting kit-8 assay and a 5-bromo-2-deoxyuridine staining assay. Cell cycle and apoptosis were detected by flow cytometry. Reverse transcription-quantitative polymerase chain reaction was conducted to detect the expression levels of the apoptosis-associated proteins, caspase-3 and caspase-9. The tumorigenicity of neuroblastoma cells was assessed by a soft agar clonogenic assay and an in vivo tumorigenic assay. The results demonstrated that exposure of BE(2)-C human neuroblastoma cells to triptolide resulted in a reduction in cell growth and proliferation, and the induction of cell death and apoptosis, together with cell cycle arrest in the S phase. A soft agar assay indicated that triptolide inhibited the colony-forming ability of BE(2)-C neuroblastoma cells. The xenograft experiment showed that triptolide significantly reduced tumor growth and development in vivo. The data suggested that this Chinese herb may be a potential novel chemotherapeutic agent for neuroblastoma.
Collapse
Affiliation(s)
- Xiaomin Yan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Xiao-Xue Ke
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hailong Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Mengying Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Renjian Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, P.R. China
| |
Collapse
|
575
|
Umapathy G, El Wakil A, Witek B, Chesler L, Danielson L, Deng X, Gray NS, Johansson M, Kvarnbrink S, Ruuth K, Schönherr C, Palmer RH, Hallberg B. The kinase ALK stimulates the kinase ERK5 to promote the expression of the oncogene MYCN in neuroblastoma. Sci Signal 2014; 7:ra102. [PMID: 25351247 DOI: 10.1126/scisignal.2005470] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is an important molecular target in neuroblastoma. Although tyrosine kinase inhibitors abrogating ALK activity are currently in clinical use for the treatment of ALK-positive (ALK(+)) disease, monotherapy with ALK tyrosine kinase inhibitors may not be an adequate solution for ALK(+) neuroblastoma patients. Increased expression of the gene encoding the transcription factor MYCN is common in neuroblastomas and correlates with poor prognosis. We found that the kinase ERK5 [also known as big mitogen-activated protein kinase (MAPK) 1 (BMK1)] is activated by ALK through a pathway mediated by phosphoinositide 3-kinase (PI3K), AKT, MAPK kinase kinase 3 (MEKK3), and MAPK kinase 5 (MEK5). ALK-induced transcription of MYCN and stimulation of cell proliferation required ERK5. Pharmacological or RNA interference-mediated inhibition of ERK5 suppressed the proliferation of neuroblastoma cells in culture and enhanced the antitumor efficacy of the ALK inhibitor crizotinib in both cells and xenograft models. Together, our results indicate that ERK5 mediates ALK-induced transcription of MYCN and proliferation of neuroblastoma, suggesting that targeting both ERK5 and ALK may be beneficial in neuroblastoma patients.
Collapse
Affiliation(s)
- Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Abeer El Wakil
- Department of Molecular Biology, Building 6L, Umeå University, 901 87 Umeå, Sweden
| | - Barbara Witek
- Department of Molecular Biology, Building 6L, Umeå University, 901 87 Umeå, Sweden
| | - Louis Chesler
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5NG, UK
| | - Laura Danielson
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Sutton, Surrey SM2 5NG, UK
| | - Xianming Deng
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China. Dana-Farber Cancer Institute, Harvard Medical School, Seeley G. Mudd Building, 628A, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Nathanael S Gray
- Dana-Farber Cancer Institute, Harvard Medical School, Seeley G. Mudd Building, 628A, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Mikael Johansson
- Department of Radiation Sciences, Oncology, Umeå University, 901 87 Umea, Sweden
| | - Samuel Kvarnbrink
- Department of Radiation Sciences, Oncology, Umeå University, 901 87 Umea, Sweden
| | - Kristina Ruuth
- Department of Molecular Biology, Building 6L, Umeå University, 901 87 Umeå, Sweden
| | - Christina Schönherr
- Department of Molecular Biology, Building 6L, Umeå University, 901 87 Umeå, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden. Department of Molecular Biology, Building 6L, Umeå University, 901 87 Umeå, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| |
Collapse
|
576
|
Kiyonari S, Kadomatsu K. Neuroblastoma models for insights into tumorigenesis and new therapies. Expert Opin Drug Discov 2014; 10:53-62. [DOI: 10.1517/17460441.2015.974544] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
577
|
Bandino A, Geerts D, Koster J, Bachmann AS. Deoxyhypusine synthase (DHPS) inhibitor GC7 induces p21/Rb-mediated inhibition of tumor cell growth and DHPS expression correlates with poor prognosis in neuroblastoma patients. Cell Oncol (Dordr) 2014; 37:387-98. [PMID: 25315710 DOI: 10.1007/s13402-014-0201-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2014] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Neuroblastoma (NB) is an aggressive pediatric malignancy that typically occurs in infants and children under the age of 5 years. High-stage tumors relapse frequently even after aggressive multimodal treatment, resulting in therapy resistance and eventually in patient death. Clearly, new biologically-targeted drugs are needed that more efficiently suppress tumor growth and prevent relapse. We and others previously showed that polyamines such as spermidine play an essential role in NB tumorigenesis and that DFMO, an inhibitor of the central polyamine synthesis gene ODC, is effective in vitro and in vivo, prompting its evaluation in NB clinical trials. However, the specific molecular actions of polyamines remain poorly defined. Spermidine and deoxyhypusine synthase (DHPS) are essential components in the hypusination-driven post-translational activation of eukaryotic initiation factor 5A (eIF5A). METHODS We assessed the role of DHPS in NB and the impact of its inhibition by N(1)-guanyl-1,7-diaminoheptane (GC7) on tumor cell growth using cell proliferation assays, Western blot, immunofluorescence microscopy, and Affymetrix micro-array mRNA expression analyses in NB tumor samples. RESULTS We found that GC7 inhibits NB cell proliferation in a dose-dependent manner, through induction of the cell cycle inhibitor p21 and reduction of total and phosphorylated Rb proteins. Strikingly, high DHPS mRNA expression correlated significantly with unfavorable clinical parameters, including poor patient survival, in a cohort of 88 NB tumors (all P < 0.04). CONCLUSIONS These results suggest that spermidine and DHPS are key contributing factors in NB tumor proliferation through regulation of the p21/Rb signaling axis.
Collapse
Affiliation(s)
- Andrea Bandino
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI, 96720, USA
| | | | | | | |
Collapse
|
578
|
Capasso M, Diskin S, Cimmino F, Acierno G, Totaro F, Petrosino G, Pezone L, Diamond M, McDaniel L, Hakonarson H, Iolascon A, Devoto M, Maris JM. Common genetic variants in NEFL influence gene expression and neuroblastoma risk. Cancer Res 2014; 74:6913-24. [PMID: 25312269 DOI: 10.1158/0008-5472.can-14-0431] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genetic etiology of sporadic neuroblastoma is still largely obscure. In a genome-wide association study, we identified single-nucleotide polymorphisms (SNP) associated with neuroblastoma at the CASC15, BARD1, LMO1, DUSP12, HSD17B12, HACE1, and LIN28B gene loci, but these explain only a small fraction of neuroblastoma heritability. Other neuroblastoma susceptibility genes are likely hidden among signals discarded by the multiple testing corrections. In this study, we evaluated eight additional genes selected as candidates for further study based on proven involvement in neuroblastoma differentiation. SNPs at these candidate genes were tested for association with disease susceptibility in 2,101 cases and 4,202 controls, with the associations found replicated in an independent cohort of 459 cases and 809 controls. Replicated associations were further studied for cis-effect using gene expression, transient overexpression, silencing, and cellular differentiation assays. The neurofilament gene NEFL harbored three SNPs associated with neuroblastoma (rs11994014: Pcombined = 0.0050; OR, 0.88; rs2979704: Pcombined = 0.0072; OR, 0.87; rs1059111: Pcombined = 0.0049; OR, 0.86). The protective allele of rs1059111 correlated with increased NEFL expression. Biologic investigations showed that ectopic overexpression of NEFL inhibited cell growth specifically in neuroblastoma cells carrying the protective allele. NEFL overexpression also enhanced differentiation and impaired the proliferation and anchorage-independent growth of cells with protective allele and basal NEFL expression, while impairing invasiveness and proliferation of cells homozygous for the risk genotype. Clinically, high levels of NEFL expression in primary neuroblastoma specimens were associated with better overall survival (P = 0.03; HR, 0.68). Our results show that common variants of NEFL influence neuroblastoma susceptibility and they establish that NEFL expression influences disease initiation and progression.
Collapse
Affiliation(s)
- Mario Capasso
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Naples, Italy. CEINGE Biotecnolgie Avanzate, Naples, Italy.
| | - Sharon Diskin
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Genomics and Computational Biology, Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Flora Cimmino
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Naples, Italy. CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Giovanni Acierno
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Naples, Italy. CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Francesca Totaro
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Naples, Italy
| | - Giuseppe Petrosino
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Naples, Italy
| | | | - Maura Diamond
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Lee McDaniel
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Genomics and Computational Biology, Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hakon Hakonarson
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Achille Iolascon
- Università degli Studi di Napoli Federico II, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Naples, Italy. CEINGE Biotecnolgie Avanzate, Naples, Italy
| | - Marcella Devoto
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Molecular Medicine, University of Rome "La Sapienza," Rome, Italy. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M Maris
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania. Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania. Genomics and Computational Biology, Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
579
|
Braekeveldt N, Wigerup C, Gisselsson D, Mohlin S, Merselius M, Beckman S, Jonson T, Börjesson A, Backman T, Tadeo I, Berbegall AP, Ora I, Navarro S, Noguera R, Påhlman S, Bexell D. Neuroblastoma patient-derived orthotopic xenografts retain metastatic patterns and geno- and phenotypes of patient tumours. Int J Cancer 2014; 136:E252-61. [PMID: 25220031 PMCID: PMC4299502 DOI: 10.1002/ijc.29217] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/31/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022]
Abstract
Neuroblastoma is a childhood tumour with heterogeneous characteristics and children with metastatic disease often have a poor outcome. Here we describe the establishment of neuroblastoma patient-derived xenografts (PDXs) by orthotopic implantation of viably cryopreserved or fresh tumour explants of patients with high risk neuroblastoma into immunodeficient mice. In vivo tumour growth was monitored by magnetic resonance imaging and fluorodeoxyglucose–positron emission tomography. Neuroblastoma PDXs retained the undifferentiated histology and proliferative capacity of their corresponding patient tumours. The PDXs expressed neuroblastoma markers neural cell adhesion molecule, chromogranin A, synaptophysin and tyrosine hydroxylase. Whole genome genotyping array analyses demonstrated that PDXs retained patient-specific chromosomal aberrations such as MYCN amplification, deletion of 1p and gain of chromosome 17q. Thus, neuroblastoma PDXs recapitulate the hallmarks of high-risk neuroblastoma in patients. PDX-derived cells were cultured in serum-free medium where they formed free-floating neurospheres, expressed neuroblastoma gene markers MYCN, CHGA, TH, SYP and NPY, and retained tumour-initiating and metastatic capacity in vivo. PDXs showed much higher degree of infiltrative growth and distant metastasis as compared to neuroblastoma SK-N-BE(2)c cell line-derived orthotopic tumours. Importantly, the PDXs presented with bone marrow involvement, a clinical feature of aggressive neuroblastoma. Thus, neuroblastoma PDXs serve as clinically relevant models for studying and targeting high-risk metastatic neuroblastoma.
Collapse
|
580
|
Zhang D, Ighaniyan S, Stathopoulos L, Rollo B, Landman K, Hutson J, Newgreen D. The neural crest: a versatile organ system. ACTA ACUST UNITED AC 2014; 102:275-98. [PMID: 25227568 DOI: 10.1002/bdrc.21081] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/26/2014] [Indexed: 02/02/2023]
Abstract
The neural crest is the name given to the strip of cells at the junction between neural and epidermal ectoderm in neurula-stage vertebrate embryos, which is later brought to the dorsal neural tube as the neural folds elevate. The neural crest is a heterogeneous and multipotent progenitor cell population whose cells undergo EMT then extensively and accurately migrate throughout the embryo. Neural crest cells contribute to nearly every organ system in the body, with derivatives of neuronal, glial, neuroendocrine, pigment, and also mesodermal lineages. This breadth of developmental capacity has led to the neural crest being termed the fourth germ layer. The neural crest has occupied a prominent place in developmental biology, due to its exaggerated migratory morphogenesis and its remarkably wide developmental potential. As such, neural crest cells have become an attractive model for developmental biologists for studying these processes. Problems in neural crest development cause a number of human syndromes and birth defects known collectively as neurocristopathies; these include Treacher Collins syndrome, Hirschsprung disease, and 22q11.2 deletion syndromes. Tumors in the neural crest lineage are also of clinical importance, including the aggressive melanoma and neuroblastoma types. These clinical aspects have drawn attention to the selection or creation of neural crest progenitor cells, particularly of human origin, for studying pathologies of the neural crest at the cellular level, and also for possible cell therapeutics. The versatility of the neural crest lends itself to interlinked research, spanning basic developmental biology, birth defect research, oncology, and stem/progenitor cell biology and therapy.
Collapse
|
581
|
Kunisada T, Tezulka KI, Aoki H, Motohashi T. The stemness of neural crest cells and their derivatives. ACTA ACUST UNITED AC 2014; 102:251-62. [DOI: 10.1002/bdrc.21079] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 08/22/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Takahiro Kunisada
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| | - Ken-Ichi Tezulka
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| | - Hitomi Aoki
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| | - Tsutomu Motohashi
- Department of Tissue and Organ Development, Regeneration, and Advanced Medical Science; Gifu University Graduate School of Medicine, 1-1, Yanagido; Gifu 501-1194 Japan
| |
Collapse
|
582
|
N-Myc differentially regulates expression of MXI1 isoforms in neuroblastoma. Neoplasia 2014; 15:1363-70. [PMID: 24403858 DOI: 10.1593/neo.11606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/15/2022] Open
Abstract
Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB). MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation.
Collapse
|
583
|
Gnanapragassam VS, Bork K, Galuska CE, Galuska SP, Glanz D, Nagasundaram M, Bache M, Vordermark D, Kohla G, Kannicht C, Schauer R, Horstkorte R. Sialic acid metabolic engineering: a potential strategy for the neuroblastoma therapy. PLoS One 2014; 9:e105403. [PMID: 25148252 PMCID: PMC4141789 DOI: 10.1371/journal.pone.0105403] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/17/2014] [Indexed: 12/28/2022] Open
Abstract
Background Sialic acids (Sia) represent negative-charged terminal sugars on most glycoproteins and glycolipids on the cell surface of vertebrates. Aberrant expression of tumor associated sialylated carbohydrate epitopes significantly increases during onset of cancer. Since Sia contribute towards cell migration ( = metastasis) and to chemo- and radiation resistance. Modulation of cellular Sia concentration and composition poses a challenge especially for neuroblastoma therapy, due to the high heterogeneity and therapeutic resistance of these cells. Here we propose that Metabolic Sia Engineering (MSE) is an effective strategy to reduce neuroblastoma progression and metastasis. Methods Human neuroblastoma SH-SY5Y cells were treated with synthetic Sia precursors N-propanoyl mannosamine (ManNProp) or N-pentanoyl mannosamine (ManNPent). Total and Polysialic acids (PolySia) were investigated by high performance liquid chromatography. Cell surface polySia were examined by flow-cytometry. Sia precursors treated cells were examined for the migration, invasion and sensitivity towards anticancer drugs and radiation treatment. Results Treatment of SH-SY5Y cells with ManNProp or ManNPent (referred as MSE) reduced their cell surface sialylation significantly. We found complete absence of polysialylation after treatment of SH-SY5Y cells with ManNPent. Loss of polysialylation results in a reduction of migration and invasion ability of these cells. Furthermore, radiation of Sia-engineered cells completely abolished their migration. In addition, MSE increases the cytotoxicity of anti-cancer drugs, such as 5-fluorouracil or cisplatin. Conclusions Metabolic Sia Engineering (MSE) of neuroblastoma cells using modified Sia precursors reduces their sialylation, metastatic potential and increases their sensitivity towards radiation or chemotherapeutics. Therefore, MSE may serve as an effective method to treat neuroblastoma.
Collapse
Affiliation(s)
- Vinayaga S. Gnanapragassam
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| | - Kaya Bork
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christina E. Galuska
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Giessen, Germany
| | - Sebastian P. Galuska
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Giessen, Germany
| | - Dagobert Glanz
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Manimozhi Nagasundaram
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Bache
- Clinic of Radiotherapy, University Hospital Halle, Halle (Saale), Germany
| | - Dirk Vordermark
- Clinic of Radiotherapy, University Hospital Halle, Halle (Saale), Germany
| | - Guido Kohla
- Octapharma R&D, Molecular Biochemistry, Berlin, Germany
| | | | - Roland Schauer
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Rüdiger Horstkorte
- Institute for Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
584
|
Dorstyn L, Puccini J, Nikolic A, Shalini S, Wilson CH, Norris MD, Haber M, Kumar S. An unexpected role for caspase-2 in neuroblastoma. Cell Death Dis 2014; 5:e1383. [PMID: 25144718 PMCID: PMC4454317 DOI: 10.1038/cddis.2014.342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022]
Abstract
Caspase-2 has been implicated in various cellular functions, including cell death by apoptosis, oxidative stress response, maintenance of genomic stability and tumor suppression. The loss of the caspase-2 gene (Casp2) enhances oncogene-mediated tumorigenesis induced by E1A/Ras in athymic nude mice, and also in the Eμ-Myc lymphoma and MMTV/c-neu mammary tumor mouse models. To further investigate the function of caspase-2 in oncogene-mediated tumorigenesis, we extended our studies in the TH-MYCN transgenic mouse model of neuroblastoma. Surprisingly, we found that loss of caspase-2 delayed tumorigenesis in the TH-MYCN neuroblastoma model. In addition, tumors from TH-MYCN/Casp2−/− mice were predominantly thoracic paraspinal tumors and were less vascularized compared with tumors from their TH-MYCN/Casp2+/+ counterparts. We did not detect any differences in the expression of neuroblastoma-associated genes in TH-MYCN/Casp2−/− tumors, or in the activation of Ras/MAPK signaling pathway that is involved in neuroblastoma progression. Analysis of expression array data from human neuroblastoma samples showed a correlation between low caspase-2 levels and increased survival. However, caspase-2 levels correlated with clinical outcome only in the subset of MYCN-non-amplified human neuroblastoma. These observations indicate that caspase-2 is not a suppressor in MYCN-induced neuroblastoma and suggest a tissue and context-specific role for caspase-2 in tumorigenesis.
Collapse
Affiliation(s)
- L Dorstyn
- 1] Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia [2] Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - J Puccini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - A Nikolic
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - C H Wilson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - M D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - M Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - S Kumar
- 1] Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia [2] Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
585
|
Ivanov VN, Hei TK. A role for TRAIL/TRAIL-R2 in radiation-induced apoptosis and radiation-induced bystander response of human neural stem cells. Apoptosis 2014; 19:399-413. [PMID: 24158598 DOI: 10.1007/s10495-013-0925-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adult neurons, which are terminally differentiated cells, demonstrate substantial radioresistance. In contrast, human neural stem cells (NSC), which have a significant proliferative capacity, are highly sensitive to ionizing radiation. Cranial irradiation that is widely used for treatment of brain tumors may induce death of NSC and further cause substantial cognitive deficits such as impairing learning and memory. The main goal of our study was to determine a mechanism of NSC radiosensitivity. We observed a constitutive high-level expression of TRAIL-R2 in human NSC. On the other hand, ionizing radiation through generation of reactive oxygen species targeted cell signaling pathways and dramatically changed the pattern of gene expression, including upregulation of TRAIL. A significant increase of endogenous expression and secretion of TRAIL could induce autocrine/paracrine stimulation of the TRAIL-R2-mediated signaling cascade with activation of caspase-3-driven apoptosis. Furthermore, paracrine stimulation could initiate bystander response of non-targeted NSC that is driven by death ligands produced by directly irradiated NSC. Experiments with media transfer from directly irradiated NSC to non-targeted (bystander) NSC confirmed a role of secreted TRAIL for induction of a death signaling cascade in non-targeted NSC. Subsequently, TRAIL production through elimination of bystander TRAIL-R-positive NSC might substantially restrict a final yield of differentiating young neurons. Radiation-induced TRAIL-mediated apoptosis could be partially suppressed by anti-TRAIL antibody added to the cell media. Interestingly, direct gamma-irradiation of SK-N-SH human neuroblastoma cells using clinical doses (2-5 Gy) resulted in low levels of apoptosis in cancer cells that was accompanied however by induction of a strong bystander response in non-targeted NSC. Numerous protective mechanisms were involved in the maintenance of radioresistance of neuroblastoma cells, including constitutive PI3K-AKT over-activation and endogenous synthesis of TGFβ1. Specific blockage of these survival pathways was accompanied by a dramatic increase in radiosensitivity of neuroblastoma cells. Intercellular communication between cancer cells and NSC could potentially be involved in amplification of cancer pathology in the brain.
Collapse
Affiliation(s)
- Vladimir N Ivanov
- Center for Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, 10032, USA,
| | | |
Collapse
|
586
|
Diao Y, Rahman MFU, Villegas VE, Wickström M, Johnsen JI, Zaphiropoulos PG. The impact of S6K1 kinase on neuroblastoma cell proliferation is independent of GLI1 signaling. BMC Cancer 2014; 14:600. [PMID: 25134527 PMCID: PMC4152578 DOI: 10.1186/1471-2407-14-600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/11/2014] [Indexed: 01/20/2023] Open
Abstract
Background The crosstalk between Hedgehog (HH) signaling and other signal transduction cascades has been extensively studied in different cancers. In neuroblastoma, mTOR/S6K1 signaling is known to have a role in the development of this disease and recent evidence also implicates the HH pathway. Moreover, S6K1 kinase has been shown to phosphorylate GLI1, the effector of HH signaling, promoting GLI1 transcriptional activity and oncogenic function in esophageal adenocarcinoma. In this study, we examined the possible interplay of S6K1 and GLI1 signaling in neuroblastoma. Methods siRNA knockdowns were used to suppress S6K1 and GLI1 expression, and the siRNA effects were validated by real-time PCR and Western blotting. Cell proliferation analysis was performed with the EdU incorporation assay. Cytotoxic analysis with increasing concentrations of PI3K/mTOR and GLI inhibitors, individually and in combination, was used to determine drug response. Results Although knockdown of either S6K1 or GLI1 reduces the cellular proliferation of neuroblastoma cells, there is little effect of S6K1 on the expression of GLI1 mRNA and protein and on the capacity of GLI1 to activate target genes. No detectable phosphorylation of GLI1 is observed prior or following S6K1 knockdown. GLI1 overexpression can not rescue the reduced proliferation elicited by S6K1 knockdown. Moreover, inhibitors of PI3K/mTOR and GLI signaling reduced neuroblastoma cell growth, but no additional growth inhibitory effects were detected when the two classes of drugs were combined. Conclusion Our results demonstrate that the impact of S6K1 kinase on neuroblastoma cells is not mediated through modulation of GLI1 expression/activity. Electronic supplementary material The online version of this article (doi:10.1186/1471-2407-14-600) contains supplementary material, which is available to authorized users.
Collapse
|
587
|
Schleiermacher G, Janoueix-Lerosey I, Delattre O. Recent insights into the biology of neuroblastoma. Int J Cancer 2014; 135:2249-61. [PMID: 25124476 DOI: 10.1002/ijc.29077] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/08/2014] [Indexed: 01/24/2023]
Abstract
Neuroblastoma (NB) is an embryonal tumor of the sympathetic nervous system which accounts for 8-10% of pediatric cancers. It is characterized by a broad spectrum of clinical behaviors from spontaneous regression to fatal outcome despite aggressive therapies. Considerable progress has been made recently in the germline and somatic genetic characterization of patients and tumors. Indeed, predisposition genes that account for a significant proportion of familial and syndromic cases have been identified and genome-wide association studies have retrieved a number of susceptibility loci. In addition, genome-wide sequencing, copy-number and expression studies have been conducted on tumors and have detected important gene modifications, profiles and signatures that have strong implications for the therapeutic stratification of patients. The identification of major players in NB oncogenesis, including MYCN, ALK, PHOX2B and LIN28B, has enabled the development of new animal models. Our review focuses on these recent advances, on the insights they provide on the mechanisms involved in NB development and their applications for the clinical management of patients.
Collapse
Affiliation(s)
- Gudrun Schleiermacher
- Equipe SIRIC Recherche Translationnelle en Oncologie Pédiatrique, Département de Recherche Translationnelle et Inserm U830, Centre de Recherche, Paris Cedex, 05, France; Département de pédiatrie, Institut Curie, Paris Cedex, 05, France; Unité Génétique et Biologie des Cancers, Inserm U830, Centre de Recherche, Institut Curie, Paris Cedex, 05, France
| | | | | |
Collapse
|
588
|
Li Y, Li W, Zhang JG, Li HY, Li YM. Downregulation of tumor suppressor menin by miR-421 promotes proliferation and migration of neuroblastoma. Tumour Biol 2014; 35:10011-7. [PMID: 25012242 DOI: 10.1007/s13277-014-1921-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/01/2014] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma, featured by a high rate of spontaneous remissions, is the most common extra-cranial solid tumor in infants and children. Numerous reports have demonstrated that MicroRNAs (miRNAs) play essential roles in cancer progression, including cell proliferation, apoptosis, invasion, metastasis and angiogenesis. miR-421 functions as an onco-miR in some malignancies. However, its role in neuroblastoma remains poorly understood. In the present study, we found that miR-421 was increased in neuroblastoma tissues compared with matched adjacent normal tissues. Forced overexpression of miR-421 substantially enhanced cell proliferation, cell-cycle progression, migration, and invasion of neuroblastoma cells. At the molecular level, tumor suppressor menin was found to be a target of miR-421. Furthermore, downregulation of menin by small interfering RNA oligos exhibited similar effects with overexpression of miR-421. On the other hand, overexpression of menin partially reversed the proliferative effects of miR-421 in neuroblastoma cells. Collectively, miR-421 may promote neuroblastoma cell growth and motility partially by targeting menin.
Collapse
Affiliation(s)
- Yu Li
- Department of Neurosurgery, Henan Provincial People's Hospital, Zhengzhou University, Henan, 450003, China,
| | | | | | | | | |
Collapse
|
589
|
Pichler M, Calin GA. Long Noncoding RNA in Neuroblastoma: New Light on the (Old) N-Myc Story. J Natl Cancer Inst 2014; 106. [DOI: 10.1093/jnci/dju150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
590
|
Cheng M, Ahmed M, Xu H, Cheung NKV. Structural design of disialoganglioside GD2 and CD3-bispecific antibodies to redirect T cells for tumor therapy. Int J Cancer 2014; 136:476-86. [PMID: 24895182 DOI: 10.1002/ijc.29007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/21/2014] [Accepted: 05/08/2014] [Indexed: 02/02/2023]
Abstract
Antibody-based immunotherapy has proven efficacy for patients with high-risk neuroblastoma. However, despite being the most efficient tumoricidal effectors, T cells are underutilized because they lack Fc receptors. Using a monovalent single-chain fragment (ScFv) platform, we engineered tandem scFv bispecific antibodies (BsAbs) that specifically target disialoganglioside (GD2) on tumor cells and CD3 on T cells. Structural variants of BsAbs were constructed and ranked based on binding to GD2, and on competency in inducing T-cell-mediated tumor cytotoxicity. In vitro thermal stability and binding measurements were used to characterize each of the constructs, and in silico molecular modeling was used to show how the orientation of the variable region heavy (VH) and light (VL) chains of the anti-GD2 ScFv could alter the conformations of key residues responsible for high affinity binding. We showed that the VH-VL orientation, the (GGGGS)3 linker, disulfide bond stabilization of scFv, when combined with an affinity matured mutation provided the most efficient BsAb to direct T cells to lyse GD2-positive tumor cells. In vivo, the optimized BsAb could efficiently inhibit melanoma and neuroblastoma xenograft growth. These findings provide preclinical validation of a structure-based method to assist in designing BsAb for T-cell-mediated therapy.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | |
Collapse
|
591
|
Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Oncogene 2014; 34:2251-60. [PMID: 24909169 DOI: 10.1038/onc.2014.159] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 03/28/2014] [Accepted: 04/28/2014] [Indexed: 01/01/2023]
Abstract
CYLD is a deubiquitinating (DUB) enzyme that has a pivotal role in modulating nuclear factor kappa B (NF-κB) signaling pathways by removing the lysine 63- and linear-linked ubiquitin chain from substrates such as tumor necrosis factor receptor-associated factor 2 (TRAF2) and TRAF6. Loss of CYLD activity is associated with tumorigenicity, and levels of CYLD are lost or downregulated in different types of human tumors. In the present study, we found that high CYLD expression was associated with better overall survival and relapse-free neuroblastoma patient outcome, as well as inversely correlated with the stage of neuroblastoma. Retinoic acid-mediated differentiation of neuroblastoma restored CYLD expression and promoted SUMOylation of CYLD. This posttranslational modification inhibited deubiquitinase activity of CYLD against TRAF2 and TRAF6 and facilitated NF-κB signaling. Overexpression of non-SUMOylatable mutant CYLD in neuroblastoma cells reduced retinoic acid-induced NF-κB activation and differentiation of cells, but instead promoted cell death.
Collapse
|
592
|
Cheung IY, Farazi TA, Ostrovnaya I, Xu H, Tran H, Mihailovic A, Tuschl T, Cheung NKV. Deep MicroRNA sequencing reveals downregulation of miR-29a in neuroblastoma central nervous system metastasis. Genes Chromosomes Cancer 2014; 53:803-14. [PMID: 24898736 DOI: 10.1002/gcc.22189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/24/2014] [Indexed: 12/27/2022] Open
Abstract
Central nervous system (CNS) is an increasingly common site of isolated metastasis for patients with Stage 4 neuroblastoma. To explore the microRNA (miRNA) profile of this metastatic process, miRNA sequencing was performed to identify miRNA sequence families with differential expression between tumor pairs (pre-CNS primary and CNS metastasis) from 13 patients with Stage 4 neuroblastoma. Seven miRNA sequence families had distinct expression in CNS metastases when compared with their corresponding pre-CNS primaries. MiR-7 was upregulated (3.75-fold), and miR-21, miR-22, miR-29a, miR-143, miR-199a-1-3p, and miR-199a-1-5p were downregulated (3.5-6.1-fold), all confirmed by quantitative reverse transcription-PCR. MiR-29a, previously shown to be downregulated in a broad spectrum of solid tumors including neuroblastoma, had the most significant decrease in all 13 CNS metastases (P = 0.001). Its known onco-targets CDC6, CDK6, and DNMT3A, as well as B7-H3, an inhibitory ligand for T cells, and natural killer cells, were found to have higher differential expression in these 13 CNS metastases when compared with their paired primaries. Additionally, miR-29a expression in primary tumors was significantly lower among patients who eventually relapsed in the CNS. Irrespective of the amplification status of MYCN, which is known to be associated with metastasis, pre-CNS primaries, and CNS metastases had significantly lower miR-29a expression than non-CNS primary tumors. Among MYCN amplified cell lines, those from CNS relapse also had lower miR-29a expression than non-CNS relapse. These findings raised the hypothesis that miR-29a could be a biomarker for neuroblastoma CNS metastasis, and its downregulation may play a pivotal role in CNS progression.
Collapse
Affiliation(s)
- Irene Y Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | | | | | | | | | | | | | | |
Collapse
|
593
|
Berois N, Osinaga E. Glycobiology of neuroblastoma: impact on tumor behavior, prognosis, and therapeutic strategies. Front Oncol 2014; 4:114. [PMID: 24904828 PMCID: PMC4033258 DOI: 10.3389/fonc.2014.00114] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/02/2014] [Indexed: 01/28/2023] Open
Abstract
Neuroblastoma (NB), accounting for 10% of childhood cancers, exhibits aberrant cell-surface glycosylation patterns. There is evidence that changes in glycolipids and protein glycosylation pathways are associated to NB biological behavior. Polysialic acid (PSA) interferes with cellular adhesion, and correlates with NB progression and poor prognosis, as well as the expression of sialyltransferase STX, the key enzyme responsible for PSA synthesis. Galectin-1 and gangliosides, overexpressed and actively shedded by tumor cells, can modulate normal cells present in the tumor microenvironment, favoring angiogenesis and immunological escape. Different glycosyltransferases are emerging as tumor markers and potential molecular targets. Immunotherapy targeting disialoganglioside GD2 rises as an important treatment option. One anti-GD2 antibody (ch14.18), combined with IL-2 and GM-CSF, significantly improves survival for high-risk NB patients. This review summarizes our current knowledge on NB glycobiology, highlighting the molecular basis by which carbohydrates and protein–carbohydrate interactions impact on biological behavior and patient clinical outcome.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo , Montevideo , Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo , Montevideo , Uruguay ; Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República , Montevideo , Uruguay
| |
Collapse
|
594
|
Zeltner N, Lafaille FG, Fattahi F, Studer L. Feeder-free derivation of neural crest progenitor cells from human pluripotent stem cells. J Vis Exp 2014. [PMID: 24893703 DOI: 10.3791/51609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) have great potential for studying human embryonic development, for modeling human diseases in the dish and as a source of transplantable cells for regenerative applications after disease or accidents. Neural crest (NC) cells are the precursors for a large variety of adult somatic cells, such as cells from the peripheral nervous system and glia, melanocytes and mesenchymal cells. They are a valuable source of cells to study aspects of human embryonic development, including cell fate specification and migration. Further differentiation of NC progenitor cells into terminally differentiated cell types offers the possibility to model human diseases in vitro, investigate disease mechanisms and generate cells for regenerative medicine. This article presents the adaptation of a currently available in vitro differentiation protocol for the derivation of NC cells from hPSCs. This new protocol requires 18 days of differentiation, is feeder-free, easily scalable and highly reproducible among human embryonic stem cell (hESC) lines as well as human induced pluripotent stem cell (hiPSC) lines. Both old and new protocols yield NC cells of equal identity.
Collapse
Affiliation(s)
- Nadja Zeltner
- Developmental Biology, Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research;
| | - Fabien G Lafaille
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University
| | - Faranak Fattahi
- Developmental Biology, Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research
| | - Lorenz Studer
- Developmental Biology, Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research
| |
Collapse
|
595
|
Vishnyakova PA, Doronin II, Kholodenko IV, Ryazantsev DY, Molotkovskaya IM, Kholodenko RV. Caspases participation in cell death induced by the GD2-specific antibodies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2014. [DOI: 10.1134/s1068162014030157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
596
|
Kumar A, Fan D, DiPette DJ, Singh US. Sparstolonin B, a novel plant derived compound, arrests cell cycle and induces apoptosis in N-myc amplified and N-myc nonamplified neuroblastoma cells. PLoS One 2014; 9:e96343. [PMID: 24788776 PMCID: PMC4006872 DOI: 10.1371/journal.pone.0096343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/05/2014] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma is one of the most common solid tumors and accounts for ∼15% of all the cancer related deaths in the children. Despite the standard therapy for advanced disease including chemotherapy, surgery, and radiation, the mortality rate remains high for these patients. Hence, novel therapeutic agents are desperately needed. Here we examined the anticancer activity of a novel plant-derived compound, sparstolonin B (SsnB; 8,5′-dihydroxy-4-phenyl-5,2′-oxidoisocoumarin) using neuroblastoma cell lines of different genetics. SsnB was recently isolated from an aquatic Chinese herb, Sparganium stoloniferum, and tubers of this herb have been used in traditional Chinese medicine for the treatment of several inflammatory diseases and cancers. Our cell viability and morphological analysis indicated that SsnB at 10 µM concentration significantly inhibited the growth of both N-myc amplified (SK-N-BE(2), NGP, and IMR-32 cells) and N-myc nonamplified (SH-SY5Y and SKNF-1 cells) neuroblastoma cells. The flow cytometric analyses suggested that SsnB arrests the cell cycle progression at G2-M phase in all neuroblastoma cell lines tested. Exposure of SsnB inhibited the compact spheroid formation and reduced the tumorigenicity of SH-SY5Y cells and SK-N-BE(2) cells in in vitro 3-D cell culture assays (anchorage-independent colony formation assay and hanging drop assay). SsnB lowers the cellular level of glutathione (GSH), increases generation of reactive oxygen species and activates the cleavage of caspase-3 whereas co-incubation of a GSH precursor, N-acetylcysteine, along with SsnB attenuates the inhibitory effects of SsnB and increases the neuroblastoma cell viability. Our results for the first time demonstrate that SsnB possesses anticancer activity indicating that SsnB-induced reactive oxygen species generation promotes apoptotic cell death in neuroblastoma cells of different genetic background. Thus these data suggest that SsnB can be a promising drug candidate in neuroblastoma therapy.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States of America
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, United States of America
| | - Donald J. DiPette
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, South Carolina, United States of America
| | - Ugra S. Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
597
|
Brown BS, Patanam T, Mobli K, Celia C, Zage PE, Bean AJ, Tasciotti E. Etoposide-loaded immunoliposomes as active targeting agents for GD2-positive malignancies. Cancer Biol Ther 2014; 15:851-61. [PMID: 24755919 DOI: 10.4161/cbt.28875] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Systemic chemotherapeutics remain the standard of care for most malignancies even though they frequently suffer from narrow therapeutic index, poor serum solubility, and off-target effects. In this study, we have encapsulated etoposide, a topoisomerase inhibitor effective against a wide range of cancers, in surface-modified liposomes decorated with anti-GD2 antibodies. We characterized the properties of the liposomes using a variety of methods including dynamic light scattering, electron microscopy, and Fourier transformed infrared spectroscopy. We examined whether these immunoliposomes were able to target cell lines expressing varying levels of surface GD2 and affect cellular proliferation. Anti-GD2 liposomes were generally targeted in a manner that correlated with GD2 expression and inhibited proliferation in cell lines to which they were efficiently targeted. The mechanism by which the immunoliposomes entered targeted cells appeared to be via clathrin-dependent uptake as demonstrated using flow cytometry and confocal microscopy. These studies suggest that anti-GD2-targeted, etoposide-loaded liposomes represent a potential strategy for more effective delivery of anti-cancer drugs that could be used for GD2 positive tumors.
Collapse
Affiliation(s)
- Brandon S Brown
- Department of Neurobiology and Anatomy and Graduate School of Biomedical Sciences; The University of Texas Health Science Center at Houston; Houston, TX USA; Department of Nanomedicine; The Methodist Hospital Research Institute; Houston, TX USA
| | - Tariq Patanam
- Department of Nanomedicine; The Methodist Hospital Research Institute; Houston, TX USA
| | - Keyan Mobli
- Department of Neurobiology and Anatomy and Graduate School of Biomedical Sciences; The University of Texas Health Science Center at Houston; Houston, TX USA; Department of Nanomedicine; The Methodist Hospital Research Institute; Houston, TX USA
| | - Christian Celia
- Department of Nanomedicine; The Methodist Hospital Research Institute; Houston, TX USA; Department of Pharmacy; University "G. d'Annunzio" of Chieti; Pescara, Chieti, Italy
| | - Peter E Zage
- Dan L. Duncan Cancer Center; Baylor College of Medicine; Houston, TX USA; Section of Hematology-Oncology; Department of Pediatrics; Texas Children's Cancer Center; Baylor College of Medicine; Houston, TX USA
| | - Andrew J Bean
- Department of Neurobiology and Anatomy and Graduate School of Biomedical Sciences; The University of Texas Health Science Center at Houston; Houston, TX USA; Division of Pediatrics; The University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Ennio Tasciotti
- Department of Nanomedicine; The Methodist Hospital Research Institute; Houston, TX USA
| |
Collapse
|
598
|
Fort P, Théveneau E. PleiotRHOpic: Rho pathways are essential for all stages of Neural Crest development. Small GTPases 2014; 5:e27975. [PMID: 24614304 DOI: 10.4161/sgtp.27975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neural Crest (NC) cells are a multipotent migratory stem cell population unique to vertebrates, which contributes extensively to the formation of a wide array of neural and non-neural structures in the embryo. NC cells originate in the ectoderm at the border of the neural tube, undergo an epithelial-mesenchymal transition and acquire outstanding individual and collective migratory properties that allow them to disseminate and differentiate to different parts of the body. This exquisite capacity to switch from an epithelium to motile cells represents both a puzzling biological issue and an attractive model to address the basic mechanisms of cell migration and their alteration during cancer progression. Here we review how signaling pathways controlled by Rho GTPases, key players in cell adhesion, contraction, migration and polarity, contribute to the control the different phases of NC development.
Collapse
Affiliation(s)
- Philippe Fort
- CNRS; University Montpellier 2; CRBM-UMR5237; Montpellier, France
| | - Eric Théveneau
- CNRS; University Toulouse III; Centre de Biologie du Développement; UMR5547; Toulouse, France
| |
Collapse
|
599
|
Zhang H, Huang R, Cheung NKV, Guo H, Zanzonico PB, Thaler HT, Lewis JS, Blasberg RG. Imaging the norepinephrine transporter in neuroblastoma: a comparison of [18F]-MFBG and 123I-MIBG. Clin Cancer Res 2014; 20:2182-91. [PMID: 24573553 DOI: 10.1158/1078-0432.ccr-13-1153] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE The norepinephrine transporter (NET) is a critical regulator of catecholamine uptake in normal physiology and is expressed in neuroendocrine tumors like neuroblastoma. Although the norepinephrine analog, meta-iodobenzylguanidine (MIBG), is an established substrate for NET, (123)I/(131)I-MIBG has several clinical limitations for diagnostic imaging. In the current studies, we evaluated meta-[(18)F]-fluorobenzylguanidine ([(18)F]-MFBG) and compared it with (123)I-MIBG for imaging NET-expressing neuroblastomas. EXPERIMENTAL DESIGN NET expression levels in neuroblastoma cell lines were determined by Western blot and (123)I-MIBG uptake assays. Five neuroblastoma cell lines and two xenografts (SK-N-BE(2)C and LAN1) expressing different levels of NET were used for comparative in vitro and in vivo uptake studies. RESULTS The uptake of [(18)F]-MFBG in cells was specific and proportional to the expression level of NET. Although [(18)F]-MFBG had a 3-fold lower affinity for NET and an approximately 2-fold lower cell uptake in vitro compared with that of (123)I-MIBG, the in vivo imaging and tissue radioactivity concentration measurements demonstrated higher [(18)F]-MFBG xenograft uptake and tumor-to-normal organ ratios at 1 and 4 hours after injection. A comparison of 4 hours [(18)F]-MFBG PET (positron emission tomography) imaging with 24 hours (123)I-MIBG SPECT (single-photon emission computed tomography) imaging showed an approximately 3-fold higher tumor uptake of [(18)F]-MFBG, but slightly lower tumor-to-background ratios in mice. CONCLUSIONS [(18)F]-MFBG is a promising radiopharmaceutical for specifically imaging NET-expressing neuroblastomas, with fast pharmacokinetics and whole-body clearance. [(18)F]-MFBG PET imaging shows higher sensitivity, better detection of small lesions with low NET expression, allows same day scintigraphy with a shorter image acquisition time, and has the potential for lower patient radiation exposure compared with (131)I/(123)I-MIBG.
Collapse
Affiliation(s)
- Hanwen Zhang
- Authors' Affiliations: Departments of Radiology, Pediatrics, Neurology, Medical Physics, Epidemiology and Biostatistics, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, New York
| | | | | | | | | | | | | | | |
Collapse
|
600
|
Overexpression of the dependence receptor UNC5H4 inhibits cell migration and invasion, and triggers apoptosis in neuroblastoma cell. Tumour Biol 2014; 35:5417-25. [PMID: 24519068 DOI: 10.1007/s13277-014-1706-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/27/2014] [Indexed: 10/25/2022] Open
Abstract
UNC5H4 is a newly identified member of the UNC5H receptor family. Previously, we have demonstrated that UNC5H4 expression is significantly higher in favorable neuroblastomas than in unfavorable ones, and higher UNC5H4 level is correlated with longer survival time. However, the function of UNC5H4 in the tumorigenesis of neuroblastoma still remains elusive. In the present study, the effects of UNC5H4 overexpression on neuroblastoma SH-SY5Y cells were investigated. We showed that enforced expression of UNC5H4 receptor significantly inhibited anchorage-dependent and anchorage-independent growth of SH-SY5Y cells. Cell migration and invasion of SH-SY5Y cells transfected with UNC5H4-expressing plasmid were obviously suppressed as compared to those transfected with emptor vector or non-transfected cells. Moreover, overexpression of UNC5H4 resulted in apoptosis in SH-SY5Y cells. The induction of apoptosis by UNC5H4 was completely abolished in the presence of its ligand, netrin-1. Finally, caspase cleavage and the presence of death domain were required for UNC5H4 to induce apoptosis in neuroblastoma SH-SY5Y cells. These data suggest that the dependence receptor UNC5H4 may act as a putative tumor suppressor in neuroblastoma.
Collapse
|