551
|
Palla G, Ferrero E. Latent Factor Modeling of scRNA-Seq Data Uncovers Dysregulated Pathways in Autoimmune Disease Patients. iScience 2020; 23:101451. [PMID: 32853994 PMCID: PMC7452208 DOI: 10.1016/j.isci.2020.101451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/28/2020] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
Latent factor modeling applied to single-cell RNA sequencing (scRNA-seq) data is a useful approach to discover gene signatures. However, it is often unclear what methods are best suited for specific tasks and how latent factors should be interpreted. Here, we compare four state-of-the-art methods and propose an approach to assign derived latent factors to pathway activities and specific cell subsets. By applying this framework to scRNA-seq datasets from biopsies of patients with rheumatoid arthritis and systemic lupus erythematosus, we discover disease-relevant gene signatures in specific cellular subsets. In rheumatoid arthritis, we identify an inflammatory OSMR signaling signature active in a subset of synovial fibroblasts and an efferocytic signature in a subset of synovial monocytes. Overall, we provide insights into latent factors models for the analysis of scRNA-seq data, develop a framework to identify cell subtypes in a phenotype-driven way, and use it to identify novel pathways dysregulated in rheumatoid arthritis.
Collapse
Affiliation(s)
- Giovanni Palla
- Autoimmunity Transplantation and Inflammation Bioinformatics, Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4056, Switzerland
| | - Enrico Ferrero
- Autoimmunity Transplantation and Inflammation Bioinformatics, Novartis Institutes for BioMedical Research, Novartis Campus, Basel 4056, Switzerland
| |
Collapse
|
552
|
Bedoui Y, Lebeau G, Guillot X, Dargai F, Guiraud P, Neal JW, Ralandison S, Gasque P. Emerging Roles of Perivascular Mesenchymal Stem Cells in Synovial Joint Inflammation. J Neuroimmune Pharmacol 2020; 15:838-851. [PMID: 32964324 DOI: 10.1007/s11481-020-09958-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
In contrast to the significant advances in our understanding of the mesenchymal stem cell (MSC) populations in bone marrow (BM), little is known about the MSCs that are resident in the synovial joint and their possible roles in the tissue homeostasis, chronic inflammation as well as in repair. Neural crest is a transient embryonic structure, generating multipotential MSC capable of migrating along peripheral nerves and blood vessels to colonize most tissue types. In adult, these MSC can provide functional stromal support as a stem cell niche for lymphocyte progenitors for instance in the BM and the thymus. Critically, MSC have major immunoregulatory activities to control adverse inflammation and infection. These MSC will remain associated to vessels (perivascular (p) MSC) and their unique expression of markers such as myelin P0 and transcription factors (e.g. Gli1 and FoxD1) has been instrumental to develop transgenic mice to trace the fate of these cells in health and disease conditions. Intriguingly, recent investigations of chronic inflammatory diseases argue for an emerging role of pMSC in several pathological processes. In response to tissue injuries and with the release of host cell debris (e.g. alarmins), pMSC can detach from vessels and proliferate to give rise to either lipofibroblasts, osteoblasts involved in the ossification of arteries and myofibroblasts contributing to fibrosis. This review will discuss currently available data that suggest a role of pMSC in tissue homeostasis and pathogenesis of the synovial tissue and joints. Graphical abstract.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité de recherche EPI (Etudes Pharmacoimmunologiques), Université de la Réunion, 97400, St Denis, La Réunion, France
| | - Grégorie Lebeau
- Unité de recherche EPI (Etudes Pharmacoimmunologiques), Université de la Réunion, 97400, St Denis, La Réunion, France
| | - Xavier Guillot
- Service de Rhumatologie, CHU Bellepierre, Felix Guyon et Unité de recherche EPI, 97400, St Denis, La Réunion, France
| | - Farouk Dargai
- Chirurgie orthopédique et traumatologie, CHU Bellepierre, Felix Guyon, St Denis, La Réunion, France
| | - Pascale Guiraud
- Unité de recherche EPI (Etudes Pharmacoimmunologiques), Université de la Réunion, 97400, St Denis, La Réunion, France
| | - Jim W Neal
- Infection and Immunity, Henry Wellcome Building, Cardiff University, Cardiff, CF14 4XN, UK
| | - Stéphane Ralandison
- Service de Rhumatologie- Médecine Interne, CHU Morafeno, Toamasina, Madagascar
| | - Philippe Gasque
- Unité de recherche EPI (Etudes Pharmacoimmunologiques), Université de la Réunion, 97400, St Denis, La Réunion, France. .,Pôle de Biologie, Laboratoire d'Immunologique Clinique et expérimentale ZOI, LICE-OI, CHU Bellepierre, Felix Guyon, St Denis, La Réunion, France.
| |
Collapse
|
553
|
Liu Y, Cook C, Sedgewick AJ, Zhang S, Fassett MS, Ricardo-Gonzalez RR, Harirchian P, Kashem SW, Hanakawa S, Leistico JR, North JP, Taylor MA, Zhang W, Man MQ, Charruyer A, Beliakova-Bethell N, Benz SC, Ghadially R, Mauro TM, Kaplan DH, Kabashima K, Choi J, Song JS, Cho RJ, Cheng JB. Single-Cell Profiling Reveals Divergent, Globally Patterned Immune Responses in Murine Skin Inflammation. iScience 2020; 23:101582. [PMID: 33205009 PMCID: PMC7648132 DOI: 10.1016/j.isci.2020.101582] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/12/2020] [Accepted: 09/16/2020] [Indexed: 01/01/2023] Open
Abstract
Inflammatory response heterogeneity has impeded high-resolution dissection of diverse immune cell populations during activation. We characterize mouse cutaneous immune cells by single-cell RNA sequencing, after inducing inflammation using imiquimod and oxazolone dermatitis models. We identify 13 CD45+ subpopulations, which broadly represent most functionally characterized immune cell types. Oxazolone pervasively upregulates Jak2/Stat3 expression across T cells and antigen-presenting cells (APCs). Oxazolone also induces Il4/Il13 expression in newly infiltrating basophils, and Il4ra and Ccl24, most prominently in APCs. In contrast, imiquimod broadly upregulates Il17/Il22 and Ccl4/Ccl5. A comparative analysis of single-cell inflammatory transcriptional responses reveals that APC response to oxazolone is tightly restricted by cell identity, whereas imiquimod enforces shared programs on multiple APC populations in parallel. These global molecular patterns not only contrast immune responses on a systems level but also suggest that the mechanisms of new sources of inflammation can eventually be deduced by comparison to known signatures. Oxazolone pervasively upregulates Jak2/Stat3 expression across T cells and APCs Il4/Il13 induction in skin by oxazolone is dominated by infiltrating basophils Imiquimod broadly increases Il17/Il22 and Ccl4/Ccl5, extending to non-T cells Oxazolone induces more highly compartmentalized immune cell responses than imiquimod
Collapse
Affiliation(s)
- Yale Liu
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, ShaanXi, China
| | - Christopher Cook
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | | | - Shuyi Zhang
- Department of Physics, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Marlys S. Fassett
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA, USA
| | - Roberto R. Ricardo-Gonzalez
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Department of Immunology and Microbiology, University of California, San Francisco, San Francisco, CA, USA
| | - Paymann Harirchian
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Sakeen W. Kashem
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Sho Hanakawa
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jacob R. Leistico
- Department of Physics, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Jeffrey P. North
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Mark A. Taylor
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
| | - Wei Zhang
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Mao-Qiang Man
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Alexandra Charruyer
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Nadejda Beliakova-Bethell
- Department of Medicine, University of California San Diego, La Jolla, CA 92093-0679, USA
- Veterans Affairs Medical Center, San Diego, CA, USA
| | | | - Ruby Ghadially
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Theodora M. Mauro
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
| | - Daniel H. Kaplan
- Departments of Dermatology and Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Singapore Immunology Network (SIgN) and Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern School of Medicine, Chicago, IL, USA
| | - Jun S. Song
- Department of Physics, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Raymond J. Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Corresponding author
| | - Jeffrey B. Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA
- Dermatology Service, San Francisco Veterans Administration Health Care System, San Francisco, CA, USA
- Corresponding author
| |
Collapse
|
554
|
Wang C, Xiao Y, Lao M, Wang J, Xu S, Li R, Xu X, Kuang Y, Shi M, Zou Y, Wang Q, Liang L, Zheng SG, Xu H. Increased SUMO-activating enzyme SAE1/UBA2 promotes glycolysis and pathogenic behavior of rheumatoid fibroblast-like synoviocytes. JCI Insight 2020; 5:135935. [PMID: 32938830 PMCID: PMC7526534 DOI: 10.1172/jci.insight.135935] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are critical to joint inflammation and destruction in rheumatoid arthritis (RA). Increased glycolysis in RA FLSs contributes to persistent joint damage. SUMOylation, a posttranslational modification of proteins, plays an important role in initiation and development of many diseases. However, the role of small ubiquitin-like modifier–activating (SUMO-activating) enzyme 1 (SAE1)/ubiquitin like modifier activating enzyme 2 (UBA2) in regulating the pathogenic FLS behaviors is unknown. Here, we found an increased expression of SAE1 and UBA2 in FLSs and synovial tissues from patients with RA. SAE1 or UBA2 knockdown by siRNA and treatment with GA, an inhibitor of SAE1/UBA2-mediated SUMOylation, resulted in reduced glycolysis, aggressive phenotype, and inflammation. SAE1/UBA2-mediated SUMOylation of pyruvate kinase M2 (PKM2) promoted its phosphorylation and nuclear translocation and decreased PK activity. Moreover, inhibition of PKM2 phosphorylation increased PK activity and suppressed glycolysis, aggressive phenotype, and inflammation. We further demonstrated that STAT5A mediated SUMOylated PKM2-induced glycolysis and biological behaviors. Interestingly, GA treatment attenuated the severity of arthritis in mice with collagen-induced arthritis and human TNF-α transgenic mice. These findings suggest that an increase in synovial SAE1/UBA2 may contribute to synovial glycolysis and joint inflammation in RA and that targeting SAE1/UBA2 may have therapeutic potential in patients with RA. SUMO-activating enzyme SAE1/UBA2 promotes glycolysis and pathogenic behavior of rheumatoid fibroblast-like synoviocytes through SUMOylation of pyruvate kinase M2.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Rheumatology and Immunology and
| | - Youjun Xiao
- Department of Rheumatology and Immunology and
| | - Minxi Lao
- Department of Rheumatology and Immunology and
| | | | - Siqi Xu
- Department of Rheumatology and Immunology and
| | - Ruiru Li
- Department of Rheumatology and Immunology and
| | - Xuanxian Xu
- Department of Anesthesia, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Kuang
- Department of Rheumatology and Immunology and
| | - Maohua Shi
- Department of Rheumatology and Immunology and
| | - Yaoyao Zou
- Department of Rheumatology and Immunology and
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University People's Hospital, Shenzhen, China
| | | | - Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Internal Medicine, The Ohio State University College of Medicine and The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hanshi Xu
- Department of Rheumatology and Immunology and
| |
Collapse
|
555
|
Yan M, Su J, Li Y. Rheumatoid arthritis-associated bone erosions: evolving insights and promising therapeutic strategies. Biosci Trends 2020; 14:342-348. [PMID: 32908076 DOI: 10.5582/bst.2020.03253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The human immune system has evolved to recognize and eradicate pathogens, a process that is known as "host defense". If, however, the immune system does not work properly, it can mistakenly attack the body's own tissues and induce autoimmune diseases. Rheumatoid arthritis (RA) is such an autoimmune disease in which the synovial joints are predominately attacked by the immune system. Moreover, RA is associated with bone destruction and joint deformity. Although biologic agents have propelled RA treatment forward dramatically over the past 30 years, a considerable number of patients with RA still experience progressive bone damage and joint disability. That is to be expected since current RA therapies are all intended to halt inflammation but not to alleviate bone destruction. A better understanding of bone erosions is crucial to developing a novel strategy to treat RA-associated erosions. This review provides insights into RA-associated bone destruction and perspectives for future clinical interventions.
Collapse
Affiliation(s)
- Minglu Yan
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jianling Su
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
556
|
Li N, Gao J, Mi L, Zhang G, Zhang L, Zhang N, Huo R, Hu J, Xu K. Synovial membrane mesenchymal stem cells: past life, current situation, and application in bone and joint diseases. Stem Cell Res Ther 2020; 11:381. [PMID: 32894205 PMCID: PMC7487958 DOI: 10.1186/s13287-020-01885-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 08/14/2020] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from not only bone marrow, but also various adult mesenchymal tissues such as periosteum, skeletal muscle, and adipose tissue. MSCs from different tissue sources have different molecular phenotypes and differentiation potential. Synovial membrane (SM) is an important and highly specific component of synovial joints. Previous studies have suggested that the synovium is a structure with a few cell layers thick and consists mainly of fibroblast-like synoviocytes (FLS), which forms a layer that lining the synovial membrane on the joint cavity and synovial fluid through cell-cell contact. In recent years, studies have found that there are also mesenchymal stem cells in the synovium, and as an important part of the mesenchymal stem cell family, it has strong capabilities of cartilage forming and tissue repairing. This article reviews the sources, surface markers, subtypes, influencing factors, and applications in inflammatory joints of synovial membrane mesenchymal stem cells (SM-MSCs) in recent years, aiming to clarify the research status and existing problems of SM-MSCs.
Collapse
Affiliation(s)
- Na Li
- Department of Rheumatology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Jinfang Gao
- Department of Rheumatology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Liangyu Mi
- Department of Rheumatology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Gailian Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Na Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China
| | - Rongxiu Huo
- Department of Rheumatology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Junping Hu
- Department of Rheumatology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, 030032, Shanxi, China
| | - Ke Xu
- Department of Rheumatology, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, China.
| |
Collapse
|
557
|
Lowin T, Tingting R, Zurmahr J, Classen T, Schneider M, Pongratz G. Cannabidiol (CBD): a killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death Dis 2020; 11:714. [PMID: 32873774 PMCID: PMC7463000 DOI: 10.1038/s41419-020-02892-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Cannabidiol (CBD) is a non-intoxicating phytocannabinoid from cannabis sativa that has demonstrated anti-inflammatory effects in several inflammatory conditions including arthritis. However, CBD binds to several receptors and enzymes and, therefore, its mode of action remains elusive. In this study, we show that CBD increases intracellular calcium levels, reduces cell viability and IL-6/IL-8/MMP-3 production of rheumatoid arthritis synovial fibroblasts (RASF). These effects were pronounced under inflammatory conditions by activating transient receptor potential ankyrin (TRPA1), and by opening of the mitochondrial permeability transition pore. Changes in intracellular calcium and cell viability were determined by using the fluorescent dyes Cal-520/PoPo3 together with cell titer blue and the luminescent dye RealTime-glo. Cell-based impedance measurements were conducted with the XCELLigence system and TRPA1 protein was detected by flow cytometry. Cytokine production was evaluated by ELISA. CBD reduced cell viability, proliferation, and IL-6/IL-8 production of RASF. Moreover, CBD increased intracellular calcium and uptake of the cationic viability dye PoPo3 in RASF, which was enhanced by pre-treatment with TNF. Concomitant incubation of CBD with the TRPA1 antagonist A967079 but not the TRPV1 antagonist capsazepine reduced the effects of CBD on calcium and PoPo3 uptake. In addition, an inhibitor of the mitochondrial permeability transition pore, cyclosporin A, also blocked the effects of CBD on cell viability and IL-8 production. PoPo3 uptake was inhibited by the voltage-dependent anion-selective channel inhibitor DIDS and Decynium-22, an inhibitor for all organic cation transporter isoforms. CBD increases intracellular calcium levels, reduces cell viability, and IL-6/IL-8/MMP-3 production of RASF by activating TRPA1 and mitochondrial targets. This effect was enhanced by pre-treatment with TNF suggesting that CBD preferentially targets activated, pro-inflammatory RASF. Thus, CBD possesses anti-arthritic activity and might ameliorate arthritis via targeting synovial fibroblasts under inflammatory conditions.
Collapse
Affiliation(s)
- Torsten Lowin
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany.
| | - Ren Tingting
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| | - Julia Zurmahr
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| | - Tim Classen
- Klinik für Orthopädie/Orthopädische Rheumatologie, St. Elisabeth-Hospital Meerbusch-Lank, D-40668, Meerbusch, Germany
| | - Matthias Schneider
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| | - Georg Pongratz
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| |
Collapse
|
558
|
|
559
|
Ng B, Dong J, Viswanathan S, Widjaja AA, Paleja BS, Adami E, Ko NSJ, Wang M, Lim S, Tan J, Chothani SP, Albani S, Schafer S, Cook SA. Fibroblast-specific IL11 signaling drives chronic inflammation in murine fibrotic lung disease. FASEB J 2020; 34:11802-11815. [PMID: 32656894 DOI: 10.1096/fj.202001045rr] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/08/2023]
Abstract
Repetitive pulmonary injury causes fibrosis and inflammation that underlies chronic lung diseases such as idiopathic pulmonary fibrosis (IPF). Interleukin 11 (IL11) is important for pulmonary fibroblast activation but the contribution of fibroblast-specific IL11 activity to lung fibro-inflammation is not known. To address this gap in knowledge, we generated mice with loxP-flanked Il11ra1 and deleted the IL11 receptor in adult fibroblasts (CKO mice). In the bleomycin (BLM) model of lung fibrosis, CKO mice had reduced fibrosis, lesser fibroblast ERK activation, and diminished immune cell STAT3 phosphorylation. Following BLM injury, acute inflammation in CKO mice was similar to controls but chronic immune infiltrates and pro-inflammatory gene activation, including NF-kB phosphorylation, were notably reduced. Therapeutic prevention of IL11 activity with neutralizing antibodies mirrored the effects of genetic deletion of Il11ra1 in fibroblasts. These data reveal a new function for IL11 in pro-inflammatory lung fibroblasts and highlight the important contribution of the stroma to inflammation in pulmonary disease.
Collapse
Affiliation(s)
- Benjamin Ng
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jinrui Dong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sivakumar Viswanathan
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Anissa A Widjaja
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Bhairav S Paleja
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Eleonora Adami
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Nicole S J Ko
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Mao Wang
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Stella Lim
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Jessie Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Sonia P Chothani
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Salvatore Albani
- Translational Immunology Institute, SingHealth/Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Sebastian Schafer
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Stuart A Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart and Lung Institute, Imperial College, London, UK
- MRC-London Institute of Medical Sciences, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
560
|
Julià A, Ávila G, Celis R, Sanmartí R, Ramírez J, Marsal S, Cañete JD. Lower peripheral helper T cell levels in the synovium are associated with a better response to anti-TNF therapy in rheumatoid arthritis. Arthritis Res Ther 2020; 22:196. [PMID: 32843099 PMCID: PMC7446220 DOI: 10.1186/s13075-020-02287-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background The mechanisms by which only some rheumatoid arthritis (RA) patients respond favorably to TNF blockade are still poorly characterized. The goal of this study was to identify biological features that explain this differential response using a multilevel transcriptome analysis of the synovial membrane. Methods Synovial samples from 11 patients on anti-TNF therapy were obtained by arthroscopy at baseline and week 20. Analysis of the synovial transcriptome was performed at the gene, pathway, and cell-type levels. Newly characterized pathogenic cell types in RA, peripheral helper T cells (TPH), and CD34-THY1+ fibroblasts were estimated using a cell-type deconvolution approach. TPH association was validated using immunofluorescence. External validation was performed on an independent dataset. Results After multiple-test correction, 16 and 4 genes were differentially expressed at baseline and week 20, respectively. At the pathway level, 86 and 17 biological processes were significantly enriched at baseline and week 20, respectively. Longitudinal expression changes were associated with a drastic decrease of innate immune activity (P < 5e−30), and an activation of the bone and cartilage regeneration processes (P < 5e−10). Cell-type deconvolution revealed a significant association between low TPH cells at baseline and a better response (P = 0.026). Lower TPH cells were maintained in good responders up to week 20 (P = 0.032). Immunofluorescent analyses confirmed the accuracy of the cell-type estimation (r2 = 0.58, P = 0.005) and an association with response. TPH association with anti-TNF response was validated in an independent sample of RA patients (P = 0.0040). Conclusions A lower abundance in the synovial membrane of the pathogenic T cell type newly associated with RA, peripheral helper T lymphocyte, is associated with a good response to anti-TNF therapy. Major changes in the myeloid cell compartment were also observed in response to therapy. The results of this study could help develop more effective therapies aimed at treating the pathogenic mechanisms in RA that are currently not well targeted by anti-TNF agents.
Collapse
Affiliation(s)
- Antonio Julià
- Rheumatology Research Group, Vall d'Hebron Research Institute, Vall Hebron University Hospital, Pg Vall Hebron 119-120, 08035, Barcelona, Spain.
| | - Gabriela Ávila
- Rheumatology Research Group, Vall d'Hebron Research Institute, Vall Hebron University Hospital, Pg Vall Hebron 119-120, 08035, Barcelona, Spain
| | - Raquel Celis
- Rheumatology Department, Hospital Clínic de Barcelona i IDIBAPS, Barcelona, Spain
| | - Raimon Sanmartí
- Rheumatology Department, Hospital Clínic de Barcelona i IDIBAPS, Barcelona, Spain
| | - Julio Ramírez
- Rheumatology Department, Hospital Clínic de Barcelona i IDIBAPS, Barcelona, Spain
| | - Sara Marsal
- Rheumatology Research Group, Vall d'Hebron Research Institute, Vall Hebron University Hospital, Pg Vall Hebron 119-120, 08035, Barcelona, Spain
| | - Juan D Cañete
- Rheumatology Department, Hospital Clínic de Barcelona i IDIBAPS, Barcelona, Spain
| |
Collapse
|
561
|
Mechanical adaptation of synoviocytes A and B to immobilization and remobilization: a study in the rat knee flexion model. J Mol Histol 2020; 51:605-611. [PMID: 32778991 DOI: 10.1007/s10735-020-09902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
The objective of this study was to quantify the in vivo response of synoviocytes type A and B in the posterior joint capsule to knee immobilization and remobilization. Also, to correlate the immunohistochemical data with selected mRNA expression in the posterior joint capsule. Forty-two adult male Sprague-Dawley rats had one knee joint immobilized in flexion for durations of 1-4 weeks. Fifteen were harvested after immobilization and 15 were remobilized for 4 weeks. They were analyzed immunohistochemically with CD68 and CD55 antibodies as markers for synoviocytes type A and type B, respectively. Controls were 15 age-matched rats. The remaining 12 rats had their posterior capsule harvested and synoviocyte-specific CD68, CD55, and uridine diphosphoglucose dehydrogenase (UDPGD) mRNA expression was measured. Controls were 12 sham-operated knees. Knee immobilization for 2 weeks significantly increased synoviocytes A:B staining ratio compared to controls (3.88 ± 1.39 vs. 1.83 ± 0.76; p < 0.05). Remobilization for 4 weeks abolished the increase. Remobilization of knees that were immobilized for 1 week also significantly lowered the synoviocytes A:B staining ratios compared to immobilized-only knees (0.66 ± 0.23 vs. 2.19 ± 0.54; p < 0.05) and to controls (0.66 ± 0.23 vs. 1.32 ± 0.29; p < 0.05). Consistent with the immunohistochemistry, mRNA expression of synoviocyte type B-specific CD55 and UDPGD genes were significantly lower in the capsules immobilized for 2 weeks (both p < 0.05). Knee immobilization and remobilization significantly modulated synoviocytes in vivo, stressing their mechanosensitive nature and possible contribution to immobility-induced changes of the joint capsule.
Collapse
|
562
|
Ricci B, Tycksen E, Celik H, Belle JI, Fontana F, Civitelli R, Faccio R. Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. eLife 2020; 9:e54659. [PMID: 32755539 PMCID: PMC7428306 DOI: 10.7554/elife.54659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/27/2020] [Indexed: 01/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a heterogeneous population of mesenchymal cells supporting tumor progression, whose origin remains to be fully elucidated. Osterix (Osx) is a marker of osteogenic differentiation, expressed in skeletal progenitor stem cells and bone-forming osteoblasts. We report Osx expression in CAFs and by using Osx-cre;TdTomato reporter mice we confirm the presence and pro-tumorigenic function of TdTOSX+ cells in extra-skeletal tumors. Surprisingly, only a minority of TdTOSX+ cells expresses fibroblast and osteogenic markers. The majority of TdTOSX+ cells express the hematopoietic marker CD45, have a genetic and phenotypic profile resembling that of tumor infiltrating myeloid and lymphoid populations, but with higher expression of lymphocytic immune suppressive genes. We find Osx transcript and Osx protein expression early during hematopoiesis, in subsets of hematopoietic stem cells and multipotent progenitor populations. Our results indicate that Osx marks distinct tumor promoting CD45- and CD45+ populations and challenge the dogma that Osx is expressed exclusively in cells of mesenchymal origin.
Collapse
Affiliation(s)
- Biancamaria Ricci
- Department of Orthopedics, Washington University School of MedicineSt. LouisUnited States
| | - Eric Tycksen
- Genome Technology Access Center, Department of Genetics, Washington University School of MedicineSt. LouisUnited States
| | - Hamza Celik
- Department of Medicine, Division of Oncology, Washington University School of MedicineSt. LouisUnited States
| | - Jad I Belle
- Department of Medicine, Division of Oncology, Washington University School of MedicineSt. LouisUnited States
| | - Francesca Fontana
- Department of Medicine, Division of Oncology, Washington University School of MedicineSt. LouisUnited States
| | - Roberto Civitelli
- Department of Medicine, Division of Bone and Mineral Diseases, Washington University School of MedicineSt. LouisUnited States
| | - Roberta Faccio
- Department of Orthopedics, Washington University School of MedicineSt. LouisUnited States
- Shriners Children HospitalSt. LouisUnited States
| |
Collapse
|
563
|
Koliaraki V, Prados A, Armaka M, Kollias G. The mesenchymal context in inflammation, immunity and cancer. Nat Immunol 2020; 21:974-982. [PMID: 32747813 DOI: 10.1038/s41590-020-0741-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022]
Abstract
Mesenchymal cells are mesoderm-derived stromal cells that are best known for providing structural support to organs, synthesizing and remodeling the extracellular matrix (ECM) and regulating development, homeostasis and repair of tissues. Recent detailed mechanistic insights into the biology of fibroblastic mesenchymal cells have revealed they are also significantly involved in immune regulation, stem cell maintenance and blood vessel function. It is now becoming evident that these functions, when defective, drive the development of complex diseases, such as various immunopathologies, chronic inflammatory disease, tissue fibrosis and cancer. Here, we provide a concise overview of the contextual contribution of fibroblastic mesenchymal cells in physiology and disease and bring into focus emerging evidence for both their heterogeneity at the single-cell level and their tissue-specific, spatiotemporal functional diversity.
Collapse
Affiliation(s)
- Vasiliki Koliaraki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece.
| | - Alejandro Prados
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Marietta Armaka
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - George Kollias
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece. .,Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece. .,Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
564
|
Chakrabarti S, Ai M, Henson FM, Smith ESJ. Peripheral mechanisms of arthritic pain: A proposal to leverage large animals for in vitro studies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100051. [PMID: 32817908 PMCID: PMC7426561 DOI: 10.1016/j.ynpai.2020.100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 04/14/2023]
Abstract
Pain arising from musculoskeletal disorders such as arthritis is one of the leading causes of disability. Whereas the past 20-years has seen an increase in targeted therapies for rheumatoid arthritis (RA), other arthritis conditions, especially osteoarthritis, remain poorly treated. Although modulation of central pain pathways occurs in chronic arthritis, multiple lines of evidence indicate that peripherally driven pain is important in arthritic pain. To understand the peripheral mechanisms of arthritic pain, various in vitro and in vivo models have been developed, largely in rodents. Although rodent models provide numerous advantages for studying arthritis pathogenesis and treatment, the anatomy and biomechanics of rodent joints differ considerably to those of humans. By contrast, the anatomy and biomechanics of joints in larger animals, such as dogs, show greater similarity to human joints and thus studying them can provide novel insight for arthritis research. The purpose of this article is firstly to review models of arthritis and behavioral outcomes commonly used in large animals. Secondly, we review the existing in vitro models and assays used to study arthritic pain, primarily in rodents, and discuss the potential for adopting these strategies, as well as likely limitations, in large animals. We believe that exploring peripheral mechanisms of arthritic pain in vitro in large animals has the potential to reduce the veterinary burden of arthritis in commonly afflicted species like dogs, as well as to improve translatability of pain research into the clinic.
Collapse
Affiliation(s)
- Sampurna Chakrabarti
- Department of Neuroscience, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- Department of Pharmacology, University of Cambridge, UK
| | - Minji Ai
- Department of Veterinary Medicine, University of Cambridge, UK
| | | | | |
Collapse
|
565
|
Alivernini S, MacDonald L, Elmesmari A, Finlay S, Tolusso B, Gigante MR, Petricca L, Di Mario C, Bui L, Perniola S, Attar M, Gessi M, Fedele AL, Chilaka S, Somma D, Sansom SN, Filer A, McSharry C, Millar NL, Kirschner K, Nerviani A, Lewis MJ, Pitzalis C, Clark AR, Ferraccioli G, Udalova I, Buckley CD, Gremese E, McInnes IB, Otto TD, Kurowska-Stolarska M. Distinct synovial tissue macrophage subsets regulate inflammation and remission in rheumatoid arthritis. Nat Med 2020; 26:1295-1306. [PMID: 32601335 DOI: 10.1038/s41591-020-0939-8] [Citation(s) in RCA: 390] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 05/12/2020] [Indexed: 12/28/2022]
Abstract
Immune-regulatory mechanisms of drug-free remission in rheumatoid arthritis (RA) are unknown. We hypothesized that synovial tissue macrophages (STM), which persist in remission, contribute to joint homeostasis. We used single-cell transcriptomics to profile 32,000 STMs and identified phenotypic changes in patients with early/active RA, treatment-refractory/active RA and RA in sustained remission. Each clinical state was characterized by different frequencies of nine discrete phenotypic clusters within four distinct STM subpopulations with diverse homeostatic, regulatory and inflammatory functions. This cellular atlas, combined with deep-phenotypic, spatial and functional analyses of synovial biopsy fluorescent activated cell sorted STMs, revealed two STM subpopulations (MerTKposTREM2high and MerTKposLYVE1pos) with unique remission transcriptomic signatures enriched in negative regulators of inflammation. These STMs were potent producers of inflammation-resolving lipid mediators and induced the repair response of synovial fibroblasts in vitro. A low proportion of MerTKpos STMs in remission was associated with increased risk of disease flare after treatment cessation. Therapeutic modulation of MerTKpos STM subpopulations could therefore be a potential treatment strategy for RA.
Collapse
MESH Headings
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Biopsy
- Cell Lineage/genetics
- Humans
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Joints/immunology
- Joints/metabolism
- Joints/pathology
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Macrophages/immunology
- Macrophages/metabolism
- Mannose Receptor
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/immunology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Synovial Fluid/immunology
- Synovial Fluid/metabolism
- Synovial Membrane
Collapse
Affiliation(s)
- Stefano Alivernini
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), .
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
- Institute of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy.
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK.
| | - Lucy MacDonald
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Aziza Elmesmari
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Samuel Finlay
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Rita Gigante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Clara Di Mario
- Institute of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Bui
- Division of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Simone Perniola
- Institute of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Moustafa Attar
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Marco Gessi
- Division of Pathology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Laura Fedele
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Sabarinadh Chilaka
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Domenico Somma
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Stephen N Sansom
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew Filer
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
| | - Charles McSharry
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Neal L Millar
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | | | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Andrew R Clark
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Irina Udalova
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Christopher D Buckley
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, University of Birmingham, Birmingham, UK
| | - Elisa Gremese
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Institute of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Iain B McInnes
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE)
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Thomas D Otto
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), .
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK.
| | - Mariola Kurowska-Stolarska
- Research into Inflammatory Arthritis Centre Versus Arthritis (RACE), .
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK.
| |
Collapse
|
566
|
Han D, Fang Y, Tan X, Jiang H, Gong X, Wang X, Hong W, Tu J, Wei W. The emerging role of fibroblast-like synoviocytes-mediated synovitis in osteoarthritis: An update. J Cell Mol Med 2020; 24:9518-9532. [PMID: 32686306 PMCID: PMC7520283 DOI: 10.1111/jcmm.15669] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA), the most ubiquitous degenerative disease affecting the entire joint, is characterized by cartilage degradation and synovial inflammation. Although the pathogenesis of OA remains poorly understood, synovial inflammation is known to play an important role in OA development. However, studies on OA pathophysiology have focused more on cartilage degeneration and osteophytes, rather than on the inflamed and thickened synovium. Fibroblast-like synoviocytes (FLS) produce a series of pro-inflammatory regulators, such as inflammatory cytokines, nitric oxide (NO) and prostaglandin E2 (PGE2 ). These regulators are positively associated with the clinical symptoms of OA, such as inflammatory pain, joint swelling and disease development. A better understanding of the inflammatory immune response in OA-FLS could provide a novel approach to comprehensive treatment strategies for OA. Here, we have summarized recently published literatures referring to epigenetic modifications, activated signalling pathways and inflammation-associated factors that are involved in OA-FLS-mediated inflammation. In addition, the current related clinical trials and future perspectives were also summarized.
Collapse
Affiliation(s)
- Dafei Han
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yilong Fang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xuewen Tan
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Haifei Jiang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xun Gong
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xinming Wang
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Wenming Hong
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Jiajie Tu
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
567
|
Orange DE, Yao V, Sawicka K, Fak J, Frank MO, Parveen S, Blachere NE, Hale C, Zhang F, Raychaudhuri S, Troyanskaya OG, Darnell RB. RNA Identification of PRIME Cells Predicting Rheumatoid Arthritis Flares. N Engl J Med 2020; 383:218-228. [PMID: 32668112 PMCID: PMC7546156 DOI: 10.1056/nejmoa2004114] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rheumatoid arthritis, like many inflammatory diseases, is characterized by episodes of quiescence and exacerbation (flares). The molecular events leading to flares are unknown. METHODS We established a clinical and technical protocol for repeated home collection of blood in patients with rheumatoid arthritis to allow for longitudinal RNA sequencing (RNA-seq). Specimens were obtained from 364 time points during eight flares over a period of 4 years in our index patient, as well as from 235 time points during flares in three additional patients. We identified transcripts that were differentially expressed before flares and compared these with data from synovial single-cell RNA-seq. Flow cytometry and sorted-blood-cell RNA-seq in additional patients were used to validate the findings. RESULTS Consistent changes were observed in blood transcriptional profiles 1 to 2 weeks before a rheumatoid arthritis flare. B-cell activation was followed by expansion of circulating CD45-CD31-PDPN+ preinflammatory mesenchymal, or PRIME, cells in the blood from patients with rheumatoid arthritis; these cells shared features of inflammatory synovial fibroblasts. Levels of circulating PRIME cells decreased during flares in all 4 patients, and flow cytometry and sorted-cell RNA-seq confirmed the presence of PRIME cells in 19 additional patients with rheumatoid arthritis. CONCLUSIONS Longitudinal genomic analysis of rheumatoid arthritis flares revealed PRIME cells in the blood during the period before a flare and suggested a model in which these cells become activated by B cells in the weeks before a flare and subsequently migrate out of the blood into the synovium. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Dana E Orange
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Vicky Yao
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Kirsty Sawicka
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - John Fak
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Mayu O Frank
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Salina Parveen
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Nathalie E Blachere
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Caryn Hale
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Fan Zhang
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Soumya Raychaudhuri
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Olga G Troyanskaya
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Robert B Darnell
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| |
Collapse
|
568
|
Affiliation(s)
- Ellen M Gravallese
- From the Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston (E.M.G.); and the Division of Immunology and Rheumatology, Stanford University School of Medicine, and VA Palo Alto Health Care System, Palo Alto, CA (W.H.R.)
| | - William H Robinson
- From the Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston (E.M.G.); and the Division of Immunology and Rheumatology, Stanford University School of Medicine, and VA Palo Alto Health Care System, Palo Alto, CA (W.H.R.)
| |
Collapse
|
569
|
Pakshir P, Noskovicova N, Lodyga M, Son DO, Schuster R, Goodwin A, Karvonen H, Hinz B. The myofibroblast at a glance. J Cell Sci 2020; 133:133/13/jcs227900. [DOI: 10.1242/jcs.227900] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
In 1971, Gabbiani and co-workers discovered and characterized the “modification of fibroblasts into cells which are capable of an active spasm” (contraction) in rat wound granulation tissue and, accordingly, named these cells ‘myofibroblasts’. Now, myofibroblasts are not only recognized for their physiological role in tissue repair but also as cells that are key in promoting the development of fibrosis in all organs. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the current understanding of central aspects of myofibroblast biology, such as their definition, activation from different precursors, the involved signaling pathways and most widely used models to study their function. Myofibroblasts will be placed into context with their extracellular matrix and with other cell types communicating in the fibrotic environment. Furthermore, the challenges and strategies to target myofibroblasts in anti-fibrotic therapies are summarized to emphasize their crucial role in disease progression.
Collapse
Affiliation(s)
- Pardis Pakshir
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Nina Noskovicova
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Dong Ok Son
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Amanda Goodwin
- Nottingham NIHR Respiratory Biomedical Research Unit, University of Nottingham, Nottingham NG7 2UH, UK
| | - Henna Karvonen
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Respiratory Medicine, Research Unit of Internal Medicine, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, POB 20, 90029 Oulu, Finland
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
570
|
Mc Fie M, Koneva L, Collins I, Coveney CR, Clube AM, Chanalaris A, Vincent TL, Bezbradica JS, Sansom SN, Wann AKT. Ciliary proteins specify the cell inflammatory response by tuning NFκB signalling, independently of primary cilia. J Cell Sci 2020; 133:jcs.239871. [PMID: 32503942 PMCID: PMC7358134 DOI: 10.1242/jcs.239871] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/21/2020] [Indexed: 12/17/2022] Open
Abstract
Complex inflammatory signalling cascades define the response to tissue injury but also control development and homeostasis, limiting the potential for these pathways to be targeted therapeutically. Primary cilia are subcellular regulators of cellular signalling, controlling how signalling is organized, encoded and, in some instances, driving or influencing pathogenesis. Our previous research revealed that disruption of ciliary intraflagellar transport (IFT), altered the cell response to IL-1β, supporting a putative link emerging between cilia and inflammation. Here, we show that IFT88 depletion affects specific cytokine-regulated behaviours, changing cytosolic NFκB translocation dynamics but leaving MAPK signalling unaffected. RNA-seq analysis indicates that IFT88 regulates one third of the genome-wide targets, including the pro-inflammatory genes Nos2, Il6 and Tnf. Through microscopy, we find altered NFκB dynamics are independent of assembly of a ciliary axoneme. Indeed, depletion of IFT88 inhibits inflammatory responses in the non-ciliated macrophage. We propose that ciliary proteins, including IFT88, KIF3A, TTBK2 and NPHP4, act outside of the ciliary axoneme to tune cytoplasmic NFκB signalling and specify the downstream cell response. This is thus a non-canonical function for ciliary proteins in shaping cellular inflammation. This article has an associated First Person interview with the first author of the paper. Summary: Ciliary proteins, acting independently of the ciliary axoneme, regulate the dynamics of cytosolic NFκB, but not other signalling pathways, defining an important subset of the inflammatory response.
Collapse
Affiliation(s)
- Megan Mc Fie
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK.,School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Lada Koneva
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Isabella Collins
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Clarissa R Coveney
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Aisling M Clube
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Anastasios Chanalaris
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Tonia L Vincent
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Jelena S Bezbradica
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Stephen N Sansom
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Angus K T Wann
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| |
Collapse
|
571
|
Barnhoorn MC, Hakuno SK, Bruckner RS, Rogler G, Hawinkels LJAC, Scharl M. Stromal Cells in the Pathogenesis of Inflammatory Bowel Disease. J Crohns Colitis 2020; 14:995-1009. [PMID: 32160284 PMCID: PMC7392167 DOI: 10.1093/ecco-jcc/jjaa009] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Up till now, research on inflammatory bowel disease [IBD] has mainly been focused on the immune cells present in the gastrointestinal tract. However, recent insights indicate that stromal cells also play an important and significant role in IBD pathogenesis. Stromal cells in the intestines regulate both intestinal epithelial and immune cell homeostasis. Different subsets of stromal cells have been found to play a role in other inflammatory diseases [e.g. rheumatoid arthritis], and these various stromal subsets now appear to carry out also specific functions in the inflamed gut in IBD. Novel potential therapies for IBD utilize, as well as target, these pathogenic stromal cells. Injection of mesenchymal stromal cells [MSCs] into fistula tracts of Crohn's disease patients is already approved and used in clinical settings. In this review we discuss the current knowledge of the role of stromal cells in IBD pathogenesis. We further outline recent attempts to modify the stromal compartment in IBD with agents that target or replace the pathogenic stroma.
Collapse
Affiliation(s)
- M C Barnhoorn
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands,Corresponding author: Prof. Dr Michael Scharl, Department of Gastroenterology and Hepatology, University Hospital Zurich, Rämistrasse 100, Zurich 8091, Switzerland. Tel: 41 44 255 3419; Fax: 41 44 255 9497;
| | - S K Hakuno
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - R S Bruckner
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands,Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - G Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - L J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - M Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
572
|
Heparin Anticoagulant for Human Bone Marrow Does Not Influence In Vitro Performance of Human Mesenchymal Stromal Cells. Cells 2020; 9:cells9071580. [PMID: 32610653 PMCID: PMC7408646 DOI: 10.3390/cells9071580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are a promising cell source for tissue engineering and regenerative medicine. In our lab, we found that MSC preparations from bone marrow of many different donors had a limited capacity of in vitro differentiation into osteogenic and chondrogenic lineages-a capacity claimed to be inherent to MSCs. The current study was designed to test the hypothesis that the amount of heparin used as anticoagulant during bone marrow harvest had an inhibitory influence on the in vitro differentiation capacity of isolated MSCs. Bone marrow was obtained from the femoral cavity of twelve donors during total hip arthroplasty in the absence or presence of heparin. No coagulation was observed in the absence of heparin. The number of mononuclear cells was independent of heparin addition. Isolated MSCs were characterized by morphology, population doubling times, expression of cell surface antigens and in vitro differentiation. Results of these analyses were independent of the amount of heparin. Transcriptome analyses of cells from three randomly chosen donors and quantitative realtime PCR (qRT-PCR) analysis from cells of all donors demonstrated no clear effect of heparin on the transcriptome of the cells. This excludes heparin as a potential source of disparate results.
Collapse
|
573
|
Role of type I interferons and innate immunity in systemic sclerosis: unbalanced activities on distinct cell types? Curr Opin Rheumatol 2020; 31:569-575. [PMID: 31436583 DOI: 10.1097/bor.0000000000000659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The role of type I IFNs (IFN-I) in the promotion of autoimmunity has been well established. However, its role in the skin fibrosis of systemic sclerosis (SSc) is less clear. IFN-I can participate to tissue repair, and, here, we will consider the extent to which IFN-I's role in SSc skin fibrosis may reflect in part IFN-I functions during wound healing. RECENT FINDINGS Studies are beginning to delineate whether IFN-I has a protective or pathogenic role and how IFN-I affects tissue biology. Recent support for a pathogenic role came from a study depleting plasmacytoid dendritic cells during bleomycin-induced skin fibrosis. The depletion reduced the bleomycin-induced IFN-I-stimulated transcripts and both prevented and reversed fibrosis. Additionally, two recent articles, one identifying SSc endothelial cell injury markers and one showing repressed IFN signaling in SSc keratinocytes, suggest the possibility of unbalanced IFN-I activities on distinct cells types. SUMMARY Recent results support a pathogenic role for IFN-I in skin fibrosis, and recent studies along with others suggest a scenario whereby SSc skin damage results from too much IFN-I-activity driving vasculopathy in combination with too little IFN-I-mediated epidermal integrity and antifibrotic fibroblast phenotype.
Collapse
|
574
|
Abstract
PURPOSE OF REVIEW Fibroblasts, the major cell population in all connective tissues, are best known for their role in depositing and maintaining the extracellular matrix. Recently, numerous specialised functions have been discovered revealing unpredicted fibroblast heterogeneity. We will discuss this heterogeneity, from its origins in development to alterations in fibrotic disease conditions. RECENT FINDINGS Advances in lineage tracing and single-cell transcriptional profiling techniques have revealed impressive diversity amongst fibroblasts in a range of organ systems including the skin, lung, kidney and heart. However, there are major challenges in assimilating the findings and understanding their functional significance. Certain fibroblast subsets can make specific contributions to healthy tissue functioning and to fibrotic disease processes; thus, therapeutic manipulation of particular subsets could be clinically beneficial. Here we propose that four key variables determine a fibroblast's phenotype underpinning their enormous heterogeneity: tissue status, regional features, microenvironment and cell state. We review these in different organ systems, highlighting the importance of understanding the divergent fibroblast properties and underlying mechanisms in tissue fibrosis.
Collapse
Affiliation(s)
- Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, New Hunt’s House, Guy’s Campus, King’s College London, London, SE1 1UL UK
| | - Emanuel Rognoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ UK
| |
Collapse
|
575
|
Svensson MND, Zoccheddu M, Yang S, Nygaard G, Secchi C, Doody KM, Slowikowski K, Mizoguchi F, Humby F, Hands R, Santelli E, Sacchetti C, Wakabayashi K, Wu DJ, Barback C, Ai R, Wang W, Sims GP, Mydel P, Kasama T, Boyle DL, Galimi F, Vera D, Tremblay ML, Raychaudhuri S, Brenner MB, Firestein GS, Pitzalis C, Ekwall AKH, Stanford SM, Bottini N. Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. SCIENCE ADVANCES 2020; 6:eaba4353. [PMID: 32637608 PMCID: PMC7319753 DOI: 10.1126/sciadv.aba4353] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression. Here, we assessed the potential of immunoglobulin-like domains 1 and 2 (Ig1&2), a decoy protein that activates the receptor tyrosine phosphatase sigma (PTPRS) on FLS, for RA therapy. We report that PTPRS expression is enriched in synovial lining RA FLS and that Ig1&2 reduces migration of RA but not osteoarthritis FLS. Administration of an Fc-fusion Ig1&2 attenuated arthritis in mice without affecting innate or adaptive immunity. Furthermore, PTPRS was down-regulated in FLS by tumor necrosis factor (TNF) via a phosphatidylinositol 3-kinase-mediated pathway, and TNF inhibition enhanced PTPRS expression in arthritic joints. Combination of ineffective doses of TNF inhibitor and Fc-Ig1&2 reversed arthritis in mice, providing an example of synergy between FLS-targeted and immunosuppressive DMARD therapies.
Collapse
Affiliation(s)
- Mattias N. D. Svensson
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Martina Zoccheddu
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shen Yang
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gyrid Nygaard
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian Secchi
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Biomedical Sciences, National Institute of Biostructures and Biosystems, University of Sassari Medical School, 07100 Sassari, Italy
| | - Karen M. Doody
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kamil Slowikowski
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Partners HealthCare Personalized Medicine, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, MA 02138, USA
- Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA 02138, USA
| | - Fumitaka Mizoguchi
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Frances Humby
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Rebecca Hands
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Eugenio Santelli
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Cristiano Sacchetti
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kuninobu Wakabayashi
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Dennis J. Wu
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher Barback
- Department of Radiology, University of California, La Jolla, CA 92093, USA
- UCSD Molecular Imaging Program, University of California, La Jolla, CA 92093, USA
| | - Rizi Ai
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gary P. Sims
- Respiratory, Inflammation and Autoimmunity, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Piotr Mydel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, The Laboratory Building, 5th Floor, 5021 Bergen, Norway
- Department of Microbiology, Jagiellonian University, Kraków, Poland
| | - Tsuyoshi Kasama
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - David L. Boyle
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesco Galimi
- Department of Biomedical Sciences, National Institute of Biostructures and Biosystems, University of Sassari Medical School, 07100 Sassari, Italy
| | - David Vera
- Department of Radiology, University of California, La Jolla, CA 92093, USA
- UCSD Molecular Imaging Program, University of California, La Jolla, CA 92093, USA
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Partners HealthCare Personalized Medicine, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, MA 02138, USA
- Rheumatology Unit, Karolinska Institutet, Stockholm S-171 76, Sweden
- Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PT, UK
| | - Michael B. Brenner
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gary S. Firestein
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Anna-Karin H. Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephanie M. Stanford
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nunzio Bottini
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
576
|
Xu H, Zheng SG, Fox D. Editorial: Immunomodulatory Functions of Fibroblast-like Synoviocytes in Joint Inflammation and Destruction during Rheumatoid Arthritis. Front Immunol 2020; 11:955. [PMID: 32508834 PMCID: PMC7251023 DOI: 10.3389/fimmu.2020.00955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hanshi Xu
- Department of Rheumatology and Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University Wexner Medical Center and College of Medicine, Columbus, OH, United States
| | - David Fox
- Division of Rheumatology, Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
577
|
Tschumperlin DJ, Lagares D. Mechano-therapeutics: Targeting Mechanical Signaling in Fibrosis and Tumor Stroma. Pharmacol Ther 2020; 212:107575. [PMID: 32437826 DOI: 10.1016/j.pharmthera.2020.107575] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Pathological remodeling of the extracellular matrix (ECM) by activated myofibroblasts is a hallmark of fibrotic diseases and desmoplastic tumors. Activation of myofibroblasts occurs in response to fibrogenic tissue injury as well as in tumor-associated fibrotic reactions. The molecular determinants of myofibroblast activation in fibrosis and tumor stroma have traditionally been viewed to include biochemical agents, such as dysregulated growth factor and cytokine signaling, which profoundly alter the biology of fibroblasts, ultimately leading to overexuberant matrix deposition and fibrosis. More recently, compelling evidence has shown that altered mechanical properties of the ECM such as matrix stiffness are major drivers of tissue fibrogenesis by promoting mechano-activation of fibroblasts. In this Review, we discuss new insights into the role of the biophysical microenvironment in the amplified activation of fibrogenic myofibroblasts during the development and progression of fibrotic diseases and desmoplastic tumors. We also summarize novel therapeutic targets for anti-fibrotic therapy based on the mechanobiology of tissue fibrosis and tumor stroma, a class of drugs known as "mechano-therapeutics".
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Tissue Repair and Mechanobiology Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 1(st) St SW, Rochester, MN 55905, USA.
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
578
|
Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol 2020; 16:316-333. [PMID: 32393826 DOI: 10.1038/s41584-020-0413-5] [Citation(s) in RCA: 529] [Impact Index Per Article: 105.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated disease that primarily affects the synovium of diarthrodial joints. During the course of RA, the synovium transforms into a hyperplastic invasive tissue that causes destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS), which form the lining of the joint, are epigenetically imprinted with an aggressive phenotype in RA and have an important role in these pathological processes. In addition to producing the extracellular matrix and joint lubricants, FLS in RA produce pathogenic mediators such as cytokines and proteases that contribute to disease pathogenesis and perpetuation. The development of multi-omics integrative analyses have enabled new ways to dissect the mechanisms that imprint FLS, have helped to identify potential FLS subsets with distinct functions and have identified differences in FLS phenotypes between joints in individual patients. This Review provides an overview of advances in understanding of FLS biology and highlights omics approaches and studies that hold promise for identifying future therapeutic targets.
Collapse
Affiliation(s)
- Gyrid Nygaard
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, San Diego, CA, USA.
| |
Collapse
|
579
|
Shipman WD, Sandoval MJ, Veiga K, Donlin LT, Lu TT. Fibroblast subtypes in tissues affected by autoimmunity: with lessons from lymph node fibroblasts. Curr Opin Immunol 2020; 64:63-70. [PMID: 32387902 DOI: 10.1016/j.coi.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The recent advent of single-cell technologies has fast-tracked the discovery of multiple fibroblast subsets in tissues affected by autoimmune disease. In recent years, interest in lymph node fibroblasts that support and regulate immune cells has also grown, leading to an expanding framework of stromal cell subsets with distinct spatial, transcriptional, and functional characteristics. Inflammation can drive tissue fibroblasts to adopt a lymphoid tissue stromal cell phenotype, suggesting that fibroblasts in diseased tissues can have counterparts in lymphoid tissues. Here, we examine fibroblast subsets in tissues affected by autoimmunity in the context of knowledge gained from studies on lymph node fibroblasts, with the ultimate aim to better understand stromal cell heterogeneity in these immunologically reactive tissues.
Collapse
Affiliation(s)
- William D Shipman
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA; Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Marvin J Sandoval
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA
| | - Keila Veiga
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA
| | - Laura T Donlin
- Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Theresa T Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021, USA; Pediatric Rheumatology, Hospital for Special Surgery, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
580
|
Klareskog L, Rönnelid J, Saevarsdottir S, Padyukov L, Alfredsson L. The importance of differences; On environment and its interactions with genes and immunity in the causation of rheumatoid arthritis. J Intern Med 2020; 287:514-533. [PMID: 32176395 DOI: 10.1111/joim.13058] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
The current review uses rheumatoid arthritis (RA) as a prominent example for how studies on the interplay between environmental and genetic factors in defined subsets of a disease can be used to formulate aetiological hypotheses that subsequently can be tested for causality using molecular and functional studies. Major discussed findings are that exposures to airways from many different noxious agents including cigarette smoke, silica dust and more interact with major susceptibility genes, mainly HLA-DR genetic variants in triggering antigen-specific immune reactions specific for RA. We also discuss how several other environmental and lifestyle factors, including microbial, neural and metabolic factors, can influence risk for RA in ways that are different in different subsets of RA.The description of these processes in RA provides the best example so far in any immune-mediated disease of how triggering of immunity at one anatomical site in the context of known environmental and genetic factors subsequently can lead to symptoms that precede the classical inflammatory disease symptoms and later contribute also to the classical RA joint inflammation. The findings referred to in the review have led to a change of paradigms for very early therapy and prevention of RA and to efforts towards what we have named 'personalized prevention'. We believe that the progress described here for RA will be of relevance for research and practice also in other immune-mediated diseases.
Collapse
Affiliation(s)
- L Klareskog
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden
| | - J Rönnelid
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - S Saevarsdottir
- Division of Clinical Epidemiology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden.,Faculty of Medicine, School of Health Sciences, University of Iceland, Karolinska Institutet, Stockholm, Sweden
| | - L Padyukov
- From the, Division of Rheumatology, Department of Medicine, Karolinska Institutet and Karolinska University Hospital (Solna), Stockholm, Sweden
| | - L Alfredsson
- Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
581
|
Huizinga TW, Holers VM, Anolik J, Brenner MB, Buckley CD, Bykerk V, Connolly SE, Deane KD, Guo J, Hodge M, Hoffmann S, Nestle F, Pitzalis C, Raychaudhuri S, Yamamoto K, Li Z, Klareskog L. Disruptive innovation in rheumatology: new networks of global public-private partnerships are needed to take advantage of scientific progress. Ann Rheum Dis 2020; 79:553-555. [PMID: 32139419 PMCID: PMC8114417 DOI: 10.1136/annrheumdis-2019-216846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/04/2022]
Affiliation(s)
- Tom Wj Huizinga
- Rheumatology, Leiden University Medical Center, Leiden, Netherlands
| | - V Michael Holers
- Rheumatology, University of Colorado School of Medicine, Aurora, Denver, Colorado, USA
| | - Jennifer Anolik
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine, Rochester, New York, USA
| | - Michael B Brenner
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Vivian Bykerk
- Rheumatology, The Hospital for Special Surgery, New York, New York, USA
- Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Sean E Connolly
- Department of Immunology and Inflammation, Bristol Myers Squibb Co. Research and Development, Princeton, New Jersey, USA
| | - Kevin D Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jianping Guo
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Martin Hodge
- Department of Rheumatology, Pfizer Global Pharmaceuticals, New York, New York, USA
| | - Steve Hoffmann
- Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Frank Nestle
- Immunology and Inflammation Therapeutic Research Area Sanofi US, Sanofi Genzyme, Cambridge, Massachusetts, USA
| | - Costantino Pitzalis
- Experimental Medicine and Rheumatology, William Harvey Research Institute, London, UK
| | - Soumya Raychaudhuri
- Arthritis Research UK Epidemiology Unit, The University of Manchester, Manchester, UK
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kazuhiko Yamamoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | | |
Collapse
|
582
|
Affiliation(s)
- Josef S Smolen
- Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
583
|
Wei K, Korsunsky I, Marshall JL, Gao A, Watts GFM, Major T, Croft AP, Watts J, Blazar PE, Lange JK, Thornhill TS, Filer A, Raza K, Donlin LT, Siebel CW, Buckley CD, Raychaudhuri S, Brenner MB. Notch signalling drives synovial fibroblast identity and arthritis pathology. Nature 2020; 582:259-264. [PMID: 32499639 PMCID: PMC7841716 DOI: 10.1038/s41586-020-2222-z] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/26/2020] [Indexed: 12/26/2022]
Abstract
The synovium is a mesenchymal tissue composed mainly of fibroblasts with a lining and sublining that surrounds the joints. In rheumatoid arthritis (RA), the synovial tissue undergoes marked hyperplasia, becomes inflamed and invasive and destroys the joint1,2. Recently, we and others found that a subset of fibroblasts located in the sublining undergoes major expansion in RA and is linked to disease activity3,4,5. However, the molecular mechanism by which these fibroblasts differentiate and expand in RA remains unknown. Here, we identified a critical role for NOTCH3 signaling in the differentiation of perivascular and sublining CD90(THY1)+ fibroblasts. Using single cell RNA-sequencing and synovial tissue organoids, we found that NOTCH3 signaling drives both transcriptional and spatial gradients in fibroblasts emanating from vascular endothelial cells outward. In active RA, NOTCH3 and NOTCH target genes are markedly upregulated in synovial fibroblasts. Importantly, genetic deletion of Notch3 or monoclonal antibody-blockade of NOTCH3 signaling attenuates inflammation and prevents joint damage in inflammatory arthritis. Our results indicate that synovial fibroblasts exhibit positional identity regulated by endothelium-derived Notch signaling and that this stromal crosstalk pathway underlies inflammation and pathology in inflammatory arthritis.
Collapse
Affiliation(s)
- Kevin Wei
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ilya Korsunsky
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jennifer L Marshall
- Rheumatology Research Group, Institute for Inflammation and Ageing, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Anqi Gao
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Gerald F M Watts
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Triin Major
- Rheumatology Research Group, Institute for Inflammation and Ageing, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Adam P Croft
- Rheumatology Research Group, Institute for Inflammation and Ageing, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Jordan Watts
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Philip E Blazar
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeffrey K Lange
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Thomas S Thornhill
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Karim Raza
- Rheumatology Research Group, Institute for Inflammation and Ageing, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Laura T Donlin
- Arthritis and Tissue Degeneration, Hospital for Special Surgery, New York, NY, USA
| | | | - Christian W Siebel
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Christopher D Buckley
- Rheumatology Research Group, Institute for Inflammation and Ageing, NIHR Birmingham Biomedical Research Center and Clinical Research Facility, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK.,The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. .,Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA. .,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. .,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. .,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Michael B Brenner
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
584
|
Silva-Cayetano A, Linterman MA. Stromal cell control of conventional and ectopic germinal centre reactions. Curr Opin Immunol 2020; 64:26-33. [PMID: 32325390 DOI: 10.1016/j.coi.2020.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022]
Abstract
The germinal centre (GC) is a specialized cellular structure that forms in response to antigenic stimulation. It generates long-term humoral immunity through the production of memory B cells and long-lived antibody-secreting plasma cells. Conventional GCs form within secondary lymphoid organs, where networks of specialised stromal cells that form during embryogenesis act as the stage upon which the various GC immune cell players are brought together, nurtured and co-ordinated to generate a productive response. In non-lymphoid organs, ectopic GCs can form in response to persistent antigenic and inflammatory stimuli. Unlike secondary lymphoid tissues, non-lymphoid organs do not have a developmentally programmed stromal cell network capable of supporting the germinal centre reaction; therefore, the local tissue stroma must be remodelled by inflammatory stimuli in order to host a GC reaction. These ectopic GCs produce memory B cells and plasma cells that form a critical component of the humoral immune response.
Collapse
|
585
|
Thomson CA, Nibbs RJ, McCoy KD, Mowat AM. Immunological roles of intestinal mesenchymal cells. Immunology 2020; 160:313-324. [PMID: 32181492 DOI: 10.1111/imm.13191] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
The intestine is continuously exposed to an enormous variety and quantity of antigens and innate immune stimuli derived from both pathogens and harmless materials, such as food and commensal bacteria. Accordingly, the intestinal immune system is uniquely adapted to ensure appropriate responses to the different kinds of challenge; maintaining tolerance to harmless antigens in the steady-state, whilst remaining poised to deal with potential pathogens. To accomplish this, leucocytes of the intestinal immune system have to adapt to a constantly changing environment and interact with many different non-leucocytic intestinal cell types, including epithelial and endothelial cells, neurons, and a heterogenous network of intestinal mesenchymal cells (iMC). These interactions are intricately involved in the generation of protective immunity, the elaboration of inflammatory responses, and the development of inflammatory conditions, such as inflammatory bowel diseases. Here we discuss recent insights into the immunological functions of iMC under homeostatic and inflammatory conditions, focusing particularly on iMC in the mucosa and submucosa, and highlighting how an appreciation of the immunology of iMC may help understand the pathogenesis and treatment of disease.
Collapse
Affiliation(s)
- Carolyn A Thomson
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert J Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathy D McCoy
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Allan Mcl Mowat
- Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
586
|
Pucino V, Certo M, Varricchi G, Marone G, Ursini F, Rossi FW, De Paulis A, Mauro C, Raza K, Buckley CD. Metabolic Checkpoints in Rheumatoid Arthritis. Front Physiol 2020; 11:347. [PMID: 32362840 PMCID: PMC7180190 DOI: 10.3389/fphys.2020.00347] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Several studies have highlighted the interplay between metabolism, immunity and inflammation. Both tissue resident and infiltrating immune cells play a major role in the inflammatory process of rheumatoid arthritis (RA) via the production of cytokines, adipo-cytokines and metabolic intermediates. These functions are metabolically demanding and require the most efficient use of bioenergetic pathways. The synovial membrane is the primary site of inflammation in RA and exhibits distinctive histological patterns characterized by different metabolism, prognosis and response to treatment. In the RA synovium, the high energy demand by stromal and infiltrating immune cells, causes the accumulation of metabolites, and adipo-cytokines, which carry out signaling functions, as well as activating transcription factors which act as metabolic sensors. These events drive immune and joint-resident cells to acquire pro-inflammatory effector functions which in turn perpetuate chronic inflammation. Whether metabolic changes are a consequence of the disease or one of the causes of RA pathogenesis is still under investigation. This review covers our current knowledge of cell metabolism in RA. Understanding the intricate interactions between metabolic pathways and the inflammatory and immune responses will provide more awareness of the mechanisms underlying RA pathogenesis and will identify novel therapeutic options to treat this disease.
Collapse
Affiliation(s)
- Valentina Pucino
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Michelangelo Certo
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy
- Ospedale dei Colli, Hospital Pharmacy, Naples, Italy
| | - Francesco Ursini
- Section of Rheumatology, Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Amato De Paulis
- Department of Translational Medical Sciences (DiSMeT) and Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karim Raza
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
- Research into Inflammatory Arthritis Centre Versus Arthritis, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
- MRC and Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Christopher Dominic Buckley
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
587
|
Jackson-Jones LH, Smith P, Portman JR, Magalhaes MS, Mylonas KJ, Vermeren MM, Nixon M, Henderson BEP, Dobie R, Vermeren S, Denby L, Henderson NC, Mole DJ, Bénézech C. Stromal Cells Covering Omental Fat-Associated Lymphoid Clusters Trigger Formation of Neutrophil Aggregates to Capture Peritoneal Contaminants. Immunity 2020; 52:700-715.e6. [PMID: 32294409 PMCID: PMC7156918 DOI: 10.1016/j.immuni.2020.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/11/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
The omentum is a visceral adipose tissue rich in fat-associated lymphoid clusters (FALCs) that collects peritoneal contaminants and provides a first layer of immunological defense within the abdomen. Here, we investigated the mechanisms that mediate the capture of peritoneal contaminants during peritonitis. Single-cell RNA sequencing and spatial analysis of omental stromal cells revealed that the surface of FALCs were covered by CXCL1+ mesothelial cells, which we termed FALC cover cells. Blockade of CXCL1 inhibited the recruitment and aggregation of neutrophils at FALCs during zymosan-induced peritonitis. Inhibition of protein arginine deiminase 4, an enzyme important for the release of neutrophil extracellular traps, abolished neutrophil aggregation and the capture of peritoneal contaminants by omental FALCs. Analysis of omental samples from patients with acute appendicitis confirmed neutrophil recruitment and bacterial capture at FALCs. Thus, specialized omental mesothelial cells coordinate the recruitment and aggregation of neutrophils to capture peritoneal contaminants.
Collapse
Affiliation(s)
- Lucy Helen Jackson-Jones
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK; Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Peter Smith
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | - Katie Jude Mylonas
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK; Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | - Mark Nixon
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | - Ross Dobie
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sonja Vermeren
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Laura Denby
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Neil Cowan Henderson
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Damian James Mole
- Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Cécile Bénézech
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
588
|
Šimková A, Bušek P, Šedo A, Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140409. [PMID: 32171757 DOI: 10.1016/j.bbapap.2020.140409] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
Abstract
Fibroblast activation protein (FAP) is a non-classical serine protease expressed predominantly in conditions accompanied by tissue remodeling, particularly cancer. Due to its plasma membrane localization, FAP represents a promising molecular target for tumor imaging and treatment. The unique enzymatic activity of FAP facilitates development of diagnostic and therapeutic tools based on molecular recognition of FAP by substrates and small-molecule inhibitors, in addition to conventional antibody-based strategies. In this review, we provide background on the pathophysiological role of FAP and discuss its potential for diagnostic and therapeutic applications. Furthermore, we present a detailed analysis of the structural patterns crucial for substrate and inhibitor recognition by the FAP active site and determinants of selectivity over the related proteases dipeptidyl peptidase IV and prolyl endopeptidase. We also review published data on targeting of the tumor microenvironment with FAP antibodies, FAP-targeted prodrugs, activity-based probes and small-molecule inhibitors. We describe use of a recently developed, selective FAP inhibitor with low-nanomolar potency in inhibitor-based targeting strategies including synthetic antibody mimetics based on hydrophilic polymers and inhibitor conjugates for PET imaging. In conclusion, recent advances in understanding of the molecular structure and function of FAP have significantly contributed to the development of several tools with potential for translation into clinical practice.
Collapse
Affiliation(s)
- Adéla Šimková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| | - Petr Bušek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| |
Collapse
|
589
|
Hand LE, Gray KJ, Dickson SH, Simpkins DA, Ray DW, Konkel JE, Hepworth MR, Gibbs JE. Regulatory T cells confer a circadian signature on inflammatory arthritis. Nat Commun 2020; 11:1658. [PMID: 32245954 PMCID: PMC7125185 DOI: 10.1038/s41467-020-15525-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
The circadian clock is an intrinsic oscillator that imparts 24 h rhythms on immunity. This clock drives rhythmic repression of inflammatory arthritis during the night in mice, but mechanisms underlying this effect are not clear. Here we show that the amplitude of intrinsic oscillators within macrophages and neutrophils is limited by the chronic inflammatory environment, suggesting that rhythms in inflammatory mediators might not be a direct consequence of intrinsic clocks. Anti-inflammatory regulatory T (Treg) cells within the joints show diurnal variation, with numbers peaking during the nadir of inflammation. Furthermore, the anti-inflammatory action of Treg cells on innate immune cells contributes to the night-time repression of inflammation. Treg cells do not seem to have intrinsic circadian oscillators, suggesting that rhythmic function might be a consequence of external signals. These data support a model in which non-rhythmic Treg cells are driven to rhythmic activity by systemic signals to confer a circadian signature to chronic arthritis.
Collapse
Affiliation(s)
- L E Hand
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - K J Gray
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - S H Dickson
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - D A Simpkins
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - D W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - J E Konkel
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK
| | - M R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK
| | - J E Gibbs
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
590
|
Labinsky H, Panipinto PM, Ly KA, Khuat DK, Madarampalli B, Mahajan V, Clabeaux J, MacDonald K, Verdin PJ, Buckner JH, Noss EH. Multiparameter Analysis Identifies Heterogeneity in Knee Osteoarthritis Synovial Responses. Arthritis Rheumatol 2020; 72:598-608. [PMID: 31702112 DOI: 10.1002/art.41161] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 11/05/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Synovial membrane inflammation is common in osteoarthritis (OA) and increases cartilage injury. However, synovial fluid and histology studies suggest that OA inflammatory responses are not homogeneous. Greater understanding of these responses may provide new insights into OA disease mechanisms. We undertook this study to develop a novel multiparameter approach to phenotype synovial responses in knee OA. METHODS Cell composition and soluble protein production were measured by flow cytometry and multiplex enzyme-linked immunosorbent assay in synovium collected from OA patients undergoing knee replacement surgery (n = 35). RESULTS Testing disaggregation conditions showed that aggressive digestion improved synovial cell yield and mesenchymal staining by flow cytometry, but it negatively impacted CD4+ T cell and CD56+ natural killer cell staining. Less aggressive digestion preserved these markers and showed highly variable T cell infiltration (range 0-43%; n = 32). Correlation analysis identified mesenchymal subpopulations associated with different nonmesenchymal populations, including macrophages and T cells (CD45+CD11b+HLA-DR+ myeloid cells with PDPN+CD73+CD90-CD34- mesenchymal cells [r = 0.65, P < 0.0001]; and CD45+CD3+ T cells with PDPN+CD73+CD90+CD34+ mesenchymal cells [r = 0.50, P = 0.003]). Interleukin-6 (IL-6) measured by flow cytometry strongly correlated with IL-6 released by ex vivo culture of synovial tissue (r = 0.59, P = 0.0012) and was highest in mesenchymal cells coexpressing CD90 and CD34. IL-6, IL-8, complement factor D, and IL-10 release correlated positively with tissue cellularity (P = 0.0042, P = 0.018, P = 0.0012, and P = 0.038, respectively). Additionally, increased CD8+ T cell numbers correlated with retinol binding protein 4 (P = 0.033). Finally, combining flow cytometry and multiplex data identified patient clusters with different types of inflammatory responses. CONCLUSION We used a novel approach to analyze OA synovium, identifying patient-specific inflammatory clusters. Our findings indicate that phenotyping synovial inflammation may provide new insights into OA patient heterogeneity and biomarker development.
Collapse
Affiliation(s)
- Hannah Labinsky
- University of Washington, Seattle, and University Medical Center of Johannes Gutenberg University, Germany
| | | | - Kaytlyn A Ly
- Virginia Mason Medical Center, Seattle, Washington
| | | | | | | | | | | | | | | | | |
Collapse
|
591
|
Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, Fearon D, Greten FR, Hingorani SR, Hunter T, Hynes RO, Jain RK, Janowitz T, Jorgensen C, Kimmelman AC, Kolonin MG, Maki RG, Powers RS, Puré E, Ramirez DC, Scherz-Shouval R, Sherman MH, Stewart S, Tlsty TD, Tuveson DA, Watt FM, Weaver V, Weeraratna AT, Werb Z. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer 2020; 20:174-186. [PMID: 31980749 PMCID: PMC7046529 DOI: 10.1038/s41568-019-0238-1] [Citation(s) in RCA: 2371] [Impact Index Per Article: 474.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with diverse functions, including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes. As such, they are a potential target for optimizing therapeutic strategies against cancer. However, many challenges are present in ongoing attempts to modulate CAFs for therapeutic benefit. These include limitations in our understanding of the origin of CAFs and heterogeneity in CAF function, with it being desirable to retain some antitumorigenic functions. On the basis of a meeting of experts in the field of CAF biology, we summarize in this Consensus Statement our current knowledge and present a framework for advancing our understanding of this critical cell type within the tumour microenvironment.
Collapse
Affiliation(s)
- Erik Sahai
- The Francis Crick Institute, London, UK.
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Edna Cukierman
- Cancer Biology Program, Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - David G DeNardo
- Division of Oncology, Washington University Medical School, St Louis, MO, USA
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Douglas Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Weill Cornell Medicine, New York, NY, USA
| | - Florian R Greten
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Richard O Hynes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rakesh K Jain
- Edwin L Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tobias Janowitz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, New Hyde Park, NY, USA
| | - Claus Jorgensen
- Cancer Research UK Manchester Institute, University of Manchester, Nether Alderley, UK
| | - Alec C Kimmelman
- Department of Radiation Oncology, Perlmutter Cancer Center, New York University Medical Center, New York, NY, USA
| | - Mikhail G Kolonin
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Robert G Maki
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Northwell Health Cancer Institute, New York, NY, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - R Scott Powers
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel C Ramirez
- Zucker School of Medicine at Hofstra/Northwell Health System, New York, NY, USA
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sheila Stewart
- Department of Cell Biology and Physiology, Department of Medicine, ICCE Institute, Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Thea D Tlsty
- UCSF Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, UCSF, San Francisco, CA, USA
| | | | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London, UK
| | - Valerie Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ashani T Weeraratna
- Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
592
|
Kerrigan SA, McInnes IB. Reflections on ‘older’ drugs: learning new lessons in rheumatology. Nat Rev Rheumatol 2020; 16:179-183. [DOI: 10.1038/s41584-020-0375-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
|
593
|
Ritchlin C. Tissue-Resident Memory T Cells: Sequestered Immune Sensors and Effectors of Inflammation in Spondyloarthritis. Arthritis Rheumatol 2020; 72:379-382. [PMID: 31736273 DOI: 10.1002/art.41172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022]
|
594
|
Carr HL, Turner JD, Major T, Scheel-Toellner D, Filer A. New Developments in Transcriptomic Analysis of Synovial Tissue. Front Med (Lausanne) 2020; 7:21. [PMID: 32083090 PMCID: PMC7005068 DOI: 10.3389/fmed.2020.00021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/14/2020] [Indexed: 11/13/2022] Open
Abstract
Transcriptomic technologies are constantly changing and improving, resulting in an ever increasing understanding of gene expression in health and disease. These technologies have been used to investigate the pathological changes occurring in the joints of rheumatoid arthritis patients, leading to discoveries of disease mechanisms, and novel potential therapeutic targets. Microarrays were initially used on both whole tissue and cell subsets to investigate research questions, with bulk RNA sequencing allowing for further elaboration of these findings. A key example is the classification of pathotypes in rheumatoid arthritis using RNA sequencing that had previously been discovered using microarray and histology. Single-cell sequencing has now delivered a step change in understanding of the diversity and function of subpopulations of cells, in particular synovial fibroblasts. Future technologies, such as high resolution spatial transcriptomics, will enable step changes integrating single cell transcriptomic and geographic data to provide an integrated understanding of synovial pathology.
Collapse
Affiliation(s)
- Hayley L Carr
- Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Jason D Turner
- Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Triin Major
- Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dagmar Scheel-Toellner
- Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Andrew Filer
- Institute for Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| |
Collapse
|
595
|
Li Y, Song D, Mao L, Abraham DM, Bursac N. Lack of Thy1 defines a pathogenic fraction of cardiac fibroblasts in heart failure. Biomaterials 2020; 236:119824. [PMID: 32028169 DOI: 10.1016/j.biomaterials.2020.119824] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/16/2020] [Accepted: 01/25/2020] [Indexed: 01/18/2023]
Abstract
In response to heart injury, inflammation, or mechanical overload, quiescent cardiac fibroblasts (CFs) can become activated myofibroblasts leading to pathological matrix remodeling and decline in cardiac function. Specific targeting of fibroblasts may thus enable new therapeutic strategies to delay or reverse the progression of heart failure and cardiac fibrosis. However, it remains unknown if all CFs are equally responsive to specific pathological insults and if there exist sub-populations of resident fibroblasts in the heart that have distinctive pathogenic phenotypes. Here, we show that in response to transverse aortic constriction (TAC)-induced heart failure, previously uncharacterized Thy1neg (Thy1-/MEFSK4+/CD45-/CD31-) fraction of mouse ventricular fibroblasts became more abundant and attained a more activated, pro-fibrotic myofibroblast phenotype compared to Thy1Pos fraction. In a tissue-engineered 3D co-culture model of healthy cardiomyocytes and freshly isolated CFs, Thy1neg CFs from TAC hearts significantly decreased cardiomyocyte contractile function and calcium transient amplitude, and increased extracellular collagen deposition yielding a profibrotic heart tissue phenotype. In vivo, mice with global knockout of Thy1 developed more severe cardiac dysfunction and fibrosis in response to TAC-induced heart failure than wild-type mice. Taken together, our studies identify cardiac myofibroblasts lacking Thy1 as a pathogenic CF fraction in cardiac fibrosis and suggest important roles of Thy1 in pathophysiology of heart failure.
Collapse
Affiliation(s)
- Yanzhen Li
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Daniel Song
- Department of Computer Science, Duke University, Durham, NC, 27708, USA; Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Lan Mao
- Department of Medicine, Duke University, Durham, NC, 27708, USA
| | | | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA; Department of Medicine, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
596
|
Abstract
The development of rheumatoid arthritis (RA), at least in its autoantibody-positive subset, evolves through a series of events starting well before the appearance of synovitis. The distinction between 'early' and 'established' RA is, therefore, an evolving concept. In routine practice, however, the management of RA still starts with the occurrence of clinically detectable synovitis. As such, the synovial membrane remains a major target for the exploitation of possible stage-specific drivers of the disease. The recognition of a 'window of opportunity', in which treatment is more likely to succeed, raises the hypothesis that there might be a period in which the biological processes of RA are less mature and potentially reversible. The present review aims to provide a general picture of the modifications occurring in RA synovium, analysing the contribution of both infiltrating immune cells and stromal cells. When available, differences between early and established RA will be discussed.
Collapse
|
597
|
Abstract
Rheumatoid arthritis is a heterogeneous disease, which can be, based on data combining genetic risk factors and autoantibodies, sub-classified into ACPA-positive and -negative RA. Presence of ACPA and RF as well as rising CRP-levels in some patients years before onset of clinical symptoms indicate that relevant immune responses for RA development are initiated very early. ACPA are highly specific for RA, whereas RF can also be found among healthy (elderly) individuals and patients with other autoimmune diseases or infection. The most important genetic risk factor for RA development, the shared epitope alleles, resides in the MHC class II region. Shared epitope alleles, however, only predispose to the development of ACPA-positive RA. Smoking is thus far the most important environmental risk factor associated with the development of RA. Studies on synovitis have shown the importance not only of adaptive but also of innate immune responses. In summary of the various results from immunological changes in blood and synovial tissue, the extension of the immune response from a diffuse myeloid to a lympho-myeloid inflammation appears to be associated with a more successful therapeutic response to biologics. With respect to advances in synovitis research, new targets for treatment against pathological subsets of immune cells or fibroblasts are already on the horizon. However, alternative strategies involving the microbiome may play an important role as well and research in this field is growing rapidly.
Collapse
|
598
|
Pap T, Dankbar B, Wehmeyer C, Korb-Pap A, Sherwood J. Synovial fibroblasts and articular tissue remodelling: Role and mechanisms. Semin Cell Dev Biol 2020; 101:140-145. [PMID: 31956018 DOI: 10.1016/j.semcdb.2019.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Synovial joints are unique functional elements of the body and provide the ability for locomotion and for physical interaction with the environment. They are composed of different connective tissue structures, of which the synovial membrane is one central component. It shows a number of peculiarities that makes it different from other membranes in our body, while several lines of evidence suggest that synovial fibroblasts, also termed fibroblast-like synoviocytes (FLS) critically contribute to these peculiarities. This becomes evident particularly under disease conditions such as in rheumatoid arthritis and osteoarthritis, where the synovium is a key pathophysiological component. Therefore, an in-depth knowledge of FLS biology is not only important for understanding key features of articular function but also provides explanations for important characteristics of both degenerative and inflammatory joint diseases. This article reviews the structure, biochemical composition and functions of the synovial membrane and by focusing on the role of synovial fibroblasts explains key features of articular tissue remodelling particularly under disease conditions.
Collapse
Affiliation(s)
- Thomas Pap
- Institute of Musculoskeletal Medicine (IMM), Westfalian Wilhelms-University Münster, Germany.
| | - Berno Dankbar
- Institute of Musculoskeletal Medicine (IMM), Westfalian Wilhelms-University Münster, Germany
| | - Corinna Wehmeyer
- Institute of Musculoskeletal Medicine (IMM), Westfalian Wilhelms-University Münster, Germany
| | - Adelheid Korb-Pap
- Institute of Musculoskeletal Medicine (IMM), Westfalian Wilhelms-University Münster, Germany
| | - Joanna Sherwood
- Institute of Musculoskeletal Medicine (IMM), Westfalian Wilhelms-University Münster, Germany
| |
Collapse
|
599
|
Small A, Wechalekar MD. Synovial biopsies in inflammatory arthritis: precision medicine in rheumatoid arthritis. Expert Rev Mol Diagn 2020; 20:315-325. [PMID: 31865803 DOI: 10.1080/14737159.2020.1707671] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Synovial tissue (ST) is composed of a lining and sublining layer and is the target tissue involved in the inflammatory arthritides (IA), in which there is lining layer hyperplasia, inflammatory cell influx, macrophage recruitment and change in number and behavior of lining fibroblasts. Understanding synovial pathology has been critical in providing insights into pathogenetic mechanisms of disease and therapeutics. Pathobiological insights into ST have been underpinned by progress in molecular analytic methods; research in this area holds promise in individualizing treatment and optimizing response.Areas covered: We explore ST in IA and cover in-depth the utility of synovial biopsy and ST heterogeneity. We review recent advances in ST research and discuss implications with regards to therapeutic response. Finally, we provide perspectives on the identification of new drug targets and new diagnostic and prognostic markers.Expert opinion: ST holds the potential to individualize therapy by detecting biomarkers of diagnosis, therapeutic choice, and treatment modification in IA. Advances in molecular biology including high-throughput omics are likely to provide information that has hitherto remained unknown. ST analyzes pre- and post-treatment needs to be standard of care; only by routinely collecting and analyzing ST will we achieve the precision medicine outcomes described herein.
Collapse
Affiliation(s)
- Annabelle Small
- College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia
| | - Mihir D Wechalekar
- College of Medicine & Public Health, Flinders University, Adelaide, SA, Australia.,Rheumatology Department, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
600
|
Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol 2020; 16:11-31. [PMID: 31792399 PMCID: PMC7913072 DOI: 10.1038/s41584-019-0324-5] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Organ fibrosis is a lethal outcome of autoimmune rheumatic diseases such as systemic sclerosis. Myofibroblasts are scar-forming cells that are ultimately responsible for the excessive synthesis, deposition and remodelling of extracellular matrix proteins in fibrosis. Advances have been made in our understanding of the mechanisms that keep myofibroblasts in an activated state and control myofibroblast functions. However, the mechanisms that help myofibroblasts to persist in fibrotic tissues remain poorly understood. Myofibroblasts evade apoptosis by activating molecular mechanisms in response to pro-survival biomechanical and growth factor signals from the fibrotic microenvironment, which can ultimately lead to the acquisition of a senescent phenotype. Growing evidence suggests that myofibroblasts and senescent myofibroblasts, rather than being resistant to apoptosis, are actually primed for apoptosis owing to concomitant activation of cell death signalling pathways; these cells are poised to apoptose when survival pathways are inhibited. This knowledge of apoptotic priming has paved the way for new therapies that trigger apoptosis in myofibroblasts by blocking pro-survival mechanisms, target senescent myofibroblast for apoptosis or promote the reprogramming of myofibroblasts into scar-resolving cells. These novel strategies are not only poised to prevent progressive tissue scarring, but also have the potential to reverse established fibrosis and to regenerate chronically injured tissues.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|