551
|
Jia L, Piña-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer's disease. Mol Brain 2019; 12:104. [PMID: 31801553 PMCID: PMC6894260 DOI: 10.1186/s13041-019-0525-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is an aging-related neurological disorder characterized by synaptic loss and dementia. Wnt/β-catenin signaling is an essential signal transduction pathway that regulates numerous cellular processes including cell survival. In brain, Wnt/β-catenin signaling is not only crucial for neuronal survival and neurogenesis, but it plays important roles in regulating synaptic plasticity and blood-brain barrier integrity and function. Moreover, activation of Wnt/β-catenin signaling inhibits amyloid-β production and tau protein hyperphosphorylation in the brain. Critically, Wnt/β-catenin signaling is greatly suppressed in AD brain via multiple pathogenic mechanisms. As such, restoring Wnt/β-catenin signaling represents a unique opportunity for the rational design of novel AD therapies.
Collapse
Affiliation(s)
- Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Juan Piña-Crespo
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
552
|
Vemuri P, Lesnick TG, Knopman DS, Przybelski SA, Reid RI, Mielke MM, Graff‐Radford J, Lowe VJ, Machulda MM, Petersen RC, Jack CR. Amyloid, Vascular, and Resilience Pathways Associated with Cognitive Aging. Ann Neurol 2019; 86:866-877. [PMID: 31509621 PMCID: PMC6899909 DOI: 10.1002/ana.25600] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/17/2019] [Accepted: 09/08/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the multifactorial processes underlying cognitive aging based on the hypothesis that multiple causal pathways and mechanisms (amyloid, vascular, and resilience) influence longitudinal cognitive decline in each individual through worsening brain health. METHODS We identified 1,230 elderly subjects (aged ≥50 years) with an average of 4.9 years of clinical follow-up and with amyloid positron emission tomography, diffusion tensor imaging, and structural magnetic resonance imaging scans from the population-based Mayo Clinic Study of Aging. We examined imaging markers of amyloid and brain health (white matter microstructural integrity and cortical thinning), systemic vascular health preceding the imaging markers, and early to midlife intellectual enrichment to predict longitudinal cognitive trajectories. We used latent growth curve models for modeling longitudinal cognitive decline. RESULTS All the pathways (amyloid, vascular, resilience) converged through their effects on cortical thinning and worsening cognition and together explained patterns in cognitive decline. Resilience and vascular pathways (aging process, sex differences, education/occupation, and systemic vascular health) had significant impact on white matter microstructural integrity. Education/occupation levels contributed to white matter integrity through systemic vascular health. Worsening white matter integrity contributed to significant cortical thinning and subsequently longitudinal cognitive decline. Baseline amyloidosis contributed to a significant proportion of cognitive decline that accelerated with longer follow-up times, and its primary impact was through cortical thinning. INTERPRETATION We developed an integrated framework to help explain the dynamic and complex process of cognitive aging by considering key causal pathways. Such an approach is important for both better comprehension of cognitive aging processes and will aid in the development of successful intervention strategies. ANN NEUROL 2019;86:866-877.
Collapse
Affiliation(s)
| | | | | | | | - Robert I. Reid
- Department of Information TechnologyMayo ClinicRochesterMN
| | - Michelle M. Mielke
- Department of Health Sciences ResearchMayo ClinicRochesterMN
- Department of NeurologyMayo ClinicRochesterMN
| | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMN
| | | | | | | |
Collapse
|
553
|
Román G, Jackson R, Reis J, Román A, Toledo J, Toledo E. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev Neurol (Paris) 2019; 175:705-723. [DOI: 10.1016/j.neurol.2019.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
|
554
|
den Haan J, van de Kreeke JA, van Berckel BN, Barkhof F, Teunissen CE, Scheltens P, Verbraak FD, Bouwman FH. Is retinal vasculature a biomarker in amyloid proven Alzheimer's disease? ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:383-391. [PMID: 31193094 PMCID: PMC6517376 DOI: 10.1016/j.dadm.2019.03.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction The retina is a potential source of noninvasive vascular biomarkers for Alzheimer's disease (AD). We assessed retinal microvasculature in well-characterized AD cases, taking ophthalmological confounders into account. Methods We included 48 amyloid-positive AD patients and 38 amyloid-negative cognitively normal control subjects. All participants underwent ophthalmological screening to exclude interfering ocular disease. Using a multimodal approach, we measured retinal vascular parameters, choroidal thickness, macular vascular density, and foveal avascular zone size. Results We found no disease effects on retinal vascular measures (all β's < |0.15|, all P > .2), adjusted for confounders. Venular tortuosity was inversely associated with Fazekas score in control subjects (β -0.56, P < .01), while vessel density in the outer ring of the macula was inversely associated with Fazekas score in AD cases (β -0.64, P < .01). Discussion In conclusion, retinal vasculature did not discriminate patients with AD from control subjects, despite evident changes on clinical, neuroimaging, and cerebrospinal fluid biomarkers, challenging the use of retinal vasculature measurements as AD biomarker.
Collapse
Affiliation(s)
- Jurre den Haan
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jacoba A. van de Kreeke
- Department of Ophthalmology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bart N. van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- UCL institutes of Neurology and Healthcare Engineering, London, UK
| | - Charlotte E. Teunissen
- Neurochemistry Lab and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frank D. Verbraak
- Department of Ophthalmology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Femke H. Bouwman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
555
|
Kehoe PG, Al Mulhim N, Zetterberg H, Blennow K, Miners JS. Cerebrospinal Fluid Changes in the Renin-Angiotensin System in Alzheimer’s Disease. J Alzheimers Dis 2019; 72:525-535. [DOI: 10.3233/jad-190721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Patrick G. Kehoe
- Dementia Research Group, Clinical Neuroscience, Southmead Hospital, University of Bristol, Bristol, UK
| | - Noura Al Mulhim
- Dementia Research Group, Clinical Neuroscience, Southmead Hospital, University of Bristol, Bristol, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - James S. Miners
- Dementia Research Group, Clinical Neuroscience, Southmead Hospital, University of Bristol, Bristol, UK
| |
Collapse
|
556
|
Koziński M, Mosinska A, Salzmann M, Fua P. Tracing in 2D to reduce the annotation effort for 3D deep delineation of linear structures. Med Image Anal 2019; 60:101590. [PMID: 31841949 DOI: 10.1016/j.media.2019.101590] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 11/16/2022]
Abstract
The difficulty of obtaining annotations to build training databases still slows down the adoption of recent deep learning approaches for biomedical image analysis. In this paper, we show that we can train a Deep Net to perform 3D volumetric delineation given only 2D annotations in Maximum Intensity Projections (MIP) of the training volumes. This significantly reduces the annotation time: We conducted a user study that suggests that annotating 2D projections is on average twice as fast as annotating the original 3D volumes. Our technical contribution is a loss function that evaluates a 3D prediction against annotations of 2D projections. It is inspired by space carving, a classical approach to reconstructing complex 3D shapes from arbitrarily-positioned cameras. It can be used to train any deep network with volumetric output, without the need to change the network's architecture. Substituting the loss is all it takes to enable 2D annotations in an existing training setup. In extensive experiments on 3D light microscopy images of neurons and retinal blood vessels, and on Magnetic Resonance Angiography (MRA) brain scans, we show that, when trained on projection annotations, deep delineation networks perform as well as when they are trained using costlier 3D annotations.
Collapse
Affiliation(s)
- Mateusz Koziński
- Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne, Station 15, Lausanne CH-1015, Switzerland.
| | - Agata Mosinska
- Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne, Station 15, Lausanne CH-1015, Switzerland
| | - Mathieu Salzmann
- Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne, Station 15, Lausanne CH-1015, Switzerland
| | - Pascal Fua
- Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne, Station 15, Lausanne CH-1015, Switzerland
| |
Collapse
|
557
|
Lendahl U, Nilsson P, Betsholtz C. Emerging links between cerebrovascular and neurodegenerative diseases-a special role for pericytes. EMBO Rep 2019; 20:e48070. [PMID: 31617312 PMCID: PMC6831996 DOI: 10.15252/embr.201948070] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative and cerebrovascular diseases cause considerable human suffering, and therapy options for these two disease categories are limited or non-existing. It is an emerging notion that neurodegenerative and cerebrovascular diseases are linked in several ways, and in this review, we discuss the current status regarding vascular dysregulation in neurodegenerative disease, and conversely, how cerebrovascular diseases are associated with central nervous system (CNS) degeneration and dysfunction. The emerging links between neurodegenerative and cerebrovascular diseases are reviewed with a particular focus on pericytes-important cells that ensheath the endothelium in the microvasculature and which are pivotal for blood-brain barrier function and cerebral blood flow. Finally, we address how novel molecular and cellular insights into pericytes and other vascular cell types may open new avenues for diagnosis and therapy development for these important diseases.
Collapse
Affiliation(s)
- Urban Lendahl
- Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
- Department of Neurobiology, Care Sciences and SocietyDivision of NeurogeriatricsCenter for Alzheimer ResearchKarolinska InstitutetSolnaSweden
- Integrated Cardio Metabolic Centre (ICMC)HuddingeSweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and SocietyDivision of NeurogeriatricsCenter for Alzheimer ResearchKarolinska InstitutetSolnaSweden
| | - Christer Betsholtz
- Integrated Cardio Metabolic Centre (ICMC)HuddingeSweden
- Department of Immunology, Genetics and PathologyRudbeck LaboratoryUppsala UniversityUppsalaSweden
- Department of MedicineKarolinska InstitutetHuddingeSweden
| |
Collapse
|
558
|
Wörsdörfer P, Dalda N, Kern A, Krüger S, Wagner N, Kwok CK, Henke E, Ergün S. Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Sci Rep 2019; 9:15663. [PMID: 31666641 PMCID: PMC6821804 DOI: 10.1038/s41598-019-52204-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Organoids derived from human pluripotent stem cells are interesting models to study mechanisms of morphogenesis and promising platforms for disease modeling and drug screening. However, they mostly remain incomplete as they lack stroma, tissue resident immune cells and in particular vasculature, which create important niches during development and disease. We propose, that the directed incorporation of mesodermal progenitor cells (MPCs) into organoids will overcome the aforementioned limitations. In order to demonstrate the feasibility of the method, we generated complex human tumor as well as neural organoids. We show that the formed blood vessels display a hierarchic organization and mural cells are assembled into the vessel wall. Moreover, we demonstrate a typical blood vessel ultrastructure including endothelial cell-cell junctions, a basement membrane as well as luminal caveolae and microvesicles. We observe a high plasticity in the endothelial network, which expands, while the organoids grow and is responsive to anti-angiogenic compounds and pro-angiogenic conditions such as hypoxia. We show that vessels within tumor organoids connect to host vessels following transplantation. Remarkably, MPCs also deliver Iba1+ cells that infiltrate the neural tissue in a microglia-like manner.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, Koellikerstraße 6, University of Würzburg, 97070, Würzburg, Germany.
| | - Nahide Dalda
- Institute of Anatomy and Cell Biology, Koellikerstraße 6, University of Würzburg, 97070, Würzburg, Germany
| | - Anna Kern
- Institute of Anatomy and Cell Biology, Koellikerstraße 6, University of Würzburg, 97070, Würzburg, Germany
| | - Sarah Krüger
- Institute of Anatomy and Cell Biology, Koellikerstraße 6, University of Würzburg, 97070, Würzburg, Germany
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, Koellikerstraße 6, University of Würzburg, 97070, Würzburg, Germany
| | - Chee Keong Kwok
- Institute of Anatomy and Cell Biology, Koellikerstraße 6, University of Würzburg, 97070, Würzburg, Germany
| | - Erik Henke
- Institute of Anatomy and Cell Biology, Koellikerstraße 6, University of Würzburg, 97070, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Koellikerstraße 6, University of Würzburg, 97070, Würzburg, Germany
| |
Collapse
|
559
|
Shin Y, Choi SH, Kim E, Bylykbashi E, Kim JA, Chung S, Kim DY, Kamm RD, Tanzi RE. Blood-Brain Barrier Dysfunction in a 3D In Vitro Model of Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900962. [PMID: 31637161 PMCID: PMC6794630 DOI: 10.1002/advs.201900962] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/20/2019] [Indexed: 05/21/2023]
Abstract
Harmful materials in the blood are prevented from entering the healthy brain by a highly selective blood-brain barrier (BBB), and impairment of barrier function has been associated with a variety of neurological diseases. In Alzheimer's disease (AD), BBB breakdown has been shown to occur even before cognitive decline and brain pathology. To investigate the role of the cerebral vasculature in AD, a physiologically relevant 3D human neural cell culture microfluidic model is developed having a brain endothelial cell monolayer with a BBB-like phenotype. This model is shown to recapitulate several key aspects of BBB dysfunction observed in AD patients: increased BBB permeability, decreased expression of claudin-1, claudin-5, and VE-cadherin, increased expression of matrix-metalloproteinase-2 and reactive oxygen species, and deposition of β-amyloid (Aβ) peptides at the vascular endothelium. Thus, it provides a well-controlled platform for investigating BBB function as well as for screening of new drugs that need to pass the BBB to gain access to neural tissues.
Collapse
Affiliation(s)
- Yoojin Shin
- Department of Mechanical EngineeringMassachusetts Institute of Technology500 Technology Square, MIT Building, Room NE47‐321CambridgeMA02139USA
| | - Se Hoon Choi
- Genetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Eunhee Kim
- Genetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Enjana Bylykbashi
- Genetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Jeong Ah Kim
- Biomedical Omics GroupKorea Basic Science InstituteCheongju28119Republic of Korea
- Department of Bio‐Analytical ScienceUniversity of Science and TechnologyDaejeon34113Republic of Korea
| | - Seok Chung
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Doo Yeon Kim
- Genetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Roger D. Kamm
- Department of Mechanical EngineeringMassachusetts Institute of Technology500 Technology Square, MIT Building, Room NE47‐321CambridgeMA02139USA
- Department of Biological EngineeringMassachusetts Institute of Technology500 Technology Square, MIT Building, Room NE47‐321CambridgeMA02139USA
- Singapore‐MIT Alliance for Research & Technology (SMART)BioSystems and Micromechanics (BioSyM)Singapore138602Singapore
| | - Rudolph E. Tanzi
- Genetics and Aging Research UnitMcCance Center for Brain HealthMass General Institute for Neurodegenerative DiseaseDepartment of NeurologyMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| |
Collapse
|
560
|
Contu L, Nizari S, Heath CJ, Hawkes CA. Pre- and Post-natal High Fat Feeding Differentially Affects the Structure and Integrity of the Neurovascular Unit of 16-Month Old Male and Female Mice. Front Neurosci 2019; 13:1045. [PMID: 31632236 PMCID: PMC6783577 DOI: 10.3389/fnins.2019.01045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/17/2019] [Indexed: 01/20/2023] Open
Abstract
Compelling experimental and clinical evidence supports a role for maternal obesity in offspring health. Adult children of obese mothers are at greater risk of obesity, diabetes, coronary heart disease and stroke. These offspring may also be at greater risk of age-related neurodegenerative diseases for which mid-life obesity is a risk factor. Rodent diet-induced obesity models have shown that high fat (HF) diet consumption damages the integrity of the blood–brain barrier (BBB) in the adult brain. However, there is currently little information about the effect of chronic HF feeding on the BBB of aged animals. Moreover, the long-term consequences of maternal obesity on the cerebrovasculature of aged offspring are not known. This study determined the impact of pre- and post-natal HF diet on the structure and integrity of cerebral blood vessels in aged male and female mice. Female C57Bl/6 mice were fed either a 10% fat control (C) or 45% HF diet before mating and during gestation and lactation. At weaning, male and female offspring were fed the C or HF diet until sacrifice at 16-months of age. Both dams and offspring fed the HF diet weighed significantly more than mice fed the C diet. Post-natal HF diet exposure increased hippocampal BBB leakiness in female offspring, in association with loss of astrocyte endfoot coverage of arteries. Markers of tight junctions, pericytes or smooth muscle cells were not altered by pre- or post-natal HF diet. Male offspring born to HF-fed mothers showed decreased parenchymal GFAP expression compared to offspring of mothers fed C diet, while microglial and macrophage markers were higher in the same female diet group. In addition, female offspring exposed to the HF diet for their entire lifespan showed more significant changes in vessel structure, BBB permeability and inflammation compared to male animals. These results suggest that the long-term impact of prenatal HF diet on the integrity of cerebral blood vessels differs between male and female offspring depending on the post-natal diet. This may have implications for the prevention and management of age- and obesity-related cerebrovascular diseases that differentially affect men and women.
Collapse
Affiliation(s)
- Laura Contu
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Shereen Nizari
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Cheryl A Hawkes
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
561
|
Zille M, Ikhsan M, Jiang Y, Lampe J, Wenzel J, Schwaninger M. The impact of endothelial cell death in the brain and its role after stroke: A systematic review. Cell Stress 2019; 3:330-347. [PMID: 31799500 PMCID: PMC6859425 DOI: 10.15698/cst2019.11.203] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The supply of oxygen and nutrients to the brain is vital for its function and requires a complex vascular network that, when disturbed, results in profound neurological dysfunction. As part of the pathology in stroke, endothelial cells die. As endothelial cell death affects the surrounding cellular environment and is a potential target for the treatment and prevention of neurological disorders, we have systematically reviewed important aspects of endothelial cell death with a particular focus on stroke. After screening 2876 publications published between January 1, 2010 and August 7, 2019, we identified 154 records to be included. We found that endothelial cell death occurs rapidly as well as later after the onset of stroke conditions. Among the different cell death mechanisms, apoptosis was the most widely investigated (92 records), followed by autophagy (20 records), while other, more recently defined mechanisms received less attention, such as lysosome-dependent cell death (2 records) and necroptosis (2 records). We also discuss the differential vulnerability of brain cells to injury after stroke and the role of endothelial cell death in the no-reflow phenomenon with a special focus on the microvasculature. Further investigation of the different cell death mechanisms using novel tools and biomarkers will greatly enhance our understanding of endothelial cell death. For this task, at least two markers/criteria are desirable to determine cell death subroutines according to the recommendations of the Nomenclature Committee on Cell Death.
Collapse
Affiliation(s)
- Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Maulana Ikhsan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Yun Jiang
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| |
Collapse
|
562
|
Hachinski V, Einhäupl K, Ganten D, Alladi S, Brayne C, Stephan BCM, Sweeney MD, Zlokovic B, Iturria-Medina Y, Iadecola C, Nishimura N, Schaffer CB, Whitehead SN, Black SE, Østergaard L, Wardlaw J, Greenberg S, Friberg L, Norrving B, Rowe B, Joanette Y, Hacke W, Kuller L, Dichgans M, Endres M, Khachaturian ZS. Special topic section: linkages among cerebrovascular, cardiovascular, and cognitive disorders: Preventing dementia by preventing stroke: The Berlin Manifesto. Int J Stroke 2019:1747493019871915. [PMID: 31543058 DOI: 10.1177/1747493019871915] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The incidence of stroke and dementia are diverging across the world, rising for those in low-and middle-income countries and falling in those in high-income countries. This suggests that whatever factors cause these trends are potentially modifiable. At the population level, neurological disorders as a group account for the largest proportion of disability-adjusted life years globally (10%). Among neurological disorders, stroke (42%) and dementia (10%) dominate. Stroke and dementia confer risks for each other and share some of the same, largely modifiable, risk and protective factors. In principle, 90% of strokes and 35% of dementias have been estimated to be preventable. Because a stroke doubles the chance of developing dementia and stroke is more common than dementia, more than a third of dementias could be prevented by preventing stroke. Developments at the pathological, pathophysiological, and clinical level also point to new directions. Growing understanding of brain pathophysiology has unveiled the reciprocal interaction of cerebrovascular disease and neurodegeneration identifying new therapeutic targets to include protection of the endothelium, the blood-brain barrier, and other components of the neurovascular unit. In addition, targeting amyloid angiopathy aspects of inflammation and genetic manipulation hold new testable promise. In the meantime, accumulating evidence suggests that whole populations experiencing improved education, and lower vascular risk factor profiles (e.g., reduced prevalence of smoking) and vascular disease, including stroke, have better cognitive function and lower dementia rates. At the individual levels, trials have demonstrated that anticoagulation of atrial fibrillation can reduce the risk of dementia by 48% and that systolic blood pressure lower than 140 mmHg may be better for the brain. Based on these considerations, the World Stroke Organization has issued a proclamation, endorsed by all the major international organizations focused on global brain and cardiovascular health, calling for the joint prevention of stroke and dementia. This article summarizes the evidence for translation into action. © 2019 the Alzheimer's Association and the World Stroke Organisation. Published by Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, Ontario, Canada
| | - Karl Einhäupl
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Detlev Ganten
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Suvarna Alladi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Carol Brayne
- Department of Public Health and Primary Care in the University of Cambridge, Cambridge, UK
| | - Blossom C M Stephan
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Western University, Ontario, Canada
| | - Sandra E Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Leif Østergaard
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
- Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, Edinburgh Imaging, UK Dementia Research Institute, University of Edinburgh, Scotland, UK
| | - Steven Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Leif Friberg
- Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | - Bo Norrving
- Department of Clinical Sciences, Neurology, Lund University, Lund, Sweden
| | - Brian Rowe
- Department of Emergency Medicine and School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Joanette
- Canadian Institute of Health and Research, Ottawa, Canada
| | - Werner Hacke
- Department of Neurology, Heidelberg University, Heidelberg, Germany
| | - Lewis Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- ExcellenceCluster NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | | |
Collapse
|
563
|
Miners JS, Kehoe PG, Love S, Zetterberg H, Blennow K. CSF evidence of pericyte damage in Alzheimer's disease is associated with markers of blood-brain barrier dysfunction and disease pathology. ALZHEIMERS RESEARCH & THERAPY 2019; 11:81. [PMID: 31521199 PMCID: PMC6745071 DOI: 10.1186/s13195-019-0534-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022]
Abstract
Background We aimed to assess the relationship between levels of a cerebrospinal fluid (CSF) marker of pericyte damage, soluble platelet-derived growth factor receptor β (sPDGFRβ) and CSF markers of blood-brain barrier (BBB) integrity (CSF albumin and CSF/serum albumin ratio) and disease pathology (reduced CSF Aβ42 and elevated CSF total and phosphorylated tau) in Alzheimer’s disease (AD). Methods sPDGFRβ and albumin were measured by sandwich ELISA in ante-mortem CSF from 39 AD and 39 age-matched controls that were grouped according to their biomarker profile (i.e. AD cases t-tau > 400 pg/mL, p-tau > 60 pg/mL and Aβ42 < 550 pg/mL). sPDGFRβ was also measured in matched serum and CSF samples (n = 23) in a separate neurologically normal group for which the CSF/serum albumin ratio had been determined. Results CSF sPDGFRβ level was significantly increased in AD (p = 0.0038) and correlated positively with albumin (r = 0.45, p = 0.007), total tau (r = 0.50, p = 0.0017) and phosphorylated tau (r = 0.41, p = 0.013) in AD but not in controls. CSF sPDGFRβ did not correlate with Aβ42. Serum and CSF sPDGFRβ were positively correlated (r = 0.547, p = 0.0085) in the independent neurologically normal CSF/serum matched samples. Conclusions We provide further evidence of an association between pericyte injury and BBB breakdown in AD and novel evidence that a CSF marker of pericyte injury is related to the severity of AD pathology. Electronic supplementary material The online version of this article (10.1186/s13195-019-0534-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J S Miners
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Level 1, Learning and Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - P G Kehoe
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Level 1, Learning and Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - S Love
- Dementia Research Group, Clinical Neurosciences, Bristol Medical School, University of Bristol, Level 1, Learning and Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
| | - K Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, S-431 80, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, S-431 80, Mölndal, Sweden
| |
Collapse
|
564
|
Reed MJ, Damodarasamy M, Banks WA. The extracellular matrix of the blood-brain barrier: structural and functional roles in health, aging, and Alzheimer's disease. Tissue Barriers 2019; 7:1651157. [PMID: 31505997 DOI: 10.1080/21688370.2019.1651157] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increasing interest in defining the location, content, and role of extracellular matrix (ECM) components in brain structure and function during development, aging, injury, and neurodegeneration. Studies in vivo confirm brain ECM has a dynamic composition with constitutive and induced alterations that impact subsequent cell-cell and cell-matrix interactions. Moreover, it is clear that for any given ECM component, the brain region, and cell type within that location, determines the direction, magnitude, and composition of those changes. This review will examine the ECM at the neurovascular unit (NVU) and the blood-brain barrier (BBB) within the NVU. The discussion will begin at the glycocalyx ECM on the luminal surface of the vasculature, and progress to the abluminal side with a focus on changes in basement membrane ECM during aging and neurodegeneration.
Collapse
Affiliation(s)
- May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Mamatha Damodarasamy
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - William A Banks
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA.,VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
| |
Collapse
|
565
|
Affiliation(s)
- Turgay Dalkara
- From the Department of Neurology, Faculty of Medicine and Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey; and Department of Radiology, Massachusetts General Hospital, Harvard University, Boston
| |
Collapse
|
566
|
Finch CE, Kulminski AM. The Alzheimer's Disease Exposome. Alzheimers Dement 2019; 15:1123-1132. [PMID: 31519494 PMCID: PMC6788638 DOI: 10.1016/j.jalz.2019.06.3914] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Environmental factors are poorly understood in the etiology of Alzheimer's disease (AD) and related dementias. The importance of environmental factors in gene environment interactions (GxE) is suggested by wide individual differences in cognitive loss, even for carriers of AD-risk genetic variants. RESULTS AND DISCUSSION We propose the "AD exposome" to comprehensively assess the modifiable environmental factors relevant to genetic underpinnings of cognitive aging and AD. Analysis of endogenous and exogenous environmental factors requires multi-generational consideration of these interactions over age and time (GxExT). New computational approaches to the multi-level complexities may identify accessible interventions for individual brain aging. International collaborations on diverse populations are needed to identify the most relevant exposures over the life course for GxE interactions.
Collapse
Affiliation(s)
- Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| | - Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA.
| |
Collapse
|
567
|
Kiss T, Giles CB, Tarantini S, Yabluchanskiy A, Balasubramanian P, Gautam T, Csipo T, Nyúl-Tóth Á, Lipecz A, Szabo C, Farkas E, Wren JD, Csiszar A, Ungvari Z. Nicotinamide mononucleotide (NMN) supplementation promotes anti-aging miRNA expression profile in the aorta of aged mice, predicting epigenetic rejuvenation and anti-atherogenic effects. GeroScience 2019; 41:419-439. [PMID: 31463647 PMCID: PMC6815288 DOI: 10.1007/s11357-019-00095-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Understanding molecular mechanisms involved in vascular aging is essential to develop novel interventional strategies for treatment and prevention of age-related vascular pathologies. Recent studies provide critical evidence that vascular aging is characterized by NAD+ depletion. Importantly, in aged mice, restoration of cellular NAD+ levels by treatment with the NAD+ booster nicotinamide mononucleotide (NMN) exerts significant vasoprotective effects, improving endothelium-dependent vasodilation, attenuating oxidative stress, and rescuing age-related changes in gene expression. Strong experimental evidence shows that dysregulation of microRNAs (miRNAs) has a role in vascular aging. The present study was designed to test the hypothesis that age-related NAD+ depletion is causally linked to dysregulation of vascular miRNA expression. A corollary hypothesis is that functional vascular rejuvenation in NMN-treated aged mice is also associated with restoration of a youthful vascular miRNA expression profile. To test these hypotheses, aged (24-month-old) mice were treated with NMN for 2 weeks and miRNA signatures in the aortas were compared to those in aortas obtained from untreated young and aged control mice. We found that protective effects of NMN treatment on vascular function are associated with anti-aging changes in the miRNA expression profile in the aged mouse aorta. The predicted regulatory effects of NMN-induced differentially expressed miRNAs in aged vessels include anti-atherogenic effects and epigenetic rejuvenation. Future studies will uncover the mechanistic role of miRNA gene expression regulatory networks in the anti-aging effects of NAD+ booster treatments and determine the links between miRNAs regulated by NMN and sirtuin activators and miRNAs known to act in the conserved pathways of aging and major aging-related vascular diseases.
Collapse
Affiliation(s)
- Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Cory B Giles
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Institute of Biophysics, Biological Research Centre / Theoretical Medicine Doctoral School, Hungarian Academy of Sciences, Szeged, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Csaba Szabo
- Chair of Pharmacology, Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Eszter Farkas
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
| | - Jonathan D Wren
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Oklahoma Medical Research Foundation, Genes & Human Disease Research Program, Oklahoma City, OK and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Reynolds Oklahoma Center on Aging/Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1311, Oklahoma City, OK, 73104, USA.
- Department of Medical Physics and Informatics / Theoretical Medicine Doctoral School, University of Szeged, Szeged, Hungary.
- Translational Geroscience Laboratory, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
- Department of Public Health / Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
568
|
Alarcon-Martinez L, Yilmaz-Ozcan S, Yemisci M, Schallek J, Kılıç K, Villafranca-Baughman D, Can A, Di Polo A, Dalkara T. Retinal ischemia induces α-SMA-mediated capillary pericyte contraction coincident with perivascular glycogen depletion. Acta Neuropathol Commun 2019; 7:134. [PMID: 31429795 PMCID: PMC6701129 DOI: 10.1186/s40478-019-0761-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/26/2019] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence indicates that pericytes are vulnerable cells, playing pathophysiological roles in various neurodegenerative processes. Microvascular pericytes contract during cerebral and coronary ischemia and do not relax after re-opening of the occluded artery, causing incomplete reperfusion. However, the cellular mechanisms underlying ischemia-induced pericyte contraction, its delayed emergence, and whether it is pharmacologically reversible are unclear. Here, we investigate i) whether ischemia-induced pericyte contractions are mediated by alpha-smooth muscle actin (α-SMA), ii) the sources of calcium rise in ischemic pericytes, and iii) if peri-microvascular glycogen can support pericyte metabolism during ischemia. Thus, we examined pericyte contractility in response to retinal ischemia both in vivo, using adaptive optics scanning light ophthalmoscopy and, ex vivo, using an unbiased stereological approach. We found that microvascular constrictions were associated with increased calcium in pericytes as detected by a genetically encoded calcium indicator (NG2-GCaMP6) or a fluoroprobe (Fluo-4). Knocking down α-SMA expression with RNA interference or fixing F-actin with phalloidin or calcium antagonist amlodipine prevented constrictions, suggesting that constrictions resulted from calcium- and α-SMA-mediated pericyte contractions. Carbenoxolone or a Cx43-selective peptide blocker also reduced calcium rise, consistent with involvement of gap junction-mediated mechanisms in addition to voltage-gated calcium channels. Pericyte calcium increase and capillary constrictions became significant after 1 h of ischemia and were coincident with depletion of peri-microvascular glycogen, suggesting that glucose derived from glycogen granules could support pericyte metabolism and delay ischemia-induced microvascular dysfunction. Indeed, capillary constrictions emerged earlier when glycogen breakdown was pharmacologically inhibited. Constrictions persisted despite recanalization but were reversible with pericyte-relaxant adenosine administered during recanalization. Our study demonstrates that retinal ischemia, a common cause of blindness, induces α-SMA- and calcium-mediated persistent pericyte contraction, which can be delayed by glucose driven from peri-microvascular glycogen. These findings clarify the contractile nature of capillary pericytes and identify a novel metabolic collaboration between peri-microvascular end-feet and pericytes.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
- Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Sinem Yilmaz-Ozcan
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| | - Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| | - Jesse Schallek
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York, USA
| | - Kıvılcım Kılıç
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| | - Deborah Villafranca-Baughman
- Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Alp Can
- Department of Histology and Embryology, School of Medicine, Ankara University, Ankara, Turkey
| | - Adriana Di Polo
- Department of Neuroscience and Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Sihhiye, 06100, Ankara, Turkey.
- Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
569
|
Crivello M, Hogg MC, Jirström E, Halang L, Woods I, Rayner M, Coughlan KS, Lewandowski SA, Prehn JHM. Vascular regression precedes motor neuron loss in the FUS (1-359) ALS mouse model. Dis Model Mech 2019; 12:dmm.040238. [PMID: 31383794 PMCID: PMC6737946 DOI: 10.1242/dmm.040238] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/12/2019] [Indexed: 11/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) presents a poorly understood pathogenesis. Evidence from patients and mutant SOD1 mouse models suggests vascular damage may precede or aggravate motor dysfunction in ALS. We have previously shown angiogenin (ANG) treatment enhances motor neuron survival, delays motor dysfunction and prevents vascular regression in the SOD1G93A ALS model. However, the existence of vascular defects at different stages of disease progression remains to be established in other ALS models. Here, we assessed vascular integrity in vivo throughout different disease stages, and investigated whether ANG treatment reverses vascular regression and prolongs motor neuron survival in the FUS (1-359) mouse model of ALS. Lumbar spinal cord tissue was collected from FUS (1-359) and non-transgenic control mice at postnatal day (P)50, P90 and P120. We found a significant decrease in vascular network density in lumbar spinal cords from FUS (1-359) mice by day 90, at which point motor neuron numbers were unaffected. ANG treatment did not affect survival or counter vascular regression. Endogenous Ang1 and Vegf expression were unchanged at P50 and P90; however, we found a significant decrease in miRNA 126 at P50, indicating vascular integrity in FUS mice may be compromised via an alternative pathway. Our study demonstrates that vascular regression occurs before motor neuron degeneration in FUS (1-359) mice, and highlights that heterogeneity in responses to novel ALS therapeutics can already be detected in preclinical mouse models of ALS. This article has an associated First Person interview with the joint first authors of the paper. Summary: Vascular regression is observed prior to motor neuron loss in the FUS (1-359) mouse model of ALS, yet is not rescued by angiogenin treatment.
Collapse
Affiliation(s)
- Martin Crivello
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Marion C Hogg
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - Elisabeth Jirström
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| | - Luise Halang
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Ina Woods
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Megan Rayner
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Karen S Coughlan
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Sebastian A Lewandowski
- Tissue Biology Laboratory, Department of Medical Biochemistry and Biophysics, Center for Molecular Medicine, Karolinska Institute, Scheeles v. 2, 17177 Stockholm, Sweden.,Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.,FutureNeuro Research Centre, Royal College of Surgeons in Ireland, St. Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
570
|
Li Y, Xie L, Huang T, Zhang Y, Zhou J, Qi B, Wang X, Chen Z, Li P. Aging Neurovascular Unit and Potential Role of DNA Damage and Repair in Combating Vascular and Neurodegenerative Disorders. Front Neurosci 2019; 13:778. [PMID: 31440124 PMCID: PMC6694749 DOI: 10.3389/fnins.2019.00778] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/11/2019] [Indexed: 02/01/2023] Open
Abstract
Progressive neurological deterioration poses enormous burden on the aging population with ischemic stroke and neurodegenerative disease patients, such as Alzheimers’ disease and Parkinson’s disease. The past two decades have witnessed remarkable advances in the research of neurovascular unit dysfunction, which is emerging as an important pathological feature that underlies these neurological disorders. Dysfunction of the unit allows penetration of blood-derived toxic proteins or leukocytes into the brain and contributes to white matter injury, disturbed neurovascular coupling and neuroinflammation, which all eventually lead to cognitive dysfunction. Recent evidences suggest that aging-related oxidative stress, accumulated DNA damage and impaired DNA repair capacities compromises the genome integrity not only in neurons, but also in other cell types of the neurovascular unit, such as endothelial cells, astrocytes and pericytes. Combating DNA damage or enhancing DNA repair capacities in the neurovascular unit represents a promising therapeutic strategy for vascular and neurodegenerative disorders. In this review, we focus on aging related mechanisms that underlie DNA damage and repair in the neurovascular unit and introduce several novel strategies that target the genome integrity in the neurovascular unit to combat the vascular and neurodegenerative disorders in the aging brain.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lv Xie
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tingting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yueman Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Qi
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zengai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
571
|
Sandsmark DK, Bashir A, Wellington CL, Diaz-Arrastia R. Cerebral Microvascular Injury: A Potentially Treatable Endophenotype of Traumatic Brain Injury-Induced Neurodegeneration. Neuron 2019; 103:367-379. [PMID: 31394062 PMCID: PMC6688649 DOI: 10.1016/j.neuron.2019.06.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is one the most common human afflictions, contributing to long-term disability in survivors. Emerging data indicate that functional improvement or deterioration can occur years after TBI. In this regard, TBI is recognized as risk factor for late-life neurodegenerative disorders. TBI encompasses a heterogeneous disease process in which diverse injury subtypes and multiple molecular mechanisms overlap. To develop precision medicine approaches where specific pathobiological processes are targeted by mechanistically appropriate therapies, techniques to identify and measure these subtypes are needed. Traumatic microvascular injury is a common but relatively understudied TBI endophenotype. In this review, we describe evidence of microvascular dysfunction in human and animal TBI, explore the role of vascular dysfunction in neurodegenerative disease, and discuss potential opportunities for vascular-directed therapies in ameliorating TBI-related neurodegeneration. We discuss the therapeutic potential of vascular-directed therapies in TBI and the use and limitations of preclinical models to explore these therapies.
Collapse
Affiliation(s)
| | - Asma Bashir
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
572
|
Thuringer D, Garrido C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection? FASEB J 2019; 33:11629-11639. [PMID: 31348679 DOI: 10.1096/fj.201900895r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Brain microvascular endothelial cells (BMECs) interact with astrocytes and pericytes to form the blood-brain barrier (BBB). Their compromised function alters the BBB integrity, which is associated with early events in the pathogenesis of cancer, neurodegenerative diseases, and epilepsy. Interestingly, these conditions also induce the expression of heat shock proteins (HSPs). Here we review the contribution of major HSP families to BMEC and BBB function. Although investigators mainly report protective effects of HSPs in brain, contrasted results were obtained in BMEC, which depend both on the HSP and on its location, intra- or extracellular. The therapeutic potential of HSPs must be scrupulously analyzed before targeting them in patients to reduce the progression of brain lesions and improve neurologic outcomes in the long term.-Thuringer, D., Garrido, C. Molecular chaperones in the brain endothelial barrier: neurotoxicity or neuroprotection?
Collapse
Affiliation(s)
- Dominique Thuringer
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Carmen Garrido
- INSERM Unité Mixte de Recherche (UMR) 1231, Institut Fédératif de Recherche en Santé-Sciences et Techniques de l'Information et de la Communication (IFR Santé-STIC), Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
573
|
Neuroprotective Potential of GDF11: Myth or Reality? Int J Mol Sci 2019; 20:ijms20143563. [PMID: 31330871 PMCID: PMC6679312 DOI: 10.3390/ijms20143563] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
In the brain, aging is accompanied by cellular and functional deficiencies that promote vulnerability to neurodegenerative disorders. In blood plasma from young and old animals, various factors such as growth differentiation factor 11 (GDF11), whose levels are elevated in young animals, have been identified. The blood concentrations of these factors appear to be inversely correlated with the age-related decline of neurogenesis. The identification of GDF11 as a "rejuvenating factor" opens up perspectives for the treatment of neurodegenerative diseases. As a pro-neurogenic and pro-angiogenic agent, GDF11 may constitute a basis for novel therapeutic strategies.
Collapse
|
574
|
Refueling the Ischemic CNS: Guidance Molecules for Vascular Repair. Trends Neurosci 2019; 42:644-656. [PMID: 31285047 DOI: 10.1016/j.tins.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Abstract
Stroke patients have only limited therapeutic options and often remain with considerable disabilities. To promote neurological recovery, angiogenesis in the ischemic peri-infarct region has been recognized as an encouraging therapeutic target. Despite advances in mechanistic understanding of vascular growth and repair, effective and safe angiogenic treatments are currently missing. Besides the most intensively studied angiogenic growth factors, recent research has indicated that the process of vascular sprouting and migration also requires the participation of guidance molecules, many of which were initially identified as regulators of axonal growth. Here, we review the inhibitory and growth-promoting effects of guidance molecules on the vascular system and discuss their potential as novel angiogenic targets for neurovascular diseases.
Collapse
|
575
|
Hachinski V, Einhäupl K, Ganten D, Alladi S, Brayne C, Stephan BCM, Sweeney MD, Zlokovic B, Iturria-Medina Y, Iadecola C, Nishimura N, Schaffer CB, Whitehead SN, Black SE, Østergaard L, Wardlaw J, Greenberg S, Friberg L, Norrving B, Rowe B, Joanette Y, Hacke W, Kuller L, Dichgans M, Endres M, Khachaturian ZS. Preventing dementia by preventing stroke: The Berlin Manifesto. Alzheimers Dement 2019; 15:961-984. [PMID: 31327392 PMCID: PMC7001744 DOI: 10.1016/j.jalz.2019.06.001] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The incidence of stroke and dementia are diverging across the world, rising for those in low- and middle-income countries and falling in those in high-income countries. This suggests that whatever factors cause these trends are potentially modifiable. At the population level, neurological disorders as a group account for the largest proportion of disability-adjusted life years globally (10%). Among neurological disorders, stroke (42%) and dementia (10%) dominate. Stroke and dementia confer risks for each other and share some of the same, largely modifiable, risk and protective factors. In principle, 90% of strokes and 35% of dementias have been estimated to be preventable. Because a stroke doubles the chance of developing dementia and stroke is more common than dementia, more than a third of dementias could be prevented by preventing stroke. Developments at the pathological, pathophysiological, and clinical level also point to new directions. Growing understanding of brain pathophysiology has unveiled the reciprocal interaction of cerebrovascular disease and neurodegeneration identifying new therapeutic targets to include protection of the endothelium, the blood-brain barrier, and other components of the neurovascular unit. In addition, targeting amyloid angiopathy aspects of inflammation and genetic manipulation hold new testable promise. In the meantime, accumulating evidence suggests that whole populations experiencing improved education, and lower vascular risk factor profiles (e.g., reduced prevalence of smoking) and vascular disease, including stroke, have better cognitive function and lower dementia rates. At the individual levels, trials have demonstrated that anticoagulation of atrial fibrillation can reduce the risk of dementia by 48% and that systolic blood pressure lower than 140 mmHg may be better for the brain. Based on these considerations, the World Stroke Organization has issued a proclamation, endorsed by all the major international organizations focused on global brain and cardiovascular health, calling for the joint prevention of stroke and dementia. This article summarizes the evidence for translation into action.
Collapse
Affiliation(s)
- Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, Ontario, Canada.
| | - Karl Einhäupl
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Detlev Ganten
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Suvarna Alladi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Carol Brayne
- Department of Public Health and Primary Care in the University of Cambridge, Cambridge, UK
| | - Blossom C M Stephan
- Institute of Mental Health, Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, UK
| | - Melanie D Sweeney
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Shawn N Whitehead
- Department of Anatomy and Cell Biology, Western University, Ontario, Canada
| | - Sandra E Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Leif Østergaard
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark; Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Joanna Wardlaw
- Centre for Clinical Brain Sciences, Edinburgh Imaging, UK Dementia Research Institute, University of Edinburgh, Scotland, UK
| | - Steven Greenberg
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Leif Friberg
- Department of Clinical Sciences, Karolinska Institute, Stockholm, Sweden
| | - Bo Norrving
- Department of Clinical Sciences, Neurology, Lund University, Lund, Sweden
| | - Brian Rowe
- Department of Emergency Medicine and School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Joanette
- Canadian Institute of Health and Research, Ottawa, Canada
| | - Werner Hacke
- Department of Neurology, Heidelberg University, Heidelberg, Germany
| | - Lewis Kuller
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany
| | - Matthias Endres
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany; ExcellenceCluster NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), partner site Berlin, Berlin, Germany; German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | | |
Collapse
|
576
|
Abdul Razzak R, Florence GJ, Gunn-Moore FJ. Approaches to CNS Drug Delivery with a Focus on Transporter-Mediated Transcytosis. Int J Mol Sci 2019; 20:E3108. [PMID: 31242683 PMCID: PMC6627589 DOI: 10.3390/ijms20123108] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 12/13/2022] Open
Abstract
Drug delivery to the central nervous system (CNS) conferred by brain barriers is a major obstacle in the development of effective neurotherapeutics. In this review, a classification of current approaches of clinical or investigational importance for the delivery of therapeutics to the CNS is presented. This classification includes the use of formulations administered systemically that can elicit transcytosis-mediated transport by interacting with transporters expressed by transvascular endothelial cells. Neurotherapeutics can also be delivered to the CNS by means of surgical intervention using specialized catheters or implantable reservoirs. Strategies for delivering drugs to the CNS have evolved tremendously during the last two decades, yet, some factors can affect the quality of data generated in preclinical investigation, which can hamper the extension of the applications of these strategies into clinically useful tools. Here, we disclose some of these factors and propose some solutions that may prove valuable at bridging the gap between preclinical findings and clinical trials.
Collapse
Affiliation(s)
- Rana Abdul Razzak
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Gordon J Florence
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| | - Frank J Gunn-Moore
- Medical and Biological Sciences Building, School of Biology, University of St Andrews, St Andrews KY16 9TF, UK.
- Biomedical Science Research Centre, Schools of Chemistry and Biology, University of St Andrews, St Andrews KY16 9TF, UK.
| |
Collapse
|
577
|
Goodall EF, Leach V, Wang C, Cooper-Knock J, Heath PR, Baker D, Drew DR, Saffrey MJ, Simpson JE, Romero IA, Wharton SB. Age-Associated mRNA and miRNA Expression Changes in the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20123097. [PMID: 31242592 PMCID: PMC6627814 DOI: 10.3390/ijms20123097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 02/04/2023] Open
Abstract
Functional and structural age-associated changes in the blood-brain barrier (BBB) may affect the neurovascular unit and contribute to the onset and progression of age-associated neurodegenerative pathologies, including Alzheimer’s disease. The current study interrogated the RNA profile of the BBB in an ageing human autopsy brain cohort and an ageing mouse model using combined laser capture microdissection and expression profiling. Only 12 overlapping genes were altered in the same direction in the BBB of both ageing human and mouse cohorts. These included genes with roles in regulating vascular tone, tight junction protein expression and cell adhesion, all processes prone to dysregulation with advancing age. Integrated mRNA and miRNA network and pathway enrichment analysis of the datasets identified 15 overlapping miRNAs that showed altered expression. In addition to targeting genes related to DNA binding and/or autophagy, many of the miRNAs identified play a role in age-relevant processes, including BBB dysfunction and regulating the neuroinflammatory response. Future studies have the potential to develop targeted therapeutic approaches against these candidates to prevent vascular dysfunction in the ageing brain.
Collapse
Affiliation(s)
- Emily F Goodall
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Vicki Leach
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Chunfang Wang
- School of Life Science, Health and Chemical Sciences, Faculty of Science, Technology Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - David Baker
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - David R Drew
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - M Jill Saffrey
- School of Life Science, Health and Chemical Sciences, Faculty of Science, Technology Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Ignacio A Romero
- School of Life Science, Health and Chemical Sciences, Faculty of Science, Technology Engineering and Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, 385a Glossop Road, University of Sheffield, Sheffield S10 2HQ, UK.
| |
Collapse
|
578
|
de Graaf MNS, Cochrane A, van den Hil FE, Buijsman W, van der Meer AD, van den Berg A, Mummery CL, Orlova VV. Scalable microphysiological system to model three-dimensional blood vessels. APL Bioeng 2019; 3:026105. [PMID: 31263797 PMCID: PMC6588522 DOI: 10.1063/1.5090986] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Blood vessel models are increasingly recognized to have value in understanding disease and drug discovery. However, continued improvements are required to more accurately reflect human vessel physiology. Realistic three-dimensional (3D) in vitro cultures of human vascular cells inside microfluidic chips, or vessels-on-chips (VoC), could contribute to this since they can recapitulate aspects of the in vivo microenvironment by including mechanical stimuli such as shear stress. Here, we used human induced pluripotent stem cells as a source of endothelial cells (hiPSC-ECs), in combination with a technique called viscous finger patterning (VFP) toward this goal. We optimized VFP to create hollow structures in collagen I extracellular-matrix inside microfluidic chips. The lumen formation success rate was over 90% and the resulting cellularized lumens had a consistent diameter over their full length, averaging 336 ± 15 μm. Importantly, hiPSC-ECs cultured in these 3D microphysiological systems formed stable and viable vascular structures within 48 h. Furthermore, this system could support coculture of hiPSC-ECs with primary human brain vascular pericytes, demonstrating their ability to accommodate biologically relevant combinations of multiple vascular cell types. Our protocol for VFP is more robust than previously published methods with respect to success rates and reproducibility of the diameter between- and within channels. This, in combination with the ease of preparation, makes hiPSC-EC based VoC a low-cost platform for future studies in personalized disease modeling.
Collapse
Affiliation(s)
- Mees N S de Graaf
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Amy Cochrane
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Francijna E van den Hil
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | | | - Andries D van der Meer
- Applied Stem Cell Technologies, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Albert van den Berg
- BIOS Lab on a Chip, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | | | - Valeria V Orlova
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
579
|
Nguyen EH, Dombroe MJ, Fisk DL, Daly WT, Sorenson CM, Murphy WL, Sheibani N. Neurovascular Organotypic Culture Models Using Induced Pluripotent Stem Cells to Assess Adverse Chemical Exposure Outcomes. ACTA ACUST UNITED AC 2019; 5:92-110. [PMID: 32292797 DOI: 10.1089/aivt.2018.0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Human-induced pluripotent stem cells (iPSCs) represent a promising cell source for the construction of organotypic culture models for chemical toxicity screening and characterization. Materials and Methods: To characterize the effects of chemical exposure on the human neurovasculature, we constructed neurovascular unit (NVU) models consisting of endothelial cells (ECs) and astrocytes (ACs) derived from human-iPSCs, as well as human brain-derived pericytes (PCs). The cells were cocultured on synthetic poly(ethylene glycol) (PEG) hydrogels that guided the self-assembly of capillary-like vascular networks. High-content epifluorescence microscopy evaluated dose-dependent changes to multiple aspects of NVU morphology. Results: Cultured vascular networks underwent quantifiable morphological changes when incubated with vascular disrupting chemicals. The activity of predicted vascular disrupting chemicals from a panel of 38 compounds (U.S. Environmental Protection Agency) was ranked based on morphological features detected in the NVU model. In addition, unique morphological neurovascular disruption signatures were detected per chemical. A comparison of PEG-based NVU and Matrigel™-based NVU models found greater sensitivity and consistency in chemical detection by the PEG-based NVU models. Discussion: We suspect that specific morphological changes may be used for discerning adverse outcome pathways initiated by chemical exposure and rapid mechanistic characterization of chemical exposure to neurovascular function. Conclusion: The use of human stem cell-derived vascular tissue and PEG hydrogels in the construction of NVU models leads to rapid detection of adverse chemical effects on neurovascular stability. The use of multiple cell types in coculture elucidates potential mechanisms of action by chemicals applied to the model.
Collapse
Affiliation(s)
- Eric H Nguyen
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Micah J Dombroe
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin
| | - Debra L Fisk
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - William T Daly
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christine M Sorenson
- Department of Pediatrics, and University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - William L Murphy
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Orthopedics and Rehabilitation, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Human Models for Analysis of Pathways Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
580
|
Alevy J, Burger CA, Albrecht NE, Jiang D, Samuel MA. Progressive myoclonic epilepsy-associated gene Kctd7 regulates retinal neurovascular patterning and function. Neurochem Int 2019; 129:104486. [PMID: 31175897 DOI: 10.1016/j.neuint.2019.104486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/28/2022]
Abstract
Neuron function relies on and instructs the development and precise organization of neurovascular units that in turn support circuit activity. However, our understanding of the molecular cues that regulate this relationship remains sparse. Using a high-throughput screening pipeline, we recently identified several new regulators of vascular patterning. Among these was the potassium channel tetramerization domain-containing protein 7 (KCTD7). Mutations in KCTD7 are associated with progressive myoclonic epilepsy, but how KCTD7 regulates neural development and function remains poorly understood. To begin to identify such mechanisms, we focus on mouse retina, a tractable part of the central nervous system that contains precisely ordered neuron subtypes supported by a trilaminar vascular network. We find that deletion of Kctd7 induces defective patterning of the adult retina vascular network, resulting in increased branching, vessel length, and lacunarity. These alterations reflect early and specific defects in vessel development, as emergence of the superficial and deep vascular layers were delayed. These defects are likely due to a role for Kctd7 in inner retina neurons. Kctd7 is absent from vessels but present in neurons in the inner retina, and its deletion resulted in a corresponding increase in the number of bipolar cells in development and increased vessel branching in adults. These alterations were accompanied by retinal function deficits. Together, these data suggest that neuronal Kctd7 drives growth and patterning of the vasculature and that neurovascular interactions may participate in the pathogenesis of KCTD7-related human diseases.
Collapse
Affiliation(s)
- Jonathan Alevy
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Courtney A Burger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nicholas E Albrecht
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
581
|
Chernick D, Ortiz-Valle S, Jeong A, Qu W, Li L. Peripheral versus central nervous system APOE in Alzheimer's disease: Interplay across the blood-brain barrier. Neurosci Lett 2019; 708:134306. [PMID: 31181302 DOI: 10.1016/j.neulet.2019.134306] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
The apolipoprotein E (APOE) ε4 allele has been demonstrated as the preeminent genetic risk factor for late onset Alzheimer's disease (AD), which comprises greater than 90% of all AD cases. The discovery of the connection between different APOE genotypes and AD risk in the early 1990s spurred three decades of intense and comprehensive research into the function of APOE in the normal and diseased brain. The importance of APOE in the periphery has been well established, due to its pivotal role in maintaining cholesterol homeostasis and cardiovascular health. The influence of vascular factors on brain function and AD risk has been extensively studied in recent years. As a major apolipoprotein regulating multiple molecular pathways beyond its canonical lipid-related functions in the periphery and the central nervous system, APOE represents a critical link between the two compartments, and may influence AD risk from both sides of the blood-brain barrier. This review discusses recent advances in understanding the different functions of APOE in the periphery and in the brain, and highlights several promising APOE-targeted therapeutic strategies for AD.
Collapse
Affiliation(s)
| | | | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, Minneapolis, MN, United States
| | - Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ling Li
- Departments of Pharmacology, Minneapolis, MN, United States; Department of Experimental and Clinical Pharmacology, Minneapolis, MN, United States; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
582
|
Wahl D, Solon-Biet SM, Cogger VC, Fontana L, Simpson SJ, Le Couteur DG, Ribeiro RV. Aging, lifestyle and dementia. Neurobiol Dis 2019; 130:104481. [PMID: 31136814 DOI: 10.1016/j.nbd.2019.104481] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/13/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Aging is the greatest risk factor for most diseases including cancer, cardiovascular disorders, and neurodegenerative disease. There is emerging evidence that interventions that improve metabolic health with aging may also be effective for brain health. The most robust interventions are non-pharmacological and include limiting calorie or protein intake, increasing aerobic exercise, or environmental enrichment. In humans, dietary patterns including the Mediterranean, Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) and Okinawan diets are associated with improved age-related health and may reduce neurodegenerative disease including dementia. Rapamycin, metformin and resveratrol act on nutrient sensing pathways that improve cardiometabolic health and decrease the risk for age-associated disease. There is some evidence that they may reduce the risk for dementia in rodents. There is a growing recognition that improving metabolic function may be an effective way to optimize brain health during aging.
Collapse
Affiliation(s)
- Devin Wahl
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia.
| | - Samantha M Solon-Biet
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Victoria C Cogger
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Luigi Fontana
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; Aging and Alzheimers Institute, ANZAC Research Institute, Concord Clinical School/Sydney Medical School, Concord 2139, Australia
| | - Rosilene V Ribeiro
- Charles Perkins Centre, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| |
Collapse
|
583
|
Righi M, Belleri M, Presta M, Giacomini A. Quantification of 3D Brain Microangioarchitectures in an Animal Model of Krabbe Disease. Int J Mol Sci 2019; 20:E2384. [PMID: 31091708 PMCID: PMC6567268 DOI: 10.3390/ijms20102384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 12/16/2022] Open
Abstract
We performed a three-dimensional (3D) analysis of the microvascular network of the cerebral cortex of twitcher mice (an authentic model of Krabbe disease) using a restricted set of indexes that are able to describe the arrangement of the microvascular tree in CD31-stained sections. We obtained a near-linear graphical "fingerprint" of the microangioarchitecture of wild-type and twitcher animals that describes the amounts, spatial dispersion, and spatial relationships of adjacent classes of caliber-filtered microvessels. We observed significant alterations of the microangioarchitecture of the cerebral cortex of twitcher mice, whereas no alterations occur in renal microvessels, which is keeping with the observation that kidney is an organ that is not affected by the disease. This approach may represent an important starting point for the study of the microvascular changes that occur in the central nervous system (CNS) under different physiopathological conditions.
Collapse
Affiliation(s)
- Marco Righi
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Via Vanvitelli 32, 20129 Milano, Italy.
| | - Mirella Belleri
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Marco Presta
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Arianna Giacomini
- Unit of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
584
|
Saito S, Yamamoto Y, Ihara M. Development of a Multicomponent Intervention to Prevent Alzheimer's Disease. Front Neurol 2019; 10:490. [PMID: 31139139 PMCID: PMC6518668 DOI: 10.3389/fneur.2019.00490] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in vascular risk management have successfully reduced the prevalence of Alzheimer's Disease (AD) in several epidemiologic investigations. It is now widely accepted that cerebrovascular disease is both directly and indirectly involved in AD pathogenesis. Herein, we review the non-pharmacological and pharmacological therapeutic approaches for AD treatment. MIND [Mediterranean and DASH (Dietary Approaches to Stop Hypertension) Intervention for Neurodegenerative Delay] diet is an important dietary treatment for prevention of AD. Multi domain intervention including diet, exercise, cognitive training, and intensive risk managements also prevented cognitive decline in the Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) study. To confirm these favorable effects of life-style intervention, replica studies are being planned worldwide. Promotion of β-amyloid (Aβ) clearance has emerged as a promising pharmacological approach because insufficient removal of Aβ is more important than excessive Aβ production in the pathogenesis of the majority of AD patients. Most AD brains exhibit accompanying cerebral amyloid angiopathy, and Aβ distribution in cerebral amyloid angiopathy closely corresponds with the intramural periarterial drainage (IPAD) route, emphasizing the importance of Aβ clearance. In view of these facts, promotion of the major vascular-mediated Aβ elimination systems, including capillary transcytosis, the glymphatic system, and IPAD, have emerged as new treatment strategies in AD. In particular, the beneficial effects of cilostazol were shown in several clinical observation studies, and cilostazol facilitated IPAD in a rodent AD model. The COMCID (Cilostazol for prevention of Conversion from MCI to Dementia) trial, evaluating the efficacy of cilostazol for patients with mild cognitive impairment is currently ongoing in Japan. Such therapeutic approaches involving maintenance of cerebrovascular integrity and promotion of vascular-mediated Aβ clearance have the potential to be mainstream treatments for sporadic AD.
Collapse
Affiliation(s)
- Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.,Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yumi Yamamoto
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
585
|
Nonparenchymal fluid is the source of increased mean diffusivity in preclinical Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:348-354. [PMID: 31049392 PMCID: PMC6479267 DOI: 10.1016/j.dadm.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction Although increased mean diffusivity of the white matter has been repeatedly linked to Alzheimer’s disease pathology, the underlying mechanism is not known. Methods Here, we used ADNI-3 multishell diffusion magnetic resonance imaging data to separate the diffusion signal of the parenchyma from less hindered fluid pools within the white matter such as perivascular space fluid and fluid-filled cavities. Results We found that the source of the pathological increase of the mean diffusivity is the increased nonparenchymal fluid, often found in lacunes and perivascular spaces. In this cohort, the cognitive decline was significantly associated with the fluid increase and not with the microstructural changes of the white matter parenchyma itself. The white matter fluid increase was dominantly observed in the sagittal stratum and anterior thalamic radiation. Discussion These findings are positive steps toward understanding the pathophysiology of white matter alteration and its role in the cognitive decline.
Collapse
|
586
|
Interleukin-4 and Interleukin-13 Exacerbate Neurotoxicity of Prothrombin Kringle-2 in Cortex In Vivo via Oxidative Stress. Int J Mol Sci 2019; 20:ijms20081927. [PMID: 31010119 PMCID: PMC6515094 DOI: 10.3390/ijms20081927] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/17/2022] Open
Abstract
The present study investigated the effects of activated microglia-derived interleukin-4 (IL-4) and IL-13 on neurodegeneration in prothrombin kringle-2 (pKr-2)-treated rat cortex. pKr-2 was unilaterally injected into the Sprague–Dawley rat cerebral cortex and IL-4 and IL-13 neutralizing antibody was used to block the function of IL-4 and IL-13. Immunohistochemical analysis showed a significant loss of NeuN+ and Nissl+ cells and an increase of OX-42+ cells in the cortex at seven days post pKr-2. The levels of IL-4 and IL-13 expression were upregulated in the activated microglia as early as 12 hours post pKr-2 and sustained up to seven days post pKr-2. Neutralization by IL-4 or IL-13 antibodies (NA) significantly increased neuronal survival in pKr-2-treated rat cortex in vivo by suppressing microglial activation and the production of reactive oxygen species, as analyzed by immunohisotochemistry and hydroethidine histochemistry. These results suggest that IL-4 and IL-13 that were endogenously expressed from reactive microglia may play a critical role on neuronal death by regulating oxidative stress during the neurodegenerative diseases, such as Alzheimer’s disease and dementia.
Collapse
|
587
|
Fouda AY, Fagan SC, Ergul A. Brain Vasculature and Cognition. Arterioscler Thromb Vasc Biol 2019; 39:593-602. [PMID: 30816798 PMCID: PMC6540805 DOI: 10.1161/atvbaha.118.311906] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
There is a complex interaction between the brain and the cerebral vasculature to meet the metabolic demands of the brain for proper function. Preservation of cerebrovascular function and integrity has a central role in this sophisticated communication within the brain, and any derangements can have deleterious acute and chronic consequences. In almost all forms of cognitive impairment, from mild to Alzheimer disease, there are changes in cerebrovascular function and structure leading to decreased cerebral blood flow, which may initiate or worsen cognitive impairment. In this focused review, we discuss the contribution of 2 major vasoactive pathways to cerebrovascular dysfunction and cognitive impairment in an effort to identify early intervention strategies.
Collapse
Affiliation(s)
- Abdelrahman Y. Fouda
- Vascular Biology Center, Augusta University, GA
- Charlie Norwood VA Medical Center Augusta, GA
| | - Susan C. Fagan
- Program in Clinical and Experimental Therapeutics, University of Georgia College of Pharmacy, GA
- Charlie Norwood VA Medical Center Augusta, GA
| | - Adviye Ergul
- Ralph Johnson Veterans Administration Medical Center, Medical University of South Carolina, Charleston, SC
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
588
|
Winkler EA, Lu AY, Raygor KP, Linzey JR, Jonzzon S, Lien BV, Rutledge WC, Abla AA. Defective vascular signaling & prospective therapeutic targets in brain arteriovenous malformations. Neurochem Int 2019; 126:126-138. [PMID: 30858016 DOI: 10.1016/j.neuint.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 02/08/2023]
Abstract
The neurovascular unit is composed of endothelial cells, vascular smooth muscle cells, pericytes, astrocytes and neurons. Through tightly regulated multi-directional cell signaling, the neurovascular unit is responsible for the numerous functionalities of the cerebrovasculature - including the regulation of molecular and cellular transport across the blood-brain barrier, angiogenesis, blood flow responses to brain activation and neuroinflammation. Historically, the study of the brain vasculature focused on endothelial cells; however, recent work has demonstrated that pericytes and vascular smooth muscle cells - collectively known as mural cells - play critical roles in many of these functions. Given this emerging data, a more complete mechanistic understanding of the cellular basis of brain vascular malformations is needed. In this review, we examine the integrated functions and signaling within the neurovascular unit necessary for normal cerebrovascular structure and function. We then describe the role of aberrant cell signaling within the neurovascular unit in brain arteriovenous malformations and identify how these pathways may be targeted therapeutically to eradicate or stabilize these lesions.
Collapse
Affiliation(s)
- Ethan A Winkler
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Alex Y Lu
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Kunal P Raygor
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Joseph R Linzey
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Soren Jonzzon
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Brian V Lien
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - W Caleb Rutledge
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Adib A Abla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
589
|
Dayton JR, Franke MC, Yuan Y, Cruz-Orengo L. Straightforward method for singularized and region-specific CNS microvessels isolation. J Neurosci Methods 2019; 318:17-33. [PMID: 30797797 DOI: 10.1016/j.jneumeth.2019.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Current methods for murine brain microvasculature isolation requires the pooling of brain cortices while disregarding the rest of the CNS, making the analysis of single individuals non feasible. NEW METHOD Efficient isolation of brain microvessels requires the elimination of meninges, vessels of high caliber vessels and choroid plexus, commonly done by rolling the over filter paper, but can't be done on other CNS regions. We overcome this hurdle by using a double-pronged pick, as well as elution and filtration through cell strainers after centrifugation. RESULTS We were able to develop a region-specific murine CNS microvessels isolation, that allows for the comparison of the neurovascular unit from these regions both within the same individual and between multiple individuals and/or treatment groups without pooling. Additionally, we were able to adapt this method to macaque CNS tissue. COMPARISON WITH EXISTING METHOD(S) Although similar to a previously published method that requires no enzymatic dissociation and no ultracentrifugation, it does differ in its ability to isolate from a single experimental animal and from non-cortical tissues. However, it relies heavily on the researcher dissecting skills and careful elution and filtration of re-suspended samples. CONCLUSIONS CNS region-specific microvessels comparison can inform of molecular and/or cellular differences that would otherwise be obscured by excluding non-cortical tissue. Additionally, it allows for the unmasking of variations between individuals that remained hidden when pooling of multiple samples is the norm. Lastly, isolation of region-specific microvessels for non-human primate CNS allows for more translationally relevant studies of the BBB.
Collapse
Affiliation(s)
- Jacquelyn Rose Dayton
- University of California, Davis. Anatomy, Physiology & Cell Biology, 1089 Veterinary Medicine Drive, Davis, CA, 95616, United States.
| | - Marissa Cindy Franke
- University of California, Davis. Anatomy, Physiology & Cell Biology, 1089 Veterinary Medicine Drive, Davis, CA, 95616, United States.
| | - Yinyu Yuan
- University of California, Davis. Anatomy, Physiology & Cell Biology, 1089 Veterinary Medicine Drive, Davis, CA, 95616, United States.
| | - Lillian Cruz-Orengo
- University of California, Davis. Anatomy, Physiology & Cell Biology, 1089 Veterinary Medicine Drive, Davis, CA, 95616, United States.
| |
Collapse
|
590
|
In vivo imaging for neurovascular disease research. Arch Pharm Res 2019; 42:263-273. [PMID: 30756309 DOI: 10.1007/s12272-019-01128-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023]
Abstract
Connections between various cell types in the brain enable cognitive function. The neurovascular unit is a structure composed of different cell types that regulate neurovascular coupling, blood-brain barrier permeability, and other interactions with peripheral systems. The relationship among the components of the neurovascular unit is complex and difficult to study without the use of in vivo neurovascular disease imaging. In this review, we introduce principles and examples of various in vivo optical imaging techniques including laser Doppler flowmetry, laser speckle contrast imaging, intrinsic optical signal imaging, optical coherence tomography, and two-photon microscopy. Furthermore, we introduce recent advances of in vivo imaging and future directions for promoting neurovascular disease research.
Collapse
|
591
|
Chen KT, Wei KC, Liu HL. Theranostic Strategy of Focused Ultrasound Induced Blood-Brain Barrier Opening for CNS Disease Treatment. Front Pharmacol 2019; 10:86. [PMID: 30792657 PMCID: PMC6374338 DOI: 10.3389/fphar.2019.00086] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/21/2019] [Indexed: 12/22/2022] Open
Abstract
Focused Ultrasound (FUS) in combination with gaseous microbubbles has emerged as a potential new means of effective drug delivery to the brain. Recent research has shown that, under burst-type energy exposure with the presence of microbubbles, this modality can transiently permeate the blood-brain barrier (BBB). The bioavailability of therapeutic agents is site-specifically augmented only in the zone where the FUS energy is targeted. The non-invasiveness of this approach makes FUS-induced BBB opening a novel and attractive means to perform localized CNS therapeutic agent delivery. Over the past decade, FUS-BBB opening has been preclinically confirmed to successfully enhance CNS penetration of therapeutic agents including chemotherapeutic agents, therapeutic peptides, monoclonal antibodies, and nanoparticles. Recently, a number of clinical human trials have begun to explore clinical utility. This review article, explores this technology through its physical mechanisms, summarizes the existing preclinical findings (including current medical device designs and technical approaches), and summarizes current ongoing clinical trials.
Collapse
Affiliation(s)
- Ko-Ting Chen
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Kuo-Chen Wei
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hao-Li Liu
- Ph.D. Program in Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan.,Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Department of Electrical Engineering, Chang-Gung University, Taoyuan, Taiwan
| |
Collapse
|
592
|
Keep RF, Jones HC, Drewes LR. The year in review: progress in brain barriers and brain fluid research in 2018. Fluids Barriers CNS 2019; 16:4. [PMID: 30717760 PMCID: PMC6362595 DOI: 10.1186/s12987-019-0124-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
This editorial focuses on the progress made in brain barrier and brain fluid research in 2018. It highlights some recent advances in knowledge and techniques, as well as prevalent themes and controversies. Areas covered include: modeling, the brain endothelium, the neurovascular unit, the blood–CSF barrier and CSF, drug delivery, fluid movement within the brain, the impact of disease states, and heterogeneity.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | - Hazel C Jones
- Gagle Brook House, Chesterton, Bicester, OX26 1UF, UK
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|
593
|
Sharma A, Castellani RJ, Smith MA, Muresanu DF, Dey PK, Sharma HS. 5-Hydroxytryptophan: A precursor of serotonin influences regional blood-brain barrier breakdown, cerebral blood flow, brain edema formation, and neuropathology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 146:1-44. [DOI: 10.1016/bs.irn.2019.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|